Autonomous Epidemic and Geographic Disaster Mapping: Assessing the Performance of Large Language Models in Spatial Information Integration

This study aims to evaluate the performance of various large language models (LLMs) in generating dengue fever epidemic and earthquake intensity maps through the integration of spatial information technology. By combining natural language processing techniques, this paper presents an innovative meth...

Full description

Saved in:
Bibliographic Details
Published inJournal of disaster research Vol. 20; no. 3; pp. 386 - 395
Main Authors Lin, Wan-Chih, Tseng, Ming-Hseng
Format Journal Article
LanguageEnglish
Published 01.06.2025
Online AccessGet full text

Cover

Loading…
Abstract This study aims to evaluate the performance of various large language models (LLMs) in generating dengue fever epidemic and earthquake intensity maps through the integration of spatial information technology. By combining natural language processing techniques, this paper presents an innovative method to extract real-time data related to dengue fever and earthquake events, which is then used to generate corresponding geographic information maps, thereby improving real-time monitoring and disaster management efficiency. The research designed a series of detailed prompts, including topic descriptions, data sources, analysis objectives, and specific requirements, to test the capabilities of multiple LLMs in the code generation process. The codes generated by these models were further used to map the geographic distribution of dengue fever outbreaks and earthquake intensities in Taiwan. Subsequently, the codes were evaluated on accuracy, operational efficiency, and the clarity of the visualized results. The findings revealed that in addition to ChatGPT, models such as Copilot, Claude, and Nxcode-CQ-7B-orpo also excelled at generating precise and efficient maps. These LLMs are capable of automating the processing of large amounts of data and generating visualized charts with decision support functions, significantly reducing the time and labor costs associated with traditional manual operations. In addition, this innovative approach provides a new technical pathway for real-time geographic disaster monitoring and management. The results underscore the value of integrating LLMs with spatial information technology, offering new research directions for geographic information systems applications and providing robust technical support for disaster response and public health management.
AbstractList This study aims to evaluate the performance of various large language models (LLMs) in generating dengue fever epidemic and earthquake intensity maps through the integration of spatial information technology. By combining natural language processing techniques, this paper presents an innovative method to extract real-time data related to dengue fever and earthquake events, which is then used to generate corresponding geographic information maps, thereby improving real-time monitoring and disaster management efficiency. The research designed a series of detailed prompts, including topic descriptions, data sources, analysis objectives, and specific requirements, to test the capabilities of multiple LLMs in the code generation process. The codes generated by these models were further used to map the geographic distribution of dengue fever outbreaks and earthquake intensities in Taiwan. Subsequently, the codes were evaluated on accuracy, operational efficiency, and the clarity of the visualized results. The findings revealed that in addition to ChatGPT, models such as Copilot, Claude, and Nxcode-CQ-7B-orpo also excelled at generating precise and efficient maps. These LLMs are capable of automating the processing of large amounts of data and generating visualized charts with decision support functions, significantly reducing the time and labor costs associated with traditional manual operations. In addition, this innovative approach provides a new technical pathway for real-time geographic disaster monitoring and management. The results underscore the value of integrating LLMs with spatial information technology, offering new research directions for geographic information systems applications and providing robust technical support for disaster response and public health management.
Author Lin, Wan-Chih
Tseng, Ming-Hseng
Author_xml – sequence: 1
  givenname: Wan-Chih
  surname: Lin
  fullname: Lin, Wan-Chih
  organization: Department of Medical Informatics, Chung Shan Medical University, No.110, Section 1, Jianguo North Road, Taichung 40211, Taiwan
– sequence: 2
  givenname: Ming-Hseng
  orcidid: 0000-0001-8868-1610
  surname: Tseng
  fullname: Tseng, Ming-Hseng
  organization: Department of Medical Informatics, Chung Shan Medical University, No.110, Section 1, Jianguo North Road, Taichung 40211, Taiwan, Information Technology Office, Chung Shan Medical University Hospital, Taichung, Taiwan
BookMark eNotkE1OwzAQRi1UJErpmq0vkNa_icOuKqVUagUSsI4cx05dNXZkpwuuwKlxA99i5o00mpHePZg47zQAjxgtCCpzvjw1IRHhix5Rkd-AKRaCZgJRNBkZZ4QV9A7MYzyhFM6KkuZT8LO6DN75zl8i3PS20Z1VULoGbrVvg-yPaXy2UcZBB3iQfW9d-wRXMeoYE8LhqOG7DsaHTjqloTdwL0OrU3XtRSY4-EafI7QOfvRysPIMd25cH6x3iQed_lz5AdwaeY56_t9n4Otl87l-zfZv2916tc8UFWLIasyRZLXhOaKMM4HLXNUlx4ThlII0uVIIqYYTyrmojSEEl4wopGtTF6qhM7D8u6uCjzFoU_XBdjJ8VxhVo80q2ayuNqvRJv0FJVVscg
Cites_doi 10.1007/s11704-024-40231-1
10.1145/3491101.3519665
10.1111/1467-7717.00074
10.1080/17538947.2023.2278895
10.1016/j.scitotenv.2008.11.034
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.20965/jdr.2025.p0386
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Social Welfare & Social Work
EISSN 1883-8030
EndPage 395
ExternalDocumentID 10_20965_jdr_2025_p0386
GroupedDBID 6KP
7.U
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
EJD
GROUPED_DOAJ
JSF
JSH
OK1
RJT
RZJ
TH9
ID FETCH-LOGICAL-c388t-b150a4bf56034548196cb95124111172d6cc00cd523558bff221942c0ebfb7cd3
ISSN 1881-2473
IngestDate Thu Jul 03 08:31:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c388t-b150a4bf56034548196cb95124111172d6cc00cd523558bff221942c0ebfb7cd3
ORCID 0000-0001-8868-1610
OpenAccessLink https://doi.org/10.20965/jdr.2025.p0386
PageCount 10
ParticipantIDs crossref_primary_10_20965_jdr_2025_p0386
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of disaster research
PublicationYear 2025
References key-10.20965/jdr.2025.p0386-29
key-10.20965/jdr.2025.p0386-26
key-10.20965/jdr.2025.p0386-25
key-10.20965/jdr.2025.p0386-28
key-10.20965/jdr.2025.p0386-27
key-10.20965/jdr.2025.p0386-1
key-10.20965/jdr.2025.p0386-2
key-10.20965/jdr.2025.p0386-3
key-10.20965/jdr.2025.p0386-4
key-10.20965/jdr.2025.p0386-5
key-10.20965/jdr.2025.p0386-11
key-10.20965/jdr.2025.p0386-6
key-10.20965/jdr.2025.p0386-10
key-10.20965/jdr.2025.p0386-7
key-10.20965/jdr.2025.p0386-13
key-10.20965/jdr.2025.p0386-8
key-10.20965/jdr.2025.p0386-12
key-10.20965/jdr.2025.p0386-9
key-10.20965/jdr.2025.p0386-31
key-10.20965/jdr.2025.p0386-30
key-10.20965/jdr.2025.p0386-19
key-10.20965/jdr.2025.p0386-18
key-10.20965/jdr.2025.p0386-15
key-10.20965/jdr.2025.p0386-14
key-10.20965/jdr.2025.p0386-17
key-10.20965/jdr.2025.p0386-16
key-10.20965/jdr.2025.p0386-22
key-10.20965/jdr.2025.p0386-21
key-10.20965/jdr.2025.p0386-24
key-10.20965/jdr.2025.p0386-23
key-10.20965/jdr.2025.p0386-20
References_xml – ident: key-10.20965/jdr.2025.p0386-25
– ident: key-10.20965/jdr.2025.p0386-23
– ident: key-10.20965/jdr.2025.p0386-27
– ident: key-10.20965/jdr.2025.p0386-29
– ident: key-10.20965/jdr.2025.p0386-7
– ident: key-10.20965/jdr.2025.p0386-19
– ident: key-10.20965/jdr.2025.p0386-3
  doi: 10.1007/s11704-024-40231-1
– ident: key-10.20965/jdr.2025.p0386-17
– ident: key-10.20965/jdr.2025.p0386-31
– ident: key-10.20965/jdr.2025.p0386-9
– ident: key-10.20965/jdr.2025.p0386-5
– ident: key-10.20965/jdr.2025.p0386-10
  doi: 10.1145/3491101.3519665
– ident: key-10.20965/jdr.2025.p0386-12
– ident: key-10.20965/jdr.2025.p0386-14
– ident: key-10.20965/jdr.2025.p0386-16
– ident: key-10.20965/jdr.2025.p0386-21
– ident: key-10.20965/jdr.2025.p0386-2
  doi: 10.1111/1467-7717.00074
– ident: key-10.20965/jdr.2025.p0386-26
– ident: key-10.20965/jdr.2025.p0386-24
– ident: key-10.20965/jdr.2025.p0386-11
  doi: 10.1080/17538947.2023.2278895
– ident: key-10.20965/jdr.2025.p0386-28
– ident: key-10.20965/jdr.2025.p0386-1
  doi: 10.1016/j.scitotenv.2008.11.034
– ident: key-10.20965/jdr.2025.p0386-18
– ident: key-10.20965/jdr.2025.p0386-30
– ident: key-10.20965/jdr.2025.p0386-4
– ident: key-10.20965/jdr.2025.p0386-8
– ident: key-10.20965/jdr.2025.p0386-6
– ident: key-10.20965/jdr.2025.p0386-13
– ident: key-10.20965/jdr.2025.p0386-15
– ident: key-10.20965/jdr.2025.p0386-20
– ident: key-10.20965/jdr.2025.p0386-22
SSID ssj0000547936
Score 2.3113616
Snippet This study aims to evaluate the performance of various large language models (LLMs) in generating dengue fever epidemic and earthquake intensity maps through...
SourceID crossref
SourceType Index Database
StartPage 386
Title Autonomous Epidemic and Geographic Disaster Mapping: Assessing the Performance of Large Language Models in Spatial Information Integration
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBZueuml9EkfSZlDKYUiV5Z21-vcQppiSl16cEhui6TVJqZhHTbrS35CbvnHGUmrXTVNIa0PwhJmvPZ8jGZGmm8IeS9mJlWzPKO5FIomSSrpbGYm1NhTKJZpIZWtd178yOaHybfj9Hg0uo5uLW1aNdaXd9aV_I9WcQ31aqtk_0GzvVBcwPeoXxxRwzjeS8d7m9bWJNhbrAe-06snX-06m5_i9MvqQlouhE8LaZkYXHGzP-gNdVI_o9IBd2DQnBgcfRrT9Uo7c3dmbfNiz8zRFzy6fOJJMyj3Ty-3DN_fsQr12efvnrzgSNZ0_3TVLy8vjLc-C3w-OrezODHB0-ECVWdL83xCeeI7lYxNWBO4KXZHMZ0B5iwCmoisqQgs2X7mu3Hetvnc8tdYo19aeleejs-ZuItd-9au199FxCjIiShQQGEFFE7AA_KQY-QRR-meLt6mIl3NWvh5njDKyfj8-0NEvk7ktCyfkMedHmDPQ-cpGZn6Gdn2JdlwZM4q2Rj4AGFh3fx6Tq4GVEFAFSCqYEAVBFRBh6pd6DEFiCmIMAXrChymIGAKPKZgVUOHKYgwBRGmXpDDrwfL_TntOnZQLfK8pQrDC5moCt1okWAsjOZdK_Th0U3E15SXmdaM6TLlltVfVRXHDTPhmhlVqakuxUuyVa9r84qAmiou0ZfPSq0TrTCqZVPJNWdpWk0My1-Tj-G_Lc49MUvxF1W-uf9H35JHA5S3yVbbbMwOep2teudwcANZAYWc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autonomous+Epidemic+and+Geographic+Disaster+Mapping%3A+Assessing+the+Performance+of+Large+Language+Models+in+Spatial+Information+Integration&rft.jtitle=Journal+of+disaster+research&rft.au=Lin%2C+Wan-Chih&rft.au=Tseng%2C+Ming-Hseng&rft.date=2025-06-01&rft.issn=1881-2473&rft.eissn=1883-8030&rft.volume=20&rft.issue=3&rft.spage=386&rft.epage=395&rft_id=info:doi/10.20965%2Fjdr.2025.p0386&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jdr_2025_p0386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1881-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1881-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1881-2473&client=summon