Chemical oxidation as repairing technique to restore corrosion resistance on damaged anodized titanium
Anodized titanium shows an excellent resistance to pitting corrosion. However, it could be subject to failure in case of local removal of the oxide film due, for example, to incorrect handling during transport, installation, or use. Depending on part size and usage, an electrochemical anodizing trea...
Saved in:
Published in | Surface & coatings technology Vol. 364; pp. 225 - 230 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
25.04.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0257-8972 1879-3347 |
DOI | 10.1016/j.surfcoat.2019.03.005 |
Cover
Loading…
Abstract | Anodized titanium shows an excellent resistance to pitting corrosion. However, it could be subject to failure in case of local removal of the oxide film due, for example, to incorrect handling during transport, installation, or use. Depending on part size and usage, an electrochemical anodizing treatment could be not feasible. In this case, localized chemical oxidation treatment could be used to recover damaged film and restore corrosion resistance. Chemical oxidation was performed on titanium by immersion in NaOH 10 M and H2O2 10 M at temperature from room to 90 °C with duration ranging between 1 h and 72 h. Potentiodynamic tests in bromides 0.5 M were used to determine the effectiveness of the treatment in relation with the one obtained with anodic oxidation. Higher bath temperature led to faster growth of the film, however it has no effect on the final corrosion resistance. Breakdown potential in bromides increased with treatment duration. The establishment of a plateau occurs at earlier stage, as temperature is increased. Titanium samples anodized and then scratched, to simulate film mechanical removal, were recovered using chemical oxidation and initial corrosion resistance was restored. The suggested treatments for in-situ recovery are 72 h of exposure to NaOH or 6 h at H2O2 at room temperature.
[Display omitted]
•Commercially pure titanium was chemically oxidized in NaOH and H2O2 baths.•The maximum of corrosion resistance in NaOH was achieved after 12 h at 60 °C.•H2O2 kinetic is faster: the same resistance is achieved in 6 h at room temperature.•Both treatments can restore corrosion resistance on damaged anodized titanium. |
---|---|
AbstractList | Anodized titanium shows an excellent resistance to pitting corrosion. However, it could be subject to failure in case of local removal of the oxide film due, for example, to incorrect handling during transport, installation, or use. Depending on part size and usage, an electrochemical anodizing treatment could be not feasible. In this case, localized chemical oxidation treatment could be used to recover damaged film and restore corrosion resistance. Chemical oxidation was performed on titanium by immersion in NaOH 10 M and H2O2 10 M at temperature from room to 90 °C with duration ranging between 1 h and 72 h. Potentiodynamic tests in bromides 0.5 M were used to determine the effectiveness of the treatment in relation with the one obtained with anodic oxidation. Higher bath temperature led to faster growth of the film, however it has no effect on the final corrosion resistance. Breakdown potential in bromides increased with treatment duration. The establishment of a plateau occurs at earlier stage, as temperature is increased. Titanium samples anodized and then scratched, to simulate film mechanical removal, were recovered using chemical oxidation and initial corrosion resistance was restored. The suggested treatments for in-situ recovery are 72 h of exposure to NaOH or 6 h at H2O2 at room temperature. Anodized titanium shows an excellent resistance to pitting corrosion. However, it could be subject to failure in case of local removal of the oxide film due, for example, to incorrect handling during transport, installation, or use. Depending on part size and usage, an electrochemical anodizing treatment could be not feasible. In this case, localized chemical oxidation treatment could be used to recover damaged film and restore corrosion resistance. Chemical oxidation was performed on titanium by immersion in NaOH 10 M and H2O2 10 M at temperature from room to 90 °C with duration ranging between 1 h and 72 h. Potentiodynamic tests in bromides 0.5 M were used to determine the effectiveness of the treatment in relation with the one obtained with anodic oxidation. Higher bath temperature led to faster growth of the film, however it has no effect on the final corrosion resistance. Breakdown potential in bromides increased with treatment duration. The establishment of a plateau occurs at earlier stage, as temperature is increased. Titanium samples anodized and then scratched, to simulate film mechanical removal, were recovered using chemical oxidation and initial corrosion resistance was restored. The suggested treatments for in-situ recovery are 72 h of exposure to NaOH or 6 h at H2O2 at room temperature. [Display omitted] •Commercially pure titanium was chemically oxidized in NaOH and H2O2 baths.•The maximum of corrosion resistance in NaOH was achieved after 12 h at 60 °C.•H2O2 kinetic is faster: the same resistance is achieved in 6 h at room temperature.•Both treatments can restore corrosion resistance on damaged anodized titanium. |
Author | Nicolis, Davide Prando, Davide Ormellese, Marco Pedeferri, MariaPia Bolzoni, Fabio |
Author_xml | – sequence: 1 givenname: Davide orcidid: 0000-0002-6091-9735 surname: Prando fullname: Prando, Davide organization: Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Milano, Italy – sequence: 2 givenname: Davide surname: Nicolis fullname: Nicolis, Davide organization: Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Milano, Italy – sequence: 3 givenname: Fabio surname: Bolzoni fullname: Bolzoni, Fabio organization: Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Milano, Italy – sequence: 4 givenname: MariaPia surname: Pedeferri fullname: Pedeferri, MariaPia organization: Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Milano, Italy – sequence: 5 givenname: Marco orcidid: 0000-0003-1546-1072 surname: Ormellese fullname: Ormellese, Marco email: marco.ormellese@polimi.it organization: Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Milano, Italy |
BookMark | eNqFkE1LAzEQhoNUsK3-BVnwvOsk2W52wYNS_IKCFz2HNJm0Ke2mJqmov96U6sVLT_OR953JPCMy6H2PhFxSqCjQ5npVxV2w2qtUMaBdBbwCmJyQIW1FV3JeiwEZApuIsu0EOyOjGFcAQEVXD4mdLnHjtFoX_tMZlZzvCxWLgFvlgusXRUK97N37DovkczsmH7DQPgQf99rccTGpXmORK6M2aoGmUL037jsnyeU3t9uck1Or1hEvfuOYvD3cv06fytnL4_P0blZq3rapVJZy1tg5Cl03AC3tGGrMCWOdUKYRFmpr5y0KNTFz4GhqZVurG97UAg3wMbk6zN0Gn_8ck1z5XejzSskYbZhgHbCsag4qna-IAa3cBrdR4UtSkHumciX_mMo9UwlcZqbZePPPqPOBe2gpKLc-br892DEj-HAYZNQOMzvjAuokjXfHRvwAGxaclA |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2025_179431 crossref_primary_10_3389_fmats_2021_717663 crossref_primary_10_1016_j_bioelechem_2024_108768 crossref_primary_10_3390_met13091510 crossref_primary_10_1016_j_heliyon_2021_e07408 crossref_primary_10_1016_j_surfcoat_2021_127653 crossref_primary_10_3390_ma13235431 crossref_primary_10_1016_j_powtec_2023_119101 |
Cites_doi | 10.4028/www.scientific.net/AMR.1087.340 10.5301/jabfm.5000387 10.5006/0963 10.1016/j.corsci.2006.04.002 10.5301/jabfm.5000396 10.1016/0021-9797(89)90117-3 10.1016/j.msec.2009.12.004 10.1016/0921-5093(96)10233-1 10.1179/174329408X271561 10.1016/S1003-6326(13)62541-8 10.5301/jabfm.5000344 10.1016/S0921-5093(98)01180-0 10.1016/j.msec.2012.08.047 10.5006/0010-9312-24.4.96 10.1002/jbm.a.31900 10.1515/corrrev.2008.147 10.1179/1743278213Y.0000000097 10.1002/maco.201810171 10.1016/0142-9612(89)90043-4 10.1016/j.electacta.2008.02.047 10.1149/1.2403254 10.1002/maco.200905451 10.1016/j.actamat.2012.10.043 10.1002/maco.201709815 10.1002/maco.200905534 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Apr 25, 2019 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Apr 25, 2019 |
DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.surfcoat.2019.03.005 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1879-3347 |
EndPage | 230 |
ExternalDocumentID | 10_1016_j_surfcoat_2019_03_005 S0257897219302488 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABMAC ABNEU ABXRA ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K XPP ZMT ~02 ~G- 29Q AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HMV HVGLF HX~ HZ~ NDZJH R2- SEW SMS SPG SSH WUQ 7QQ 7SR 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c388t-af1326fbe7c46008192ece0082297ad67f04ffb8e7a5db03ed4af8fc63647ed03 |
IEDL.DBID | .~1 |
ISSN | 0257-8972 |
IngestDate | Fri Jul 25 07:34:46 EDT 2025 Tue Jul 01 03:07:46 EDT 2025 Thu Apr 24 22:57:54 EDT 2025 Fri Feb 23 02:30:27 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Anodizing Chemical oxidation Titanium oxidation Surface treatment TiO2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-af1326fbe7c46008192ece0082297ad67f04ffb8e7a5db03ed4af8fc63647ed03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1546-1072 0000-0002-6091-9735 |
OpenAccessLink | http://hdl.handle.net/11311/1098685 |
PQID | 2216272902 |
PQPubID | 2045394 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2216272902 crossref_primary_10_1016_j_surfcoat_2019_03_005 crossref_citationtrail_10_1016_j_surfcoat_2019_03_005 elsevier_sciencedirect_doi_10_1016_j_surfcoat_2019_03_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-25 |
PublicationDateYYYYMMDD | 2019-04-25 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Surface & coatings technology |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Diamanti, Pedeferri (bb0105) 2007; 49 Prando, Brenna, Diamanti, Beretta, Bolzoni, Ormellese, Pedeferri (bb0080) 2018; 16 Neto, da Silva, Alves (bb0095) 2009; 25 Griess (bb0060) 1968; 24 Handzlik, Fitzner (bb0090) 2013; 23 Tengvall, Elwing, Lundström (bb0145) 1989; 130 Eylon (bb0040) 1981 R.W. Schutz, Corrosion of Titanium and Titanium Alloys, Corrosion: Materials, ASM International, 2005. Banerjee, Williams (bb0020) 2013; 61 Mohsen, Fadl-Allah (bb0110) 2011; 62 Tan, Abdullah, Idris, Sorrell (bb0155) 2015; 1087 Virtanen (bb0050) 2008; 26 Richardson (bb0140) 2010 Liu, Alfantazi, Asselin (bb0065) 2014; 70 Prando, Brenna, Bolzoni, Diamanti, Pedeferri, Ormellese (bb0115) 2017; 15 Moon, Jeong, Byon, Jeong (bb0150) 2005 Sathish, Geetha, Pandey, Richard, Asokamani (bb0100) 2010; 30 Sarah, Musa, Asiah, Rusop (bb0165) 2010 Kim, Kendall, Miller, Long, Larson, Humphrey, Madden, Tas (bb0125) 2013; 33 Deng, Jiang, Gong, Zhong, Gao, Li (bb0005) 2008; 53 Krupa, Baszkiewicz, Mizera, Borowski, Barcz, Sobczak, Biliński, Lewandowska-Szumieł, Wojewódzka (bb0170) 2009; 88A Donachie (bb0025) 2000 . Prando, Nicolis, Pedeferri, Ormellese (bb0160) 2018; 69 Froes, Eylon, Bomberger (bb0045) 1985 Gorynin (bb0055) 1999; 263 Shoesmith, Hardie, Ikeda, Noel (bb0070) 1997 Beck (bb0085) 1973; 120 Alfantazi, Asselin, Liu (bb0010) 2016 Chang, Lin, Tsao, Huang, Huang (bb0035) 2014; 49 Boyer (bb0030) 1996; 213 Prando, Brenna, Pedeferri, Ormellese (bb0120) 2017; 69 Tengvall, Elwing, Sjöqvist, Lundström, Bjursten (bb0130) 1989; 10 Prando, Brenna, Diamanti, Beretta, Bolzoni, Ormellese, Pedeferri (bb0015) 2017; 15 M. Wang, W. Wang, B.L. He, M.L. Sun, Y.S. Bao, Y.S. Yin, L. Liu, W.Y. Zou, X.F. Xu, Corrosion behavior of hydrophobic titanium oxide film pre-treated in hydrogen peroxide solution, Mater. Corros. 62 (2011) 320–325. doi Tan (10.1016/j.surfcoat.2019.03.005_bb0155) 2015; 1087 Shoesmith (10.1016/j.surfcoat.2019.03.005_bb0070) Tengvall (10.1016/j.surfcoat.2019.03.005_bb0130) 1989; 10 Richardson (10.1016/j.surfcoat.2019.03.005_bb0140) 2010 Neto (10.1016/j.surfcoat.2019.03.005_bb0095) 2009; 25 Tengvall (10.1016/j.surfcoat.2019.03.005_bb0145) 1989; 130 Deng (10.1016/j.surfcoat.2019.03.005_bb0005) 2008; 53 Handzlik (10.1016/j.surfcoat.2019.03.005_bb0090) 2013; 23 10.1016/j.surfcoat.2019.03.005_bb0075 Chang (10.1016/j.surfcoat.2019.03.005_bb0035) 2014; 49 Diamanti (10.1016/j.surfcoat.2019.03.005_bb0105) 2007; 49 10.1016/j.surfcoat.2019.03.005_bb0135 Prando (10.1016/j.surfcoat.2019.03.005_bb0015) 2017; 15 Donachie (10.1016/j.surfcoat.2019.03.005_bb0025) 2000 Prando (10.1016/j.surfcoat.2019.03.005_bb0115) 2017; 15 Moon (10.1016/j.surfcoat.2019.03.005_bb0150) 2005 Boyer (10.1016/j.surfcoat.2019.03.005_bb0030) 1996; 213 Sathish (10.1016/j.surfcoat.2019.03.005_bb0100) 2010; 30 Liu (10.1016/j.surfcoat.2019.03.005_bb0065) 2014; 70 Alfantazi (10.1016/j.surfcoat.2019.03.005_bb0010) 2016 Froes (10.1016/j.surfcoat.2019.03.005_bb0045) 1985 Beck (10.1016/j.surfcoat.2019.03.005_bb0085) 1973; 120 Prando (10.1016/j.surfcoat.2019.03.005_bb0120) 2017; 69 Griess (10.1016/j.surfcoat.2019.03.005_bb0060) 1968; 24 Krupa (10.1016/j.surfcoat.2019.03.005_bb0170) 2009; 88A Eylon (10.1016/j.surfcoat.2019.03.005_bb0040) 1981 Mohsen (10.1016/j.surfcoat.2019.03.005_bb0110) 2011; 62 Kim (10.1016/j.surfcoat.2019.03.005_bb0125) 2013; 33 Virtanen (10.1016/j.surfcoat.2019.03.005_bb0050) 2008; 26 Gorynin (10.1016/j.surfcoat.2019.03.005_bb0055) 1999; 263 Prando (10.1016/j.surfcoat.2019.03.005_bb0080) 2018; 16 Sarah (10.1016/j.surfcoat.2019.03.005_bb0165) 2010 Banerjee (10.1016/j.surfcoat.2019.03.005_bb0020) 2013; 61 Prando (10.1016/j.surfcoat.2019.03.005_bb0160) 2018; 69 |
References_xml | – volume: 263 start-page: 112 year: 1999 end-page: 116 ident: bb0055 article-title: Titanium alloys for marine application publication-title: Mater. Sci. Eng. A – volume: 213 start-page: 103 year: 1996 end-page: 114 ident: bb0030 article-title: An overview on the use of titanium in the aerospace industry publication-title: Mater. Sci. Eng. A – year: 2016 ident: bb0010 article-title: The pitting corrosion of titanium in aggressive environments: a review publication-title: NACE 2016 – volume: 23 start-page: 866 year: 2013 end-page: 875 ident: bb0090 article-title: Corrosion resistance of Ti and TiPd alloy in phosphate buffered saline solutions with and without H publication-title: Trans. Nonferrous Metals Soc. China – volume: 49 start-page: 17 year: 2014 end-page: 22 ident: bb0035 article-title: Effect of voltage on microstructure and corrosion resistance of microarc oxidation coatings on CP-Ti publication-title: Corros. Eng. Sci. Technol. – volume: 61 start-page: 844 year: 2013 end-page: 879 ident: bb0020 article-title: Perspectives on titanium science and technology publication-title: Acta Mater. – volume: 24 start-page: 96 year: 1968 end-page: 109 ident: bb0060 article-title: Crevice corrosion of titanium in aqueous salt solutions publication-title: Corrosion. – volume: 70 start-page: 29 year: 2014 end-page: 37 ident: bb0065 article-title: Influence of cupric, ferric, and chloride on the corrosion of titanium in sulfuric acid solutions up to 85C publication-title: Corrosion. – volume: 25 start-page: 146 year: 2009 end-page: 150 ident: bb0095 article-title: In vitro study of cell behaviour on plasma surface modified titanium publication-title: Surf. Eng. – start-page: 1191 year: 2010 end-page: 1206 ident: bb0140 article-title: 2.21 - Corrosion in alkalis publication-title: Shreir's Corrosion, Elsevier, Oxford – start-page: 151 year: 2005 end-page: 156 ident: bb0150 article-title: Electrochemical behavior of titanium in NaOH solutions publication-title: ECS Transactions – volume: 26 start-page: 147 year: 2008 end-page: 172 ident: bb0050 article-title: Corrosion of biomedical implant materials publication-title: Corros. Rev. – year: 1997 ident: bb0070 article-title: Hydrogen Absorption and the Lifetime Performance of Titanium Nuclear Waste Containers – volume: 120 start-page: 1317 year: 1973 end-page: 1324 ident: bb0085 article-title: Pitting of titanium II. One-dimensional pit experiments publication-title: J. Electrochem. Soc. – volume: 1087 start-page: 340 year: 2015 end-page: 344 ident: bb0155 article-title: Gel oxidation of titanium at low concentration of sodium hydroxide (NaOH) publication-title: Adv. Mater. Res. – year: 2000 ident: bb0025 article-title: Titanium: A Technical Guide – volume: 49 start-page: 939 year: 2007 end-page: 948 ident: bb0105 article-title: Effect of anodic oxidation parameters on the titanium oxides formation publication-title: Corros. Sci. – volume: 15 year: 2017 ident: bb0015 article-title: Corrosion of titanium: part 1: aggressive environments and main forms of degradation publication-title: Journal of Applied Biomaterials & Functional Materials. – volume: 16 start-page: 3 year: 2018 end-page: 13 ident: bb0080 article-title: Corrosion of titanium: part 2: effects of surface treatments publication-title: Journal of Applied Biomaterials & Functional Materials. – volume: 62 start-page: 310 year: 2011 end-page: 319 ident: bb0110 article-title: Improvement in corrosion resistance of commercial pure titanium for the enhancement of its biocompatibility publication-title: Mater. Corros. – volume: 88A start-page: 589 year: 2009 end-page: 598 ident: bb0170 article-title: Effect of the heating temperature on the corrosion resistance of alkali-treated titanium publication-title: J. Biomed. Mater. Res. A – volume: 10 start-page: 118 year: 1989 end-page: 120 ident: bb0130 article-title: Interaction between hydrogen peroxide and titanium: a possible role in the biocompatibility of titanium publication-title: Biomaterials. – volume: 15 start-page: 19 year: 2017 end-page: 24 ident: bb0115 article-title: Electrochemical anodizing treatment to enhance localized corrosion resistance of pure titanium publication-title: Journal of Applied Biomaterials & Functional Materials. – reference: . – volume: 69 start-page: 1441 year: 2018 end-page: 1446 ident: bb0160 article-title: Pitting corrosion on anodized titanium: effect of halides publication-title: Mater. Corros. – reference: M. Wang, W. Wang, B.L. He, M.L. Sun, Y.S. Bao, Y.S. Yin, L. Liu, W.Y. Zou, X.F. Xu, Corrosion behavior of hydrophobic titanium oxide film pre-treated in hydrogen peroxide solution, Mater. Corros. 62 (2011) 320–325. doi: – start-page: 361 year: 2010 end-page: 364 ident: bb0165 article-title: Electrical conductivity characteristics of TiO publication-title: 2010 International Conference on Electronic Devices, Systems and Applications – volume: 53 start-page: 5220 year: 2008 end-page: 5225 ident: bb0005 article-title: Critical pitting and repassivation temperatures for duplex stainless steel in chloride solutions publication-title: Electrochim. Acta – volume: 33 start-page: 327 year: 2013 end-page: 339 ident: bb0125 article-title: Comparison of titanium soaked in 5 M NaOH or 5 M KOH solutions publication-title: Mater. Sci. Eng. C – year: 1981 ident: bb0040 article-title: Titanium for Energy and Industrial Applications – volume: 30 start-page: 376 year: 2010 end-page: 382 ident: bb0100 article-title: Studies on the corrosion and wear behavior of the laser nitrided biomedical titanium and its alloys publication-title: Mater. Sci. Eng. C – volume: 69 start-page: 503 year: 2017 end-page: 509 ident: bb0120 article-title: Enhancement of pure titanium localized corrosion resistance by anodic oxidation publication-title: Mater. Corros. – volume: 130 start-page: 405 year: 1989 end-page: 413 ident: bb0145 article-title: Titanium gel made from metallic titanium and hydrogen peroxide publication-title: J. Colloid Interface Sci. – year: 1985 ident: bb0045 article-title: Titanium Technology: Present Status and Future Trends, Titanium Development Association – reference: R.W. Schutz, Corrosion of Titanium and Titanium Alloys, Corrosion: Materials, ASM International, 2005. – volume: 1087 start-page: 340 year: 2015 ident: 10.1016/j.surfcoat.2019.03.005_bb0155 article-title: Gel oxidation of titanium at low concentration of sodium hydroxide (NaOH) publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.1087.340 – volume: 15 year: 2017 ident: 10.1016/j.surfcoat.2019.03.005_bb0015 article-title: Corrosion of titanium: part 1: aggressive environments and main forms of degradation publication-title: Journal of Applied Biomaterials & Functional Materials. doi: 10.5301/jabfm.5000387 – volume: 70 start-page: 29 year: 2014 ident: 10.1016/j.surfcoat.2019.03.005_bb0065 article-title: Influence of cupric, ferric, and chloride on the corrosion of titanium in sulfuric acid solutions up to 85C publication-title: Corrosion. doi: 10.5006/0963 – volume: 49 start-page: 939 year: 2007 ident: 10.1016/j.surfcoat.2019.03.005_bb0105 article-title: Effect of anodic oxidation parameters on the titanium oxides formation publication-title: Corros. Sci. doi: 10.1016/j.corsci.2006.04.002 – volume: 16 start-page: 3 year: 2018 ident: 10.1016/j.surfcoat.2019.03.005_bb0080 article-title: Corrosion of titanium: part 2: effects of surface treatments publication-title: Journal of Applied Biomaterials & Functional Materials. doi: 10.5301/jabfm.5000396 – volume: 130 start-page: 405 year: 1989 ident: 10.1016/j.surfcoat.2019.03.005_bb0145 article-title: Titanium gel made from metallic titanium and hydrogen peroxide publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(89)90117-3 – start-page: 361 year: 2010 ident: 10.1016/j.surfcoat.2019.03.005_bb0165 article-title: Electrical conductivity characteristics of TiO2 thin film – ident: 10.1016/j.surfcoat.2019.03.005_bb0075 – ident: 10.1016/j.surfcoat.2019.03.005_bb0070 – volume: 30 start-page: 376 year: 2010 ident: 10.1016/j.surfcoat.2019.03.005_bb0100 article-title: Studies on the corrosion and wear behavior of the laser nitrided biomedical titanium and its alloys publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2009.12.004 – volume: 213 start-page: 103 year: 1996 ident: 10.1016/j.surfcoat.2019.03.005_bb0030 article-title: An overview on the use of titanium in the aerospace industry publication-title: Mater. Sci. Eng. A doi: 10.1016/0921-5093(96)10233-1 – volume: 25 start-page: 146 year: 2009 ident: 10.1016/j.surfcoat.2019.03.005_bb0095 article-title: In vitro study of cell behaviour on plasma surface modified titanium publication-title: Surf. Eng. doi: 10.1179/174329408X271561 – volume: 23 start-page: 866 year: 2013 ident: 10.1016/j.surfcoat.2019.03.005_bb0090 article-title: Corrosion resistance of Ti and TiPd alloy in phosphate buffered saline solutions with and without H2O2 addition publication-title: Trans. Nonferrous Metals Soc. China doi: 10.1016/S1003-6326(13)62541-8 – year: 2000 ident: 10.1016/j.surfcoat.2019.03.005_bb0025 – year: 1981 ident: 10.1016/j.surfcoat.2019.03.005_bb0040 – volume: 15 start-page: 19 year: 2017 ident: 10.1016/j.surfcoat.2019.03.005_bb0115 article-title: Electrochemical anodizing treatment to enhance localized corrosion resistance of pure titanium publication-title: Journal of Applied Biomaterials & Functional Materials. doi: 10.5301/jabfm.5000344 – volume: 263 start-page: 112 year: 1999 ident: 10.1016/j.surfcoat.2019.03.005_bb0055 article-title: Titanium alloys for marine application publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(98)01180-0 – volume: 33 start-page: 327 year: 2013 ident: 10.1016/j.surfcoat.2019.03.005_bb0125 article-title: Comparison of titanium soaked in 5 M NaOH or 5 M KOH solutions publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2012.08.047 – start-page: 151 year: 2005 ident: 10.1016/j.surfcoat.2019.03.005_bb0150 article-title: Electrochemical behavior of titanium in NaOH solutions – volume: 24 start-page: 96 year: 1968 ident: 10.1016/j.surfcoat.2019.03.005_bb0060 article-title: Crevice corrosion of titanium in aqueous salt solutions publication-title: Corrosion. doi: 10.5006/0010-9312-24.4.96 – start-page: 1191 year: 2010 ident: 10.1016/j.surfcoat.2019.03.005_bb0140 article-title: 2.21 - Corrosion in alkalis – year: 1985 ident: 10.1016/j.surfcoat.2019.03.005_bb0045 – volume: 88A start-page: 589 year: 2009 ident: 10.1016/j.surfcoat.2019.03.005_bb0170 article-title: Effect of the heating temperature on the corrosion resistance of alkali-treated titanium publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.31900 – volume: 26 start-page: 147 year: 2008 ident: 10.1016/j.surfcoat.2019.03.005_bb0050 article-title: Corrosion of biomedical implant materials publication-title: Corros. Rev. doi: 10.1515/corrrev.2008.147 – volume: 49 start-page: 17 year: 2014 ident: 10.1016/j.surfcoat.2019.03.005_bb0035 article-title: Effect of voltage on microstructure and corrosion resistance of microarc oxidation coatings on CP-Ti publication-title: Corros. Eng. Sci. Technol. doi: 10.1179/1743278213Y.0000000097 – volume: 69 start-page: 1441 year: 2018 ident: 10.1016/j.surfcoat.2019.03.005_bb0160 article-title: Pitting corrosion on anodized titanium: effect of halides publication-title: Mater. Corros. doi: 10.1002/maco.201810171 – year: 2016 ident: 10.1016/j.surfcoat.2019.03.005_bb0010 article-title: The pitting corrosion of titanium in aggressive environments: a review – volume: 10 start-page: 118 year: 1989 ident: 10.1016/j.surfcoat.2019.03.005_bb0130 article-title: Interaction between hydrogen peroxide and titanium: a possible role in the biocompatibility of titanium publication-title: Biomaterials. doi: 10.1016/0142-9612(89)90043-4 – volume: 53 start-page: 5220 year: 2008 ident: 10.1016/j.surfcoat.2019.03.005_bb0005 article-title: Critical pitting and repassivation temperatures for duplex stainless steel in chloride solutions publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2008.02.047 – volume: 120 start-page: 1317 year: 1973 ident: 10.1016/j.surfcoat.2019.03.005_bb0085 article-title: Pitting of titanium II. One-dimensional pit experiments publication-title: J. Electrochem. Soc. doi: 10.1149/1.2403254 – ident: 10.1016/j.surfcoat.2019.03.005_bb0135 doi: 10.1002/maco.200905451 – volume: 61 start-page: 844 year: 2013 ident: 10.1016/j.surfcoat.2019.03.005_bb0020 article-title: Perspectives on titanium science and technology publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.10.043 – volume: 69 start-page: 503 year: 2017 ident: 10.1016/j.surfcoat.2019.03.005_bb0120 article-title: Enhancement of pure titanium localized corrosion resistance by anodic oxidation publication-title: Mater. Corros. doi: 10.1002/maco.201709815 – volume: 62 start-page: 310 year: 2011 ident: 10.1016/j.surfcoat.2019.03.005_bb0110 article-title: Improvement in corrosion resistance of commercial pure titanium for the enhancement of its biocompatibility publication-title: Mater. Corros. doi: 10.1002/maco.200905534 |
SSID | ssj0001794 |
Score | 2.3219814 |
Snippet | Anodized titanium shows an excellent resistance to pitting corrosion. However, it could be subject to failure in case of local removal of the oxide film due,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 225 |
SubjectTerms | Anodizing Bromides Chemical oxidation Corrosion effects Corrosion potential Corrosion resistance Damage localization Hydrogen peroxide Maintenance Organic chemistry Oxidation Oxidation resistance Oxide coatings Pitting (corrosion) Sodium hydroxide Submerging Surface treatment TiO2 Titanium Titanium oxidation |
Title | Chemical oxidation as repairing technique to restore corrosion resistance on damaged anodized titanium |
URI | https://dx.doi.org/10.1016/j.surfcoat.2019.03.005 https://www.proquest.com/docview/2216272902 |
Volume | 364 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG-IHtSDUdSIIunBKzK6dRtHQiSokYuScGvatU1GZCMDEuPBv9339oFoYjh4W5u2afpe38f63u8Rcqtd7togknDT4Lp5zOIjoVVt1ZWg_DiP_Dw253nsjybe45RPa2RQ5cJgWGUp-wuZnkvrsqdTnmZnEcedFwe5DcFnei4Cc2HCL6LXAU_ffX6HeSDD5f9ZOEhjGL2VJTwD-ZTZKJUYU9ktwU75Xwrql6jO9c_whByXhiPtF3s7JTWT1MnBoKrXVidHW9CCZ2SDBEDT97iom0TlkmagfWIcQTfgrXSV0iyvL2MouKKwKRwLPWhZwnFQaGk5B7mjqUxSHX_AB6amJfF6fk4mw_vXwahd1lRoR24YrtrSgvvpW2WCyPNze4CZyBS474HUfmAdz1oVmkByrRzXaE_a0EY-4swb7bgXZC9JE3NJKHhugcb1rLSeBEtQuk6oLOtZ5SumnQbh1UGKqAQcx7oXb6KKLJuJigACCSAcVwABGqSzmbcoIDd2zuhVdBI_mEeAXtg5t1kRVpTXdykY6_oM3A6HXf1j6WtyiC18e2K8SfZW2drcgAmzUq2cR1tkv__wNBp_AROS9E4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYAB8RSPAh5Yq6ZOnKQjqkCFli4Uic2yY1sKgqQqRUL8eu4SpwIkxMCWOD7L8p3vEZ-_A7gwoQhdkincabjdIu7okNDpju4pNH5CZHGVm3M3iYcP0e2jeFyBQXMXhtIqve6vdXqlrX1L169md5bn3fuApI3AZ_ohAXOlq7BG6FRRC9Yub0bDyVIhk8xVv1oEKmQk-HJR-AlV1NxlpaK0yp7HOxW_2agf2royQdfbsOV9R3ZZT28HVmyxC-uDpmTbLmx-QRfcgyUYACvf87p0ElOvbI4GKKcebInfyhYlm1clZizDaBQnRX2xhZxLXBGGb0a9oOoxTBWlyT_wgW6nFfnbyz48XF9NB8OOL6vQycI0XXSUwwg0dtomWRRXLgG3ma2h3xNl4sQFkXM6tYkSRgehNZFyqctigpq3JggPoFWUhT0EhsFbYmg8p1yk0BlUYZBqx_tOx5qb4AhEs5Ay85jjVPriWTbJZU-yYYAkBsgglMiAI-gu6WY16safFP2GT_Kb_Eg0DX_SthvGSr-DXyXnvZhj5BHw438MfQ7rw-ndWI5vJqMT2KAvdBTFRRtai_mbPUWPZqHPvMR-AmkV9v8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+oxidation+as+repairing+technique+to+restore+corrosion+resistance+on+damaged+anodized+titanium&rft.jtitle=Surface+%26+coatings+technology&rft.au=Prando%2C+Davide&rft.au=Nicolis%2C+Davide&rft.au=Bolzoni%2C+Fabio&rft.au=Pedeferri%2C+MariaPia&rft.date=2019-04-25&rft.pub=Elsevier+B.V&rft.issn=0257-8972&rft.eissn=1879-3347&rft.volume=364&rft.spage=225&rft.epage=230&rft_id=info:doi/10.1016%2Fj.surfcoat.2019.03.005&rft.externalDocID=S0257897219302488 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon |