Synthesis of a dendritic cell-targeted self-assembled polymeric nanoparticle for selective delivery of mRNA vaccines to elicit enhanced immune responses
Recent development of SARS-CoV-2 spike mRNA vaccines to control the pandemic is a breakthrough in the field of vaccine development. mRNA vaccines are generally formulated with lipid nanoparticles (LNPs) which are composed of several lipids with specific ratios; however, they generally lack selective...
Saved in:
Published in | Chemical science (Cambridge) Vol. 15; no. 29; pp. 11626 - 11632 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
24.07.2024
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent development of SARS-CoV-2 spike mRNA vaccines to control the pandemic is a breakthrough in the field of vaccine development. mRNA vaccines are generally formulated with lipid nanoparticles (LNPs) which are composed of several lipids with specific ratios; however, they generally lack selective delivery. To develop a selective delivery method for mRNA vaccine formulation, we reported here the synthesis of polymeric nanoparticles (PNPs) composed of a guanidine copolymer containing zwitterionic groups and a dendritic cell (DC)-targeted aryl-trimannoside ligand for encapsulation and selective delivery of an mRNA to dendritic cells. A DC-targeted SARS-CoV-2 spike mRNA-PNP vaccine was shown to elicit a stronger protective immune response in mice compared to the traditional mRNA-LNP vaccine and those without the selective delivery design. It is anticipated that this technology is generally applicable to other mRNA vaccines for DC-targeted delivery with enhanced immune response.
Dendritic cell-targeted mRNA-PNP vaccines. |
---|---|
AbstractList | Recent development of SARS-CoV-2 spike mRNA vaccines to control the pandemic is a breakthrough in the field of vaccine development. mRNA vaccines are generally formulated with lipid nanoparticles (LNPs) which are composed of several lipids with specific ratios; however, they generally lack selective delivery. To develop a selective delivery method for mRNA vaccine formulation, we reported here the synthesis of polymeric nanoparticles (PNPs) composed of a guanidine copolymer containing zwitterionic groups and a dendritic cell (DC)-targeted aryl-trimannoside ligand for encapsulation and selective delivery of an mRNA to dendritic cells. A DC-targeted SARS-CoV-2 spike mRNA-PNP vaccine was shown to elicit a stronger protective immune response in mice compared to the traditional mRNA-LNP vaccine and those without the selective delivery design. It is anticipated that this technology is generally applicable to other mRNA vaccines for DC-targeted delivery with enhanced immune response.Recent development of SARS-CoV-2 spike mRNA vaccines to control the pandemic is a breakthrough in the field of vaccine development. mRNA vaccines are generally formulated with lipid nanoparticles (LNPs) which are composed of several lipids with specific ratios; however, they generally lack selective delivery. To develop a selective delivery method for mRNA vaccine formulation, we reported here the synthesis of polymeric nanoparticles (PNPs) composed of a guanidine copolymer containing zwitterionic groups and a dendritic cell (DC)-targeted aryl-trimannoside ligand for encapsulation and selective delivery of an mRNA to dendritic cells. A DC-targeted SARS-CoV-2 spike mRNA-PNP vaccine was shown to elicit a stronger protective immune response in mice compared to the traditional mRNA-LNP vaccine and those without the selective delivery design. It is anticipated that this technology is generally applicable to other mRNA vaccines for DC-targeted delivery with enhanced immune response. Recent development of SARS-CoV-2 spike mRNA vaccines to control the pandemic is a breakthrough in the field of vaccine development. mRNA vaccines are generally formulated with lipid nanoparticles (LNPs) which are composed of several lipids with specific ratios; however, they generally lack selective delivery. To develop a selective delivery method for mRNA vaccine formulation, we reported here the synthesis of polymeric nanoparticles (PNPs) composed of a guanidine copolymer containing zwitterionic groups and a dendritic cell (DC)-targeted aryl-trimannoside ligand for encapsulation and selective delivery of an mRNA to dendritic cells. A DC-targeted SARS-CoV-2 spike mRNA–PNP vaccine was shown to elicit a stronger protective immune response in mice compared to the traditional mRNA–LNP vaccine and those without the selective delivery design. It is anticipated that this technology is generally applicable to other mRNA vaccines for DC-targeted delivery with enhanced immune response. Recent development of SARS-CoV-2 spike mRNA vaccines to control the pandemic is a breakthrough in the field of vaccine development. mRNA vaccines are generally formulated with lipid nanoparticles (LNPs) which are composed of several lipids with specific ratios; however, they generally lack selective delivery. To develop a selective delivery method for mRNA vaccine formulation, we reported here the synthesis of polymeric nanoparticles (PNPs) composed of a guanidine copolymer containing zwitterionic groups and a dendritic cell (DC)-targeted aryl-trimannoside ligand for encapsulation and selective delivery of an mRNA to dendritic cells. A DC-targeted SARS-CoV-2 spike mRNA-PNP vaccine was shown to elicit a stronger protective immune response in mice compared to the traditional mRNA-LNP vaccine and those without the selective delivery design. It is anticipated that this technology is generally applicable to other mRNA vaccines for DC-targeted delivery with enhanced immune response. Dendritic cell-targeted mRNA-PNP vaccines. |
Author | Wang, Szu-Wen Fan, Chen-Yo Chung, Cinya Cheng, Ting-Jen R Chen, Jia-Yan Chang, Chia-Yen Wong, Chi-Huey Hsu, Tsui-Ling Chen, Yu-Chen |
AuthorAffiliation | Department of Chemistry Genomics Research Center The Scripps Research Institute Academia Sinica |
AuthorAffiliation_xml | – sequence: 0 name: Genomics Research Center – sequence: 0 name: Academia Sinica – sequence: 0 name: Department of Chemistry – sequence: 0 name: The Scripps Research Institute |
Author_xml | – sequence: 1 givenname: Chen-Yo surname: Fan fullname: Fan, Chen-Yo – sequence: 2 givenname: Szu-Wen surname: Wang fullname: Wang, Szu-Wen – sequence: 3 givenname: Cinya surname: Chung fullname: Chung, Cinya – sequence: 4 givenname: Jia-Yan surname: Chen fullname: Chen, Jia-Yan – sequence: 5 givenname: Chia-Yen surname: Chang fullname: Chang, Chia-Yen – sequence: 6 givenname: Yu-Chen surname: Chen fullname: Chen, Yu-Chen – sequence: 7 givenname: Tsui-Ling surname: Hsu fullname: Hsu, Tsui-Ling – sequence: 8 givenname: Ting-Jen R surname: Cheng fullname: Cheng, Ting-Jen R – sequence: 9 givenname: Chi-Huey surname: Wong fullname: Wong, Chi-Huey |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39055027$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkltrFDEUx4NUbF374rsS8EWE0Uwuc3mSsl4qFAWrz0OSOdNNmUnWnMzCfhM_rpluXS8hcBLO7_xzkvwfkxMfPBDytGSvSybaN71AyypVq80DcsaZLItKifbkuObslJwj3rI8hCgVrx-RU9EypRivz8jP671PG0CHNAxU0x58H11ylloYxyLpeAMJeoowDoVGhMmMebsN436CmDGvfdjqmCtGoEOICwk2uR1krTGHuF-Up6-fL-hOW-s8IE2B5px1iYLfaG-zopum2QONgNvgEfAJeTjoEeH8Pq7I9w_vv60vi6svHz-tL64KK5omFcY0greM24E3vKqF7sFY1ZhW6apRUJsWmGmFtnlWRjet1FK2tuQ1SMO0Eivy9qC7nc0EvQWfoh67bXSTjvsuaNf9m_Fu092EXVeWvGpkPnJFXt4rxPBjBkzd5HB5Pe0hzNgJ1si6lrxc0Bf_obdhjj7f745iqq6kzNTzv1s69vL71zLw6gDYGBAjDEekZN3iiu6duF7fueIyw88OcER75P64RvwCPAq28g |
Cites_doi | 10.1016/j.carres.2019.107877 10.3389/fimmu.2020.602256 10.1039/C5CC07460F 10.1021/jacs.5b08948 10.1128/JVI.01970-06 10.1016/j.eurpolymj.2020.110028 10.1021/ja501581b 10.1021/acsomega.1c01755 10.1038/nri2056 10.1002/anie.201705578 10.1021/jacs.7b02952 10.1038/s41587-019-0247-3 10.4155/tde-2016-0006 10.1056/NEJMoa2028436 10.1039/D1CS00686J 10.3389/fphar.2018.00980 10.1021/acscentsci.9b00843 10.1021/jacs.7b03208 10.1021/jacs.5b08130 10.1021/jacs.5b08424 10.1021/acscentsci.0c01648 10.1038/nri2173 10.1021/acscentsci.1c00361 10.1021/acscentsci.1c00146 10.1038/nrd.2017.243 10.1021/acsnano.7b01110 10.3389/fchem.2019.00650 10.1056/NEJMoa2024671 10.1021/acs.accounts.8b00292 10.1021/acs.chemrev.1c00244 10.1021/ja307501e 10.1056/NEJMoa2027906 10.1021/jacs.1c09822 10.1038/s41565-020-00790-3 10.1002/adma.201702311 10.1021/ja301621z 10.1093/nar/gku531 10.1002/anie.201900993 10.1021/jacs.7b00039 10.1021/acsnano.0c03023 10.1038/nri.2016.55 10.1074/jbc.M109.021204 10.1016/j.molimm.2009.09.026 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2024 This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2024 – notice: This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d3sc06575h |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 11632 |
ExternalDocumentID | PMC11268467 39055027 10_1039_D3SC06575H d3sc06575h |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: Unassigned |
GroupedDBID | -JG 0-7 0R~ 53G 705 7~J AAEMU AAFWJ AAIWI AAJAE AARTK AAXHV ABEMK ABPDG ABXOH ACGFS ACIWK ADBBV ADMRA AEFDR AENEX AESAV AFLYV AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS APEMP AUDPV AZFZN BCNDV BLAPV BSQNT C6K D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ~ H~N O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ AAYXX ABIQK AFPKN CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c388t-bb832902cf282673adebc58b95a685e7b9e0b93ac3ac6ba894a449c127e4b0a53 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 18:34:12 EDT 2025 Mon Jul 21 11:49:24 EDT 2025 Sat Jul 26 03:03:29 EDT 2025 Mon Jul 21 06:08:53 EDT 2025 Tue Jul 01 01:31:05 EDT 2025 Tue Dec 17 20:57:52 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c388t-bb832902cf282673adebc58b95a685e7b9e0b93ac3ac6ba894a449c127e4b0a53 |
Notes | https://doi.org/10.1039/d3sc06575h Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9961-7865 |
OpenAccessLink | http://dx.doi.org/10.1039/d3sc06575h |
PMID | 39055027 |
PQID | 3084057644 |
PQPubID | 2047492 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_3084774217 pubmed_primary_39055027 rsc_primary_d3sc06575h proquest_journals_3084057644 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11268467 crossref_primary_10_1039_D3SC06575H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-24 |
PublicationDateYYYYMMDD | 2024-07-24 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Liu (D3SC06575H/cit22/1) 2021; 143 Prakash (D3SC06575H/cit26/1) 2014; 42 Tacken (D3SC06575H/cit35/1) 2007; 7 Gasparini (D3SC06575H/cit10/1) 2014; 136 Alam (D3SC06575H/cit38/1) 2021; 15 Miyazaki (D3SC06575H/cit18/1) 2020; 140 Walsh (D3SC06575H/cit3/1) 2020; 383 Nycholat (D3SC06575H/cit31/1) 2012; 134 Zhou (D3SC06575H/cit27/1) 2021; 7 Machtakova (D3SC06575H/cit29/1) 2022; 51 Tabarani (D3SC06575H/cit40/1) 2009; 284 Shu (D3SC06575H/cit11/1) 2019; 58 Chen (D3SC06575H/cit8/1) 2012; 134 Guo (D3SC06575H/cit17/1) 2021; 7 Cui (D3SC06575H/cit28/1) 2021; 6 Jackson (D3SC06575H/cit25/1) 2017; 11 Anderson (D3SC06575H/cit2/1) 2020; 383 Yuan (D3SC06575H/cit16/1) 2017; 56 Peng (D3SC06575H/cit32/1) 2017; 139 Hashim (D3SC06575H/cit24/1) 2015; 137 Geijtenbeek (D3SC06575H/cit30/1) 2016; 16 Li (D3SC06575H/cit36/1) 2019; 7 Pardi (D3SC06575H/cit9/1) 2018; 17 Mosquera (D3SC06575H/cit14/1) 2018; 51 Fu (D3SC06575H/cit12/1) 2015; 137 Hudson (D3SC06575H/cit41/1) 2015; 137 Zhao (D3SC06575H/cit1/1) 2020; 11 Miao (D3SC06575H/cit6/1) 2019; 37 Singh (D3SC06575H/cit37/1) 2021; 16 Wang (D3SC06575H/cit42/1) 2018; 9 Zhang (D3SC06575H/cit13/1) 2017; 139 Gao (D3SC06575H/cit39/1) 2020; 487 Zhang (D3SC06575H/cit7/1) 2021; 121 Gasparini (D3SC06575H/cit15/1) 2015; 51 Reichmuth (D3SC06575H/cit5/1) 2016; 7 Crocker (D3SC06575H/cit33/1) 2007; 7 Kim (D3SC06575H/cit23/1) 2019; 5 Haabeth (D3SC06575H/cit21/1) 2021; 7 Singh (D3SC06575H/cit34/1) 2009; 47 Wang (D3SC06575H/cit43/1) 2007; 81 Zhang (D3SC06575H/cit19/1) 2017; 29 Corbett (D3SC06575H/cit4/1) 2020; 383 Derivery (D3SC06575H/cit20/1) 2017; 139 |
References_xml | – volume: 487 start-page: 107877 year: 2020 ident: D3SC06575H/cit39/1 publication-title: Carbohydr. Res. doi: 10.1016/j.carres.2019.107877 – volume: 11 start-page: 602256 year: 2020 ident: D3SC06575H/cit1/1 publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.602256 – volume: 51 start-page: 17160 year: 2015 ident: D3SC06575H/cit15/1 publication-title: Chem. Commun. doi: 10.1039/C5CC07460F – volume: 137 start-page: 15608 year: 2015 ident: D3SC06575H/cit24/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08948 – volume: 81 start-page: 2497 year: 2007 ident: D3SC06575H/cit43/1 publication-title: J. Virol. doi: 10.1128/JVI.01970-06 – volume: 140 start-page: 110028 year: 2020 ident: D3SC06575H/cit18/1 publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2020.110028 – volume: 136 start-page: 6069 year: 2014 ident: D3SC06575H/cit10/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501581b – volume: 6 start-page: 16259 year: 2021 ident: D3SC06575H/cit28/1 publication-title: ACS Omega doi: 10.1021/acsomega.1c01755 – volume: 7 start-page: 255 year: 2007 ident: D3SC06575H/cit33/1 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2056 – volume: 56 start-page: 12481 year: 2017 ident: D3SC06575H/cit16/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201705578 – volume: 139 start-page: 10172 year: 2017 ident: D3SC06575H/cit20/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02952 – volume: 37 start-page: 1174 year: 2019 ident: D3SC06575H/cit6/1 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0247-3 – volume: 7 start-page: 319 year: 2016 ident: D3SC06575H/cit5/1 publication-title: Ther. Delivery doi: 10.4155/tde-2016-0006 – volume: 383 start-page: 2427 year: 2020 ident: D3SC06575H/cit2/1 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2028436 – volume: 51 start-page: 128 year: 2022 ident: D3SC06575H/cit29/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00686J – volume: 9 start-page: 980 year: 2018 ident: D3SC06575H/cit42/1 publication-title: Front. Pharmacol doi: 10.3389/fphar.2018.00980 – volume: 5 start-page: 1866 year: 2019 ident: D3SC06575H/cit23/1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.9b00843 – volume: 139 start-page: 12450 year: 2017 ident: D3SC06575H/cit32/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03208 – volume: 137 start-page: 12153 year: 2015 ident: D3SC06575H/cit12/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08130 – volume: 137 start-page: 15152 year: 2015 ident: D3SC06575H/cit41/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08424 – volume: 7 start-page: 990 year: 2021 ident: D3SC06575H/cit17/1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.0c01648 – volume: 7 start-page: 790 year: 2007 ident: D3SC06575H/cit35/1 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2173 – volume: 7 start-page: 1191 year: 2021 ident: D3SC06575H/cit21/1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.1c00361 – volume: 7 start-page: 499 year: 2021 ident: D3SC06575H/cit27/1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.1c00146 – volume: 17 start-page: 261 year: 2018 ident: D3SC06575H/cit9/1 publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd.2017.243 – volume: 11 start-page: 5680 year: 2017 ident: D3SC06575H/cit25/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b01110 – volume: 7 start-page: 650 year: 2019 ident: D3SC06575H/cit36/1 publication-title: Front. Chem. doi: 10.3389/fchem.2019.00650 – volume: 383 start-page: 1544 year: 2020 ident: D3SC06575H/cit4/1 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2024671 – volume: 51 start-page: 2305 year: 2018 ident: D3SC06575H/cit14/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00292 – volume: 121 start-page: 12181 year: 2021 ident: D3SC06575H/cit7/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00244 – volume: 134 start-page: 15696 year: 2012 ident: D3SC06575H/cit31/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja307501e – volume: 383 start-page: 2439 year: 2020 ident: D3SC06575H/cit3/1 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2027906 – volume: 143 start-page: 21321 year: 2021 ident: D3SC06575H/cit22/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c09822 – volume: 16 start-page: 16 year: 2021 ident: D3SC06575H/cit37/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-00790-3 – volume: 29 start-page: 1702311 year: 2017 ident: D3SC06575H/cit19/1 publication-title: Adv. Mater. doi: 10.1002/adma.201702311 – volume: 134 start-page: 6948 year: 2012 ident: D3SC06575H/cit8/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja301621z – volume: 42 start-page: 8796 year: 2014 ident: D3SC06575H/cit26/1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku531 – volume: 58 start-page: 6611 year: 2019 ident: D3SC06575H/cit11/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201900993 – volume: 139 start-page: 3822 year: 2017 ident: D3SC06575H/cit13/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00039 – volume: 15 start-page: 309 year: 2021 ident: D3SC06575H/cit38/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c03023 – volume: 16 start-page: 433 year: 2016 ident: D3SC06575H/cit30/1 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.55 – volume: 284 start-page: 21229 year: 2009 ident: D3SC06575H/cit40/1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.021204 – volume: 47 start-page: 164 year: 2009 ident: D3SC06575H/cit34/1 publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2009.09.026 |
SSID | ssj0000331527 |
Score | 2.4465895 |
Snippet | Recent development of SARS-CoV-2 spike mRNA vaccines to control the pandemic is a breakthrough in the field of vaccine development. mRNA vaccines are generally... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 11626 |
SubjectTerms | Chemical synthesis Chemistry Copolymers Dendritic structure Immune system Lipids Nanoparticles Self-assembly Vaccines |
Title | Synthesis of a dendritic cell-targeted self-assembled polymeric nanoparticle for selective delivery of mRNA vaccines to elicit enhanced immune responses |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39055027 https://www.proquest.com/docview/3084057644 https://www.proquest.com/docview/3084774217 https://pubmed.ncbi.nlm.nih.gov/PMC11268467 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67QAXxNegMCYjuFWGJE7S-DiVVRUaRdpa6E6RnTpqpZJMa4rUHfkr-HN5jj_SqBwGUhW1ceJaeb-85_eN0HsPZDrPItBNgnlOVEUuInLuExn5PFEFLPtMZSN_Gcejafh5Fs06nV87UUubSnzI7v6aV_I_VIVzQFeVJfsPlHWTwgn4DvSFI1AYjvei8dW2gP2bKSnCe8BC5nXngp4yxxMd5A0byrVc5QQ2yfKHWMHPm3K11RH0BS9AZ9bz1vGG67orjgommsuVitjQ_vfL8VnvJ8-UD74uCAFj2bLqyWKh4weWKslE9V-p421NVKItf2ArEtgEIuU2toliO3aIITfuf1mQ67Kx8xtz9t2GfG-y1gYLw6MGy2LbxBrZTJMlJ9cG9cagEYTKUqrzqDXfC7zQJ3EUeC0mHe2A0axNs1zfj3XO_Z4w8KiqpTqn68xT7qVFI_Ksm3_8NR1OLy7SyflscoCOAlA1gFceXX6bzq6dpc6j1PT-dSuzdW4p-9hM397Z7Kkr-1G3B7e2yUy9mZk8Ro-MFoLPNOmfoI4snqIHA9v87xn67aCFyxxz7KCFW9DCbWhhBy28Cy0M0MIOWthCS82soIUttHBVYg0tbKGFNbSwg9ZzNB2eTwYjYpp4kIwmSUWEAJnBvCDLQbmP-5TPpciiRLCIx0kk-4JJTzDKM_jEgics5GHIMj_oy1B4PKLH6LAoC_kS4QikS577IgxDEYrAS1jMQDrH_ZjTOPJpF72zBEhvdK2WtI6xoCz9RK8GNZlGXXRiaZOad3mdUi9RmgsoB1301g3DM1cPlRey3OhrQFkCHb6LXmhSur-hzANVP4CRpEVkd4Gq4t4eKZaLupq7yuFTSkAXHQMe3A0Nrl7dY0Wv0cPmVTpBh9XtRr6B3XIlTmsr06kB9R-cw8oW |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+a+dendritic+cell-targeted+self-assembled+polymeric+nanoparticle+for+selective+delivery+of+mRNA+vaccines+to+elicit+enhanced+immune+responses&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Fan%2C+Chen-Yo&rft.au=Wang%2C+Szu-Wen&rft.au=Chung%2C+Cinya&rft.au=Chen%2C+Jia-Yan&rft.date=2024-07-24&rft.issn=2041-6520&rft.volume=15&rft.issue=29&rft.spage=11626&rft_id=info:doi/10.1039%2Fd3sc06575h&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |