Chemical oxidation as repairing technique to restore corrosion resistance on damaged anodized titanium

Anodized titanium shows an excellent resistance to pitting corrosion. However, it could be subject to failure in case of local removal of the oxide film due, for example, to incorrect handling during transport, installation, or use. Depending on part size and usage, an electrochemical anodizing trea...

Full description

Saved in:
Bibliographic Details
Published inSurface & coatings technology Vol. 364; pp. 225 - 230
Main Authors Prando, Davide, Nicolis, Davide, Bolzoni, Fabio, Pedeferri, MariaPia, Ormellese, Marco
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 25.04.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0257-8972
1879-3347
DOI10.1016/j.surfcoat.2019.03.005

Cover

Loading…
Abstract Anodized titanium shows an excellent resistance to pitting corrosion. However, it could be subject to failure in case of local removal of the oxide film due, for example, to incorrect handling during transport, installation, or use. Depending on part size and usage, an electrochemical anodizing treatment could be not feasible. In this case, localized chemical oxidation treatment could be used to recover damaged film and restore corrosion resistance. Chemical oxidation was performed on titanium by immersion in NaOH 10 M and H2O2 10 M at temperature from room to 90 °C with duration ranging between 1 h and 72 h. Potentiodynamic tests in bromides 0.5 M were used to determine the effectiveness of the treatment in relation with the one obtained with anodic oxidation. Higher bath temperature led to faster growth of the film, however it has no effect on the final corrosion resistance. Breakdown potential in bromides increased with treatment duration. The establishment of a plateau occurs at earlier stage, as temperature is increased. Titanium samples anodized and then scratched, to simulate film mechanical removal, were recovered using chemical oxidation and initial corrosion resistance was restored. The suggested treatments for in-situ recovery are 72 h of exposure to NaOH or 6 h at H2O2 at room temperature. [Display omitted] •Commercially pure titanium was chemically oxidized in NaOH and H2O2 baths.•The maximum of corrosion resistance in NaOH was achieved after 12 h at 60 °C.•H2O2 kinetic is faster: the same resistance is achieved in 6 h at room temperature.•Both treatments can restore corrosion resistance on damaged anodized titanium.
AbstractList Anodized titanium shows an excellent resistance to pitting corrosion. However, it could be subject to failure in case of local removal of the oxide film due, for example, to incorrect handling during transport, installation, or use. Depending on part size and usage, an electrochemical anodizing treatment could be not feasible. In this case, localized chemical oxidation treatment could be used to recover damaged film and restore corrosion resistance. Chemical oxidation was performed on titanium by immersion in NaOH 10 M and H2O2 10 M at temperature from room to 90 °C with duration ranging between 1 h and 72 h. Potentiodynamic tests in bromides 0.5 M were used to determine the effectiveness of the treatment in relation with the one obtained with anodic oxidation. Higher bath temperature led to faster growth of the film, however it has no effect on the final corrosion resistance. Breakdown potential in bromides increased with treatment duration. The establishment of a plateau occurs at earlier stage, as temperature is increased. Titanium samples anodized and then scratched, to simulate film mechanical removal, were recovered using chemical oxidation and initial corrosion resistance was restored. The suggested treatments for in-situ recovery are 72 h of exposure to NaOH or 6 h at H2O2 at room temperature.
Anodized titanium shows an excellent resistance to pitting corrosion. However, it could be subject to failure in case of local removal of the oxide film due, for example, to incorrect handling during transport, installation, or use. Depending on part size and usage, an electrochemical anodizing treatment could be not feasible. In this case, localized chemical oxidation treatment could be used to recover damaged film and restore corrosion resistance. Chemical oxidation was performed on titanium by immersion in NaOH 10 M and H2O2 10 M at temperature from room to 90 °C with duration ranging between 1 h and 72 h. Potentiodynamic tests in bromides 0.5 M were used to determine the effectiveness of the treatment in relation with the one obtained with anodic oxidation. Higher bath temperature led to faster growth of the film, however it has no effect on the final corrosion resistance. Breakdown potential in bromides increased with treatment duration. The establishment of a plateau occurs at earlier stage, as temperature is increased. Titanium samples anodized and then scratched, to simulate film mechanical removal, were recovered using chemical oxidation and initial corrosion resistance was restored. The suggested treatments for in-situ recovery are 72 h of exposure to NaOH or 6 h at H2O2 at room temperature. [Display omitted] •Commercially pure titanium was chemically oxidized in NaOH and H2O2 baths.•The maximum of corrosion resistance in NaOH was achieved after 12 h at 60 °C.•H2O2 kinetic is faster: the same resistance is achieved in 6 h at room temperature.•Both treatments can restore corrosion resistance on damaged anodized titanium.
Author Nicolis, Davide
Prando, Davide
Ormellese, Marco
Pedeferri, MariaPia
Bolzoni, Fabio
Author_xml – sequence: 1
  givenname: Davide
  orcidid: 0000-0002-6091-9735
  surname: Prando
  fullname: Prando, Davide
  organization: Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Milano, Italy
– sequence: 2
  givenname: Davide
  surname: Nicolis
  fullname: Nicolis, Davide
  organization: Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Milano, Italy
– sequence: 3
  givenname: Fabio
  surname: Bolzoni
  fullname: Bolzoni, Fabio
  organization: Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Milano, Italy
– sequence: 4
  givenname: MariaPia
  surname: Pedeferri
  fullname: Pedeferri, MariaPia
  organization: Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Milano, Italy
– sequence: 5
  givenname: Marco
  orcidid: 0000-0003-1546-1072
  surname: Ormellese
  fullname: Ormellese, Marco
  email: marco.ormellese@polimi.it
  organization: Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Milano, Italy
BookMark eNqFkE1LAzEQhoNUsK3-BVnwvOsk2W52wYNS_IKCFz2HNJm0Ke2mJqmov96U6sVLT_OR953JPCMy6H2PhFxSqCjQ5npVxV2w2qtUMaBdBbwCmJyQIW1FV3JeiwEZApuIsu0EOyOjGFcAQEVXD4mdLnHjtFoX_tMZlZzvCxWLgFvlgusXRUK97N37DovkczsmH7DQPgQf99rccTGpXmORK6M2aoGmUL037jsnyeU3t9uck1Or1hEvfuOYvD3cv06fytnL4_P0blZq3rapVJZy1tg5Cl03AC3tGGrMCWOdUKYRFmpr5y0KNTFz4GhqZVurG97UAg3wMbk6zN0Gn_8ck1z5XejzSskYbZhgHbCsag4qna-IAa3cBrdR4UtSkHumciX_mMo9UwlcZqbZePPPqPOBe2gpKLc-br892DEj-HAYZNQOMzvjAuokjXfHRvwAGxaclA
CitedBy_id crossref_primary_10_1016_j_jallcom_2025_179431
crossref_primary_10_3389_fmats_2021_717663
crossref_primary_10_1016_j_bioelechem_2024_108768
crossref_primary_10_3390_met13091510
crossref_primary_10_1016_j_heliyon_2021_e07408
crossref_primary_10_1016_j_surfcoat_2021_127653
crossref_primary_10_3390_ma13235431
crossref_primary_10_1016_j_powtec_2023_119101
Cites_doi 10.4028/www.scientific.net/AMR.1087.340
10.5301/jabfm.5000387
10.5006/0963
10.1016/j.corsci.2006.04.002
10.5301/jabfm.5000396
10.1016/0021-9797(89)90117-3
10.1016/j.msec.2009.12.004
10.1016/0921-5093(96)10233-1
10.1179/174329408X271561
10.1016/S1003-6326(13)62541-8
10.5301/jabfm.5000344
10.1016/S0921-5093(98)01180-0
10.1016/j.msec.2012.08.047
10.5006/0010-9312-24.4.96
10.1002/jbm.a.31900
10.1515/corrrev.2008.147
10.1179/1743278213Y.0000000097
10.1002/maco.201810171
10.1016/0142-9612(89)90043-4
10.1016/j.electacta.2008.02.047
10.1149/1.2403254
10.1002/maco.200905451
10.1016/j.actamat.2012.10.043
10.1002/maco.201709815
10.1002/maco.200905534
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Apr 25, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 25, 2019
DBID AAYXX
CITATION
7QQ
7SR
8BQ
8FD
JG9
DOI 10.1016/j.surfcoat.2019.03.005
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3347
EndPage 230
ExternalDocumentID 10_1016_j_surfcoat_2019_03_005
S0257897219302488
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29Q
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMV
HVGLF
HX~
HZ~
NDZJH
R2-
SEW
SMS
SPG
SSH
WUQ
7QQ
7SR
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c388t-af1326fbe7c46008192ece0082297ad67f04ffb8e7a5db03ed4af8fc63647ed03
IEDL.DBID .~1
ISSN 0257-8972
IngestDate Fri Jul 25 07:34:46 EDT 2025
Tue Jul 01 03:07:46 EDT 2025
Thu Apr 24 22:57:54 EDT 2025
Fri Feb 23 02:30:27 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Anodizing
Chemical oxidation
Titanium oxidation
Surface treatment
TiO2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-af1326fbe7c46008192ece0082297ad67f04ffb8e7a5db03ed4af8fc63647ed03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1546-1072
0000-0002-6091-9735
OpenAccessLink http://hdl.handle.net/11311/1098685
PQID 2216272902
PQPubID 2045394
PageCount 6
ParticipantIDs proquest_journals_2216272902
crossref_primary_10_1016_j_surfcoat_2019_03_005
crossref_citationtrail_10_1016_j_surfcoat_2019_03_005
elsevier_sciencedirect_doi_10_1016_j_surfcoat_2019_03_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-25
PublicationDateYYYYMMDD 2019-04-25
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-25
  day: 25
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Surface & coatings technology
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Diamanti, Pedeferri (bb0105) 2007; 49
Prando, Brenna, Diamanti, Beretta, Bolzoni, Ormellese, Pedeferri (bb0080) 2018; 16
Neto, da Silva, Alves (bb0095) 2009; 25
Griess (bb0060) 1968; 24
Handzlik, Fitzner (bb0090) 2013; 23
Tengvall, Elwing, Lundström (bb0145) 1989; 130
Eylon (bb0040) 1981
R.W. Schutz, Corrosion of Titanium and Titanium Alloys, Corrosion: Materials, ASM International, 2005.
Banerjee, Williams (bb0020) 2013; 61
Mohsen, Fadl-Allah (bb0110) 2011; 62
Tan, Abdullah, Idris, Sorrell (bb0155) 2015; 1087
Virtanen (bb0050) 2008; 26
Richardson (bb0140) 2010
Liu, Alfantazi, Asselin (bb0065) 2014; 70
Prando, Brenna, Bolzoni, Diamanti, Pedeferri, Ormellese (bb0115) 2017; 15
Moon, Jeong, Byon, Jeong (bb0150) 2005
Sathish, Geetha, Pandey, Richard, Asokamani (bb0100) 2010; 30
Sarah, Musa, Asiah, Rusop (bb0165) 2010
Kim, Kendall, Miller, Long, Larson, Humphrey, Madden, Tas (bb0125) 2013; 33
Deng, Jiang, Gong, Zhong, Gao, Li (bb0005) 2008; 53
Krupa, Baszkiewicz, Mizera, Borowski, Barcz, Sobczak, Biliński, Lewandowska-Szumieł, Wojewódzka (bb0170) 2009; 88A
Donachie (bb0025) 2000
.
Prando, Nicolis, Pedeferri, Ormellese (bb0160) 2018; 69
Froes, Eylon, Bomberger (bb0045) 1985
Gorynin (bb0055) 1999; 263
Shoesmith, Hardie, Ikeda, Noel (bb0070) 1997
Beck (bb0085) 1973; 120
Alfantazi, Asselin, Liu (bb0010) 2016
Chang, Lin, Tsao, Huang, Huang (bb0035) 2014; 49
Boyer (bb0030) 1996; 213
Prando, Brenna, Pedeferri, Ormellese (bb0120) 2017; 69
Tengvall, Elwing, Sjöqvist, Lundström, Bjursten (bb0130) 1989; 10
Prando, Brenna, Diamanti, Beretta, Bolzoni, Ormellese, Pedeferri (bb0015) 2017; 15
M. Wang, W. Wang, B.L. He, M.L. Sun, Y.S. Bao, Y.S. Yin, L. Liu, W.Y. Zou, X.F. Xu, Corrosion behavior of hydrophobic titanium oxide film pre-treated in hydrogen peroxide solution, Mater. Corros. 62 (2011) 320–325. doi
Tan (10.1016/j.surfcoat.2019.03.005_bb0155) 2015; 1087
Shoesmith (10.1016/j.surfcoat.2019.03.005_bb0070)
Tengvall (10.1016/j.surfcoat.2019.03.005_bb0130) 1989; 10
Richardson (10.1016/j.surfcoat.2019.03.005_bb0140) 2010
Neto (10.1016/j.surfcoat.2019.03.005_bb0095) 2009; 25
Tengvall (10.1016/j.surfcoat.2019.03.005_bb0145) 1989; 130
Deng (10.1016/j.surfcoat.2019.03.005_bb0005) 2008; 53
Handzlik (10.1016/j.surfcoat.2019.03.005_bb0090) 2013; 23
10.1016/j.surfcoat.2019.03.005_bb0075
Chang (10.1016/j.surfcoat.2019.03.005_bb0035) 2014; 49
Diamanti (10.1016/j.surfcoat.2019.03.005_bb0105) 2007; 49
10.1016/j.surfcoat.2019.03.005_bb0135
Prando (10.1016/j.surfcoat.2019.03.005_bb0015) 2017; 15
Donachie (10.1016/j.surfcoat.2019.03.005_bb0025) 2000
Prando (10.1016/j.surfcoat.2019.03.005_bb0115) 2017; 15
Moon (10.1016/j.surfcoat.2019.03.005_bb0150) 2005
Boyer (10.1016/j.surfcoat.2019.03.005_bb0030) 1996; 213
Sathish (10.1016/j.surfcoat.2019.03.005_bb0100) 2010; 30
Liu (10.1016/j.surfcoat.2019.03.005_bb0065) 2014; 70
Alfantazi (10.1016/j.surfcoat.2019.03.005_bb0010) 2016
Froes (10.1016/j.surfcoat.2019.03.005_bb0045) 1985
Beck (10.1016/j.surfcoat.2019.03.005_bb0085) 1973; 120
Prando (10.1016/j.surfcoat.2019.03.005_bb0120) 2017; 69
Griess (10.1016/j.surfcoat.2019.03.005_bb0060) 1968; 24
Krupa (10.1016/j.surfcoat.2019.03.005_bb0170) 2009; 88A
Eylon (10.1016/j.surfcoat.2019.03.005_bb0040) 1981
Mohsen (10.1016/j.surfcoat.2019.03.005_bb0110) 2011; 62
Kim (10.1016/j.surfcoat.2019.03.005_bb0125) 2013; 33
Virtanen (10.1016/j.surfcoat.2019.03.005_bb0050) 2008; 26
Gorynin (10.1016/j.surfcoat.2019.03.005_bb0055) 1999; 263
Prando (10.1016/j.surfcoat.2019.03.005_bb0080) 2018; 16
Sarah (10.1016/j.surfcoat.2019.03.005_bb0165) 2010
Banerjee (10.1016/j.surfcoat.2019.03.005_bb0020) 2013; 61
Prando (10.1016/j.surfcoat.2019.03.005_bb0160) 2018; 69
References_xml – volume: 263
  start-page: 112
  year: 1999
  end-page: 116
  ident: bb0055
  article-title: Titanium alloys for marine application
  publication-title: Mater. Sci. Eng. A
– volume: 213
  start-page: 103
  year: 1996
  end-page: 114
  ident: bb0030
  article-title: An overview on the use of titanium in the aerospace industry
  publication-title: Mater. Sci. Eng. A
– year: 2016
  ident: bb0010
  article-title: The pitting corrosion of titanium in aggressive environments: a review
  publication-title: NACE 2016
– volume: 23
  start-page: 866
  year: 2013
  end-page: 875
  ident: bb0090
  article-title: Corrosion resistance of Ti and TiPd alloy in phosphate buffered saline solutions with and without H
  publication-title: Trans. Nonferrous Metals Soc. China
– volume: 49
  start-page: 17
  year: 2014
  end-page: 22
  ident: bb0035
  article-title: Effect of voltage on microstructure and corrosion resistance of microarc oxidation coatings on CP-Ti
  publication-title: Corros. Eng. Sci. Technol.
– volume: 61
  start-page: 844
  year: 2013
  end-page: 879
  ident: bb0020
  article-title: Perspectives on titanium science and technology
  publication-title: Acta Mater.
– volume: 24
  start-page: 96
  year: 1968
  end-page: 109
  ident: bb0060
  article-title: Crevice corrosion of titanium in aqueous salt solutions
  publication-title: Corrosion.
– volume: 70
  start-page: 29
  year: 2014
  end-page: 37
  ident: bb0065
  article-title: Influence of cupric, ferric, and chloride on the corrosion of titanium in sulfuric acid solutions up to 85C
  publication-title: Corrosion.
– volume: 25
  start-page: 146
  year: 2009
  end-page: 150
  ident: bb0095
  article-title: In vitro study of cell behaviour on plasma surface modified titanium
  publication-title: Surf. Eng.
– start-page: 1191
  year: 2010
  end-page: 1206
  ident: bb0140
  article-title: 2.21 - Corrosion in alkalis
  publication-title: Shreir's Corrosion, Elsevier, Oxford
– start-page: 151
  year: 2005
  end-page: 156
  ident: bb0150
  article-title: Electrochemical behavior of titanium in NaOH solutions
  publication-title: ECS Transactions
– volume: 26
  start-page: 147
  year: 2008
  end-page: 172
  ident: bb0050
  article-title: Corrosion of biomedical implant materials
  publication-title: Corros. Rev.
– year: 1997
  ident: bb0070
  article-title: Hydrogen Absorption and the Lifetime Performance of Titanium Nuclear Waste Containers
– volume: 120
  start-page: 1317
  year: 1973
  end-page: 1324
  ident: bb0085
  article-title: Pitting of titanium II. One-dimensional pit experiments
  publication-title: J. Electrochem. Soc.
– volume: 1087
  start-page: 340
  year: 2015
  end-page: 344
  ident: bb0155
  article-title: Gel oxidation of titanium at low concentration of sodium hydroxide (NaOH)
  publication-title: Adv. Mater. Res.
– year: 2000
  ident: bb0025
  article-title: Titanium: A Technical Guide
– volume: 49
  start-page: 939
  year: 2007
  end-page: 948
  ident: bb0105
  article-title: Effect of anodic oxidation parameters on the titanium oxides formation
  publication-title: Corros. Sci.
– volume: 15
  year: 2017
  ident: bb0015
  article-title: Corrosion of titanium: part 1: aggressive environments and main forms of degradation
  publication-title: Journal of Applied Biomaterials & Functional Materials.
– volume: 16
  start-page: 3
  year: 2018
  end-page: 13
  ident: bb0080
  article-title: Corrosion of titanium: part 2: effects of surface treatments
  publication-title: Journal of Applied Biomaterials & Functional Materials.
– volume: 62
  start-page: 310
  year: 2011
  end-page: 319
  ident: bb0110
  article-title: Improvement in corrosion resistance of commercial pure titanium for the enhancement of its biocompatibility
  publication-title: Mater. Corros.
– volume: 88A
  start-page: 589
  year: 2009
  end-page: 598
  ident: bb0170
  article-title: Effect of the heating temperature on the corrosion resistance of alkali-treated titanium
  publication-title: J. Biomed. Mater. Res. A
– volume: 10
  start-page: 118
  year: 1989
  end-page: 120
  ident: bb0130
  article-title: Interaction between hydrogen peroxide and titanium: a possible role in the biocompatibility of titanium
  publication-title: Biomaterials.
– volume: 15
  start-page: 19
  year: 2017
  end-page: 24
  ident: bb0115
  article-title: Electrochemical anodizing treatment to enhance localized corrosion resistance of pure titanium
  publication-title: Journal of Applied Biomaterials & Functional Materials.
– reference: .
– volume: 69
  start-page: 1441
  year: 2018
  end-page: 1446
  ident: bb0160
  article-title: Pitting corrosion on anodized titanium: effect of halides
  publication-title: Mater. Corros.
– reference: M. Wang, W. Wang, B.L. He, M.L. Sun, Y.S. Bao, Y.S. Yin, L. Liu, W.Y. Zou, X.F. Xu, Corrosion behavior of hydrophobic titanium oxide film pre-treated in hydrogen peroxide solution, Mater. Corros. 62 (2011) 320–325. doi:
– start-page: 361
  year: 2010
  end-page: 364
  ident: bb0165
  article-title: Electrical conductivity characteristics of TiO
  publication-title: 2010 International Conference on Electronic Devices, Systems and Applications
– volume: 53
  start-page: 5220
  year: 2008
  end-page: 5225
  ident: bb0005
  article-title: Critical pitting and repassivation temperatures for duplex stainless steel in chloride solutions
  publication-title: Electrochim. Acta
– volume: 33
  start-page: 327
  year: 2013
  end-page: 339
  ident: bb0125
  article-title: Comparison of titanium soaked in 5 M NaOH or 5 M KOH solutions
  publication-title: Mater. Sci. Eng. C
– year: 1981
  ident: bb0040
  article-title: Titanium for Energy and Industrial Applications
– volume: 30
  start-page: 376
  year: 2010
  end-page: 382
  ident: bb0100
  article-title: Studies on the corrosion and wear behavior of the laser nitrided biomedical titanium and its alloys
  publication-title: Mater. Sci. Eng. C
– volume: 69
  start-page: 503
  year: 2017
  end-page: 509
  ident: bb0120
  article-title: Enhancement of pure titanium localized corrosion resistance by anodic oxidation
  publication-title: Mater. Corros.
– volume: 130
  start-page: 405
  year: 1989
  end-page: 413
  ident: bb0145
  article-title: Titanium gel made from metallic titanium and hydrogen peroxide
  publication-title: J. Colloid Interface Sci.
– year: 1985
  ident: bb0045
  article-title: Titanium Technology: Present Status and Future Trends, Titanium Development Association
– reference: R.W. Schutz, Corrosion of Titanium and Titanium Alloys, Corrosion: Materials, ASM International, 2005.
– volume: 1087
  start-page: 340
  year: 2015
  ident: 10.1016/j.surfcoat.2019.03.005_bb0155
  article-title: Gel oxidation of titanium at low concentration of sodium hydroxide (NaOH)
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.1087.340
– volume: 15
  year: 2017
  ident: 10.1016/j.surfcoat.2019.03.005_bb0015
  article-title: Corrosion of titanium: part 1: aggressive environments and main forms of degradation
  publication-title: Journal of Applied Biomaterials & Functional Materials.
  doi: 10.5301/jabfm.5000387
– volume: 70
  start-page: 29
  year: 2014
  ident: 10.1016/j.surfcoat.2019.03.005_bb0065
  article-title: Influence of cupric, ferric, and chloride on the corrosion of titanium in sulfuric acid solutions up to 85C
  publication-title: Corrosion.
  doi: 10.5006/0963
– volume: 49
  start-page: 939
  year: 2007
  ident: 10.1016/j.surfcoat.2019.03.005_bb0105
  article-title: Effect of anodic oxidation parameters on the titanium oxides formation
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2006.04.002
– volume: 16
  start-page: 3
  year: 2018
  ident: 10.1016/j.surfcoat.2019.03.005_bb0080
  article-title: Corrosion of titanium: part 2: effects of surface treatments
  publication-title: Journal of Applied Biomaterials & Functional Materials.
  doi: 10.5301/jabfm.5000396
– volume: 130
  start-page: 405
  year: 1989
  ident: 10.1016/j.surfcoat.2019.03.005_bb0145
  article-title: Titanium gel made from metallic titanium and hydrogen peroxide
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(89)90117-3
– start-page: 361
  year: 2010
  ident: 10.1016/j.surfcoat.2019.03.005_bb0165
  article-title: Electrical conductivity characteristics of TiO2 thin film
– ident: 10.1016/j.surfcoat.2019.03.005_bb0075
– ident: 10.1016/j.surfcoat.2019.03.005_bb0070
– volume: 30
  start-page: 376
  year: 2010
  ident: 10.1016/j.surfcoat.2019.03.005_bb0100
  article-title: Studies on the corrosion and wear behavior of the laser nitrided biomedical titanium and its alloys
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2009.12.004
– volume: 213
  start-page: 103
  year: 1996
  ident: 10.1016/j.surfcoat.2019.03.005_bb0030
  article-title: An overview on the use of titanium in the aerospace industry
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/0921-5093(96)10233-1
– volume: 25
  start-page: 146
  year: 2009
  ident: 10.1016/j.surfcoat.2019.03.005_bb0095
  article-title: In vitro study of cell behaviour on plasma surface modified titanium
  publication-title: Surf. Eng.
  doi: 10.1179/174329408X271561
– volume: 23
  start-page: 866
  year: 2013
  ident: 10.1016/j.surfcoat.2019.03.005_bb0090
  article-title: Corrosion resistance of Ti and TiPd alloy in phosphate buffered saline solutions with and without H2O2 addition
  publication-title: Trans. Nonferrous Metals Soc. China
  doi: 10.1016/S1003-6326(13)62541-8
– year: 2000
  ident: 10.1016/j.surfcoat.2019.03.005_bb0025
– year: 1981
  ident: 10.1016/j.surfcoat.2019.03.005_bb0040
– volume: 15
  start-page: 19
  year: 2017
  ident: 10.1016/j.surfcoat.2019.03.005_bb0115
  article-title: Electrochemical anodizing treatment to enhance localized corrosion resistance of pure titanium
  publication-title: Journal of Applied Biomaterials & Functional Materials.
  doi: 10.5301/jabfm.5000344
– volume: 263
  start-page: 112
  year: 1999
  ident: 10.1016/j.surfcoat.2019.03.005_bb0055
  article-title: Titanium alloys for marine application
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(98)01180-0
– volume: 33
  start-page: 327
  year: 2013
  ident: 10.1016/j.surfcoat.2019.03.005_bb0125
  article-title: Comparison of titanium soaked in 5 M NaOH or 5 M KOH solutions
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2012.08.047
– start-page: 151
  year: 2005
  ident: 10.1016/j.surfcoat.2019.03.005_bb0150
  article-title: Electrochemical behavior of titanium in NaOH solutions
– volume: 24
  start-page: 96
  year: 1968
  ident: 10.1016/j.surfcoat.2019.03.005_bb0060
  article-title: Crevice corrosion of titanium in aqueous salt solutions
  publication-title: Corrosion.
  doi: 10.5006/0010-9312-24.4.96
– start-page: 1191
  year: 2010
  ident: 10.1016/j.surfcoat.2019.03.005_bb0140
  article-title: 2.21 - Corrosion in alkalis
– year: 1985
  ident: 10.1016/j.surfcoat.2019.03.005_bb0045
– volume: 88A
  start-page: 589
  year: 2009
  ident: 10.1016/j.surfcoat.2019.03.005_bb0170
  article-title: Effect of the heating temperature on the corrosion resistance of alkali-treated titanium
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.31900
– volume: 26
  start-page: 147
  year: 2008
  ident: 10.1016/j.surfcoat.2019.03.005_bb0050
  article-title: Corrosion of biomedical implant materials
  publication-title: Corros. Rev.
  doi: 10.1515/corrrev.2008.147
– volume: 49
  start-page: 17
  year: 2014
  ident: 10.1016/j.surfcoat.2019.03.005_bb0035
  article-title: Effect of voltage on microstructure and corrosion resistance of microarc oxidation coatings on CP-Ti
  publication-title: Corros. Eng. Sci. Technol.
  doi: 10.1179/1743278213Y.0000000097
– volume: 69
  start-page: 1441
  year: 2018
  ident: 10.1016/j.surfcoat.2019.03.005_bb0160
  article-title: Pitting corrosion on anodized titanium: effect of halides
  publication-title: Mater. Corros.
  doi: 10.1002/maco.201810171
– year: 2016
  ident: 10.1016/j.surfcoat.2019.03.005_bb0010
  article-title: The pitting corrosion of titanium in aggressive environments: a review
– volume: 10
  start-page: 118
  year: 1989
  ident: 10.1016/j.surfcoat.2019.03.005_bb0130
  article-title: Interaction between hydrogen peroxide and titanium: a possible role in the biocompatibility of titanium
  publication-title: Biomaterials.
  doi: 10.1016/0142-9612(89)90043-4
– volume: 53
  start-page: 5220
  year: 2008
  ident: 10.1016/j.surfcoat.2019.03.005_bb0005
  article-title: Critical pitting and repassivation temperatures for duplex stainless steel in chloride solutions
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.02.047
– volume: 120
  start-page: 1317
  year: 1973
  ident: 10.1016/j.surfcoat.2019.03.005_bb0085
  article-title: Pitting of titanium II. One-dimensional pit experiments
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2403254
– ident: 10.1016/j.surfcoat.2019.03.005_bb0135
  doi: 10.1002/maco.200905451
– volume: 61
  start-page: 844
  year: 2013
  ident: 10.1016/j.surfcoat.2019.03.005_bb0020
  article-title: Perspectives on titanium science and technology
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.10.043
– volume: 69
  start-page: 503
  year: 2017
  ident: 10.1016/j.surfcoat.2019.03.005_bb0120
  article-title: Enhancement of pure titanium localized corrosion resistance by anodic oxidation
  publication-title: Mater. Corros.
  doi: 10.1002/maco.201709815
– volume: 62
  start-page: 310
  year: 2011
  ident: 10.1016/j.surfcoat.2019.03.005_bb0110
  article-title: Improvement in corrosion resistance of commercial pure titanium for the enhancement of its biocompatibility
  publication-title: Mater. Corros.
  doi: 10.1002/maco.200905534
SSID ssj0001794
Score 2.3219814
Snippet Anodized titanium shows an excellent resistance to pitting corrosion. However, it could be subject to failure in case of local removal of the oxide film due,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 225
SubjectTerms Anodizing
Bromides
Chemical oxidation
Corrosion effects
Corrosion potential
Corrosion resistance
Damage localization
Hydrogen peroxide
Maintenance
Organic chemistry
Oxidation
Oxidation resistance
Oxide coatings
Pitting (corrosion)
Sodium hydroxide
Submerging
Surface treatment
TiO2
Titanium
Titanium oxidation
Title Chemical oxidation as repairing technique to restore corrosion resistance on damaged anodized titanium
URI https://dx.doi.org/10.1016/j.surfcoat.2019.03.005
https://www.proquest.com/docview/2216272902
Volume 364
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG-IHtSDUdSIIunBKzK6dRtHQiSokYuScGvatU1GZCMDEuPBv9339oFoYjh4W5u2afpe38f63u8Rcqtd7togknDT4Lp5zOIjoVVt1ZWg_DiP_Dw253nsjybe45RPa2RQ5cJgWGUp-wuZnkvrsqdTnmZnEcedFwe5DcFnei4Cc2HCL6LXAU_ffX6HeSDD5f9ZOEhjGL2VJTwD-ZTZKJUYU9ktwU75Xwrql6jO9c_whByXhiPtF3s7JTWT1MnBoKrXVidHW9CCZ2SDBEDT97iom0TlkmagfWIcQTfgrXSV0iyvL2MouKKwKRwLPWhZwnFQaGk5B7mjqUxSHX_AB6amJfF6fk4mw_vXwahd1lRoR24YrtrSgvvpW2WCyPNze4CZyBS474HUfmAdz1oVmkByrRzXaE_a0EY-4swb7bgXZC9JE3NJKHhugcb1rLSeBEtQuk6oLOtZ5SumnQbh1UGKqAQcx7oXb6KKLJuJigACCSAcVwABGqSzmbcoIDd2zuhVdBI_mEeAXtg5t1kRVpTXdykY6_oM3A6HXf1j6WtyiC18e2K8SfZW2drcgAmzUq2cR1tkv__wNBp_AROS9E4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYAB8RSPAh5Yq6ZOnKQjqkCFli4Uic2yY1sKgqQqRUL8eu4SpwIkxMCWOD7L8p3vEZ-_A7gwoQhdkincabjdIu7okNDpju4pNH5CZHGVm3M3iYcP0e2jeFyBQXMXhtIqve6vdXqlrX1L169md5bn3fuApI3AZ_ohAXOlq7BG6FRRC9Yub0bDyVIhk8xVv1oEKmQk-HJR-AlV1NxlpaK0yp7HOxW_2agf2royQdfbsOV9R3ZZT28HVmyxC-uDpmTbLmx-QRfcgyUYACvf87p0ElOvbI4GKKcebInfyhYlm1clZizDaBQnRX2xhZxLXBGGb0a9oOoxTBWlyT_wgW6nFfnbyz48XF9NB8OOL6vQycI0XXSUwwg0dtomWRRXLgG3ma2h3xNl4sQFkXM6tYkSRgehNZFyqctigpq3JggPoFWUhT0EhsFbYmg8p1yk0BlUYZBqx_tOx5qb4AhEs5Ay85jjVPriWTbJZU-yYYAkBsgglMiAI-gu6WY16safFP2GT_Kb_Eg0DX_SthvGSr-DXyXnvZhj5BHw438MfQ7rw-ndWI5vJqMT2KAvdBTFRRtai_mbPUWPZqHPvMR-AmkV9v8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+oxidation+as+repairing+technique+to+restore+corrosion+resistance+on+damaged+anodized+titanium&rft.jtitle=Surface+%26+coatings+technology&rft.au=Prando%2C+Davide&rft.au=Nicolis%2C+Davide&rft.au=Bolzoni%2C+Fabio&rft.au=Pedeferri%2C+MariaPia&rft.date=2019-04-25&rft.pub=Elsevier+B.V&rft.issn=0257-8972&rft.eissn=1879-3347&rft.volume=364&rft.spage=225&rft.epage=230&rft_id=info:doi/10.1016%2Fj.surfcoat.2019.03.005&rft.externalDocID=S0257897219302488
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon