Anatomy of a Catastrophe: Reconstructing the 1936 Rock Fall and Tsunami Event in Lake Lovatnet, Western Norway

Rock falls and landslides plunging into lakes or small reservoirs can result in tsunamis with extreme wave run-ups. The occurrence of these natural hazards in populated areas have encouraged a recent sharp increase of studies that aim to mitigate their impact on human lives and assess infrastructure...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in earth science (Lausanne) Vol. 9
Main Authors Waldmann, Nicolas, Vasskog, Kristian, Simpson, Guy, Chapron, Emmanuel, Støren, Eivind Wilhelm Nagel, Hansen, Louise, Loizeau, Jean-Luc, Nesje, Atle, Ariztegui, Daniel
Format Journal Article
LanguageEnglish
Published Frontiers Media 28.05.2021
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN2296-6463
2296-6463
DOI10.3389/feart.2021.671378

Cover

Loading…
Abstract Rock falls and landslides plunging into lakes or small reservoirs can result in tsunamis with extreme wave run-ups. The occurrence of these natural hazards in populated areas have encouraged a recent sharp increase of studies that aim to mitigate their impact on human lives and assess infrastructure lost. This paper amalgamates in a novel fashion and at an unprecedented detail in situ historic measurements, geological data and numerical modeling of a rock fall event and associated tsunami wave that occurred in Lake Lovatnet (western Norway) in September 1936. Historical records report an event that released ca. 1 million m 3 of rocks and debris from Ramnefjellet Mountain at an altitude of 800 m above Lake Lovatnet. The fragmented material plunged into the lake, causing a tsunami that reached a maximum run-up of 74 m and killed 74 people. In fact, the settlements of Bødal and Nesdal were wiped out as a result of the catastrophic wave. Sediments resulting from the 1936 rock fall and associated tsunami were identified in the subsurface of Lake Lovatnet by shallow geophysical investigations and were retrieved using gravity coring equipment. A set of high resolution physical and geochemical measurements were carried out on the cores with the aim of reproducing a highly detailed reconstruction of this catastrophic event in order to better understand and learn about the processes involved. The cores were retrieved in the northwestern sub-basin of the lake and its chronology was constrained by 210 Pb and radiocarbon dating. A specially tailored physically based mathematical model was applied to better understand the tsunami event. Integration of the geophysical record, the sedimentological data and numerical modeling provide a comprehensive background to better understand the effects of such event in a deep fjord-like lacustrine basin and to generate information for better mitigation of similar events elsewhere.
AbstractList Rock falls and landslides plunging into lakes or small reservoirs can result in tsunamis with extreme wave run-ups. The occurrence of these natural hazards in populated areas have encouraged a recent sharp increase of studies that aim to mitigate their impact on human lives and assess infrastructure lost. This paper amalgamates in a novel fashion and at an unprecedented detail in situ historic measurements, geological data and numerical modeling of a rock fall event and associated tsunami wave that occurred in Lake Lovatnet (western Norway) in September 1936. Historical records report an event that released ca. 1 million m3 of rocks and debris from Ramnefjellet Mountain at an altitude of 800 m above Lake Lovatnet. The fragmented material plunged into the lake, causing a tsunami that reached a maximum run-up of 74 m and killed 74 people. In fact, the settlements of Bødal and Nesdal were wiped out as a result of the catastrophic wave. Sediments resulting from the 1936 rock fall and associated tsunami were identified in the subsurface of Lake Lovatnet by shallow geophysical investigations and were retrieved using gravity coring equipment. A set of high resolution physical and geochemical measurements were carried out on the cores with the aim of reproducing a highly detailed reconstruction of this catastrophic event in order to better understand and learn about the processes involved. The cores were retrieved in the northwestern sub-basin of the lake and its chronology was constrained by 210Pb and radiocarbon dating. A specially tailored physically based mathematical model was applied to better understand the tsunami event. Integration of the geophysical record, the sedimentological data and numerical modeling provide a comprehensive background to better understand the effects of such event in a deep fjord-like lacustrine basin and to generate information for better mitigation of similar events elsewhere.
Rock falls and landslides plunging into lakes or small reservoirs can result in tsunamis with extreme wave run-ups. The occurrence of these natural hazards in populated areas have encouraged a recent sharp increase of studies that aim to mitigate their impact on human lives and assess infrastructure lost. This paper amalgamates in a novel fashion and at an unprecedented detail in situ historic measurements, geological data and numerical modeling of a rock fall event and associated tsunami wave that occurred in Lake Lovatnet (western Norway) in September 1936. Historical records report an event that released ca. 1 million m3 of rocks and debris from Ramnefjellet Mountain at an altitude of 800 m above Lake Lovatnet. The fragmented material plunged into the lake, causing a tsunami that reached a maximum run-up of 74 m and killed 74 people. In fact, the settlements of Bødal and Nesdal were wiped out as a result of the catastrophic wave. Sediments resulting from the 1936 rock fall and associated tsunami were identified in the subsurface of Lake Lovatnet by shallow geophysical investigations and were retrieved using gravity coring equipment. A set of high resolution physical and geochemical measurements were carried out on the cores with the aim of reproducing a highly detailed reconstruction of this catastrophic event in order to better understand and learn about the processes involved. The cores were retrieved in the northwestern sub-basin of the lake and its chronology was constrained by 21 0 Pb and radiocarbon dating. A specially tailored physically based mathematical model was applied to better understand the tsunami event. Integration of the geophysical record, the sedimentological data and numerical modeling provide a comprehensive background to better understand the effects of such event in a deep fjord-like lacustrine basin and to generate information for better mitigation of similar events elsewhere.
Rock falls and landslides plunging into lakes or small reservoirs can result in tsunamis with extreme wave run-ups. The occurrence of these natural hazards in populated areas have encouraged a recent sharp increase of studies that aim to mitigate their impact on human lives and assess infrastructure lost. This paper amalgamates in a novel fashion and at an unprecedented detail in situ historic measurements, geological data and numerical modeling of a rock fall event and associated tsunami wave that occurred in Lake Lovatnet (western Norway) in September 1936. Historical records report an event that released ca. 1 million m 3 of rocks and debris from Ramnefjellet Mountain at an altitude of 800 m above Lake Lovatnet. The fragmented material plunged into the lake, causing a tsunami that reached a maximum run-up of 74 m and killed 74 people. In fact, the settlements of Bødal and Nesdal were wiped out as a result of the catastrophic wave. Sediments resulting from the 1936 rock fall and associated tsunami were identified in the subsurface of Lake Lovatnet by shallow geophysical investigations and were retrieved using gravity coring equipment. A set of high resolution physical and geochemical measurements were carried out on the cores with the aim of reproducing a highly detailed reconstruction of this catastrophic event in order to better understand and learn about the processes involved. The cores were retrieved in the northwestern sub-basin of the lake and its chronology was constrained by 210 Pb and radiocarbon dating. A specially tailored physically based mathematical model was applied to better understand the tsunami event. Integration of the geophysical record, the sedimentological data and numerical modeling provide a comprehensive background to better understand the effects of such event in a deep fjord-like lacustrine basin and to generate information for better mitigation of similar events elsewhere.
Author Støren, Eivind Wilhelm Nagel
Hansen, Louise
Vasskog, Kristian
Loizeau, Jean-Luc
Nesje, Atle
Simpson, Guy
Ariztegui, Daniel
Chapron, Emmanuel
Waldmann, Nicolas
Author_xml – sequence: 1
  givenname: Nicolas
  surname: Waldmann
  fullname: Waldmann, Nicolas
– sequence: 2
  givenname: Kristian
  surname: Vasskog
  fullname: Vasskog, Kristian
– sequence: 3
  givenname: Guy
  surname: Simpson
  fullname: Simpson, Guy
– sequence: 4
  givenname: Emmanuel
  surname: Chapron
  fullname: Chapron, Emmanuel
– sequence: 5
  givenname: Eivind Wilhelm Nagel
  surname: Støren
  fullname: Støren, Eivind Wilhelm Nagel
– sequence: 6
  givenname: Louise
  surname: Hansen
  fullname: Hansen, Louise
– sequence: 7
  givenname: Jean-Luc
  surname: Loizeau
  fullname: Loizeau, Jean-Luc
– sequence: 8
  givenname: Atle
  surname: Nesje
  fullname: Nesje, Atle
– sequence: 9
  givenname: Daniel
  surname: Ariztegui
  fullname: Ariztegui, Daniel
BackLink https://hal.science/hal-03573101$$DView record in HAL
BookMark eNp9kU9PGzEQxa2KSqWUD9Cbr5Wa1H829rq3KIKCtCoSAvVozdpjYtjYyGuC8u27Iahqe-A0M0_v9w7zPpKjlBMS8pmzuZSt-RYQSp0LJvhcaS51-44cC2HUTDVKHv21fyCn43jPGONSLBpmjklaJqh5s6M5UKArqDDWkh_X-J1eo8tpup5cjemO1jVSbqSi19k90HMYBgrJ05vxKcEm0rMtpkpjoh08IO3yFmrC-pX-wrFiSfRnLs-w-0TeBxhGPH2dJ-T2_OxmdTHrrn5crpbdzMm2rTMDwXDRiL412HimUUnkvXdeNa0XvZYBZKPNwjhkGnjLvcRgJNe9Mh50kCfk8pDrM9zbxxI3UHY2Q7QvQi53dnpZdANaH3ppkPVSBz29aAGae5ROOy94rzifsr4cstYw_BN1sezsXmNyoSVnfLv38oPXlTyOBcMfgDO778q-dGX3XdlDVxOj_2NcrFBjTrVAHN4gfwPZBJtk
CitedBy_id crossref_primary_10_1103_PhysRevFluids_7_094801
crossref_primary_10_3390_w14172643
crossref_primary_10_1007_s11629_021_7098_3
crossref_primary_10_1016_j_margeo_2024_107290
crossref_primary_10_3390_quat5030034
crossref_primary_10_1016_j_earscirev_2023_104459
crossref_primary_10_1016_j_geomorph_2024_109359
crossref_primary_10_1007_s10346_024_02275_z
crossref_primary_10_3390_geohazards3020014
crossref_primary_10_1029_2023JB028629
crossref_primary_10_3390_geohazards5030048
Cites_doi 10.1002/2016GL072050
10.1007/s00015-006-1196-7
10.1016/j.geomorph.2016.08.016
10.1029/2018RG000603
10.3997/2214-4609-pdb.202.1999_028
10.1017/qua.2017.96
10.1016/j.jsames.2007.08.001
10.1177/0959683610391316
10.1080/00291953608551553
10.1111/j.1502-3885.1997.tb00649.x
10.1029/2006GL028010
10.1007/978-3-211-69356-8_1
10.1144/GSL.MEM.2002.021.01.28
10.1007/s00254-007-0721-y
10.1046/j.1365-3091.2001.00360.x
10.1016/j.geomorph.2008.12.009
10.1016/j.coastaleng.2009.04.007
10.1023/A:1010619806898
10.1144/GSL.SP.2006.267.01.04
10.1029/2011JF002038
10.1016/j.advwatres.2020.103647
10.5194/nhess-15-657-2015
10.1029/2020JC016157
10.1007/978-3-0348-7995-8_18
10.1029/CE054p0441
10.1016/S0277-3791(02)00005-7
10.1007/s00015-010-0001-9
10.1002/2016JC012496
10.5194/nhess-9-469-2009
10.1016/0277-3791(91)90032-P
10.1007/978-3-319-20979-1_29
10.3997/1873-0604.2017024
10.1016/j.coastaleng.2017.07.008
10.1023/A:1022994411319
10.1016/j.gca.2010.12.024
10.17850/njg96-3-02
10.1038/ngeo1618
10.1016/j.margeo.2007.03.011
10.1016/j.coastaleng.2014.02.003
10.1080/00291950121138
10.2110/sepmsp.096
10.1111/jiec.12126
10.1007/0-306-47669-X_9
10.1016/j.coastaleng.2014.06.010
10.1007/s11069-021-04533-y
10.3389/feart.2018.00223
10.1191/0959683605hl897rr
10.1016/j.cageo.2006.02.020
10.1111/j.1365-2117.2010.00489.x
10.3133/pp354C
10.1002/dep2.101
10.1016/j.sedgeo.2015.08.004
10.1144/SP477.21
10.1038/s41467-021-21327-9
10.1007/s000240050010
10.1016/j.geomorph.2015.12.013
10.1061/(ASCE)0733-950X(2004)130:6(287)
10.1046/j.1365-3121.1999.00230.x
10.1002/jqs.2633
10.1016/j.geomorph.2014.10.018
10.1016/j.coastaleng.2020.103815
10.1111/sed.12190
10.1144/GSL.SP.2006.267.01.06
10.1098/rsta.2014.0376
10.1029/2011JC007850
10.1007/978-1-4020-4037-5_26
10.1046/j.1365-3091.1997.d01-63.x
10.1016/j.yqres.2011.10.001
10.1017/RDC.2020.41
10.1016/j.coastaleng.2015.06.006
10.1007/978-3-319-08660-6_13
10.1007/s10346-006-0036-1
10.1016/j.tecto.2009.02.006
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
BXJBU
IHQJB
VOOES
DOA
DOI 10.3389/feart.2021.671378
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société
HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Geography
Environmental Sciences
EISSN 2296-6463
ExternalDocumentID oai_doaj_org_article_dfb39e0b37f74635a71de3c7cd21b611
oai_HAL_hal_03573101v1
10_3389_feart_2021_671378
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
1XC
BXJBU
IHQJB
VOOES
ID FETCH-LOGICAL-c388t-9af91242b89e4d07e63e1bdcd648d2b73fa347959ce07a181d3ef9317b69da7f3
IEDL.DBID DOA
ISSN 2296-6463
IngestDate Wed Aug 27 01:10:09 EDT 2025
Fri May 09 12:18:30 EDT 2025
Tue Jul 01 01:21:43 EDT 2025
Thu Apr 24 23:07:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords lacustrine sediments
cryogenic processes
mass transport deposits
geohazard
shallow geophysics
tsunami deposit
numerical modeling
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-9af91242b89e4d07e63e1bdcd648d2b73fa347959ce07a181d3ef9317b69da7f3
ORCID 0000-0001-7775-5127
0000-0002-0611-0388
0000-0003-3661-0225
OpenAccessLink https://doaj.org/article/dfb39e0b37f74635a71de3c7cd21b611
ParticipantIDs doaj_primary_oai_doaj_org_article_dfb39e0b37f74635a71de3c7cd21b611
hal_primary_oai_HAL_hal_03573101v1
crossref_primary_10_3389_feart_2021_671378
crossref_citationtrail_10_3389_feart_2021_671378
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-28
PublicationDateYYYYMMDD 2021-05-28
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-28
  day: 28
PublicationDecade 2020
PublicationTitle Frontiers in earth science (Lausanne)
PublicationYear 2021
Publisher Frontiers Media
Frontiers Media S.A
Publisher_xml – name: Frontiers Media
– name: Frontiers Media S.A
References Bellotti (B3) 2017; 128
Clague (B16) 2003; 28
Appleby (B1) 2001
Fritz (B22) 2001; 19
Benac (B4) 2009
Leithold (B46) 2018; 89
Fritz (B23) 2004; 130
Waldmann (B93) 2011; 23
Lander (B45) 1996
Hermanns (B33) 2014
Sćlevik (B75) 2009; 56
Vasskog (B90) 2011; 21
Luckett (B51) 2002; 21
Truong (B88) 2012
Ward (B94) 2002
Beres (B5) 2008; 25
Chen (B15) 2020; 142
Jørstad (B40) 1968
Rauter (B66) 2021; 165
Reimer (B68) 2020; 62
Jørstad (B39) 1954
Kremer (B43) 2015; 62
Mountjoy (B55) 2019
Beylich (B7) 2017; 287
Vasskog (B92) 2013; 28
Simpson (B83) 2006; 32
Nesje (B59) 2005; 15
Reusch (B69) 1907; 1907
Siegenthaler (B81) 1987; 80
Hatledal (B31) 2014
Bondevik (B10); 44
Nadim (B57) 2006; 3
Rokoengen (B70) 2001; 55
Kaldhol (B41) 1936
Lindhorst (B47) 2016
Kremer (B44) 2012; 5
Girardclos (B25) 2007; 241
Nesje (B60) 1991; 10
Whiteley (B95) 2019; 57
Mulder (B56) 2001; 48
(B62) 1963
Bondevik (B11); 26
Dawson (B19) 2000; 157
Redfield (B67) 2009; 474
Kempf (B42) 2015; 328
Scheidl (B78) 2020; 20
Nigg (B61) 2021; 21
Rothwell (B72) 2006; 267
Vardy (B89) 2017; 15
Draebing (B20) 2017; 44
Gylfadóttir (B28) 2017; 122
Heller (B32) 2015; 104
Løvholt (B50); 373
Ruff (B73) 2003
Sima (B82) 2001; 248
Evers (B21) 2019; 11
Harbitz (B30) 2014; 88
Martinussen (B52) 1937
Lindstrøm (B48) 2014; 92
Furseth (B24) 2006
Sandøy (B77) 2017; 289
Croudace (B18) 2006; 267
Romano (B71) 2020; 125
Hong (B35) 2006; 33
Rye (B74) 1997; 77
Hansen (B29) 2016; 96
Bjerrum (B8) 1968
Sanchez-Cabeza (B76) 2012; 82
Beylich (B6) 2015; 228
Løvholt (B49); 15
Mohammed (B54) 2012; 117
Svensen (B85) 2009
Vasskog (B91) 2012; 77
Miller (B53) 1960; 50
Chapron (B14) 1999; 11
Oswald (B63) 2021; 12
Pugin (B65) 1999
Bugge (B12) 1937; 6
Grimstad (B26) 2006
Jakob (B38) 2009; 107
Thorpe (B87) 1998; 98
Ballantyne (B2) 2002; 21
Bussmann (B13) 2010; 103
Schnellmann (B79) 2006; 99
Shipp (B80) 2011
Storms (B84) 2020; 6
Tanikawa (B86) 2014; 18
Pelinovsky (B64) 2006
Jaedicke (B36) 2009; 9
Blikra (B9) 2006
Clare (B17) 2018; 6
Jahn (B37) 1988
Nesdal (B58) 1983
Gutiérrez (B27) 2008; 53
Hibert (B34) 2011; 116
References_xml – volume: 44
  start-page: 3535
  year: 2017
  ident: B20
  article-title: Thermo−cryogenic controls of fracture kinematics in permafrost rockwalls.
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL072050
– volume: 99
  start-page: 409
  year: 2006
  ident: B79
  article-title: 15,000 Years of mass-movement history in Lake Lucerne: implications for seismic and tsunami hazards.
  publication-title: Eclo. Geol. Helvet.
  doi: 10.1007/s00015-006-1196-7
– volume: 289
  start-page: 78
  year: 2017
  ident: B77
  article-title: Why did the 1756 Tjellefonna rockslide occur? A back-analysis of the largest historic rockslide in Norway.
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.08.016
– volume: 57
  start-page: 106
  year: 2019
  ident: B95
  article-title: Geophysical monitoring of moisture-induced landslides: a review.
  publication-title: Rev. Geophys.
  doi: 10.1029/2018RG000603
– year: 1999
  ident: B65
  article-title: High-resolution, multichannel, marine seismic surveying using a small airgun source
  publication-title: Proceedings of the 12th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems
  doi: 10.3997/2214-4609-pdb.202.1999_028
– volume: 89
  year: 2018
  ident: B46
  article-title: Slope failures within and upstream of Lake Quinault, Washington, as uneven responses to Holocene earthquakes along the Cascadia subduction zone.
  publication-title: Q. Res.
  doi: 10.1017/qua.2017.96
– year: 1968
  ident: B40
  publication-title: Waves Generated by Landslides in Norwegian Fjords and Lakes.
– volume: 25
  start-page: 74
  year: 2008
  ident: B5
  article-title: The Lago Cardiel Basin, Argentina (49 S): origin and evolution revealed by high-resolution multichannel seismic reflection studies.
  publication-title: J. South Am. Earth Sci.
  doi: 10.1016/j.jsames.2007.08.001
– volume: 21
  start-page: 597
  year: 2011
  ident: B90
  article-title: A Holocene record of snow-avalanche and flood activity reconstructed from a lacustrine sedimentary sequence in Oldevatnet, western Norway.
  publication-title: Holocene
  doi: 10.1177/0959683610391316
– volume: 6
  start-page: 342
  year: 1937
  ident: B12
  article-title: Fjellskred fra topografisk og geologisk synspunkt.
  publication-title: Norsk Geogr. Tidssk.
  doi: 10.1080/00291953608551553
– volume: 26
  start-page: 29
  ident: B11
  article-title: The Storegga tsunami along the Norwegian coast, its age and runup.
  publication-title: Boreas
  doi: 10.1111/j.1502-3885.1997.tb00649.x
– volume: 33
  year: 2006
  ident: B35
  article-title: Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment.
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL028010
– year: 2006
  ident: B64
  article-title: Hydrodynamics of tsunami waves
  publication-title: Waves in Geophysical Fluids. CISM International Centre for Mechanical Sciences
  doi: 10.1007/978-3-211-69356-8_1
– volume: 21
  start-page: 595
  year: 2002
  ident: B51
  article-title: The relationship between degassing and rockfall signals at Soufriere Hills Volcano, Montserrat.
  publication-title: Geol. Soc. Lond. Mem.
  doi: 10.1144/GSL.MEM.2002.021.01.28
– year: 1968
  ident: B8
  publication-title: Stability of Natural Rock Slopes in Norway
– volume: 53
  start-page: 951
  year: 2008
  ident: B27
  article-title: Geological and environmental implications of the evaporite karst in Spain.
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-007-0721-y
– volume: 48
  start-page: 269
  year: 2001
  ident: B56
  article-title: The physical character of subaqueous sedimentary density flows and their deposits.
  publication-title: Sedimentology
  doi: 10.1046/j.1365-3091.2001.00360.x
– volume: 107
  start-page: 275
  year: 2009
  ident: B38
  article-title: Climate change effects on landslides along the southwest coast of British Columbia.
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2008.12.009
– volume: 56
  start-page: 897
  year: 2009
  ident: B75
  article-title: Experimental investigation of impact generated tsunami; related to a potential rock slide, Western Norway.
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2009.04.007
– volume: 248
  start-page: 359
  year: 2001
  ident: B82
  article-title: GESPECOR: a versatile tool in gamma-ray spectrometry.
  publication-title: J. Radioanal. Nuclear Chem.
  doi: 10.1023/A:1010619806898
– volume: 267
  start-page: 51
  year: 2006
  ident: B18
  article-title: ITRAX: description and evaluation of a new multi-function X-ray core scanner.
  publication-title: Geol. Soc. Lond. Spec. Publ.
  doi: 10.1144/GSL.SP.2006.267.01.04
– volume: 116
  year: 2011
  ident: B34
  article-title: Slope instabilities in Dolomieu crater, Réunion Island: From seismic signals to rockfall characteristics.
  publication-title: J. Geophys. Res. Earth Surf.
  doi: 10.1029/2011JF002038
– start-page: 1
  year: 2012
  ident: B88
  article-title: Wave-propagation velocity, tsunami speed, amplitudes, dynamic water-attenuation factors
  publication-title: Proceedings of World Conference on Earthquake Engineering
– volume: 142
  year: 2020
  ident: B15
  article-title: Numerical modelling of tsunamis generated by iceberg calving validated with large-scale laboratory experiments.
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2020.103647
– volume: 15
  start-page: 657
  ident: B49
  article-title: Simulating tsunami propagation in fjords with long-wave models.
  publication-title: Nat. Hazard. Earth Syst. Sci.
  doi: 10.5194/nhess-15-657-2015
– volume: 125
  year: 2020
  ident: B71
  article-title: Tsunamis generated by submerged landslides: numerical analysis of the near-field wave characteristics.
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2020JC016157
– start-page: 2155
  year: 2003
  ident: B73
  publication-title: Some Aspects of Energy balance and tsunami generation by earthquakes and landslides, Landslide Tsunamis: Recent Findings and Research Directions.
  doi: 10.1007/978-3-0348-7995-8_18
– volume: 98
  start-page: 441
  year: 1998
  ident: B87
  article-title: Some dynamical effects of internal waves and the sloping sides of lakes.
  publication-title: Phys. Proces. Lakes Oceans
  doi: 10.1029/CE054p0441
– volume: 21
  start-page: 1935
  year: 2002
  ident: B2
  article-title: Paraglacial geomorphology.
  publication-title: Q. Sci. Rev.
  doi: 10.1016/S0277-3791(02)00005-7
– volume: 103
  start-page: 43
  year: 2010
  ident: B13
  article-title: Rossberg landslide history and flood chronology as recorded in Lake Lauerz sediments (Central Switzerland).
  publication-title: Swiss J. Geosci.
  doi: 10.1007/s00015-010-0001-9
– volume: 122
  start-page: 4110
  year: 2017
  ident: B28
  article-title: The 2014 Lake Askja rockslide-induced tsunami: optimization of numerical tsunami model using observed data.
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1002/2016JC012496
– volume: 9
  start-page: 469
  year: 2009
  ident: B36
  article-title: Integrated database for rapid mass movements in Norway.
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-9-469-2009
– volume: 77
  start-page: 51
  year: 1997
  ident: B74
  article-title: Glacial geology and deglaciation chronology of the area between inner Nordfjord and Jostedalsbreen Strynefjellet, western Norway.
  publication-title: Norsk Geol. Tidsskr.
– start-page: 1
  year: 1936
  ident: B41
  publication-title: Skredet i Tafjord 7. april 1934. Bergens Museums Årbok 1936 Naturvitenskapelig Rekke
– year: 2002
  ident: B94
  publication-title: Suboceanic landslides. Yearbook of Science and Technology.
– year: 2006
  ident: B26
  article-title: The Loen rock slide-an analysis of the stability
  publication-title: Proceedings of the 11th International Conference and Field Trip on Landslides, Norway, September 2005: Landslides and Avalanches
– volume: 10
  start-page: 87
  year: 1991
  ident: B60
  article-title: Holocene glacial and climate history of the Jostedalsbreen region, Western Norway; evidence from lake sediments and terrestrial deposits.
  publication-title: Q. Sci. Rev.
  doi: 10.1016/0277-3791(91)90032-P
– year: 2014
  ident: B31
  publication-title: Raset frå Ramnefjell: Reaksjonar og Tiltak Etter Lodalsulykka i 1936, Department of Archaeology, Conservation and History
– start-page: 291
  year: 2016
  ident: B47
  publication-title: Mass Wasting History Within Lake Ohrid Basin (Albania/Macedonia) Over the Last 600 ka, Submarine Mass Movements and their Consequences.
  doi: 10.1007/978-3-319-20979-1_29
– volume: 15
  start-page: 387
  year: 2017
  ident: B89
  article-title: State-of-the-art remote characterization of shallow marine sediments: the road to a fully integrated solution.
  publication-title: Near Surf. Geophys.
  doi: 10.3997/1873-0604.2017024
– volume: 128
  start-page: 84
  year: 2017
  ident: B3
  article-title: Wavenumber-frequency analysis of landslide-generated tsunamis at a conical island. Part II: EOF and modal analysis.
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2017.07.008
– volume: 28
  start-page: 435
  year: 2003
  ident: B16
  article-title: Tsunami hazard and risk in Canada.
  publication-title: Nat. Hazards
  doi: 10.1023/A:1022994411319
– volume: 82
  start-page: 183
  year: 2012
  ident: B76
  article-title: 210Pb sediment radiochronology: an integrated formulation and classification of dating models.
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2010.12.024
– volume: 96
  start-page: 9
  year: 2016
  ident: B29
  article-title: Morphological signatures of mass wasting and delta processes in a fjord-lake system: insights from Lovatnet, western Norway.
  publication-title: Norweg. J. Geol.
  doi: 10.17850/njg96-3-02
– volume: 19
  start-page: 3
  year: 2001
  ident: B22
  article-title: Lituya Bay case rockslide impact and wave run-up.
  publication-title: Sci. Tsun. Hazards
– volume: 5
  start-page: 756
  year: 2012
  ident: B44
  article-title: Giant Lake Geneva tsunami in AD 563.
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1618
– volume: 11
  year: 2019
  ident: B21
  article-title: Landslide-generated Impulse waves in reservoirs: basics and computation.
  publication-title: VAW Mitteil.
– volume: 241
  start-page: 137
  year: 2007
  ident: B25
  article-title: The 1996 AD delta collapse and large turbidite in Lake Brienz.
  publication-title: Mar. Geol.
  doi: 10.1016/j.margeo.2007.03.011
– volume: 88
  start-page: 101
  year: 2014
  ident: B30
  article-title: Rockslide tsunamis in complex fjords: from an unstable rock slope at Åkerneset to tsunami risk in western Norway.
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2014.02.003
– year: 1996
  ident: B45
  publication-title: Tsunamis Affecting Alaska, 1737-1996.
– volume: 55
  start-page: 57
  year: 2001
  ident: B70
  article-title: The 1345 slide and flood disaster in the Gauldalen valley, Mid-Norway: a new interpretation.
  publication-title: Norsk Geograf. Tidsskr.
  doi: 10.1080/00291950121138
– year: 2011
  ident: B80
  publication-title: Mass-Transport Deposits in Deepwater Settings.
  doi: 10.2110/sepmsp.096
– volume: 18
  start-page: 421
  year: 2014
  ident: B86
  article-title: Estimates of lost material stock of buildings and roads due to the Great East Japan Earthquake and tsunami.
  publication-title: J. Industr. Ecol.
  doi: 10.1111/jiec.12126
– start-page: 171
  year: 2001
  ident: B1
  article-title: Chronostratigraphic techniques in recent sediments
  publication-title: Tracking Environmental Change Using Lake Sediments. Volume I: Basin Analysis, Coring, and Chronological Techniques
  doi: 10.1007/0-306-47669-X_9
– volume: 92
  start-page: 12
  year: 2014
  ident: B48
  article-title: Experiments on slide generated waves in a 1: 500 scale fjord model.
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2014.06.010
– volume: 21
  start-page: 1
  year: 2021
  ident: B61
  article-title: A tsunamigenic delta collapse and its associated tsunami deposits in and around Lake Sils, Switzerland.
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-021-04533-y
– volume: 6
  year: 2018
  ident: B17
  article-title: Complex and cascading triggering of submarine landslides and turbidity currents at volcanic islands revealed from integration of high-resolution onshore and offshore surveys.
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2018.00223
– volume: 15
  start-page: 1245
  year: 2005
  ident: B59
  article-title: Briksdalsbreen in western Norway: AD 1900-2004 frontal fluctuations as a combined effect of variations in winter precipitation and summer temperature.
  publication-title: Holocene
  doi: 10.1191/0959683605hl897rr
– volume: 32
  start-page: 1600
  year: 2006
  ident: B83
  article-title: Coupled model of surface water flow, sediment transport and morphological evolution.
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2006.02.020
– volume: 23
  start-page: 171
  year: 2011
  ident: B93
  article-title: Holocene mass-wasting events in Lago Fagnano, Tierra del Fuego (54° S): implications for paleoseismicity of the Magallanes-Fagnano transform fault.
  publication-title: Basin Res.
  doi: 10.1111/j.1365-2117.2010.00489.x
– year: 1963
  ident: B62
  publication-title: Ramnefjellet på Austsida av Lodalsvatnet.
– year: 2006
  ident: B24
  publication-title: Skredulykker i Norge.
– volume: 50
  start-page: 253
  year: 1960
  ident: B53
  article-title: Giant waves in Lituya Bay, Alaska.
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.3133/pp354C
– volume: 6
  start-page: 471
  year: 2020
  ident: B84
  article-title: Source to Sink Reconstruction of a Holocene Fjord-infill: depositional patterns, suspended sediment yields, wind-induced circulation patterns and trapping efficiency for Lake Strynevatnet, inner Nordfjord, Norway.
  publication-title: Deposit. Record
  doi: 10.1002/dep2.101
– year: 1954
  ident: B39
  publication-title: Beretning over Norges Geotekniske Institutts Virksomhet fra 1. Januar 1954 til 31. Desember 1955, NGI-Report.
– volume: 1907
  year: 1907
  ident: B69
  article-title: Skredet i Loen 15 de januar 1905. Norges geologiske undersøkelse.
  publication-title: Aarbok
– start-page: 757
  year: 2009
  ident: B4
  article-title: The origin of instability phenomena along the karst-flysch contacts
  publication-title: ISRM International Symposium Rock Engineering in Difficult Ground Conditions: Soft Rock and Karst
– volume: 328
  start-page: 73
  year: 2015
  ident: B42
  article-title: The sedimentary record of the 1960 tsunami in two coastal lakes on Isla de Chiloé, south central Chile.
  publication-title: Sedimen. Geol.
  doi: 10.1016/j.sedgeo.2015.08.004
– year: 1983
  ident: B58
  publication-title: Lodalen, Fager og Fårleg.
– volume: 80
  start-page: 241
  year: 1987
  ident: B81
  article-title: Earthquake and seiche deposits in Lake Lucerne, Switzerland.
  publication-title: Eclo. Geol. Helvet.
– start-page: 413
  year: 2019
  ident: B55
  article-title: Tsunami hazard from lacustrine mass wasting in Lake Tekapo, New Zealand
  publication-title: Subaqueous Mass Movements and their Consequences: Assessing Geohazards, Environmental Implications and Economic Significance of Subaqueous Landslides
  doi: 10.1144/SP477.21
– volume: 12
  year: 2021
  ident: B63
  article-title: Seismic control of large prehistoric rockslides in the Eastern Alps.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21327-9
– volume: 157
  start-page: 875
  year: 2000
  ident: B19
  article-title: Tsunami deposits.
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s000240050010
– volume: 287
  start-page: 126
  year: 2017
  ident: B7
  article-title: Contemporary suspended sediment dynamics within two partly glacierized mountain drainage basins in western Norway (Erdalen and Bødalen, inner Nordfjord).
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.12.013
– volume: 130
  start-page: 287
  year: 2004
  ident: B23
  article-title: Near field characteristics of landslide generated impulse waves.
  publication-title: J. Water. Port Coast. Ocean Eng.
  doi: 10.1061/(ASCE)0733-950X(2004)130:6(287)
– year: 2009
  ident: B85
  publication-title: The End is Nigh: A History of Natural Disasters.
– volume: 11
  start-page: 86
  year: 1999
  ident: B14
  article-title: 1822 earthquake-triggered homogenite in Lake Le Bourget (NW Alps).
  publication-title: Terra Nova
  doi: 10.1046/j.1365-3121.1999.00230.x
– volume: 28
  start-page: 391
  year: 2013
  ident: B92
  article-title: Evidence for Storegga tsunami run-up at the head of Nordfjord, western Norway.
  publication-title: J. Q. Sci.
  doi: 10.1002/jqs.2633
– volume: 20
  start-page: 1
  year: 2020
  ident: B78
  article-title: Assessing the protective role of alpine forests against rockfall at regional scale.
  publication-title: Eur. J. For. Res.
– volume: 228
  start-page: 552
  year: 2015
  ident: B6
  article-title: Sediment sources, spatiotemporal variability and rates of fluvial bedload transport in glacier-connected steep mountain valleys in western Norway (Erdalen and Bødalen drainage basins).
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2014.10.018
– volume: 165
  year: 2021
  ident: B66
  article-title: Numerical simulation of impulse wave generation by idealized landslides with OpenFOAM.
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2020.103815
– volume: 62
  start-page: 1305
  year: 2015
  ident: B43
  article-title: Reconstructing 4000 years of mass movement and tsunami history in a deep peri-Alpine lake (Lake Geneva, France-Switzerland).
  publication-title: Sedimentology
  doi: 10.1111/sed.12190
– volume: 267
  start-page: 79
  year: 2006
  ident: B72
  article-title: Turbidite emplacement on the southern Balearic Abyssal Plain (western Mediterranean Sea) during Marine Isotope Stages 1–3: an application of ITRAX XRF scanning of sediment cores to lithostratigraphic analysis.
  publication-title: Geol. Soc. Lond. Spec. Publ.
  doi: 10.1144/GSL.SP.2006.267.01.06
– volume: 373
  ident: B50
  article-title: On the characteristics of landslide tsunamis.
  publication-title: Philos. Transact. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2014.0376
– volume: 117
  year: 2012
  ident: B54
  article-title: Physical modeling of tsunamis generated by three-dimensional deformable granular landslides.
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2011JC007850
– start-page: 475
  year: 2006
  ident: B9
  publication-title: Rock Slope Failures in Norwegian Fjord Areas: Examples, Spatial Distribution and Temporal Pattern, Landslides From Massive Rock Slope Failure.
  doi: 10.1007/978-1-4020-4037-5_26
– volume: 44
  start-page: 1115
  ident: B10
  article-title: Tsunami sedimentary facies deposited by the Storegga tsunami in shallow marine basins and coastal lakes, western Norway.
  publication-title: Sedimentology
  doi: 10.1046/j.1365-3091.1997.d01-63.x
– start-page: 185
  year: 1988
  ident: B37
  article-title: Deforestation and rockfall
  publication-title: Proceedings of the International Congress, Interpraevent
– volume: 77
  start-page: 192
  year: 2012
  ident: B91
  article-title: A new approach for reconstructing glacier variability based on lake sediments recording input from more than one glacier.
  publication-title: Q. Res.
  doi: 10.1016/j.yqres.2011.10.001
– volume: 62
  start-page: 725
  year: 2020
  ident: B68
  article-title: The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP).
  publication-title: Radiocarbon
  doi: 10.1017/RDC.2020.41
– volume: 104
  start-page: 113
  year: 2015
  ident: B32
  article-title: On the effect of the water body geometry on landslide–tsunamis: Physical insight from laboratory tests and 2D to 3D wave parameter transformation.
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2015.06.006
– start-page: 63
  year: 2014
  ident: B33
  publication-title: Catalogue of Historical Displacement Waves and Landslide-Triggered Tsunamis in Norway, Engineering Geology for Society and Territory
  doi: 10.1007/978-3-319-08660-6_13
– volume: 3
  start-page: 159
  year: 2006
  ident: B57
  article-title: Global landslide and avalanche hotspots.
  publication-title: Landslides
  doi: 10.1007/s10346-006-0036-1
– year: 1937
  ident: B52
  publication-title: Naturkatastrofer i Norge, Nasjonalbiblioteket Digital 2009-09-21.
– volume: 474
  start-page: 106
  year: 2009
  ident: B67
  article-title: The Tjellefonna fault system of Western Norway: linking late-Caledonian extension, post-Caledonian normal faulting, and Tertiary rock column uplift with the landslide-generated tsunami event of 1756.
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2009.02.006
SSID ssj0001325409
Score 2.2637076
Snippet Rock falls and landslides plunging into lakes or small reservoirs can result in tsunamis with extreme wave run-ups. The occurrence of these natural hazards in...
SourceID doaj
hal
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
SubjectTerms Climatology
Earth Sciences
Environmental Sciences
Geography
geohazard
Geomorphology
Humanities and Social Sciences
lacustrine sediments
mass transport deposits
numerical modeling
Sciences of the Universe
shallow geophysics
tsunami deposit
Title Anatomy of a Catastrophe: Reconstructing the 1936 Rock Fall and Tsunami Event in Lake Lovatnet, Western Norway
URI https://hal.science/hal-03573101
https://doaj.org/article/dfb39e0b37f74635a71de3c7cd21b611
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEE-xvDRCnBChSZz4wW1bdVmhVQ-oFb1F4xegLl7UBtD--84ku9VyKRdytOzEGo_yzWePvxHiTTQhKRvrIilDBAVtU2DrqiK1jUODHunhbIsTNT9rPp235zulvjgnbJQHHg13EJKTNpZO6qQbQkfUVYjSax_qyqnxVi9h3g6ZGnZXJBGf0o7HmMTC7EEix-Hcybp6r4iYcVm1HSAa9PoJXr5tt1MHeJndF_c2cSFMx_k8EHdifij2Pw51d9ePRJ5mYsc_1rBKgHCEPV71lywJ8AGYQG5lYPNXoIAOKFxS8Jn-dDDD5RIwBzi9-sWl5-GY8xvhe4YFXkRYcEXUHPt38GVUTICT1eUfXD8WZ7Pj06N5sSmVUHhpTF9YTJaQunbGxiaUOioZKxd8UI0JtdMyIV8Zba2PpUZC9SBjshQ7OGUD6iSfiL28yvGpgKb0UXujguNTWdWgMxWmqJOXTWm8m4hya7fOb3TEuZzFsiM-wabuBlN3bOpuNPVEvL0Z8nMU0bit8yEvxk1H1r8eGsgruo1XdP_yiol4TUv51zvm00XHbaVsNcW01e_q2f_40nNxlyfPCQW1eSH2aLnjS4pTevdqcMlrI4vlng
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anatomy+of+a+Catastrophe%3A+Reconstructing+the+1936+Rock+Fall+and+Tsunami+Event+in+Lake+Lovatnet%2C+Western+Norway&rft.jtitle=Frontiers+in+earth+science+%28Lausanne%29&rft.au=Waldmann%2C+Nicolas&rft.au=Vasskog%2C+Kristian&rft.au=Simpson%2C+Guy&rft.au=Chapron%2C+Emmanuel&rft.date=2021-05-28&rft.issn=2296-6463&rft.eissn=2296-6463&rft.volume=9&rft_id=info:doi/10.3389%2Ffeart.2021.671378&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_feart_2021_671378
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-6463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-6463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-6463&client=summon