Quantum advantage with shallow circuits
Quantum computers are expected to be better at solving certain computational problems than classical computers. This expectation is based on (well-founded) conjectures in computational complexity theory, but rigorous comparisons between the capabilities of quantum and classical algorithms are diffic...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 362; no. 6412; pp. 308 - 311 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
19.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantum computers are expected to be better at solving certain computational problems than classical computers. This expectation is based on (well-founded) conjectures in computational complexity theory, but rigorous comparisons between the capabilities of quantum and classical algorithms are difficult to perform. Bravyi
et al.
proved theoretically that whereas the number of “steps” needed by parallel quantum circuits to solve certain linear algebra problems was independent of the problem size, this number grew logarithmically with size for analogous classical circuits (see the Perspective by Montanaro). This so-called quantum advantage stems from the quantum correlations present in quantum circuits that cannot be reproduced in analogous classical circuits.
Science
, this issue p.
308
; see also p.
289
Parallel quantum circuits outperform classical counterparts at solving certain linear algebra problems.
Quantum effects can enhance information-processing capabilities and speed up the solution of certain computational problems. Whether a quantum advantage can be rigorously proven in some setting or demonstrated experimentally using near-term devices is the subject of active debate. We show that parallel quantum algorithms running in a constant time period are strictly more powerful than their classical counterparts; they are provably better at solving certain linear algebra problems associated with binary quadratic forms. Our work gives an unconditional proof of a computational quantum advantage and simultaneously pinpoints its origin: It is a consequence of quantum nonlocality. The proposed quantum algorithm is a suitable candidate for near-future experimental realizations, as it requires only constant-depth quantum circuits with nearest-neighbor gates on a two-dimensional grid of qubits (quantum bits). |
---|---|
AbstractList | Quantum effects can enhance information-processing capabilities and speed up the solution of certain computational problems. Whether a quantum advantage can be rigorously proven in some setting or demonstrated experimentally using near-term devices is the subject of active debate. We show that parallel quantum algorithms running in a constant time period are strictly more powerful than their classical counterparts; they are provably better at solving certain linear algebra problems associated with binary quadratic forms. Our work gives an unconditional proof of a computational quantum advantage and simultaneously pinpoints its origin: It is a consequence of quantum nonlocality. The proposed quantum algorithm is a suitable candidate for near-future experimental realizations, as it requires only constant-depth quantum circuits with nearest-neighbor gates on a two-dimensional grid of qubits (quantum bits).Quantum effects can enhance information-processing capabilities and speed up the solution of certain computational problems. Whether a quantum advantage can be rigorously proven in some setting or demonstrated experimentally using near-term devices is the subject of active debate. We show that parallel quantum algorithms running in a constant time period are strictly more powerful than their classical counterparts; they are provably better at solving certain linear algebra problems associated with binary quadratic forms. Our work gives an unconditional proof of a computational quantum advantage and simultaneously pinpoints its origin: It is a consequence of quantum nonlocality. The proposed quantum algorithm is a suitable candidate for near-future experimental realizations, as it requires only constant-depth quantum circuits with nearest-neighbor gates on a two-dimensional grid of qubits (quantum bits). Quantum computers are expected to be better at solving certain computational problems than classical computers. This expectation is based on (well-founded) conjectures in computational complexity theory, but rigorous comparisons between the capabilities of quantum and classical algorithms are difficult to perform. Bravyi et al. proved theoretically that whereas the number of “steps” needed by parallel quantum circuits to solve certain linear algebra problems was independent of the problem size, this number grew logarithmically with size for analogous classical circuits (see the Perspective by Montanaro). This so-called quantum advantage stems from the quantum correlations present in quantum circuits that cannot be reproduced in analogous classical circuits. Science , this issue p. 308 ; see also p. 289 Parallel quantum circuits outperform classical counterparts at solving certain linear algebra problems. Quantum effects can enhance information-processing capabilities and speed up the solution of certain computational problems. Whether a quantum advantage can be rigorously proven in some setting or demonstrated experimentally using near-term devices is the subject of active debate. We show that parallel quantum algorithms running in a constant time period are strictly more powerful than their classical counterparts; they are provably better at solving certain linear algebra problems associated with binary quadratic forms. Our work gives an unconditional proof of a computational quantum advantage and simultaneously pinpoints its origin: It is a consequence of quantum nonlocality. The proposed quantum algorithm is a suitable candidate for near-future experimental realizations, as it requires only constant-depth quantum circuits with nearest-neighbor gates on a two-dimensional grid of qubits (quantum bits). Quantum effects can enhance information-processing capabilities and speed up the solution of certain computational problems. Whether a quantum advantage can be rigorously proven in some setting or demonstrated experimentally using near-term devices is the subject of active debate. We show that parallel quantum algorithms running in a constant time period are strictly more powerful than their classical counterparts; they are provably better at solving certain linear algebra problems associated with binary quadratic forms. Our work gives an unconditional proof of a computational quantum advantage and simultaneously pinpoints its origin: It is a consequence of quantum nonlocality. The proposed quantum algorithm is a suitable candidate for near-future experimental realizations, as it requires only constant-depth quantum circuits with nearest-neighbor gates on a two-dimensional grid of qubits (quantum bits). Quantum outperforms classicalQuantum computers are expected to be better at solving certain computational problems than classical computers. This expectation is based on (well-founded) conjectures in computational complexity theory, but rigorous comparisons between the capabilities of quantum and classical algorithms are difficult to perform. Bravyi et al. proved theoretically that whereas the number of “steps” needed by parallel quantum circuits to solve certain linear algebra problems was independent of the problem size, this number grew logarithmically with size for analogous classical circuits (see the Perspective by Montanaro). This so-called quantum advantage stems from the quantum correlations present in quantum circuits that cannot be reproduced in analogous classical circuits.Science, this issue p. 308; see also p. 289Quantum effects can enhance information-processing capabilities and speed up the solution of certain computational problems. Whether a quantum advantage can be rigorously proven in some setting or demonstrated experimentally using near-term devices is the subject of active debate. We show that parallel quantum algorithms running in a constant time period are strictly more powerful than their classical counterparts; they are provably better at solving certain linear algebra problems associated with binary quadratic forms. Our work gives an unconditional proof of a computational quantum advantage and simultaneously pinpoints its origin: It is a consequence of quantum nonlocality. The proposed quantum algorithm is a suitable candidate for near-future experimental realizations, as it requires only constant-depth quantum circuits with nearest-neighbor gates on a two-dimensional grid of qubits (quantum bits). |
Author | Gosset, David König, Robert Bravyi, Sergey |
Author_xml | – sequence: 1 givenname: Sergey surname: Bravyi fullname: Bravyi, Sergey organization: IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA – sequence: 2 givenname: David surname: Gosset fullname: Gosset, David organization: IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA – sequence: 3 givenname: Robert orcidid: 0000-0002-0563-1229 surname: König fullname: König, Robert organization: Technical University of Munich, 85748 Garching, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30337404$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kMtLw0AQhxep2IeevUnAg17Szu4mu8lRii8oiKDnsJls7JY86u7G4n9vSqOHgqcZmO83zHxTMmraRhNySWFOKRMLh0Y3qOdKWU5BnJAJhTQOUwZ8RCYAXIQJyHhMps5tAPpZys_ImAPnMoJoQm5eO9X4rg5U8dU36kMHO-PXgVurqmp3ARqLnfHunJyWqnL6Yqgz8v5w_7Z8Clcvj8_Lu1WIPEl8mGOaS8YEijTHEjUopUCkpUwoQlTkJSouEokx41EORaRLDkoDS8oIZSpLPiO3h71b23522vmsNg51ValGt53LGGVcMhr3H8zI9RG6aTvb9NftKSYFTTjrqauB6vJaF9nWmlrZ7-xXQQ8sDgDa1jmryz-EQraXnA2Ss0Fyn4iPEmi88qZtvFWm-jf3A0Lbgrk |
CitedBy_id | crossref_primary_10_7566_JPSJ_93_054002 crossref_primary_10_1109_TQE_2020_3023419 crossref_primary_10_1103_PhysRevResearch_5_L012035 crossref_primary_10_1103_PhysRevResearch_2_043289 crossref_primary_10_1140_epjp_s13360_024_05337_2 crossref_primary_10_1214_19_STS745 crossref_primary_10_1109_TQE_2020_3034798 crossref_primary_10_1007_s11128_024_04317_w crossref_primary_10_1142_S2010324723500029 crossref_primary_10_22331_q_2024_11_07_1519 crossref_primary_10_1103_PhysRevA_110_012422 crossref_primary_10_1088_1367_2630_acdf78 crossref_primary_10_1116_5_0036562 crossref_primary_10_1103_PhysRevA_106_022617 crossref_primary_10_1103_PhysRevX_9_041023 crossref_primary_10_1021_acs_jctc_1c00091 crossref_primary_10_1103_RevModPhys_95_035001 crossref_primary_10_1109_TIT_2023_3321121 crossref_primary_10_1002_andp_202200531 crossref_primary_10_1038_s41467_024_55077_1 crossref_primary_10_1088_1402_4896_ad9ae1 crossref_primary_10_1126_science_adg9774 crossref_primary_10_1088_2058_9565_ac47f0 crossref_primary_10_1007_s10701_021_00466_5 crossref_primary_10_3390_math10142475 crossref_primary_10_1103_PhysRevLett_134_010603 crossref_primary_10_1038_s41928_023_01033_8 crossref_primary_10_1103_PhysRevA_110_012444 crossref_primary_10_1103_PhysRevX_13_031001 crossref_primary_10_1109_TC_2020_3009664 crossref_primary_10_1103_PhysRevA_109_L030201 crossref_primary_10_1103_PhysRevX_11_031057 crossref_primary_10_1103_PhysRevA_109_052216 crossref_primary_10_1117_1_JEI_31_4_043037 crossref_primary_10_1109_JLT_2022_3154091 crossref_primary_10_1103_PhysRevResearch_2_023302 crossref_primary_10_1088_2058_9565_aca821 crossref_primary_10_1007_s42484_024_00224_6 crossref_primary_10_1103_PhysRevA_101_032343 crossref_primary_10_22331_q_2022_09_08_797 crossref_primary_10_1038_s41567_022_01643_7 crossref_primary_10_1103_PhysRevA_108_022403 crossref_primary_10_1145_3624483 crossref_primary_10_1103_PhysRevD_103_034027 crossref_primary_10_1103_PhysRevA_110_042616 crossref_primary_10_1103_PhysRevX_12_021037 crossref_primary_10_1103_PhysRevApplied_16_024051 crossref_primary_10_1103_PhysRevB_107_035409 crossref_primary_10_1126_science_abb2823 crossref_primary_10_3390_e25040694 crossref_primary_10_1103_PRXQuantum_2_010101 crossref_primary_10_1103_PhysRevX_11_041032 crossref_primary_10_1364_OE_530004 crossref_primary_10_1016_j_tcs_2020_11_039 crossref_primary_10_1088_1367_2630_ac3a17 crossref_primary_10_1145_3673240 crossref_primary_10_1038_s41567_020_0948_z crossref_primary_10_1103_PhysRevApplied_21_014001 crossref_primary_10_1038_s41534_020_00308_8 crossref_primary_10_1103_PRXQuantum_2_040326 crossref_primary_10_1002_qute_202000123 crossref_primary_10_1007_s00607_023_01154_0 crossref_primary_10_1103_PhysRevResearch_2_012044 crossref_primary_10_1088_1367_2630_acaee2 crossref_primary_10_1088_1367_2630_ad51e5 crossref_primary_10_1103_PhysRevResearch_2_033444 crossref_primary_10_1103_PhysRevA_102_042416 crossref_primary_10_1103_PhysRevLett_133_160201 crossref_primary_10_1103_PhysRevResearch_2_013379 crossref_primary_10_1103_PhysRevB_107_045412 crossref_primary_10_22331_q_2021_03_10_407 crossref_primary_10_1007_s13218_024_00858_5 crossref_primary_10_1002_qute_202200089 crossref_primary_10_1103_PhysRevLett_129_130401 crossref_primary_10_3390_app10207116 crossref_primary_10_1103_PhysRevA_101_032311 crossref_primary_10_1007_s11128_024_04360_7 crossref_primary_10_1007_s11128_023_03884_8 crossref_primary_10_1109_TNNLS_2023_3290535 crossref_primary_10_1103_PhysRevLett_121_230401 crossref_primary_10_1103_PRXQuantum_3_020328 crossref_primary_10_22331_q_2024_04_09_1312 crossref_primary_10_1145_3478519 crossref_primary_10_34133_icomputing_0051 crossref_primary_10_1098_rsta_2023_0002 crossref_primary_10_1088_1751_8121_acfd6b crossref_primary_10_1103_PhysRevA_100_032120 crossref_primary_10_1103_PhysRevResearch_5_023171 crossref_primary_10_7498_aps_68_20182133 crossref_primary_10_1038_s41467_021_21119_1 crossref_primary_10_1063_5_0090577 crossref_primary_10_1088_1402_4896_ad6e27 crossref_primary_10_1038_s41598_020_72469_7 crossref_primary_10_22331_q_2024_02_12_1251 crossref_primary_10_1038_s41534_019_0181_8 crossref_primary_10_1103_PhysRevA_108_012402 crossref_primary_10_1007_s11128_022_03684_6 crossref_primary_10_1038_s41467_024_54864_0 crossref_primary_10_1103_PhysRevA_104_052419 crossref_primary_10_1103_PhysRevResearch_6_L042027 crossref_primary_10_1109_JLT_2024_3352892 crossref_primary_10_1364_OL_44_003310 crossref_primary_10_1007_JHEP01_2023_090 crossref_primary_10_1103_PhysRevA_103_032414 crossref_primary_10_1126_sciadv_abk1660 crossref_primary_10_22331_q_2023_09_11_1107 crossref_primary_10_1016_j_tcs_2021_10_025 crossref_primary_10_1021_acs_jpcc_1c05009 crossref_primary_10_1038_s41928_020_00528_y crossref_primary_10_1103_PhysRevApplied_20_044002 crossref_primary_10_1103_PhysRevA_109_032403 crossref_primary_10_1007_s11128_021_03232_8 crossref_primary_10_22331_q_2021_11_16_580 crossref_primary_10_1007_s00220_023_04675_z crossref_primary_10_1126_sciadv_abd8080 crossref_primary_10_1103_PhysRevLett_125_240403 crossref_primary_10_1088_1572_9494_ad0c50 crossref_primary_10_4204_EPTCS_340_8 crossref_primary_10_1364_OE_509846 crossref_primary_10_1016_j_physleta_2024_129610 crossref_primary_10_1038_s41534_022_00598_0 crossref_primary_10_1103_PhysRevA_100_062326 crossref_primary_10_1007_s00220_021_03963_w crossref_primary_10_21468_SciPostPhysLectNotes_61 crossref_primary_10_1103_PhysRevA_100_022304 crossref_primary_10_1109_TIT_2020_3015683 crossref_primary_10_3390_electronics9101669 crossref_primary_10_1002_qute_202100081 crossref_primary_10_1103_PhysRevA_110_062616 crossref_primary_10_1007_s10773_021_04724_0 crossref_primary_10_1103_PhysRevLett_126_090505 crossref_primary_10_3917_pls_495_0015 crossref_primary_10_1103_PhysRevLett_134_010203 crossref_primary_10_1364_JOSAB_424374 crossref_primary_10_34133_2022_9798679 crossref_primary_10_1103_PhysRevLett_134_010201 crossref_primary_10_4018_IJEHMC_315730 crossref_primary_10_1038_s41567_021_01271_7 crossref_primary_10_1145_3548693 crossref_primary_10_1103_PRXQuantum_2_040343 crossref_primary_10_1038_s41567_020_0960_3 crossref_primary_10_1007_s00521_023_09213_5 crossref_primary_10_1016_j_jcss_2022_08_002 crossref_primary_10_1103_PhysRevA_106_062430 crossref_primary_10_22331_q_2025_02_26_1646 crossref_primary_10_1103_PhysRevResearch_6_L042035 crossref_primary_10_1063_5_0173591 crossref_primary_10_1103_PRXQuantum_2_030314 crossref_primary_10_1016_j_techsoc_2022_101880 crossref_primary_10_1103_PhysRevLett_129_200401 crossref_primary_10_1103_PhysRevA_106_062429 crossref_primary_10_1103_PhysRevResearch_2_023270 crossref_primary_10_1002_spe_3039 crossref_primary_10_21468_SciPostPhys_15_2_049 crossref_primary_10_1103_PhysRevLett_123_120502 crossref_primary_10_1038_s41586_019_1666_5 crossref_primary_10_21468_SciPostPhysCore_6_2_028 crossref_primary_10_1111_mice_13084 crossref_primary_10_1145_3571222 crossref_primary_10_1088_2040_8986_ac1bbf crossref_primary_10_1103_PhysRevA_110_012615 crossref_primary_10_1103_PhysRevLett_126_090401 crossref_primary_10_22331_q_2024_11_20_1530 crossref_primary_10_22331_q_2024_01_15_1228 crossref_primary_10_1103_RevModPhys_94_045007 crossref_primary_10_1103_PhysRevA_106_042426 crossref_primary_10_1364_OL_44_001726 crossref_primary_10_1007_s10773_019_04039_1 crossref_primary_10_1103_PhysRevA_109_032606 crossref_primary_10_1016_j_cpc_2020_107724 crossref_primary_10_1016_j_cosrev_2020_100313 crossref_primary_10_1088_1572_9494_ad07d6 crossref_primary_10_1038_s42005_024_01783_7 crossref_primary_10_1063_5_0185263 crossref_primary_10_1103_PhysRevA_99_052304 crossref_primary_10_1007_s11071_020_05496_8 crossref_primary_10_1038_s41534_020_00330_w crossref_primary_10_1126_science_aau9555 crossref_primary_10_1088_2058_9565_aca3ce crossref_primary_10_22331_q_2024_12_04_1548 crossref_primary_10_1109_JPROC_2019_2954005 crossref_primary_10_1103_PhysRevA_104_062438 crossref_primary_10_1103_PhysRevA_110_062410 crossref_primary_10_1002_que2_35 crossref_primary_10_1103_PhysRevA_109_042601 crossref_primary_10_1021_acsengineeringau_1c00033 crossref_primary_10_1038_s41534_024_00895_w crossref_primary_10_1088_2058_9565_acf9c7 crossref_primary_10_1142_S2010324723400209 crossref_primary_10_1007_s00220_022_04615_3 crossref_primary_10_1103_PhysRevLett_130_210602 crossref_primary_10_1103_PRXQuantum_6_010356 crossref_primary_10_1007_s42514_022_00090_3 crossref_primary_10_1103_PhysRevA_110_032217 crossref_primary_10_1038_s41534_019_0210_7 crossref_primary_10_22331_q_2022_05_24_717 crossref_primary_10_1103_PhysRevResearch_4_033068 crossref_primary_10_1109_TQE_2020_3030314 crossref_primary_10_1063_5_0038087 crossref_primary_10_1103_PhysRevA_107_022429 crossref_primary_10_1007_s00894_024_06072_2 crossref_primary_10_1088_1367_2630_abd7bc crossref_primary_10_1103_PhysRevA_108_022603 |
Cites_doi | 10.1103/PhysRevX.8.021010 10.1023/A:1026009100467 10.1103/PhysRevA.75.012103 10.1038/s41567-018-0124-x 10.1103/PhysicsPhysiqueFizika.1.195 10.1137/S0097539799355053 10.1103/PhysRevLett.117.080501 10.1137/S0036144598347011 10.1103/PhysRevLett.118.040502 10.1103/PhysRevA.68.022312 10.1103/PhysRevLett.65.1838 10.1103/PhysRevA.69.062311 10.1098/rspa.2005.1546 10.1103/PhysRevLett.103.080501 10.1016/S0304-3975(02)00377-8 10.1119/1.16243 10.1007/978-3-642-18073-6_4 10.1103/PhysRevX.7.021050 10.1088/1367-2630/17/8/083002 10.1103/PhysRevLett.119.180509 10.1038/npjqi.2015.23 10.1137/S0097539796300921 10.1137/S0097539705447311 10.22331/q-2017-04-25-8 10.1103/PhysRevA.70.052328 |
ContentType | Journal Article |
Copyright | Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.aar3106 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 311 |
ExternalDocumentID | 30337404 10_1126_science_aar3106 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABBHK ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADUKH ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 C51 CITATION CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c388t-bc9b7226c69bcfce0aaa069f781c04dbfca3687c5234b0d4ef30ae028f4c797f3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Jul 11 01:45:25 EDT 2025 Fri Jul 25 10:59:14 EDT 2025 Mon Jul 21 06:18:11 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Tue Jul 01 01:51:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6412 |
Language | English |
License | Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c388t-bc9b7226c69bcfce0aaa069f781c04dbfca3687c5234b0d4ef30ae028f4c797f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0563-1229 |
PMID | 30337404 |
PQID | 2122761832 |
PQPubID | 1256 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2123721530 proquest_journals_2122761832 pubmed_primary_30337404 crossref_primary_10_1126_science_aar3106 crossref_citationtrail_10_1126_science_aar3106 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-19 |
PublicationDateYYYYMMDD | 2018-10-19 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2018 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 Terhal B. M. (e_1_3_2_15_2) 2004; 4 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 Gottesman D. (e_1_3_2_9_2) 2014; 14 30337396 - Science. 2018 Oct 19;362(6412):289 |
References_xml | – ident: e_1_3_2_18_2 – ident: e_1_3_2_19_2 doi: 10.1103/PhysRevX.8.021010 – ident: e_1_3_2_38_2 doi: 10.1023/A:1026009100467 – ident: e_1_3_2_40_2 – ident: e_1_3_2_37_2 doi: 10.1103/PhysRevA.75.012103 – ident: e_1_3_2_13_2 doi: 10.1038/s41567-018-0124-x – ident: e_1_3_2_2_2 doi: 10.1103/PhysicsPhysiqueFizika.1.195 – ident: e_1_3_2_23_2 doi: 10.1137/S0097539799355053 – ident: e_1_3_2_6_2 – ident: e_1_3_2_16_2 doi: 10.1103/PhysRevLett.117.080501 – ident: e_1_3_2_3_2 doi: 10.1137/S0036144598347011 – ident: e_1_3_2_20_2 doi: 10.1103/PhysRevLett.118.040502 – ident: e_1_3_2_32_2 doi: 10.1103/PhysRevA.68.022312 – ident: e_1_3_2_36_2 doi: 10.1103/PhysRevLett.65.1838 – ident: e_1_3_2_33_2 doi: 10.1103/PhysRevA.69.062311 – ident: e_1_3_2_26_2 doi: 10.1098/rspa.2005.1546 – ident: e_1_3_2_14_2 doi: 10.1103/PhysRevLett.103.080501 – ident: e_1_3_2_39_2 doi: 10.1016/S0304-3975(02)00377-8 – volume: 4 start-page: 134 year: 2004 ident: e_1_3_2_15_2 article-title: Adaptive quantum computation, constant depth quantum circuits and Arthur-Merlin games publication-title: Quantum Inf. Comput. – ident: e_1_3_2_35_2 doi: 10.1119/1.16243 – ident: e_1_3_2_22_2 – ident: e_1_3_2_24_2 doi: 10.1007/978-3-642-18073-6_4 – ident: e_1_3_2_8_2 – ident: e_1_3_2_12_2 doi: 10.1103/PhysRevX.7.021050 – ident: e_1_3_2_10_2 doi: 10.1088/1367-2630/17/8/083002 – ident: e_1_3_2_21_2 doi: 10.1137/S0097539799355053 – ident: e_1_3_2_25_2 – ident: e_1_3_2_11_2 doi: 10.1103/PhysRevLett.119.180509 – ident: e_1_3_2_4_2 doi: 10.1038/npjqi.2015.23 – ident: e_1_3_2_28_2 doi: 10.1137/S0097539796300921 – ident: e_1_3_2_41_2 – ident: e_1_3_2_27_2 – volume: 14 start-page: 1338 year: 2014 ident: e_1_3_2_9_2 article-title: Fault-Tolerant Quantum Computation with Constant Overhead publication-title: Quantum Inf. Comput. – ident: e_1_3_2_7_2 doi: 10.1137/S0097539705447311 – ident: e_1_3_2_17_2 doi: 10.22331/q-2017-04-25-8 – ident: e_1_3_2_42_2 doi: 10.1103/PhysRevA.70.052328 – reference: 30337396 - Science. 2018 Oct 19;362(6412):289 |
SSID | ssj0009593 |
Score | 2.690644 |
Snippet | Quantum computers are expected to be better at solving certain computational problems than classical computers. This expectation is based on (well-founded)... Quantum effects can enhance information-processing capabilities and speed up the solution of certain computational problems. Whether a quantum advantage can be... Quantum outperforms classicalQuantum computers are expected to be better at solving certain computational problems than classical computers. This expectation... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 308 |
SubjectTerms | Algebra Algorithms Circuits Complexity theory Computation Computer applications Computers Information processing Linear algebra Nearest-neighbor Quadratic forms Quantum computers Qubits (quantum computing) |
Title | Quantum advantage with shallow circuits |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30337404 https://www.proquest.com/docview/2122761832 https://www.proquest.com/docview/2123721530 |
Volume | 362 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED62lsFeytr9StcNDwbrGA6KJEv2Y7I1lNF1jCWQNyPJ8ggMZ6TORvfX72TJjjdS6PZigmLFQd_5_Mn33R3AK1LokUoyGxteiJinukQ_SEzMEsG1duVhEpc7_PFSnM_5h0WyaHu1h-ySWg_Nr515Jf-DKo4hri5L9h-Q7X4UB_Az4otHRBiPt8L48wbXxamLXSC_duobrzh3DVJWP9-a5dpslr5UU0tA23sZiWUXrOlB1KkOx14b0EoFwrTee4PJWv24bqQAX1wC51YUik9dH-DoyeXRobuI_ERUy69bPXf_jcOoKf8a_Jp3ksT1d6TEOya7Yyx4ViZoz4QED4Jp7ypZU89hhwvvNZ20Q6XWSEB3FMu-_JRP5xcX-exsMbsL-xR3Cejm9seT95Pp31WXuz8Xajv1sqbaC_xJS27YazScY_YADsJmIRp75A_hjq2O4J5vH3p9BIcBlavoNFQPf_MQXgejiDqjiJxRRMEootYoHsF8ejZ7dx6HbhixYWlax9pkWiJZNiLTpjSWKKWIyEqZjgzhhS6NYiKVJqGMa1JwWzKiLNLHkhuZyZI9hr1qVdmnEGWEKUuzIh0JyoXNVJEUOhFWUiWVksUAhu1i5CaUincdS77lzZaRijysXh5WbwCn3YTvvkrKzaeetKubh1vpKkf-RKVwT5cBvOy-RkfnoleqsqtNcw6TSFAZGcATj0p3LeRhTHLCj28x-xnc3xr1CezV6419jsSy1i-C-fwGQK96qw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+advantage+with+shallow+circuits&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Bravyi%2C+Sergey&rft.au=Gosset%2C+David&rft.au=K%C3%B6nig%2C+Robert&rft.date=2018-10-19&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=362&rft.issue=6412&rft.spage=308&rft_id=info:doi/10.1126%2Fscience.aar3106&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |