Analysis of Magnetic-Flux Leakage (MFL) Data for Pipeline Corrosion Assessment
Oil and gas pipelines transport and distribute large quantities of oil products and natural gas to industrial and residential customers over a long distance. However, pipeline failures could lead to enormous hazards and safety issues. Metal loss, due to corrosion, is a significant cause for pipeline...
Saved in:
Published in | IEEE Transactions on Magnetics Vol. 56; no. 6; pp. 1 - 15 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English Japanese |
Published |
New York
IEEE
01.06.2020
Institute of Electrical and Electronics Engineers (IEEE) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Oil and gas pipelines transport and distribute large quantities of oil products and natural gas to industrial and residential customers over a long distance. However, pipeline failures could lead to enormous hazards and safety issues. Metal loss, due to corrosion, is a significant cause for pipeline failures. To detect and quantify metal loss, in-line inspection (ILI) is carried out periodically to assess the integrity of the pipeline. Among all the ILI techniques, magnetic-flux leakage (MFL) is the most popular one due to its high efficiency, robustness, and good applicability to both oil and gas pipelines. This article provides a comprehensive review of the pipeline corrosion assessment with the MFL technique from the data analytic perspective. The analyses of the MFL signal and data contribute to both corrosion quantification and prediction. In this article, the state of the art for the MFL measurement technique is briefly reviewed first. For corrosion quantification, the signal processing methods together with the characterization models, which aim to enhance the measurement and characterize the corrosion, are described and discussed. For corrosion prediction, this article investigates multiple MFL data matching methods, which align defects from successive ILI runs. Subsequently, corrosion growth models, which aim to predict the future corrosion status, are presented. Besides, the reliability analysis of the corroded pipeline is reviewed. The potential of fusing MFL with other non-destructive testing (NDT) techniques are explored as well. At the end of this article, we summarize the existing issues and describe the trends for future research on pipeline corrosion assessment. |
---|---|
AbstractList | Oil and gas pipelines transport and distribute large quantities of oil products and natural gas to industrial and residential customers over a long distance. However, pipeline failures could lead to enormous hazards and safety issues. Metal loss, due to corrosion, is a significant cause for pipeline failures. To detect and quantify metal loss, in-line inspection (ILI) is carried out periodically to assess the integrity of the pipeline. Among all the ILI techniques, magnetic-flux leakage (MFL) is the most popular one due to its high efficiency, robustness, and good applicability to both oil and gas pipelines. This article provides a comprehensive review of the pipeline corrosion assessment with the MFL technique from the data analytic perspective. The analyses of the MFL signal and data contribute to both corrosion quantification and prediction. In this article, the state of the art for the MFL measurement technique is briefly reviewed first. For corrosion quantification, the signal processing methods together with the characterization models, which aim to enhance the measurement and characterize the corrosion, are described and discussed. For corrosion prediction, this article investigates multiple MFL data matching methods, which align defects from successive ILI runs. Subsequently, corrosion growth models, which aim to predict the future corrosion status, are presented. Besides, the reliability analysis of the corroded pipeline is reviewed. The potential of fusing MFL with other non-destructive testing (NDT) techniques are explored as well. At the end of this article, we summarize the existing issues and describe the trends for future research on pipeline corrosion assessment. |
Author | Tsukada, Kazuhiko Anyaoha, Uchenna Liu, Zheng Peng, Xiang |
Author_xml | – sequence: 1 givenname: Xiang orcidid: 0000-0003-2274-2411 surname: Peng fullname: Peng, Xiang organization: School of Engineering, University of British Columbia Okanagan, Kelowna, BC, Canada – sequence: 2 givenname: Uchenna surname: Anyaoha fullname: Anyaoha, Uchenna organization: School of Engineering, University of British Columbia Okanagan, Kelowna, BC, Canada – sequence: 3 givenname: Zheng orcidid: 0000-0002-7241-3483 surname: Liu fullname: Liu, Zheng email: zheng.liu@ieee.org organization: School of Engineering, University of British Columbia Okanagan, Kelowna, BC, Canada – sequence: 4 givenname: Kazuhiko surname: Tsukada fullname: Tsukada, Kazuhiko organization: Graduate School of Engineering, Kyoto University, Kyoto, Japan |
BackLink | https://cir.nii.ac.jp/crid/1872553967363233664$$DView record in CiNii |
BookMark | eNp9kE1LAzEQhoMo2FZ_gHgJ6EEPW5NNNh_HUm0VWvVQz0u6Oymp292abMH-e1O2ePAgAzMMPO98vH10Wjc1IHRFyZBSoh8W89F0mJKUDFOtKM_ICepRzWlCiNCnqEcIVYnmgp-jfgjr2PKMkh56HdWm2gcXcGPx3KxqaF2RTKrdN56B-TQrwHfzyeweP5rWYNt4_O62ULka8LjxvgmuqfEoBAhhA3V7gc6sqQJcHusAfUyeFuPnZPY2fRmPZknBlGqTpZRCUqMAdKnlkkkraEkyWmZcEia4BshkSS2zXGkLQK0ulEoLyy3Xwlg2QDfd3K1vvnYQ2nzd7Hx8JeQpJzFSLXWkZEcV8dDgweaFa00bT269cVVOSX4wLz-Ylx_My4_mRSX9o9x6tzF-_6_mttPUzsVFh0yVTLOMaSGZYCljQvCIXXeYA4DfsZpESgn2A-0dhOU |
CODEN | IEMGAQ |
CitedBy_id | crossref_primary_10_1109_JLT_2023_3300952 crossref_primary_10_1016_j_nucengdes_2024_113239 crossref_primary_10_1016_j_measurement_2024_116487 crossref_primary_10_1016_j_ndteint_2023_102786 crossref_primary_10_3390_s22093322 crossref_primary_10_3390_s24092699 crossref_primary_10_1016_j_ijpvp_2023_105123 crossref_primary_10_1080_10584587_2024_2328859 crossref_primary_10_1016_j_ijpvp_2024_105409 crossref_primary_10_1016_j_rineng_2025_104652 crossref_primary_10_1109_JSEN_2023_3280670 crossref_primary_10_1109_TIM_2022_3152243 crossref_primary_10_1109_TIM_2023_3279910 crossref_primary_10_5006_4457 crossref_primary_10_1109_ACCESS_2025_3533389 crossref_primary_10_1016_j_geoen_2024_213410 crossref_primary_10_3390_en16031372 crossref_primary_10_1103_PhysRevApplied_21_014003 crossref_primary_10_1109_TASE_2024_3369659 crossref_primary_10_1109_TIM_2023_3244211 crossref_primary_10_3390_s24165195 crossref_primary_10_1109_TPWRS_2024_3380359 crossref_primary_10_1016_j_ndteint_2023_102939 crossref_primary_10_1016_j_petsci_2022_11_007 crossref_primary_10_1109_TIM_2021_3050185 crossref_primary_10_1109_JSEN_2024_3513433 crossref_primary_10_1016_j_engfailanal_2021_105810 crossref_primary_10_1016_j_jmsy_2024_02_006 crossref_primary_10_1109_TIM_2022_3225059 crossref_primary_10_1080_10589759_2022_2055017 crossref_primary_10_1109_TIM_2022_3199247 crossref_primary_10_1109_TASE_2023_3260281 crossref_primary_10_1557_s43580_024_01017_6 crossref_primary_10_1016_j_jpse_2025_100282 crossref_primary_10_1109_TII_2024_3413330 crossref_primary_10_1007_s11668_022_01373_1 crossref_primary_10_1515_corrrev_2023_0027 crossref_primary_10_1016_j_jpse_2025_100254 crossref_primary_10_1109_TASE_2024_3355984 crossref_primary_10_1109_TIM_2022_3220273 crossref_primary_10_1016_j_jmmm_2022_169595 crossref_primary_10_1016_j_porgcoat_2025_109067 crossref_primary_10_1088_1361_6501_ac9545 crossref_primary_10_1007_s13349_025_00924_y crossref_primary_10_1109_ACCESS_2022_3212061 crossref_primary_10_1016_j_ptlrs_2023_05_013 crossref_primary_10_1016_j_engfailanal_2023_107747 crossref_primary_10_1016_j_jmmm_2023_171039 crossref_primary_10_1109_TMAG_2021_3061060 crossref_primary_10_3233_JAE_220222 crossref_primary_10_1109_JSEN_2023_3271906 crossref_primary_10_1109_TIM_2024_3493872 crossref_primary_10_1134_S106183092107010X crossref_primary_10_1088_1361_6501_ad7f77 crossref_primary_10_1007_s10921_023_00933_1 crossref_primary_10_1109_TMAG_2023_3280160 crossref_primary_10_1016_j_powtec_2023_118457 crossref_primary_10_1080_10589759_2024_2409391 crossref_primary_10_1109_JSEN_2024_3353595 crossref_primary_10_3233_JAE_230137 crossref_primary_10_1016_j_jksus_2021_101761 crossref_primary_10_47134_ijlj_v1i2_2011 crossref_primary_10_1016_j_apor_2025_104431 crossref_primary_10_1016_j_ijpvp_2024_105251 crossref_primary_10_1109_JSEN_2022_3190684 crossref_primary_10_1109_TIM_2023_3265110 crossref_primary_10_1016_j_jmmm_2024_172638 crossref_primary_10_1016_j_ymssp_2023_110919 crossref_primary_10_1007_s10921_024_01061_0 crossref_primary_10_1109_TIM_2022_3204992 crossref_primary_10_1016_j_ijpvp_2022_104841 crossref_primary_10_1109_ACCESS_2024_3450502 crossref_primary_10_1088_1361_6501_ad66f8 crossref_primary_10_1007_s11018_023_02147_3 crossref_primary_10_1002_adfm_202412634 crossref_primary_10_1109_TIM_2022_3176285 crossref_primary_10_1016_j_comcom_2022_08_001 |
Cites_doi | 10.1134/S1061830908030042 10.1109/TMAG.2018.2853117 10.1016/j.ress.2007.03.019 10.1007/978-1-4615-4791-4_103 10.1109/TMAG.2012.2208119 10.1115/IPC2010-31306 10.1109/ULTSYM.2004.1417959 10.3390/s140610361 10.5006/1.3319138 10.1016/j.scs.2018.01.021 10.1109/TII.2018.2828811 10.5006/1.3577840 10.1016/j.ndteint.2014.12.008 10.1115/IPC2012-90251 10.1109/TMAG.2008.923228 10.3390/s151229845 10.1109/TMAG.2016.2631525 10.1784/insi.2012.55.10.558 10.1002/prs.11744 10.1016/j.ijpvp.2012.06.005 10.1016/j.corsci.2009.05.019 10.1016/j.corsci.2007.06.006 10.1533/9780857099266.2.215 10.1016/j.jhazmat.2017.08.029 10.1016/j.ndteint.2006.09.004 10.1115/IPC2012-90491 10.1016/j.corsci.2013.04.011 10.1139/cjce-2016-0602 10.1109/TMAG.2004.824717 10.3233/JAE-2007-892 10.1016/S1452-3981(23)08080-X 10.3390/s17010050 10.1109/TIM.2007.908139 10.1109/PROC.1976.10286 10.2307/2533007 10.1016/j.engfailanal.2016.07.014 10.1007/978-1-4615-1411-4 10.1115/IPC2008-64546 10.1007/s11370-014-0158-6 10.3390/s16010105 10.1117/12.2009966 10.1016/j.ijpvp.2013.06.002 10.1115/1.4026798 10.1109/TMAG.2009.2037008 10.1109/TMAG.2015.2475429 10.1016/j.advengsoft.2017.05.006 10.1016/j.ijpvp.2010.04.003 10.1155/2014/124968 10.1007/s12204-009-0168-2 10.1016/j.ress.2017.01.008 10.1117/12.209361 10.4283/JMAG.2018.23.2.152 10.1016/j.procir.2019.01.093 10.1016/j.measurement.2017.02.051 10.1134/S1061830908120097 10.3390/s18072091 10.1016/j.strusafe.2017.10.005 10.1109/TMAG.2016.2642887 10.1109/34.121791 10.1088/1757-899X/382/3/032021 10.1016/j.jmmm.2011.08.048 10.1109/ISIE.2019.8781224 10.1063/1.1373823 10.1016/S0963-8695(02)00024-5 10.1016/j.molliq.2017.10.097 10.1109/I2MTC.2018.8409535 10.1016/0308-9126(86)90134-3 10.1109/19.872934 10.1016/j.corsci.2012.09.005 10.1049/iet-smt.2016.0279 10.1109/TMAG.2013.2283343 10.1016/j.asoc.2016.10.040 10.1198/TECH.2009.08197 10.1007/s11668-017-0286-3 10.1134/S1061830917120075 10.4028/www.scientific.net/KEM.795.233 10.1088/0022-3727/19/4/018 10.14419/ijet.v7i4.35.22733 10.1520/JTE20130133 10.1007/s11709-013-0207-9 10.1063/1.1306223 10.1520/JTE10129J 10.1111/mice.12096 10.1016/j.ndteint.2018.10.004 10.4028/www.scientific.net/AMM.321-324.811 10.31274/rtd-180813-9931 10.1109/SFICON.2004.1287142 10.1109/TMAG.2008.2011895 10.1016/S0167-4730(99)00016-8 10.1109/TMAG.2008.2011896 10.1115/IPC2016-64526 10.1088/0957-0233/18/7/001 10.1016/j.ndteint.2005.10.006 10.1115/IPC2016-64547 10.1016/j.engfailanal.2015.03.004 10.1016/j.ndteint.2011.08.011 10.1016/j.ndteint.2018.01.004 10.1016/j.corsci.2009.06.014 10.1016/j.corsci.2013.04.020 10.30699/ijrrs.1.45 10.1515/adms-2017-0014 10.1016/j.ndteint.2005.06.006 10.1049/iet-smt.2014.0173 10.1784/insi.2009.51.9.508 10.1016/j.engfailanal.2015.11.052 10.1016/j.measurement.2006.01.007 10.1115/IPC2006-10327 10.1016/j.ndteint.2019.01.004 10.1002/maco.200503964 10.1007/s10921-016-0356-6 10.1109/TMAG.2007.915955 10.1016/j.ress.2014.04.001 10.1117/12.2300812 10.3233/JAE-162076 10.1155/2013/108386 10.1016/j.ress.2015.08.007 10.1016/j.ijpvp.2019.103982 10.1109/ChiCC.2016.7553912 10.1016/j.ijpvp.2016.11.007 10.1115/OMAE2012-83934 10.1109/TMAG.2017.2690628 10.1061/41202(423)104 10.1016/j.engfailanal.2018.05.010 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE RYH AAYXX CITATION 7SP 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1109/TMAG.2020.2981450 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CiNii Complete CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1941-0069 |
EndPage | 15 |
ExternalDocumentID | 10_1109_TMAG_2020_2981450 9039686 |
Genre | orig-research |
GrantInformation_xml | – fundername: NSERC through the “Colaborative Research and Development Grants” grantid: RDPJ515074-17 funderid: 10.13039/501100000038 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK XXG RYH AAYXX CITATION RIG 7SP 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c388t-b77671a8ee9d97b37f61d051d54703649ee57d1f3f489fee1f9c882cf4f496af3 |
IEDL.DBID | RIE |
ISSN | 0018-9464 |
IngestDate | Mon Jun 30 10:19:49 EDT 2025 Tue Jul 01 04:30:01 EDT 2025 Thu Apr 24 23:03:49 EDT 2025 Thu Jun 26 21:52:19 EDT 2025 Wed Aug 27 02:42:21 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Language | English Japanese |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-b77671a8ee9d97b37f61d051d54703649ee57d1f3f489fee1f9c882cf4f496af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2274-2411 0000-0002-7241-3483 0000-0002-6846-3154 |
PQID | 2404042979 |
PQPubID | 85461 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1109_TMAG_2020_2981450 crossref_primary_10_1109_TMAG_2020_2981450 nii_cinii_1872553967363233664 ieee_primary_9039686 proquest_journals_2404042979 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE Transactions on Magnetics |
PublicationTitleAbbrev | TMAG |
PublicationYear | 2020 |
Publisher | IEEE Institute of Electrical and Electronics Engineers (IEEE) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers (IEEE) – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 dawson (ref114) 2008 ref59 ref58 ref53 ref55 yang (ref35) 2008 pitchford (ref25) 1999; 44 lim (ref149) 2001; 20 ref51 palaniappan (ref132) 2018 ref50 lopes (ref27) 2013 mandayam (ref148) 2006 russell (ref104) 2016 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 palmer (ref97) 2017 ref49 ref8 ref7 ref9 ref3 ref6 ref5 ref100 ref101 ref40 noor (ref112) 2011; 6 ref34 ref37 ref36 ref31 ref33 ref146 ref32 ref147 ref39 ref38 box (ref122) 2011; 40 najafabadi (ref24) 2015; 4 (ref4) 2018 ref156 ref154 ref151 ref23 ref20 ref22 ref157 dawson (ref98) 2016 ref21 chen (ref80) 2017; 32 liu (ref158) 2017; 1949 cvitanovic (ref99) 2011 ref29 kimbara (ref155) 2015 ref13 ref12 kirkwood (ref28) 2015 ref128 ref129 ref14 ref126 ref127 ref124 ref11 ref17 ref16 ref19 ref18 tavakoli (ref133) 2019 pikas (ref60) 2016 ref93 ref92 ref131 ref95 dawson (ref94) 2018 ref130 ref91 ref90 (ref134) 2012 ref139 race (ref107) 2007; 6 ref137 ref86 ref138 ref85 ref135 ref136 ref87 bickerstaff (ref15) 2002 massopust (ref52) 2000 hallen (ref88) 2004 ref144 ref82 ref145 ref81 ref142 ref84 ref143 ref83 ref140 ref141 ref79 ref78 ref109 sutherland (ref30) 2000 ref106 ref75 champlin (ref96) 2016 ref74 ref105 neši? (ref10) 2007; 49 ref77 ref102 ref76 ref103 walker (ref26) 2010 ref1 ref71 ref111 ref70 wang (ref2) 2015 ref73 ref72 ref110 ref68 ref119 ref67 velázquez (ref125) 2014; 9 ref117 ref69 ref118 ref64 ref115 ref63 ref116 liu (ref153) 2000 ref66 ref113 ref65 caleyo (ref89) 2004; 102 din (ref108) 2009 song (ref150) 2011; 44 afzal (ref54) 2001 ref123 ref62 ref120 ref61 ref121 lim (ref152) 2001 |
References_xml | – ident: ref58 doi: 10.1134/S1061830908030042 – year: 2019 ident: ref133 article-title: Artificial neural networks and adaptive neuro-fuzzy models for prediction of remaining useful life publication-title: arXiv 1909 02115 – ident: ref46 doi: 10.1109/TMAG.2018.2853117 – ident: ref121 doi: 10.1016/j.ress.2007.03.019 – ident: ref41 doi: 10.1007/978-1-4615-4791-4_103 – ident: ref71 doi: 10.1109/TMAG.2012.2208119 – ident: ref95 doi: 10.1115/IPC2010-31306 – year: 2016 ident: ref96 article-title: Robust anomaly matching for ICIPs: Reducing pipeline assessment uncertainty through 4-dimensional anomaly detection and characterization – ident: ref147 doi: 10.1109/ULTSYM.2004.1417959 – ident: ref75 doi: 10.3390/s140610361 – ident: ref111 doi: 10.5006/1.3319138 – ident: ref138 doi: 10.1016/j.scs.2018.01.021 – start-page: 1 year: 2011 ident: ref99 article-title: Development of integrity management strategies for pipelines publication-title: Proc Pipeline Technol Conf – ident: ref68 doi: 10.1109/TII.2018.2828811 – ident: ref117 doi: 10.5006/1.3577840 – ident: ref145 doi: 10.1016/j.ndteint.2014.12.008 – ident: ref103 doi: 10.1115/IPC2012-90251 – ident: ref81 doi: 10.1109/TMAG.2008.923228 – ident: ref22 doi: 10.3390/s151229845 – ident: ref83 doi: 10.1109/TMAG.2016.2631525 – ident: ref156 doi: 10.1784/insi.2012.55.10.558 – year: 2002 ident: ref15 article-title: Review of sensor technologies for in-line inspection of natural gas pipelines – start-page: 1 year: 2016 ident: ref60 article-title: Remaining strength of corroded pipe direct assessment process publication-title: Proc NACE Int Conf Corrosion – ident: ref3 doi: 10.1002/prs.11744 – ident: ref123 doi: 10.1016/j.ijpvp.2012.06.005 – ident: ref113 doi: 10.1016/j.corsci.2009.05.019 – volume: 32 start-page: 268 year: 2017 ident: ref80 article-title: 3-D defect profile reconstruction from magnetic flux leakage signals in pipeline inspection using a hybrid inversion method publication-title: Appl Comput Electromagn Soc J – volume: 49 start-page: 4308 year: 2007 ident: ref10 article-title: Key issues related to modelling of internal corrosion of oil and gas pipelines-A review publication-title: Corrosion Sci doi: 10.1016/j.corsci.2007.06.006 – year: 2012 ident: ref134 publication-title: ASME B31G-2012 Manual for Determining the Remaining Strength of Corroded Pipelines[S] – ident: ref21 doi: 10.1533/9780857099266.2.215 – ident: ref8 doi: 10.1016/j.jhazmat.2017.08.029 – ident: ref42 doi: 10.1016/j.ndteint.2006.09.004 – ident: ref92 doi: 10.1115/IPC2012-90491 – year: 2018 ident: ref94 article-title: Assessing repeat ILI data using signal-to-signal comparison techniques publication-title: Proc 13th Pipeline Technol Conf – ident: ref110 doi: 10.1016/j.corsci.2013.04.011 – start-page: 1 year: 2017 ident: ref97 article-title: Automated signal comparison and normalization-An advanced method of comparing repeat ILI data publication-title: Proc 29th Pipeline Pigging Integrity Manage Conf – ident: ref131 doi: 10.1139/cjce-2016-0602 – ident: ref51 doi: 10.1109/TMAG.2004.824717 – ident: ref59 doi: 10.3233/JAE-2007-892 – year: 2000 ident: ref52 article-title: Mfl signal enhancement via wavelet-based denoising – volume: 9 start-page: 4129 year: 2014 ident: ref125 article-title: Statistical modelling of pitting corrosion: Extrapolation of the maximum pit depth-growth publication-title: Int J Electrochem Sci doi: 10.1016/S1452-3981(23)08080-X – start-page: 1 year: 2016 ident: ref104 article-title: Advances in magnetic flux leakage signal matching and corrosion growth rate selection publication-title: Proc Pigging Products Services Assoc – volume: 1949 start-page: 20023?1 year: 2017 ident: ref158 article-title: The role of data fusion in predictive maintenance using digital twin publication-title: Proc Rev Prog Quantitative Nondestr Eval – ident: ref31 doi: 10.3390/s17010050 – ident: ref142 doi: 10.1109/TIM.2007.908139 – ident: ref56 doi: 10.1109/PROC.1976.10286 – ident: ref91 doi: 10.2307/2533007 – ident: ref1 doi: 10.1016/j.engfailanal.2016.07.014 – ident: ref143 doi: 10.1007/978-1-4615-1411-4 – volume: 44 start-page: 17 year: 1999 ident: ref25 article-title: Specification and requirements for the intelligent pig inspection of pipelines publication-title: Pipes and Pipelines International – ident: ref115 doi: 10.1115/IPC2008-64546 – ident: ref32 doi: 10.1007/s11370-014-0158-6 – ident: ref151 doi: 10.3390/s16010105 – start-page: 1 year: 2004 ident: ref88 article-title: Statistical calibration of pipeline in-line inspection data publication-title: Proc 16th WCNDT ESIQIEIPN PEMEX E P – ident: ref157 doi: 10.1117/12.2009966 – volume: 102 start-page: 76 year: 2004 ident: ref89 article-title: Method proposed for calibrating MFL, UT ILI tools publication-title: Oil Gas J – ident: ref106 doi: 10.1016/j.ijpvp.2013.06.002 – year: 2010 ident: ref26 publication-title: In-line Inspection of Pipelines Advanced Technologies for Economic and Safe Operation of Oil and Gas Pipelines – ident: ref124 doi: 10.1115/1.4026798 – ident: ref82 doi: 10.1109/TMAG.2009.2037008 – volume: 6 start-page: 13 year: 2007 ident: ref107 article-title: Development of a predictive model for pipeline external corrosion rates publication-title: Pipeline Eng – volume: 40 year: 2011 ident: ref122 publication-title: Bayesian Inference in Statistical Analysis – start-page: 3389 year: 2001 ident: ref54 article-title: Adaptive noise cancellation schemes for magnetic flux leakage signals obtained from gas pipeline inspection publication-title: Proc IEEE Int Conf Acoust Speech Signal – ident: ref62 doi: 10.1109/TMAG.2015.2475429 – ident: ref135 doi: 10.1016/j.advengsoft.2017.05.006 – ident: ref14 doi: 10.1016/j.ijpvp.2010.04.003 – ident: ref44 doi: 10.1155/2014/124968 – ident: ref74 doi: 10.1007/s12204-009-0168-2 – ident: ref100 doi: 10.1016/j.ress.2017.01.008 – ident: ref20 doi: 10.1117/12.209361 – ident: ref37 doi: 10.4283/JMAG.2018.23.2.152 – ident: ref141 doi: 10.1016/j.procir.2019.01.093 – ident: ref69 doi: 10.1016/j.measurement.2017.02.051 – ident: ref33 doi: 10.1134/S1061830908120097 – ident: ref154 doi: 10.3390/s18072091 – ident: ref87 doi: 10.1016/j.strusafe.2017.10.005 – start-page: 6 year: 2009 ident: ref108 article-title: Improving inspection data quality in pipeline corrosion assessment publication-title: Proc Int Conf Comput Eng Appl – start-page: 1 year: 2000 ident: ref30 article-title: Advances in in-line inspection technology for pipeline integrity publication-title: Proc 5th Annu Int Pipeline Congr – ident: ref73 doi: 10.1109/TMAG.2016.2642887 – ident: ref101 doi: 10.1109/34.121791 – ident: ref17 doi: 10.1088/1757-899X/382/3/032021 – start-page: 1 year: 2015 ident: ref28 article-title: Overcoming limitations of current in-line inspection technology by applying a new approach using spiral magnetic flux leakage (SMFL) publication-title: Proc Pipeline Technol Conf – ident: ref18 doi: 10.1016/j.jmmm.2011.08.048 – year: 2000 ident: ref153 article-title: Studies on data fusion of nondestructive testing – ident: ref93 doi: 10.1109/ISIE.2019.8781224 – year: 2015 ident: ref155 article-title: Future of nondestructive testing: Industry 4.0/smart manufacturing disrupting established products, technologies and business models – volume: 20 start-page: 679 year: 2001 ident: ref149 article-title: Multisensor fusion for 3-D defect characterization using wavelet basis function neural networks publication-title: Review of Progress in Quantitative Nondestructive Evaluation doi: 10.1063/1.1373823 – ident: ref55 doi: 10.1016/S0963-8695(02)00024-5 – ident: ref9 doi: 10.1016/j.molliq.2017.10.097 – ident: ref40 doi: 10.1109/I2MTC.2018.8409535 – ident: ref63 doi: 10.1016/0308-9126(86)90134-3 – ident: ref144 doi: 10.1109/19.872934 – ident: ref109 doi: 10.1016/j.corsci.2012.09.005 – start-page: 1 year: 2008 ident: ref114 article-title: Development of detailed procedures for comparing successive ILI runs to establish corrosion growth rates – start-page: 25 year: 2008 ident: ref35 article-title: Effect of lift-off on pipeline magnetic flux leakage inspection publication-title: 17th World Conference on Nondestructive Testing – ident: ref79 doi: 10.1049/iet-smt.2016.0279 – ident: ref19 doi: 10.1109/TMAG.2013.2283343 – ident: ref61 doi: 10.1016/j.asoc.2016.10.040 – ident: ref128 doi: 10.1198/TECH.2009.08197 – ident: ref49 doi: 10.1007/s11668-017-0286-3 – ident: ref76 doi: 10.1134/S1061830917120075 – ident: ref136 doi: 10.4028/www.scientific.net/KEM.795.233 – ident: ref64 doi: 10.1088/0022-3727/19/4/018 – ident: ref140 doi: 10.14419/ijet.v7i4.35.22733 – ident: ref38 doi: 10.1520/JTE20130133 – ident: ref127 doi: 10.1007/s11709-013-0207-9 – ident: ref53 doi: 10.1063/1.1306223 – ident: ref70 doi: 10.1520/JTE10129J – ident: ref11 doi: 10.1111/mice.12096 – ident: ref102 doi: 10.1016/j.ndteint.2018.10.004 – ident: ref36 doi: 10.4028/www.scientific.net/AMM.321-324.811 – year: 2001 ident: ref152 article-title: Data fusion for NDE signal characterization doi: 10.31274/rtd-180813-9931 – ident: ref146 doi: 10.1109/SFICON.2004.1287142 – ident: ref65 doi: 10.1109/TMAG.2008.2011895 – ident: ref119 doi: 10.1016/S0167-4730(99)00016-8 – ident: ref66 doi: 10.1109/TMAG.2008.2011896 – year: 2006 ident: ref148 article-title: A data fusion system for the nondestructive evaluation of non-piggable pipes – ident: ref86 doi: 10.1115/IPC2016-64526 – ident: ref90 doi: 10.1088/0957-0233/18/7/001 – ident: ref45 doi: 10.1016/j.ndteint.2005.10.006 – ident: ref105 doi: 10.1115/IPC2016-64547 – ident: ref6 doi: 10.1016/j.engfailanal.2015.03.004 – ident: ref43 doi: 10.1016/j.ndteint.2011.08.011 – start-page: 1 year: 2013 ident: ref27 article-title: Mechanical damage assessment using multiple data sets in inline inspection publication-title: Proc 8th Pipeline Technol Conf – ident: ref67 doi: 10.1016/j.ndteint.2018.01.004 – ident: ref118 doi: 10.1016/j.corsci.2009.06.014 – ident: ref129 doi: 10.1016/j.corsci.2013.04.020 – ident: ref137 doi: 10.30699/ijrrs.1.45 – ident: ref5 doi: 10.1515/adms-2017-0014 – year: 2018 ident: ref4 publication-title: Pipeline Incident 20 Year Trends – ident: ref72 doi: 10.1016/j.ndteint.2005.06.006 – ident: ref78 doi: 10.1049/iet-smt.2014.0173 – ident: ref50 doi: 10.1784/insi.2009.51.9.508 – ident: ref116 doi: 10.1016/j.engfailanal.2015.11.052 – ident: ref57 doi: 10.1016/j.measurement.2006.01.007 – ident: ref29 doi: 10.1115/IPC2006-10327 – ident: ref84 doi: 10.1016/j.ndteint.2019.01.004 – start-page: 1 year: 2016 ident: ref98 article-title: Predicting the future-applying corrosion growth rates derived from repeat ILI runs publication-title: Proc 11th Pipeline Technol Conf – ident: ref7 doi: 10.1002/maco.200503964 – year: 2018 ident: ref132 article-title: Pipeline risk assessment using dynamic Bayesian network (DBN) for internal corrosion – ident: ref34 doi: 10.1007/s10921-016-0356-6 – ident: ref47 doi: 10.1109/TMAG.2007.915955 – ident: ref130 doi: 10.1016/j.ress.2014.04.001 – ident: ref12 doi: 10.1117/12.2300812 – volume: 4 start-page: 446 year: 2015 ident: ref24 article-title: Comparison and verification of the performance specification of mfl pigs and field inspection based on error propagation and Gaussian distribution method publication-title: International Journal of Engineering Research & Innovation – ident: ref48 doi: 10.3233/JAE-162076 – year: 2015 ident: ref2 article-title: Modelling of external corrosion propagation for buried pipelines based on stochastic processes – ident: ref120 doi: 10.1155/2013/108386 – ident: ref126 doi: 10.1016/j.ress.2015.08.007 – ident: ref139 doi: 10.1016/j.ijpvp.2019.103982 – ident: ref77 doi: 10.1109/ChiCC.2016.7553912 – ident: ref13 doi: 10.1016/j.ijpvp.2016.11.007 – ident: ref85 doi: 10.1115/OMAE2012-83934 – ident: ref39 doi: 10.1109/TMAG.2017.2690628 – volume: 44 start-page: 3519 year: 2011 ident: ref150 article-title: Data fusion for MFL signal characterization publication-title: Frontiers of Manufacturing and Design Science – volume: 6 start-page: 69 year: 2011 ident: ref112 article-title: Deterministic prediction of corroding pipeline remaining strength in marine environment using DNV RP-F101 (Part A) publication-title: Journal of Sustainability Science and Management – ident: ref23 doi: 10.1061/41202(423)104 – ident: ref16 doi: 10.1016/j.engfailanal.2018.05.010 |
SSID | ssj0014510 ssib004836796 ssib017384905 ssib006542118 ssib053393187 |
Score | 2.6021686 |
Snippet | Oil and gas pipelines transport and distribute large quantities of oil products and natural gas to industrial and residential customers over a long distance.... |
SourceID | proquest crossref nii ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Corrosion Corrosion tests Data analysis Destructive testing Finite element analysis Gas pipelines in-line inspection (ILI) Inspection Leakage Magnetic devices Magnetic flux magnetic-flux leakage (MFL) Magnetism Measurement techniques Natural gas Nondestructive testing oil and gas pipeline Oils Petroleum pipelines pipeline corrosion assessment Pipelines Reliability analysis Sensors Signal processing |
Title | Analysis of Magnetic-Flux Leakage (MFL) Data for Pipeline Corrosion Assessment |
URI | https://ieeexplore.ieee.org/document/9039686 https://cir.nii.ac.jp/crid/1872553967363233664 https://www.proquest.com/docview/2404042979 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SQKE99JG0dNOk6NBDW-qNtZL1OC5pt6HEoYcEcjOSPCpLgjckXij59R3ZXtMXpRdhjGzJ-iTNjDXzDcAbmUvvNOpMoqSiVj5zhY9ZirkM3AajfQoULs_UyYX8cllcbsGHMRYGETvnM5ymy-4sv16FdfpVdmRzYZVR27BNhlsfqzWeGMiC9-Em3KS08XI4weS5PTov55_JEpzl05k1VDH_RQZ1SVVIsjTL5R_7cSdkFk-g3HSv9y25mq5bPw33vzE3_m__n8LjQdtk8356PIMtbHbh0U8chLvwoPMBDXd7cLYhKGGryEr3rUnxjdniev2dnaK7oo2HvS0Xp-_YR9c6Rsou-7q8SeHsyI5Xt_SlBDGbj0yfz-Fi8en8-CQb0i1kQRjTZj4R-3BnEG1ttRc6Kl7Tmq0LmVi6pEUsdM2jiNLYiMgjQWlmIcoorXJRvICdZtXgS2AmKOVIE4pJX-Oy9t5wp9AJUjeijXYC-QaAKgxc5CklxnXV2SS5rRJmVcKsGjCbwPvxkZueiONflffS6I8Vh4GfwCGhTC2mkhtN5hTd10KJmRBKyQkcbPCvhqV8V5HKI5PU1nb_7299BQ9T273_2AHstLdrPCRNpfWvuyn6A6kE32Y |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQ98GhBXWjBBw6AyDaOHT-Oq8KywGbFYSv1FtmOjVatslWblRC_nnGSjXgJcbGiyElsf7ZnJp75BuAlT7k10suEe45FJWxichuSGHPpqHZK2hgoXCzE7Ix_Os_Pd-DtEAvjvW-dz_w4XrZn-dXabeKvshOdMi2UuAW3Ue7nWRetNZwZ8Jx2ASdUxcTxvD_DpKk-WRaTD2gLZuk40worpr9IoTatCsqWerX6Y0duxcz0ARTbBnbeJRfjTWPH7vtv3I3_24OHcL_XN8mkmyCPYMfX-7D3EwvhPtxpvUDdzQEsthQlZB1IYb7WMcIxmV5uvpG5Nxe49ZBXxXT-mrwzjSGo7pIvq6sY0O7J6foae4ogk8nA9fkYzqbvl6ezpE-4kDimVJPYSO1DjfJeV1paJoOgFa7aKueRp4tr73NZ0cACVzp4TwOCqTIXeOBamMCewG69rv0hEOWEMKgLhaixUV5Zq6gR3jBUOIIOegTpFoDS9WzkMSnGZdlaJakuI2ZlxKzsMRvBm-GRq46K41-VD-LoDxX7gR_BMaKMX4wlVRINKrwvmWAZY0LwERxt8S_7xXxTotLDo9yW-unf3_oC7s6Wxbycf1x8fgb3Yjs6b7Ij2G2uN_4Y9ZbGPm-n6w-BveKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Magnetic-Flux+Leakage+%28MFL%29+Data+for+Pipeline+Corrosion+Assessment&rft.jtitle=IEEE+Transactions+on+Magnetics&rft.au=Xiang+Peng&rft.au=Uchenna+Anyaoha&rft.au=Zheng+Liu&rft.au=Kazuhiko+Tsukada&rft.date=2020-06-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers+%28IEEE%29&rft.issn=0018-9464&rft.eissn=1941-0069&rft.volume=56&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2Ftmag.2020.2981450 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9464&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9464&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9464&client=summon |