Analysis of Magnetic-Flux Leakage (MFL) Data for Pipeline Corrosion Assessment

Oil and gas pipelines transport and distribute large quantities of oil products and natural gas to industrial and residential customers over a long distance. However, pipeline failures could lead to enormous hazards and safety issues. Metal loss, due to corrosion, is a significant cause for pipeline...

Full description

Saved in:
Bibliographic Details
Published inIEEE Transactions on Magnetics Vol. 56; no. 6; pp. 1 - 15
Main Authors Peng, Xiang, Anyaoha, Uchenna, Liu, Zheng, Tsukada, Kazuhiko
Format Journal Article
LanguageEnglish
Japanese
Published New York IEEE 01.06.2020
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Oil and gas pipelines transport and distribute large quantities of oil products and natural gas to industrial and residential customers over a long distance. However, pipeline failures could lead to enormous hazards and safety issues. Metal loss, due to corrosion, is a significant cause for pipeline failures. To detect and quantify metal loss, in-line inspection (ILI) is carried out periodically to assess the integrity of the pipeline. Among all the ILI techniques, magnetic-flux leakage (MFL) is the most popular one due to its high efficiency, robustness, and good applicability to both oil and gas pipelines. This article provides a comprehensive review of the pipeline corrosion assessment with the MFL technique from the data analytic perspective. The analyses of the MFL signal and data contribute to both corrosion quantification and prediction. In this article, the state of the art for the MFL measurement technique is briefly reviewed first. For corrosion quantification, the signal processing methods together with the characterization models, which aim to enhance the measurement and characterize the corrosion, are described and discussed. For corrosion prediction, this article investigates multiple MFL data matching methods, which align defects from successive ILI runs. Subsequently, corrosion growth models, which aim to predict the future corrosion status, are presented. Besides, the reliability analysis of the corroded pipeline is reviewed. The potential of fusing MFL with other non-destructive testing (NDT) techniques are explored as well. At the end of this article, we summarize the existing issues and describe the trends for future research on pipeline corrosion assessment.
AbstractList Oil and gas pipelines transport and distribute large quantities of oil products and natural gas to industrial and residential customers over a long distance. However, pipeline failures could lead to enormous hazards and safety issues. Metal loss, due to corrosion, is a significant cause for pipeline failures. To detect and quantify metal loss, in-line inspection (ILI) is carried out periodically to assess the integrity of the pipeline. Among all the ILI techniques, magnetic-flux leakage (MFL) is the most popular one due to its high efficiency, robustness, and good applicability to both oil and gas pipelines. This article provides a comprehensive review of the pipeline corrosion assessment with the MFL technique from the data analytic perspective. The analyses of the MFL signal and data contribute to both corrosion quantification and prediction. In this article, the state of the art for the MFL measurement technique is briefly reviewed first. For corrosion quantification, the signal processing methods together with the characterization models, which aim to enhance the measurement and characterize the corrosion, are described and discussed. For corrosion prediction, this article investigates multiple MFL data matching methods, which align defects from successive ILI runs. Subsequently, corrosion growth models, which aim to predict the future corrosion status, are presented. Besides, the reliability analysis of the corroded pipeline is reviewed. The potential of fusing MFL with other non-destructive testing (NDT) techniques are explored as well. At the end of this article, we summarize the existing issues and describe the trends for future research on pipeline corrosion assessment.
Author Tsukada, Kazuhiko
Anyaoha, Uchenna
Liu, Zheng
Peng, Xiang
Author_xml – sequence: 1
  givenname: Xiang
  orcidid: 0000-0003-2274-2411
  surname: Peng
  fullname: Peng, Xiang
  organization: School of Engineering, University of British Columbia Okanagan, Kelowna, BC, Canada
– sequence: 2
  givenname: Uchenna
  surname: Anyaoha
  fullname: Anyaoha, Uchenna
  organization: School of Engineering, University of British Columbia Okanagan, Kelowna, BC, Canada
– sequence: 3
  givenname: Zheng
  orcidid: 0000-0002-7241-3483
  surname: Liu
  fullname: Liu, Zheng
  email: zheng.liu@ieee.org
  organization: School of Engineering, University of British Columbia Okanagan, Kelowna, BC, Canada
– sequence: 4
  givenname: Kazuhiko
  surname: Tsukada
  fullname: Tsukada, Kazuhiko
  organization: Graduate School of Engineering, Kyoto University, Kyoto, Japan
BackLink https://cir.nii.ac.jp/crid/1872553967363233664$$DView record in CiNii
BookMark eNp9kE1LAzEQhoMo2FZ_gHgJ6EEPW5NNNh_HUm0VWvVQz0u6Oymp292abMH-e1O2ePAgAzMMPO98vH10Wjc1IHRFyZBSoh8W89F0mJKUDFOtKM_ICepRzWlCiNCnqEcIVYnmgp-jfgjr2PKMkh56HdWm2gcXcGPx3KxqaF2RTKrdN56B-TQrwHfzyeweP5rWYNt4_O62ULka8LjxvgmuqfEoBAhhA3V7gc6sqQJcHusAfUyeFuPnZPY2fRmPZknBlGqTpZRCUqMAdKnlkkkraEkyWmZcEia4BshkSS2zXGkLQK0ulEoLyy3Xwlg2QDfd3K1vvnYQ2nzd7Hx8JeQpJzFSLXWkZEcV8dDgweaFa00bT269cVVOSX4wLz-Ylx_My4_mRSX9o9x6tzF-_6_mttPUzsVFh0yVTLOMaSGZYCljQvCIXXeYA4DfsZpESgn2A-0dhOU
CODEN IEMGAQ
CitedBy_id crossref_primary_10_1109_JLT_2023_3300952
crossref_primary_10_1016_j_nucengdes_2024_113239
crossref_primary_10_1016_j_measurement_2024_116487
crossref_primary_10_1016_j_ndteint_2023_102786
crossref_primary_10_3390_s22093322
crossref_primary_10_3390_s24092699
crossref_primary_10_1016_j_ijpvp_2023_105123
crossref_primary_10_1080_10584587_2024_2328859
crossref_primary_10_1016_j_ijpvp_2024_105409
crossref_primary_10_1016_j_rineng_2025_104652
crossref_primary_10_1109_JSEN_2023_3280670
crossref_primary_10_1109_TIM_2022_3152243
crossref_primary_10_1109_TIM_2023_3279910
crossref_primary_10_5006_4457
crossref_primary_10_1109_ACCESS_2025_3533389
crossref_primary_10_1016_j_geoen_2024_213410
crossref_primary_10_3390_en16031372
crossref_primary_10_1103_PhysRevApplied_21_014003
crossref_primary_10_1109_TASE_2024_3369659
crossref_primary_10_1109_TIM_2023_3244211
crossref_primary_10_3390_s24165195
crossref_primary_10_1109_TPWRS_2024_3380359
crossref_primary_10_1016_j_ndteint_2023_102939
crossref_primary_10_1016_j_petsci_2022_11_007
crossref_primary_10_1109_TIM_2021_3050185
crossref_primary_10_1109_JSEN_2024_3513433
crossref_primary_10_1016_j_engfailanal_2021_105810
crossref_primary_10_1016_j_jmsy_2024_02_006
crossref_primary_10_1109_TIM_2022_3225059
crossref_primary_10_1080_10589759_2022_2055017
crossref_primary_10_1109_TIM_2022_3199247
crossref_primary_10_1109_TASE_2023_3260281
crossref_primary_10_1557_s43580_024_01017_6
crossref_primary_10_1016_j_jpse_2025_100282
crossref_primary_10_1109_TII_2024_3413330
crossref_primary_10_1007_s11668_022_01373_1
crossref_primary_10_1515_corrrev_2023_0027
crossref_primary_10_1016_j_jpse_2025_100254
crossref_primary_10_1109_TASE_2024_3355984
crossref_primary_10_1109_TIM_2022_3220273
crossref_primary_10_1016_j_jmmm_2022_169595
crossref_primary_10_1016_j_porgcoat_2025_109067
crossref_primary_10_1088_1361_6501_ac9545
crossref_primary_10_1007_s13349_025_00924_y
crossref_primary_10_1109_ACCESS_2022_3212061
crossref_primary_10_1016_j_ptlrs_2023_05_013
crossref_primary_10_1016_j_engfailanal_2023_107747
crossref_primary_10_1016_j_jmmm_2023_171039
crossref_primary_10_1109_TMAG_2021_3061060
crossref_primary_10_3233_JAE_220222
crossref_primary_10_1109_JSEN_2023_3271906
crossref_primary_10_1109_TIM_2024_3493872
crossref_primary_10_1134_S106183092107010X
crossref_primary_10_1088_1361_6501_ad7f77
crossref_primary_10_1007_s10921_023_00933_1
crossref_primary_10_1109_TMAG_2023_3280160
crossref_primary_10_1016_j_powtec_2023_118457
crossref_primary_10_1080_10589759_2024_2409391
crossref_primary_10_1109_JSEN_2024_3353595
crossref_primary_10_3233_JAE_230137
crossref_primary_10_1016_j_jksus_2021_101761
crossref_primary_10_47134_ijlj_v1i2_2011
crossref_primary_10_1016_j_apor_2025_104431
crossref_primary_10_1016_j_ijpvp_2024_105251
crossref_primary_10_1109_JSEN_2022_3190684
crossref_primary_10_1109_TIM_2023_3265110
crossref_primary_10_1016_j_jmmm_2024_172638
crossref_primary_10_1016_j_ymssp_2023_110919
crossref_primary_10_1007_s10921_024_01061_0
crossref_primary_10_1109_TIM_2022_3204992
crossref_primary_10_1016_j_ijpvp_2022_104841
crossref_primary_10_1109_ACCESS_2024_3450502
crossref_primary_10_1088_1361_6501_ad66f8
crossref_primary_10_1007_s11018_023_02147_3
crossref_primary_10_1002_adfm_202412634
crossref_primary_10_1109_TIM_2022_3176285
crossref_primary_10_1016_j_comcom_2022_08_001
Cites_doi 10.1134/S1061830908030042
10.1109/TMAG.2018.2853117
10.1016/j.ress.2007.03.019
10.1007/978-1-4615-4791-4_103
10.1109/TMAG.2012.2208119
10.1115/IPC2010-31306
10.1109/ULTSYM.2004.1417959
10.3390/s140610361
10.5006/1.3319138
10.1016/j.scs.2018.01.021
10.1109/TII.2018.2828811
10.5006/1.3577840
10.1016/j.ndteint.2014.12.008
10.1115/IPC2012-90251
10.1109/TMAG.2008.923228
10.3390/s151229845
10.1109/TMAG.2016.2631525
10.1784/insi.2012.55.10.558
10.1002/prs.11744
10.1016/j.ijpvp.2012.06.005
10.1016/j.corsci.2009.05.019
10.1016/j.corsci.2007.06.006
10.1533/9780857099266.2.215
10.1016/j.jhazmat.2017.08.029
10.1016/j.ndteint.2006.09.004
10.1115/IPC2012-90491
10.1016/j.corsci.2013.04.011
10.1139/cjce-2016-0602
10.1109/TMAG.2004.824717
10.3233/JAE-2007-892
10.1016/S1452-3981(23)08080-X
10.3390/s17010050
10.1109/TIM.2007.908139
10.1109/PROC.1976.10286
10.2307/2533007
10.1016/j.engfailanal.2016.07.014
10.1007/978-1-4615-1411-4
10.1115/IPC2008-64546
10.1007/s11370-014-0158-6
10.3390/s16010105
10.1117/12.2009966
10.1016/j.ijpvp.2013.06.002
10.1115/1.4026798
10.1109/TMAG.2009.2037008
10.1109/TMAG.2015.2475429
10.1016/j.advengsoft.2017.05.006
10.1016/j.ijpvp.2010.04.003
10.1155/2014/124968
10.1007/s12204-009-0168-2
10.1016/j.ress.2017.01.008
10.1117/12.209361
10.4283/JMAG.2018.23.2.152
10.1016/j.procir.2019.01.093
10.1016/j.measurement.2017.02.051
10.1134/S1061830908120097
10.3390/s18072091
10.1016/j.strusafe.2017.10.005
10.1109/TMAG.2016.2642887
10.1109/34.121791
10.1088/1757-899X/382/3/032021
10.1016/j.jmmm.2011.08.048
10.1109/ISIE.2019.8781224
10.1063/1.1373823
10.1016/S0963-8695(02)00024-5
10.1016/j.molliq.2017.10.097
10.1109/I2MTC.2018.8409535
10.1016/0308-9126(86)90134-3
10.1109/19.872934
10.1016/j.corsci.2012.09.005
10.1049/iet-smt.2016.0279
10.1109/TMAG.2013.2283343
10.1016/j.asoc.2016.10.040
10.1198/TECH.2009.08197
10.1007/s11668-017-0286-3
10.1134/S1061830917120075
10.4028/www.scientific.net/KEM.795.233
10.1088/0022-3727/19/4/018
10.14419/ijet.v7i4.35.22733
10.1520/JTE20130133
10.1007/s11709-013-0207-9
10.1063/1.1306223
10.1520/JTE10129J
10.1111/mice.12096
10.1016/j.ndteint.2018.10.004
10.4028/www.scientific.net/AMM.321-324.811
10.31274/rtd-180813-9931
10.1109/SFICON.2004.1287142
10.1109/TMAG.2008.2011895
10.1016/S0167-4730(99)00016-8
10.1109/TMAG.2008.2011896
10.1115/IPC2016-64526
10.1088/0957-0233/18/7/001
10.1016/j.ndteint.2005.10.006
10.1115/IPC2016-64547
10.1016/j.engfailanal.2015.03.004
10.1016/j.ndteint.2011.08.011
10.1016/j.ndteint.2018.01.004
10.1016/j.corsci.2009.06.014
10.1016/j.corsci.2013.04.020
10.30699/ijrrs.1.45
10.1515/adms-2017-0014
10.1016/j.ndteint.2005.06.006
10.1049/iet-smt.2014.0173
10.1784/insi.2009.51.9.508
10.1016/j.engfailanal.2015.11.052
10.1016/j.measurement.2006.01.007
10.1115/IPC2006-10327
10.1016/j.ndteint.2019.01.004
10.1002/maco.200503964
10.1007/s10921-016-0356-6
10.1109/TMAG.2007.915955
10.1016/j.ress.2014.04.001
10.1117/12.2300812
10.3233/JAE-162076
10.1155/2013/108386
10.1016/j.ress.2015.08.007
10.1016/j.ijpvp.2019.103982
10.1109/ChiCC.2016.7553912
10.1016/j.ijpvp.2016.11.007
10.1115/OMAE2012-83934
10.1109/TMAG.2017.2690628
10.1061/41202(423)104
10.1016/j.engfailanal.2018.05.010
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
RYH
AAYXX
CITATION
7SP
7U5
8BQ
8FD
JG9
L7M
DOI 10.1109/TMAG.2020.2981450
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CiNii Complete
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
DatabaseTitleList
Materials Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1941-0069
EndPage 15
ExternalDocumentID 10_1109_TMAG_2020_2981450
9039686
Genre orig-research
GrantInformation_xml – fundername: NSERC through the “Colaborative Research and Development Grants”
  grantid: RDPJ515074-17
  funderid: 10.13039/501100000038
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
XXG
RYH
AAYXX
CITATION
RIG
7SP
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c388t-b77671a8ee9d97b37f61d051d54703649ee57d1f3f489fee1f9c882cf4f496af3
IEDL.DBID RIE
ISSN 0018-9464
IngestDate Mon Jun 30 10:19:49 EDT 2025
Tue Jul 01 04:30:01 EDT 2025
Thu Apr 24 23:03:49 EDT 2025
Thu Jun 26 21:52:19 EDT 2025
Wed Aug 27 02:42:21 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
Japanese
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-b77671a8ee9d97b37f61d051d54703649ee57d1f3f489fee1f9c882cf4f496af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2274-2411
0000-0002-7241-3483
0000-0002-6846-3154
PQID 2404042979
PQPubID 85461
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TMAG_2020_2981450
crossref_primary_10_1109_TMAG_2020_2981450
nii_cinii_1872553967363233664
ieee_primary_9039686
proquest_journals_2404042979
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE Transactions on Magnetics
PublicationTitleAbbrev TMAG
PublicationYear 2020
Publisher IEEE
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers (IEEE)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
dawson (ref114) 2008
ref59
ref58
ref53
ref55
yang (ref35) 2008
pitchford (ref25) 1999; 44
lim (ref149) 2001; 20
ref51
palaniappan (ref132) 2018
ref50
lopes (ref27) 2013
mandayam (ref148) 2006
russell (ref104) 2016
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
palmer (ref97) 2017
ref49
ref8
ref7
ref9
ref3
ref6
ref5
ref100
ref101
ref40
noor (ref112) 2011; 6
ref34
ref37
ref36
ref31
ref33
ref146
ref32
ref147
ref39
ref38
box (ref122) 2011; 40
najafabadi (ref24) 2015; 4
(ref4) 2018
ref156
ref154
ref151
ref23
ref20
ref22
ref157
dawson (ref98) 2016
ref21
chen (ref80) 2017; 32
liu (ref158) 2017; 1949
cvitanovic (ref99) 2011
ref29
kimbara (ref155) 2015
ref13
ref12
kirkwood (ref28) 2015
ref128
ref129
ref14
ref126
ref127
ref124
ref11
ref17
ref16
ref19
ref18
tavakoli (ref133) 2019
pikas (ref60) 2016
ref93
ref92
ref131
ref95
dawson (ref94) 2018
ref130
ref91
ref90
(ref134) 2012
ref139
race (ref107) 2007; 6
ref137
ref86
ref138
ref85
ref135
ref136
ref87
bickerstaff (ref15) 2002
massopust (ref52) 2000
hallen (ref88) 2004
ref144
ref82
ref145
ref81
ref142
ref84
ref143
ref83
ref140
ref141
ref79
ref78
ref109
sutherland (ref30) 2000
ref106
ref75
champlin (ref96) 2016
ref74
ref105
neši? (ref10) 2007; 49
ref77
ref102
ref76
ref103
walker (ref26) 2010
ref1
ref71
ref111
ref70
wang (ref2) 2015
ref73
ref72
ref110
ref68
ref119
ref67
velázquez (ref125) 2014; 9
ref117
ref69
ref118
ref64
ref115
ref63
ref116
liu (ref153) 2000
ref66
ref113
ref65
caleyo (ref89) 2004; 102
din (ref108) 2009
song (ref150) 2011; 44
afzal (ref54) 2001
ref123
ref62
ref120
ref61
ref121
lim (ref152) 2001
References_xml – ident: ref58
  doi: 10.1134/S1061830908030042
– year: 2019
  ident: ref133
  article-title: Artificial neural networks and adaptive neuro-fuzzy models for prediction of remaining useful life
  publication-title: arXiv 1909 02115
– ident: ref46
  doi: 10.1109/TMAG.2018.2853117
– ident: ref121
  doi: 10.1016/j.ress.2007.03.019
– ident: ref41
  doi: 10.1007/978-1-4615-4791-4_103
– ident: ref71
  doi: 10.1109/TMAG.2012.2208119
– ident: ref95
  doi: 10.1115/IPC2010-31306
– year: 2016
  ident: ref96
  article-title: Robust anomaly matching for ICIPs: Reducing pipeline assessment uncertainty through 4-dimensional anomaly detection and characterization
– ident: ref147
  doi: 10.1109/ULTSYM.2004.1417959
– ident: ref75
  doi: 10.3390/s140610361
– ident: ref111
  doi: 10.5006/1.3319138
– ident: ref138
  doi: 10.1016/j.scs.2018.01.021
– start-page: 1
  year: 2011
  ident: ref99
  article-title: Development of integrity management strategies for pipelines
  publication-title: Proc Pipeline Technol Conf
– ident: ref68
  doi: 10.1109/TII.2018.2828811
– ident: ref117
  doi: 10.5006/1.3577840
– ident: ref145
  doi: 10.1016/j.ndteint.2014.12.008
– ident: ref103
  doi: 10.1115/IPC2012-90251
– ident: ref81
  doi: 10.1109/TMAG.2008.923228
– ident: ref22
  doi: 10.3390/s151229845
– ident: ref83
  doi: 10.1109/TMAG.2016.2631525
– ident: ref156
  doi: 10.1784/insi.2012.55.10.558
– year: 2002
  ident: ref15
  article-title: Review of sensor technologies for in-line inspection of natural gas pipelines
– start-page: 1
  year: 2016
  ident: ref60
  article-title: Remaining strength of corroded pipe direct assessment process
  publication-title: Proc NACE Int Conf Corrosion
– ident: ref3
  doi: 10.1002/prs.11744
– ident: ref123
  doi: 10.1016/j.ijpvp.2012.06.005
– ident: ref113
  doi: 10.1016/j.corsci.2009.05.019
– volume: 32
  start-page: 268
  year: 2017
  ident: ref80
  article-title: 3-D defect profile reconstruction from magnetic flux leakage signals in pipeline inspection using a hybrid inversion method
  publication-title: Appl Comput Electromagn Soc J
– volume: 49
  start-page: 4308
  year: 2007
  ident: ref10
  article-title: Key issues related to modelling of internal corrosion of oil and gas pipelines-A review
  publication-title: Corrosion Sci
  doi: 10.1016/j.corsci.2007.06.006
– year: 2012
  ident: ref134
  publication-title: ASME B31G-2012 Manual for Determining the Remaining Strength of Corroded Pipelines[S]
– ident: ref21
  doi: 10.1533/9780857099266.2.215
– ident: ref8
  doi: 10.1016/j.jhazmat.2017.08.029
– ident: ref42
  doi: 10.1016/j.ndteint.2006.09.004
– ident: ref92
  doi: 10.1115/IPC2012-90491
– year: 2018
  ident: ref94
  article-title: Assessing repeat ILI data using signal-to-signal comparison techniques
  publication-title: Proc 13th Pipeline Technol Conf
– ident: ref110
  doi: 10.1016/j.corsci.2013.04.011
– start-page: 1
  year: 2017
  ident: ref97
  article-title: Automated signal comparison and normalization-An advanced method of comparing repeat ILI data
  publication-title: Proc 29th Pipeline Pigging Integrity Manage Conf
– ident: ref131
  doi: 10.1139/cjce-2016-0602
– ident: ref51
  doi: 10.1109/TMAG.2004.824717
– ident: ref59
  doi: 10.3233/JAE-2007-892
– year: 2000
  ident: ref52
  article-title: Mfl signal enhancement via wavelet-based denoising
– volume: 9
  start-page: 4129
  year: 2014
  ident: ref125
  article-title: Statistical modelling of pitting corrosion: Extrapolation of the maximum pit depth-growth
  publication-title: Int J Electrochem Sci
  doi: 10.1016/S1452-3981(23)08080-X
– start-page: 1
  year: 2016
  ident: ref104
  article-title: Advances in magnetic flux leakage signal matching and corrosion growth rate selection
  publication-title: Proc Pigging Products Services Assoc
– volume: 1949
  start-page: 20023?1
  year: 2017
  ident: ref158
  article-title: The role of data fusion in predictive maintenance using digital twin
  publication-title: Proc Rev Prog Quantitative Nondestr Eval
– ident: ref31
  doi: 10.3390/s17010050
– ident: ref142
  doi: 10.1109/TIM.2007.908139
– ident: ref56
  doi: 10.1109/PROC.1976.10286
– ident: ref91
  doi: 10.2307/2533007
– ident: ref1
  doi: 10.1016/j.engfailanal.2016.07.014
– ident: ref143
  doi: 10.1007/978-1-4615-1411-4
– volume: 44
  start-page: 17
  year: 1999
  ident: ref25
  article-title: Specification and requirements for the intelligent pig inspection of pipelines
  publication-title: Pipes and Pipelines International
– ident: ref115
  doi: 10.1115/IPC2008-64546
– ident: ref32
  doi: 10.1007/s11370-014-0158-6
– ident: ref151
  doi: 10.3390/s16010105
– start-page: 1
  year: 2004
  ident: ref88
  article-title: Statistical calibration of pipeline in-line inspection data
  publication-title: Proc 16th WCNDT ESIQIEIPN PEMEX E P
– ident: ref157
  doi: 10.1117/12.2009966
– volume: 102
  start-page: 76
  year: 2004
  ident: ref89
  article-title: Method proposed for calibrating MFL, UT ILI tools
  publication-title: Oil Gas J
– ident: ref106
  doi: 10.1016/j.ijpvp.2013.06.002
– year: 2010
  ident: ref26
  publication-title: In-line Inspection of Pipelines Advanced Technologies for Economic and Safe Operation of Oil and Gas Pipelines
– ident: ref124
  doi: 10.1115/1.4026798
– ident: ref82
  doi: 10.1109/TMAG.2009.2037008
– volume: 6
  start-page: 13
  year: 2007
  ident: ref107
  article-title: Development of a predictive model for pipeline external corrosion rates
  publication-title: Pipeline Eng
– volume: 40
  year: 2011
  ident: ref122
  publication-title: Bayesian Inference in Statistical Analysis
– start-page: 3389
  year: 2001
  ident: ref54
  article-title: Adaptive noise cancellation schemes for magnetic flux leakage signals obtained from gas pipeline inspection
  publication-title: Proc IEEE Int Conf Acoust Speech Signal
– ident: ref62
  doi: 10.1109/TMAG.2015.2475429
– ident: ref135
  doi: 10.1016/j.advengsoft.2017.05.006
– ident: ref14
  doi: 10.1016/j.ijpvp.2010.04.003
– ident: ref44
  doi: 10.1155/2014/124968
– ident: ref74
  doi: 10.1007/s12204-009-0168-2
– ident: ref100
  doi: 10.1016/j.ress.2017.01.008
– ident: ref20
  doi: 10.1117/12.209361
– ident: ref37
  doi: 10.4283/JMAG.2018.23.2.152
– ident: ref141
  doi: 10.1016/j.procir.2019.01.093
– ident: ref69
  doi: 10.1016/j.measurement.2017.02.051
– ident: ref33
  doi: 10.1134/S1061830908120097
– ident: ref154
  doi: 10.3390/s18072091
– ident: ref87
  doi: 10.1016/j.strusafe.2017.10.005
– start-page: 6
  year: 2009
  ident: ref108
  article-title: Improving inspection data quality in pipeline corrosion assessment
  publication-title: Proc Int Conf Comput Eng Appl
– start-page: 1
  year: 2000
  ident: ref30
  article-title: Advances in in-line inspection technology for pipeline integrity
  publication-title: Proc 5th Annu Int Pipeline Congr
– ident: ref73
  doi: 10.1109/TMAG.2016.2642887
– ident: ref101
  doi: 10.1109/34.121791
– ident: ref17
  doi: 10.1088/1757-899X/382/3/032021
– start-page: 1
  year: 2015
  ident: ref28
  article-title: Overcoming limitations of current in-line inspection technology by applying a new approach using spiral magnetic flux leakage (SMFL)
  publication-title: Proc Pipeline Technol Conf
– ident: ref18
  doi: 10.1016/j.jmmm.2011.08.048
– year: 2000
  ident: ref153
  article-title: Studies on data fusion of nondestructive testing
– ident: ref93
  doi: 10.1109/ISIE.2019.8781224
– year: 2015
  ident: ref155
  article-title: Future of nondestructive testing: Industry 4.0/smart manufacturing disrupting established products, technologies and business models
– volume: 20
  start-page: 679
  year: 2001
  ident: ref149
  article-title: Multisensor fusion for 3-D defect characterization using wavelet basis function neural networks
  publication-title: Review of Progress in Quantitative Nondestructive Evaluation
  doi: 10.1063/1.1373823
– ident: ref55
  doi: 10.1016/S0963-8695(02)00024-5
– ident: ref9
  doi: 10.1016/j.molliq.2017.10.097
– ident: ref40
  doi: 10.1109/I2MTC.2018.8409535
– ident: ref63
  doi: 10.1016/0308-9126(86)90134-3
– ident: ref144
  doi: 10.1109/19.872934
– ident: ref109
  doi: 10.1016/j.corsci.2012.09.005
– start-page: 1
  year: 2008
  ident: ref114
  article-title: Development of detailed procedures for comparing successive ILI runs to establish corrosion growth rates
– start-page: 25
  year: 2008
  ident: ref35
  article-title: Effect of lift-off on pipeline magnetic flux leakage inspection
  publication-title: 17th World Conference on Nondestructive Testing
– ident: ref79
  doi: 10.1049/iet-smt.2016.0279
– ident: ref19
  doi: 10.1109/TMAG.2013.2283343
– ident: ref61
  doi: 10.1016/j.asoc.2016.10.040
– ident: ref128
  doi: 10.1198/TECH.2009.08197
– ident: ref49
  doi: 10.1007/s11668-017-0286-3
– ident: ref76
  doi: 10.1134/S1061830917120075
– ident: ref136
  doi: 10.4028/www.scientific.net/KEM.795.233
– ident: ref64
  doi: 10.1088/0022-3727/19/4/018
– ident: ref140
  doi: 10.14419/ijet.v7i4.35.22733
– ident: ref38
  doi: 10.1520/JTE20130133
– ident: ref127
  doi: 10.1007/s11709-013-0207-9
– ident: ref53
  doi: 10.1063/1.1306223
– ident: ref70
  doi: 10.1520/JTE10129J
– ident: ref11
  doi: 10.1111/mice.12096
– ident: ref102
  doi: 10.1016/j.ndteint.2018.10.004
– ident: ref36
  doi: 10.4028/www.scientific.net/AMM.321-324.811
– year: 2001
  ident: ref152
  article-title: Data fusion for NDE signal characterization
  doi: 10.31274/rtd-180813-9931
– ident: ref146
  doi: 10.1109/SFICON.2004.1287142
– ident: ref65
  doi: 10.1109/TMAG.2008.2011895
– ident: ref119
  doi: 10.1016/S0167-4730(99)00016-8
– ident: ref66
  doi: 10.1109/TMAG.2008.2011896
– year: 2006
  ident: ref148
  article-title: A data fusion system for the nondestructive evaluation of non-piggable pipes
– ident: ref86
  doi: 10.1115/IPC2016-64526
– ident: ref90
  doi: 10.1088/0957-0233/18/7/001
– ident: ref45
  doi: 10.1016/j.ndteint.2005.10.006
– ident: ref105
  doi: 10.1115/IPC2016-64547
– ident: ref6
  doi: 10.1016/j.engfailanal.2015.03.004
– ident: ref43
  doi: 10.1016/j.ndteint.2011.08.011
– start-page: 1
  year: 2013
  ident: ref27
  article-title: Mechanical damage assessment using multiple data sets in inline inspection
  publication-title: Proc 8th Pipeline Technol Conf
– ident: ref67
  doi: 10.1016/j.ndteint.2018.01.004
– ident: ref118
  doi: 10.1016/j.corsci.2009.06.014
– ident: ref129
  doi: 10.1016/j.corsci.2013.04.020
– ident: ref137
  doi: 10.30699/ijrrs.1.45
– ident: ref5
  doi: 10.1515/adms-2017-0014
– year: 2018
  ident: ref4
  publication-title: Pipeline Incident 20 Year Trends
– ident: ref72
  doi: 10.1016/j.ndteint.2005.06.006
– ident: ref78
  doi: 10.1049/iet-smt.2014.0173
– ident: ref50
  doi: 10.1784/insi.2009.51.9.508
– ident: ref116
  doi: 10.1016/j.engfailanal.2015.11.052
– ident: ref57
  doi: 10.1016/j.measurement.2006.01.007
– ident: ref29
  doi: 10.1115/IPC2006-10327
– ident: ref84
  doi: 10.1016/j.ndteint.2019.01.004
– start-page: 1
  year: 2016
  ident: ref98
  article-title: Predicting the future-applying corrosion growth rates derived from repeat ILI runs
  publication-title: Proc 11th Pipeline Technol Conf
– ident: ref7
  doi: 10.1002/maco.200503964
– year: 2018
  ident: ref132
  article-title: Pipeline risk assessment using dynamic Bayesian network (DBN) for internal corrosion
– ident: ref34
  doi: 10.1007/s10921-016-0356-6
– ident: ref47
  doi: 10.1109/TMAG.2007.915955
– ident: ref130
  doi: 10.1016/j.ress.2014.04.001
– ident: ref12
  doi: 10.1117/12.2300812
– volume: 4
  start-page: 446
  year: 2015
  ident: ref24
  article-title: Comparison and verification of the performance specification of mfl pigs and field inspection based on error propagation and Gaussian distribution method
  publication-title: International Journal of Engineering Research & Innovation
– ident: ref48
  doi: 10.3233/JAE-162076
– year: 2015
  ident: ref2
  article-title: Modelling of external corrosion propagation for buried pipelines based on stochastic processes
– ident: ref120
  doi: 10.1155/2013/108386
– ident: ref126
  doi: 10.1016/j.ress.2015.08.007
– ident: ref139
  doi: 10.1016/j.ijpvp.2019.103982
– ident: ref77
  doi: 10.1109/ChiCC.2016.7553912
– ident: ref13
  doi: 10.1016/j.ijpvp.2016.11.007
– ident: ref85
  doi: 10.1115/OMAE2012-83934
– ident: ref39
  doi: 10.1109/TMAG.2017.2690628
– volume: 44
  start-page: 3519
  year: 2011
  ident: ref150
  article-title: Data fusion for MFL signal characterization
  publication-title: Frontiers of Manufacturing and Design Science
– volume: 6
  start-page: 69
  year: 2011
  ident: ref112
  article-title: Deterministic prediction of corroding pipeline remaining strength in marine environment using DNV RP-F101 (Part A)
  publication-title: Journal of Sustainability Science and Management
– ident: ref23
  doi: 10.1061/41202(423)104
– ident: ref16
  doi: 10.1016/j.engfailanal.2018.05.010
SSID ssj0014510
ssib004836796
ssib017384905
ssib006542118
ssib053393187
Score 2.6021686
Snippet Oil and gas pipelines transport and distribute large quantities of oil products and natural gas to industrial and residential customers over a long distance....
SourceID proquest
crossref
nii
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Corrosion
Corrosion tests
Data analysis
Destructive testing
Finite element analysis
Gas pipelines
in-line inspection (ILI)
Inspection
Leakage
Magnetic devices
Magnetic flux
magnetic-flux leakage (MFL)
Magnetism
Measurement techniques
Natural gas
Nondestructive testing
oil and gas pipeline
Oils
Petroleum pipelines
pipeline corrosion assessment
Pipelines
Reliability analysis
Sensors
Signal processing
Title Analysis of Magnetic-Flux Leakage (MFL) Data for Pipeline Corrosion Assessment
URI https://ieeexplore.ieee.org/document/9039686
https://cir.nii.ac.jp/crid/1872553967363233664
https://www.proquest.com/docview/2404042979
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SQKE99JG0dNOk6NBDW-qNtZL1OC5pt6HEoYcEcjOSPCpLgjckXij59R3ZXtMXpRdhjGzJ-iTNjDXzDcAbmUvvNOpMoqSiVj5zhY9ZirkM3AajfQoULs_UyYX8cllcbsGHMRYGETvnM5ymy-4sv16FdfpVdmRzYZVR27BNhlsfqzWeGMiC9-Em3KS08XI4weS5PTov55_JEpzl05k1VDH_RQZ1SVVIsjTL5R_7cSdkFk-g3HSv9y25mq5bPw33vzE3_m__n8LjQdtk8356PIMtbHbh0U8chLvwoPMBDXd7cLYhKGGryEr3rUnxjdniev2dnaK7oo2HvS0Xp-_YR9c6Rsou-7q8SeHsyI5Xt_SlBDGbj0yfz-Fi8en8-CQb0i1kQRjTZj4R-3BnEG1ttRc6Kl7Tmq0LmVi6pEUsdM2jiNLYiMgjQWlmIcoorXJRvICdZtXgS2AmKOVIE4pJX-Oy9t5wp9AJUjeijXYC-QaAKgxc5CklxnXV2SS5rRJmVcKsGjCbwPvxkZueiONflffS6I8Vh4GfwCGhTC2mkhtN5hTd10KJmRBKyQkcbPCvhqV8V5HKI5PU1nb_7299BQ9T273_2AHstLdrPCRNpfWvuyn6A6kE32Y
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQ98GhBXWjBBw6AyDaOHT-Oq8KywGbFYSv1FtmOjVatslWblRC_nnGSjXgJcbGiyElsf7ZnJp75BuAlT7k10suEe45FJWxichuSGHPpqHZK2hgoXCzE7Ix_Os_Pd-DtEAvjvW-dz_w4XrZn-dXabeKvshOdMi2UuAW3Ue7nWRetNZwZ8Jx2ASdUxcTxvD_DpKk-WRaTD2gLZuk40worpr9IoTatCsqWerX6Y0duxcz0ARTbBnbeJRfjTWPH7vtv3I3_24OHcL_XN8mkmyCPYMfX-7D3EwvhPtxpvUDdzQEsthQlZB1IYb7WMcIxmV5uvpG5Nxe49ZBXxXT-mrwzjSGo7pIvq6sY0O7J6foae4ogk8nA9fkYzqbvl6ezpE-4kDimVJPYSO1DjfJeV1paJoOgFa7aKueRp4tr73NZ0cACVzp4TwOCqTIXeOBamMCewG69rv0hEOWEMKgLhaixUV5Zq6gR3jBUOIIOegTpFoDS9WzkMSnGZdlaJakuI2ZlxKzsMRvBm-GRq46K41-VD-LoDxX7gR_BMaKMX4wlVRINKrwvmWAZY0LwERxt8S_7xXxTotLDo9yW-unf3_oC7s6Wxbycf1x8fgb3Yjs6b7Ij2G2uN_4Y9ZbGPm-n6w-BveKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Magnetic-Flux+Leakage+%28MFL%29+Data+for+Pipeline+Corrosion+Assessment&rft.jtitle=IEEE+Transactions+on+Magnetics&rft.au=Xiang+Peng&rft.au=Uchenna+Anyaoha&rft.au=Zheng+Liu&rft.au=Kazuhiko+Tsukada&rft.date=2020-06-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers+%28IEEE%29&rft.issn=0018-9464&rft.eissn=1941-0069&rft.volume=56&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2Ftmag.2020.2981450
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9464&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9464&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9464&client=summon