Quantum advantage with shallow circuits

Quantum computers are expected to be better at solving certain computational problems than classical computers. This expectation is based on (well-founded) conjectures in computational complexity theory, but rigorous comparisons between the capabilities of quantum and classical algorithms are diffic...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 362; no. 6412; pp. 308 - 311
Main Authors Bravyi, Sergey, Gosset, David, König, Robert
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 19.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantum computers are expected to be better at solving certain computational problems than classical computers. This expectation is based on (well-founded) conjectures in computational complexity theory, but rigorous comparisons between the capabilities of quantum and classical algorithms are difficult to perform. Bravyi et al. proved theoretically that whereas the number of “steps” needed by parallel quantum circuits to solve certain linear algebra problems was independent of the problem size, this number grew logarithmically with size for analogous classical circuits (see the Perspective by Montanaro). This so-called quantum advantage stems from the quantum correlations present in quantum circuits that cannot be reproduced in analogous classical circuits. Science , this issue p. 308 ; see also p. 289 Parallel quantum circuits outperform classical counterparts at solving certain linear algebra problems. Quantum effects can enhance information-processing capabilities and speed up the solution of certain computational problems. Whether a quantum advantage can be rigorously proven in some setting or demonstrated experimentally using near-term devices is the subject of active debate. We show that parallel quantum algorithms running in a constant time period are strictly more powerful than their classical counterparts; they are provably better at solving certain linear algebra problems associated with binary quadratic forms. Our work gives an unconditional proof of a computational quantum advantage and simultaneously pinpoints its origin: It is a consequence of quantum nonlocality. The proposed quantum algorithm is a suitable candidate for near-future experimental realizations, as it requires only constant-depth quantum circuits with nearest-neighbor gates on a two-dimensional grid of qubits (quantum bits).
AbstractList Quantum effects can enhance information-processing capabilities and speed up the solution of certain computational problems. Whether a quantum advantage can be rigorously proven in some setting or demonstrated experimentally using near-term devices is the subject of active debate. We show that parallel quantum algorithms running in a constant time period are strictly more powerful than their classical counterparts; they are provably better at solving certain linear algebra problems associated with binary quadratic forms. Our work gives an unconditional proof of a computational quantum advantage and simultaneously pinpoints its origin: It is a consequence of quantum nonlocality. The proposed quantum algorithm is a suitable candidate for near-future experimental realizations, as it requires only constant-depth quantum circuits with nearest-neighbor gates on a two-dimensional grid of qubits (quantum bits).Quantum effects can enhance information-processing capabilities and speed up the solution of certain computational problems. Whether a quantum advantage can be rigorously proven in some setting or demonstrated experimentally using near-term devices is the subject of active debate. We show that parallel quantum algorithms running in a constant time period are strictly more powerful than their classical counterparts; they are provably better at solving certain linear algebra problems associated with binary quadratic forms. Our work gives an unconditional proof of a computational quantum advantage and simultaneously pinpoints its origin: It is a consequence of quantum nonlocality. The proposed quantum algorithm is a suitable candidate for near-future experimental realizations, as it requires only constant-depth quantum circuits with nearest-neighbor gates on a two-dimensional grid of qubits (quantum bits).
Quantum computers are expected to be better at solving certain computational problems than classical computers. This expectation is based on (well-founded) conjectures in computational complexity theory, but rigorous comparisons between the capabilities of quantum and classical algorithms are difficult to perform. Bravyi et al. proved theoretically that whereas the number of “steps” needed by parallel quantum circuits to solve certain linear algebra problems was independent of the problem size, this number grew logarithmically with size for analogous classical circuits (see the Perspective by Montanaro). This so-called quantum advantage stems from the quantum correlations present in quantum circuits that cannot be reproduced in analogous classical circuits. Science , this issue p. 308 ; see also p. 289 Parallel quantum circuits outperform classical counterparts at solving certain linear algebra problems. Quantum effects can enhance information-processing capabilities and speed up the solution of certain computational problems. Whether a quantum advantage can be rigorously proven in some setting or demonstrated experimentally using near-term devices is the subject of active debate. We show that parallel quantum algorithms running in a constant time period are strictly more powerful than their classical counterparts; they are provably better at solving certain linear algebra problems associated with binary quadratic forms. Our work gives an unconditional proof of a computational quantum advantage and simultaneously pinpoints its origin: It is a consequence of quantum nonlocality. The proposed quantum algorithm is a suitable candidate for near-future experimental realizations, as it requires only constant-depth quantum circuits with nearest-neighbor gates on a two-dimensional grid of qubits (quantum bits).
Quantum effects can enhance information-processing capabilities and speed up the solution of certain computational problems. Whether a quantum advantage can be rigorously proven in some setting or demonstrated experimentally using near-term devices is the subject of active debate. We show that parallel quantum algorithms running in a constant time period are strictly more powerful than their classical counterparts; they are provably better at solving certain linear algebra problems associated with binary quadratic forms. Our work gives an unconditional proof of a computational quantum advantage and simultaneously pinpoints its origin: It is a consequence of quantum nonlocality. The proposed quantum algorithm is a suitable candidate for near-future experimental realizations, as it requires only constant-depth quantum circuits with nearest-neighbor gates on a two-dimensional grid of qubits (quantum bits).
Quantum outperforms classicalQuantum computers are expected to be better at solving certain computational problems than classical computers. This expectation is based on (well-founded) conjectures in computational complexity theory, but rigorous comparisons between the capabilities of quantum and classical algorithms are difficult to perform. Bravyi et al. proved theoretically that whereas the number of “steps” needed by parallel quantum circuits to solve certain linear algebra problems was independent of the problem size, this number grew logarithmically with size for analogous classical circuits (see the Perspective by Montanaro). This so-called quantum advantage stems from the quantum correlations present in quantum circuits that cannot be reproduced in analogous classical circuits.Science, this issue p. 308; see also p. 289Quantum effects can enhance information-processing capabilities and speed up the solution of certain computational problems. Whether a quantum advantage can be rigorously proven in some setting or demonstrated experimentally using near-term devices is the subject of active debate. We show that parallel quantum algorithms running in a constant time period are strictly more powerful than their classical counterparts; they are provably better at solving certain linear algebra problems associated with binary quadratic forms. Our work gives an unconditional proof of a computational quantum advantage and simultaneously pinpoints its origin: It is a consequence of quantum nonlocality. The proposed quantum algorithm is a suitable candidate for near-future experimental realizations, as it requires only constant-depth quantum circuits with nearest-neighbor gates on a two-dimensional grid of qubits (quantum bits).
Author Gosset, David
König, Robert
Bravyi, Sergey
Author_xml – sequence: 1
  givenname: Sergey
  surname: Bravyi
  fullname: Bravyi, Sergey
  organization: IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA
– sequence: 2
  givenname: David
  surname: Gosset
  fullname: Gosset, David
  organization: IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA
– sequence: 3
  givenname: Robert
  orcidid: 0000-0002-0563-1229
  surname: König
  fullname: König, Robert
  organization: Technical University of Munich, 85748 Garching, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30337404$$D View this record in MEDLINE/PubMed
BookMark eNp1kMtLw0AQhxep2IeevUnAg17Szu4mu8lRii8oiKDnsJls7JY86u7G4n9vSqOHgqcZmO83zHxTMmraRhNySWFOKRMLh0Y3qOdKWU5BnJAJhTQOUwZ8RCYAXIQJyHhMps5tAPpZys_ImAPnMoJoQm5eO9X4rg5U8dU36kMHO-PXgVurqmp3ARqLnfHunJyWqnL6Yqgz8v5w_7Z8Clcvj8_Lu1WIPEl8mGOaS8YEijTHEjUopUCkpUwoQlTkJSouEokx41EORaRLDkoDS8oIZSpLPiO3h71b23522vmsNg51ValGt53LGGVcMhr3H8zI9RG6aTvb9NftKSYFTTjrqauB6vJaF9nWmlrZ7-xXQQ8sDgDa1jmryz-EQraXnA2Ss0Fyn4iPEmi88qZtvFWm-jf3A0Lbgrk
CitedBy_id crossref_primary_10_7566_JPSJ_93_054002
crossref_primary_10_1109_TQE_2020_3023419
crossref_primary_10_1103_PhysRevResearch_5_L012035
crossref_primary_10_1103_PhysRevResearch_2_043289
crossref_primary_10_1140_epjp_s13360_024_05337_2
crossref_primary_10_1214_19_STS745
crossref_primary_10_1109_TQE_2020_3034798
crossref_primary_10_1007_s11128_024_04317_w
crossref_primary_10_1142_S2010324723500029
crossref_primary_10_22331_q_2024_11_07_1519
crossref_primary_10_1103_PhysRevA_110_012422
crossref_primary_10_1088_1367_2630_acdf78
crossref_primary_10_1116_5_0036562
crossref_primary_10_1103_PhysRevA_106_022617
crossref_primary_10_1103_PhysRevX_9_041023
crossref_primary_10_1021_acs_jctc_1c00091
crossref_primary_10_1103_RevModPhys_95_035001
crossref_primary_10_1109_TIT_2023_3321121
crossref_primary_10_1002_andp_202200531
crossref_primary_10_1038_s41467_024_55077_1
crossref_primary_10_1088_1402_4896_ad9ae1
crossref_primary_10_1126_science_adg9774
crossref_primary_10_1088_2058_9565_ac47f0
crossref_primary_10_1007_s10701_021_00466_5
crossref_primary_10_3390_math10142475
crossref_primary_10_1103_PhysRevLett_134_010603
crossref_primary_10_1038_s41928_023_01033_8
crossref_primary_10_1103_PhysRevA_110_012444
crossref_primary_10_1103_PhysRevX_13_031001
crossref_primary_10_1109_TC_2020_3009664
crossref_primary_10_1103_PhysRevA_109_L030201
crossref_primary_10_1103_PhysRevX_11_031057
crossref_primary_10_1103_PhysRevA_109_052216
crossref_primary_10_1117_1_JEI_31_4_043037
crossref_primary_10_1109_JLT_2022_3154091
crossref_primary_10_1103_PhysRevResearch_2_023302
crossref_primary_10_1088_2058_9565_aca821
crossref_primary_10_1007_s42484_024_00224_6
crossref_primary_10_1103_PhysRevA_101_032343
crossref_primary_10_22331_q_2022_09_08_797
crossref_primary_10_1038_s41567_022_01643_7
crossref_primary_10_1103_PhysRevA_108_022403
crossref_primary_10_1145_3624483
crossref_primary_10_1103_PhysRevD_103_034027
crossref_primary_10_1103_PhysRevA_110_042616
crossref_primary_10_1103_PhysRevX_12_021037
crossref_primary_10_1103_PhysRevApplied_16_024051
crossref_primary_10_1103_PhysRevB_107_035409
crossref_primary_10_1126_science_abb2823
crossref_primary_10_3390_e25040694
crossref_primary_10_1103_PRXQuantum_2_010101
crossref_primary_10_1103_PhysRevX_11_041032
crossref_primary_10_1364_OE_530004
crossref_primary_10_1016_j_tcs_2020_11_039
crossref_primary_10_1088_1367_2630_ac3a17
crossref_primary_10_1145_3673240
crossref_primary_10_1038_s41567_020_0948_z
crossref_primary_10_1103_PhysRevApplied_21_014001
crossref_primary_10_1038_s41534_020_00308_8
crossref_primary_10_1103_PRXQuantum_2_040326
crossref_primary_10_1002_qute_202000123
crossref_primary_10_1007_s00607_023_01154_0
crossref_primary_10_1103_PhysRevResearch_2_012044
crossref_primary_10_1088_1367_2630_acaee2
crossref_primary_10_1088_1367_2630_ad51e5
crossref_primary_10_1103_PhysRevResearch_2_033444
crossref_primary_10_1103_PhysRevA_102_042416
crossref_primary_10_1103_PhysRevLett_133_160201
crossref_primary_10_1103_PhysRevResearch_2_013379
crossref_primary_10_1103_PhysRevB_107_045412
crossref_primary_10_22331_q_2021_03_10_407
crossref_primary_10_1007_s13218_024_00858_5
crossref_primary_10_1002_qute_202200089
crossref_primary_10_1103_PhysRevLett_129_130401
crossref_primary_10_3390_app10207116
crossref_primary_10_1103_PhysRevA_101_032311
crossref_primary_10_1007_s11128_024_04360_7
crossref_primary_10_1007_s11128_023_03884_8
crossref_primary_10_1109_TNNLS_2023_3290535
crossref_primary_10_1103_PhysRevLett_121_230401
crossref_primary_10_1103_PRXQuantum_3_020328
crossref_primary_10_22331_q_2024_04_09_1312
crossref_primary_10_1145_3478519
crossref_primary_10_34133_icomputing_0051
crossref_primary_10_1098_rsta_2023_0002
crossref_primary_10_1088_1751_8121_acfd6b
crossref_primary_10_1103_PhysRevA_100_032120
crossref_primary_10_1103_PhysRevResearch_5_023171
crossref_primary_10_7498_aps_68_20182133
crossref_primary_10_1038_s41467_021_21119_1
crossref_primary_10_1063_5_0090577
crossref_primary_10_1088_1402_4896_ad6e27
crossref_primary_10_1038_s41598_020_72469_7
crossref_primary_10_22331_q_2024_02_12_1251
crossref_primary_10_1038_s41534_019_0181_8
crossref_primary_10_1103_PhysRevA_108_012402
crossref_primary_10_1007_s11128_022_03684_6
crossref_primary_10_1038_s41467_024_54864_0
crossref_primary_10_1103_PhysRevA_104_052419
crossref_primary_10_1103_PhysRevResearch_6_L042027
crossref_primary_10_1109_JLT_2024_3352892
crossref_primary_10_1364_OL_44_003310
crossref_primary_10_1007_JHEP01_2023_090
crossref_primary_10_1103_PhysRevA_103_032414
crossref_primary_10_1126_sciadv_abk1660
crossref_primary_10_22331_q_2023_09_11_1107
crossref_primary_10_1016_j_tcs_2021_10_025
crossref_primary_10_1021_acs_jpcc_1c05009
crossref_primary_10_1038_s41928_020_00528_y
crossref_primary_10_1103_PhysRevApplied_20_044002
crossref_primary_10_1103_PhysRevA_109_032403
crossref_primary_10_1007_s11128_021_03232_8
crossref_primary_10_22331_q_2021_11_16_580
crossref_primary_10_1007_s00220_023_04675_z
crossref_primary_10_1126_sciadv_abd8080
crossref_primary_10_1103_PhysRevLett_125_240403
crossref_primary_10_1088_1572_9494_ad0c50
crossref_primary_10_4204_EPTCS_340_8
crossref_primary_10_1364_OE_509846
crossref_primary_10_1016_j_physleta_2024_129610
crossref_primary_10_1038_s41534_022_00598_0
crossref_primary_10_1103_PhysRevA_100_062326
crossref_primary_10_1007_s00220_021_03963_w
crossref_primary_10_21468_SciPostPhysLectNotes_61
crossref_primary_10_1103_PhysRevA_100_022304
crossref_primary_10_1109_TIT_2020_3015683
crossref_primary_10_3390_electronics9101669
crossref_primary_10_1002_qute_202100081
crossref_primary_10_1103_PhysRevA_110_062616
crossref_primary_10_1007_s10773_021_04724_0
crossref_primary_10_1103_PhysRevLett_126_090505
crossref_primary_10_3917_pls_495_0015
crossref_primary_10_1103_PhysRevLett_134_010203
crossref_primary_10_1364_JOSAB_424374
crossref_primary_10_34133_2022_9798679
crossref_primary_10_1103_PhysRevLett_134_010201
crossref_primary_10_4018_IJEHMC_315730
crossref_primary_10_1038_s41567_021_01271_7
crossref_primary_10_1145_3548693
crossref_primary_10_1103_PRXQuantum_2_040343
crossref_primary_10_1038_s41567_020_0960_3
crossref_primary_10_1007_s00521_023_09213_5
crossref_primary_10_1016_j_jcss_2022_08_002
crossref_primary_10_1103_PhysRevA_106_062430
crossref_primary_10_22331_q_2025_02_26_1646
crossref_primary_10_1103_PhysRevResearch_6_L042035
crossref_primary_10_1063_5_0173591
crossref_primary_10_1103_PRXQuantum_2_030314
crossref_primary_10_1016_j_techsoc_2022_101880
crossref_primary_10_1103_PhysRevLett_129_200401
crossref_primary_10_1103_PhysRevA_106_062429
crossref_primary_10_1103_PhysRevResearch_2_023270
crossref_primary_10_1002_spe_3039
crossref_primary_10_21468_SciPostPhys_15_2_049
crossref_primary_10_1103_PhysRevLett_123_120502
crossref_primary_10_1038_s41586_019_1666_5
crossref_primary_10_21468_SciPostPhysCore_6_2_028
crossref_primary_10_1111_mice_13084
crossref_primary_10_1145_3571222
crossref_primary_10_1088_2040_8986_ac1bbf
crossref_primary_10_1103_PhysRevA_110_012615
crossref_primary_10_1103_PhysRevLett_126_090401
crossref_primary_10_22331_q_2024_11_20_1530
crossref_primary_10_22331_q_2024_01_15_1228
crossref_primary_10_1103_RevModPhys_94_045007
crossref_primary_10_1103_PhysRevA_106_042426
crossref_primary_10_1364_OL_44_001726
crossref_primary_10_1007_s10773_019_04039_1
crossref_primary_10_1103_PhysRevA_109_032606
crossref_primary_10_1016_j_cpc_2020_107724
crossref_primary_10_1016_j_cosrev_2020_100313
crossref_primary_10_1088_1572_9494_ad07d6
crossref_primary_10_1038_s42005_024_01783_7
crossref_primary_10_1063_5_0185263
crossref_primary_10_1103_PhysRevA_99_052304
crossref_primary_10_1007_s11071_020_05496_8
crossref_primary_10_1038_s41534_020_00330_w
crossref_primary_10_1126_science_aau9555
crossref_primary_10_1088_2058_9565_aca3ce
crossref_primary_10_22331_q_2024_12_04_1548
crossref_primary_10_1109_JPROC_2019_2954005
crossref_primary_10_1103_PhysRevA_104_062438
crossref_primary_10_1103_PhysRevA_110_062410
crossref_primary_10_1002_que2_35
crossref_primary_10_1103_PhysRevA_109_042601
crossref_primary_10_1021_acsengineeringau_1c00033
crossref_primary_10_1038_s41534_024_00895_w
crossref_primary_10_1088_2058_9565_acf9c7
crossref_primary_10_1142_S2010324723400209
crossref_primary_10_1007_s00220_022_04615_3
crossref_primary_10_1103_PhysRevLett_130_210602
crossref_primary_10_1103_PRXQuantum_6_010356
crossref_primary_10_1007_s42514_022_00090_3
crossref_primary_10_1103_PhysRevA_110_032217
crossref_primary_10_1038_s41534_019_0210_7
crossref_primary_10_22331_q_2022_05_24_717
crossref_primary_10_1103_PhysRevResearch_4_033068
crossref_primary_10_1109_TQE_2020_3030314
crossref_primary_10_1063_5_0038087
crossref_primary_10_1103_PhysRevA_107_022429
crossref_primary_10_1007_s00894_024_06072_2
crossref_primary_10_1088_1367_2630_abd7bc
crossref_primary_10_1103_PhysRevA_108_022603
Cites_doi 10.1103/PhysRevX.8.021010
10.1023/A:1026009100467
10.1103/PhysRevA.75.012103
10.1038/s41567-018-0124-x
10.1103/PhysicsPhysiqueFizika.1.195
10.1137/S0097539799355053
10.1103/PhysRevLett.117.080501
10.1137/S0036144598347011
10.1103/PhysRevLett.118.040502
10.1103/PhysRevA.68.022312
10.1103/PhysRevLett.65.1838
10.1103/PhysRevA.69.062311
10.1098/rspa.2005.1546
10.1103/PhysRevLett.103.080501
10.1016/S0304-3975(02)00377-8
10.1119/1.16243
10.1007/978-3-642-18073-6_4
10.1103/PhysRevX.7.021050
10.1088/1367-2630/17/8/083002
10.1103/PhysRevLett.119.180509
10.1038/npjqi.2015.23
10.1137/S0097539796300921
10.1137/S0097539705447311
10.22331/q-2017-04-25-8
10.1103/PhysRevA.70.052328
ContentType Journal Article
Copyright Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.aar3106
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 311
ExternalDocumentID 30337404
10_1126_science_aar3106
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABBHK
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
C51
CITATION
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c388t-bc9b7226c69bcfce0aaa069f781c04dbfca3687c5234b0d4ef30ae028f4c797f3
ISSN 0036-8075
1095-9203
IngestDate Fri Jul 11 01:45:25 EDT 2025
Fri Jul 25 10:59:14 EDT 2025
Mon Jul 21 06:18:11 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Tue Jul 01 01:51:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6412
Language English
License Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c388t-bc9b7226c69bcfce0aaa069f781c04dbfca3687c5234b0d4ef30ae028f4c797f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0563-1229
PMID 30337404
PQID 2122761832
PQPubID 1256
PageCount 4
ParticipantIDs proquest_miscellaneous_2123721530
proquest_journals_2122761832
pubmed_primary_30337404
crossref_primary_10_1126_science_aar3106
crossref_citationtrail_10_1126_science_aar3106
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-19
PublicationDateYYYYMMDD 2018-10-19
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2018
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
Terhal B. M. (e_1_3_2_15_2) 2004; 4
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_11_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
Gottesman D. (e_1_3_2_9_2) 2014; 14
30337396 - Science. 2018 Oct 19;362(6412):289
References_xml – ident: e_1_3_2_18_2
– ident: e_1_3_2_19_2
  doi: 10.1103/PhysRevX.8.021010
– ident: e_1_3_2_38_2
  doi: 10.1023/A:1026009100467
– ident: e_1_3_2_40_2
– ident: e_1_3_2_37_2
  doi: 10.1103/PhysRevA.75.012103
– ident: e_1_3_2_13_2
  doi: 10.1038/s41567-018-0124-x
– ident: e_1_3_2_2_2
  doi: 10.1103/PhysicsPhysiqueFizika.1.195
– ident: e_1_3_2_23_2
  doi: 10.1137/S0097539799355053
– ident: e_1_3_2_6_2
– ident: e_1_3_2_16_2
  doi: 10.1103/PhysRevLett.117.080501
– ident: e_1_3_2_3_2
  doi: 10.1137/S0036144598347011
– ident: e_1_3_2_20_2
  doi: 10.1103/PhysRevLett.118.040502
– ident: e_1_3_2_32_2
  doi: 10.1103/PhysRevA.68.022312
– ident: e_1_3_2_36_2
  doi: 10.1103/PhysRevLett.65.1838
– ident: e_1_3_2_33_2
  doi: 10.1103/PhysRevA.69.062311
– ident: e_1_3_2_26_2
  doi: 10.1098/rspa.2005.1546
– ident: e_1_3_2_14_2
  doi: 10.1103/PhysRevLett.103.080501
– ident: e_1_3_2_39_2
  doi: 10.1016/S0304-3975(02)00377-8
– volume: 4
  start-page: 134
  year: 2004
  ident: e_1_3_2_15_2
  article-title: Adaptive quantum computation, constant depth quantum circuits and Arthur-Merlin games
  publication-title: Quantum Inf. Comput.
– ident: e_1_3_2_35_2
  doi: 10.1119/1.16243
– ident: e_1_3_2_22_2
– ident: e_1_3_2_24_2
  doi: 10.1007/978-3-642-18073-6_4
– ident: e_1_3_2_8_2
– ident: e_1_3_2_12_2
  doi: 10.1103/PhysRevX.7.021050
– ident: e_1_3_2_10_2
  doi: 10.1088/1367-2630/17/8/083002
– ident: e_1_3_2_21_2
  doi: 10.1137/S0097539799355053
– ident: e_1_3_2_25_2
– ident: e_1_3_2_11_2
  doi: 10.1103/PhysRevLett.119.180509
– ident: e_1_3_2_4_2
  doi: 10.1038/npjqi.2015.23
– ident: e_1_3_2_28_2
  doi: 10.1137/S0097539796300921
– ident: e_1_3_2_41_2
– ident: e_1_3_2_27_2
– volume: 14
  start-page: 1338
  year: 2014
  ident: e_1_3_2_9_2
  article-title: Fault-Tolerant Quantum Computation with Constant Overhead
  publication-title: Quantum Inf. Comput.
– ident: e_1_3_2_7_2
  doi: 10.1137/S0097539705447311
– ident: e_1_3_2_17_2
  doi: 10.22331/q-2017-04-25-8
– ident: e_1_3_2_42_2
  doi: 10.1103/PhysRevA.70.052328
– reference: 30337396 - Science. 2018 Oct 19;362(6412):289
SSID ssj0009593
Score 2.690644
Snippet Quantum computers are expected to be better at solving certain computational problems than classical computers. This expectation is based on (well-founded)...
Quantum effects can enhance information-processing capabilities and speed up the solution of certain computational problems. Whether a quantum advantage can be...
Quantum outperforms classicalQuantum computers are expected to be better at solving certain computational problems than classical computers. This expectation...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 308
SubjectTerms Algebra
Algorithms
Circuits
Complexity theory
Computation
Computer applications
Computers
Information processing
Linear algebra
Nearest-neighbor
Quadratic forms
Quantum computers
Qubits (quantum computing)
Title Quantum advantage with shallow circuits
URI https://www.ncbi.nlm.nih.gov/pubmed/30337404
https://www.proquest.com/docview/2122761832
https://www.proquest.com/docview/2123721530
Volume 362
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED62lsFeytr9StcNDwbrGA6KJEv2Y7I1lNF1jCWQNyPJ8ggMZ6TORvfX72TJjjdS6PZigmLFQd_5_Mn33R3AK1LokUoyGxteiJinukQ_SEzMEsG1duVhEpc7_PFSnM_5h0WyaHu1h-ySWg_Nr515Jf-DKo4hri5L9h-Q7X4UB_Az4otHRBiPt8L48wbXxamLXSC_duobrzh3DVJWP9-a5dpslr5UU0tA23sZiWUXrOlB1KkOx14b0EoFwrTee4PJWv24bqQAX1wC51YUik9dH-DoyeXRobuI_ERUy69bPXf_jcOoKf8a_Jp3ksT1d6TEOya7Yyx4ViZoz4QED4Jp7ypZU89hhwvvNZ20Q6XWSEB3FMu-_JRP5xcX-exsMbsL-xR3Cejm9seT95Pp31WXuz8Xajv1sqbaC_xJS27YazScY_YADsJmIRp75A_hjq2O4J5vH3p9BIcBlavoNFQPf_MQXgejiDqjiJxRRMEootYoHsF8ejZ7dx6HbhixYWlax9pkWiJZNiLTpjSWKKWIyEqZjgzhhS6NYiKVJqGMa1JwWzKiLNLHkhuZyZI9hr1qVdmnEGWEKUuzIh0JyoXNVJEUOhFWUiWVksUAhu1i5CaUincdS77lzZaRijysXh5WbwCn3YTvvkrKzaeetKubh1vpKkf-RKVwT5cBvOy-RkfnoleqsqtNcw6TSFAZGcATj0p3LeRhTHLCj28x-xnc3xr1CezV6419jsSy1i-C-fwGQK96qw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+advantage+with+shallow+circuits&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Bravyi%2C+Sergey&rft.au=Gosset%2C+David&rft.au=K%C3%B6nig%2C+Robert&rft.date=2018-10-19&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=362&rft.issue=6412&rft.spage=308&rft_id=info:doi/10.1126%2Fscience.aar3106&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon