Diblock copolymer pattern protection by silver cluster reinforcement

Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular, polystyrene- block -poly-4-vinylpyridine (PS- b -P4VP) is a fascinating base material as it forms an ordered micellar structure on silicon sur...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 15; no. 38; pp. 15768 - 15774
Main Authors Bulut, Yusuf, Sochor, Benedikt, Harder, Constantin, Reck, Kristian, Drewes, Jonas, Xu, Zhuijun, Jiang, Xiongzhuo, Meinhardt, Alexander, Jeromin, Arno, Kohantorabi, Mona, Noei, Heshmat, Keller, Thomas F, Strunskus, Thomas, Faupel, Franz, Müller-Buschbaum, Peter, Roth, Stephan V
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 05.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular, polystyrene- block -poly-4-vinylpyridine (PS- b -P4VP) is a fascinating base material as it forms an ordered micellar structure on silicon surfaces. In this work, silver (Ag) is applied using direct current magnetron sputter deposition and high-power impulse magnetron sputter deposition on an ordered micellar PS- b -P4VP layer. The fabricated hybrid materials are structurally analyzed by field emission scanning electron microscopy, atomic force microscopy, and grazing incidence small angle X-ray scattering. When applying simple aqueous posttreatment, the pattern is stable and reinforced by Ag clusters, making micellar PS- b -P4VP ordered layers ideal candidates for lithography. The pristine micellar pattern of the diblock copolymer PS- b -P4VP degrades upon drying of a water droplet, which can be stabilized and inhibited upon deposition of silver clusters.
AbstractList Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular, polystyrene- block -poly-4-vinylpyridine (PS- b -P4VP) is a fascinating base material as it forms an ordered micellar structure on silicon surfaces. In this work, silver (Ag) is applied using direct current magnetron sputter deposition and high-power impulse magnetron sputter deposition on an ordered micellar PS- b -P4VP layer. The fabricated hybrid materials are structurally analyzed by field emission scanning electron microscopy, atomic force microscopy, and grazing incidence small angle X-ray scattering. When applying simple aqueous posttreatment, the pattern is stable and reinforced by Ag clusters, making micellar PS- b -P4VP ordered layers ideal candidates for lithography.
Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular, polystyrene-block-poly-4-vinylpyridine (PS-b-P4VP) is a fascinating base material as it forms an ordered micellar structure on silicon surfaces. In this work, silver (Ag) is applied using direct current magnetron sputter deposition and high-power impulse magnetron sputter deposition on an ordered micellar PS-b-P4VP layer. The fabricated hybrid materials are structurally analyzed by field emission scanning electron microscopy, atomic force microscopy, and grazing incidence small angle X-ray scattering. When applying simple aqueous posttreatment, the pattern is stable and reinforced by Ag clusters, making micellar PS-b-P4VP ordered layers ideal candidates for lithography.
Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular, polystyrene- block -poly-4-vinylpyridine (PS- b -P4VP) is a fascinating base material as it forms an ordered micellar structure on silicon surfaces. In this work, silver (Ag) is applied using direct current magnetron sputter deposition and high-power impulse magnetron sputter deposition on an ordered micellar PS- b -P4VP layer. The fabricated hybrid materials are structurally analyzed by field emission scanning electron microscopy, atomic force microscopy, and grazing incidence small angle X-ray scattering. When applying simple aqueous posttreatment, the pattern is stable and reinforced by Ag clusters, making micellar PS- b -P4VP ordered layers ideal candidates for lithography. The pristine micellar pattern of the diblock copolymer PS- b -P4VP degrades upon drying of a water droplet, which can be stabilized and inhibited upon deposition of silver clusters.
Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular, polystyrene-block-poly-4-vinylpyridine (PS-b-P4VP) is a fascinating base material as it forms an ordered micellar structure on silicon surfaces. In this work, silver (Ag) is applied using direct current magnetron sputter deposition and high-power impulse magnetron sputter deposition on an ordered micellar PS-b-P4VP layer. The fabricated hybrid materials are structurally analyzed by field emission scanning electron microscopy, atomic force microscopy, and grazing incidence small angle X-ray scattering. When applying simple aqueous posttreatment, the pattern is stable and reinforced by Ag clusters, making micellar PS-b-P4VP ordered layers ideal candidates for lithography.Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular, polystyrene-block-poly-4-vinylpyridine (PS-b-P4VP) is a fascinating base material as it forms an ordered micellar structure on silicon surfaces. In this work, silver (Ag) is applied using direct current magnetron sputter deposition and high-power impulse magnetron sputter deposition on an ordered micellar PS-b-P4VP layer. The fabricated hybrid materials are structurally analyzed by field emission scanning electron microscopy, atomic force microscopy, and grazing incidence small angle X-ray scattering. When applying simple aqueous posttreatment, the pattern is stable and reinforced by Ag clusters, making micellar PS-b-P4VP ordered layers ideal candidates for lithography.
Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular, polystyrene-block-poly-4-vinylpyridine (PS-b-P4VP) is a fascinating base material as it forms an ordered micellar structure on silicon surfaces. In this work, silver (Ag) is applied using direct current magnetron sputter deposition and high-power impulse magnetron sputter deposition on an ordered micellar PS-b-P4VP layer. The fabricated hybrid materials are structurally analyzed by field emission scanning electron microscopy, atomic force microscopy, and grazing incidence small angle X-ray scattering. When applying simple aqueous posttreatment, the pattern is stable and reinforced by Ag clusters, making micellar PS-b-P4VP ordered layers ideal candidates for lithography. The pristine micellar pattern of the diblock copolymer PS-b-P4VP degrades upon drying of a water droplet, which can be stabilized and inhibited upon deposition of silver clusters.
Author Noei, Heshmat
Harder, Constantin
Müller-Buschbaum, Peter
Strunskus, Thomas
Keller, Thomas F
Jeromin, Arno
Reck, Kristian
Kohantorabi, Mona
Sochor, Benedikt
Xu, Zhuijun
Jiang, Xiongzhuo
Faupel, Franz
Meinhardt, Alexander
Roth, Stephan V
Bulut, Yusuf
Drewes, Jonas
AuthorAffiliation Technical University of Munich
Chair for Functional Materials
Centre for X-ray and Nano Science CXNS
KTH Royal Institute of Technology
Deutsches Elektronen-Synchrotron DESY
Christian-Albrechts Universität zu Kiel
Department of Physics
Technische Universität München
Chair for Multicomponent Materials
Faculty of Engineering
Deutsches Elektronen-Synchtrotron DESY
Department of Materials Science
TUM School of Natural Sciences
University of Hamburg
Heinz Maier-Leibnitz Zentrum (MLZ)
AuthorAffiliation_xml – sequence: 0
  name: Department of Materials Science
– sequence: 0
  name: KTH Royal Institute of Technology
– sequence: 0
  name: University of Hamburg
– sequence: 0
  name: Faculty of Engineering
– sequence: 0
  name: Heinz Maier-Leibnitz Zentrum (MLZ)
– sequence: 0
  name: Chair for Functional Materials
– sequence: 0
  name: Technische Universität München
– sequence: 0
  name: Technical University of Munich
– sequence: 0
  name: TUM School of Natural Sciences
– sequence: 0
  name: Christian-Albrechts Universität zu Kiel
– sequence: 0
  name: Department of Physics
– sequence: 0
  name: Chair for Multicomponent Materials
– sequence: 0
  name: Deutsches Elektronen-Synchrotron DESY
– sequence: 0
  name: Deutsches Elektronen-Synchtrotron DESY
– sequence: 0
  name: Centre for X-ray and Nano Science CXNS
Author_xml – sequence: 1
  givenname: Yusuf
  surname: Bulut
  fullname: Bulut, Yusuf
– sequence: 2
  givenname: Benedikt
  surname: Sochor
  fullname: Sochor, Benedikt
– sequence: 3
  givenname: Constantin
  surname: Harder
  fullname: Harder, Constantin
– sequence: 4
  givenname: Kristian
  surname: Reck
  fullname: Reck, Kristian
– sequence: 5
  givenname: Jonas
  surname: Drewes
  fullname: Drewes, Jonas
– sequence: 6
  givenname: Zhuijun
  surname: Xu
  fullname: Xu, Zhuijun
– sequence: 7
  givenname: Xiongzhuo
  surname: Jiang
  fullname: Jiang, Xiongzhuo
– sequence: 8
  givenname: Alexander
  surname: Meinhardt
  fullname: Meinhardt, Alexander
– sequence: 9
  givenname: Arno
  surname: Jeromin
  fullname: Jeromin, Arno
– sequence: 10
  givenname: Mona
  surname: Kohantorabi
  fullname: Kohantorabi, Mona
– sequence: 11
  givenname: Heshmat
  surname: Noei
  fullname: Noei, Heshmat
– sequence: 12
  givenname: Thomas F
  surname: Keller
  fullname: Keller, Thomas F
– sequence: 13
  givenname: Thomas
  surname: Strunskus
  fullname: Strunskus, Thomas
– sequence: 14
  givenname: Franz
  surname: Faupel
  fullname: Faupel, Franz
– sequence: 15
  givenname: Peter
  surname: Müller-Buschbaum
  fullname: Müller-Buschbaum, Peter
– sequence: 16
  givenname: Stephan V
  surname: Roth
  fullname: Roth, Stephan V
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-338743$$DView record from Swedish Publication Index
BookMark eNpt0d9rFDEQB_AgLXjX-uK7sOCLCGuTnd38eDzu_AWlhVJ9DdnsnOa6l6xJVrn_3tSzFYpPCcxnQma-S3Lig0dCXjL6jlFQFwP4SKFhnXlGFg1taQ0gmpPHO2-fk2VKO0q5Ag4Lstm4fgz2rrJhCuNhj7GaTM4YfTXFkNFmF3zVH6rkxp-laMc5lWoV0fltiBb36PM5Od2aMeGLv-cZ-fLh_e36U315_fHzenVZW5Ay10oK2wnTKdGyXqG0Q98ZxpkSoGy3pVx0amDMgG1xGChKFLwTvRo4E9ZiD2ekPr6bfuE093qKbm_iQQfj9MZ9XekQv-m7_F0DSNFC8W-OvozyY8aU9d4li-NoPIY56UZyyZhspCz09RO6C3P0ZZqiRMMlCEWLokdlY0gp4lZbl839inI0btSM6vsY9Aaubv7EsCotb5-0PPz6v_jVEcdkH92_TOE3hIGUEA
CitedBy_id crossref_primary_10_1016_j_apsusc_2024_160392
crossref_primary_10_1021_acsami_4c12138
crossref_primary_10_1039_D4NH00159A
crossref_primary_10_1021_acs_langmuir_4c02344
Cites_doi 10.1021/acsami.1c08712
10.1021/am5049543
10.1021/acsami.6b15172
10.1002/slct.202000128
10.1021/acs.macromol.7b00438
10.1021/acsanm.1c00829
10.1126/science.1162950
10.1002/adma.200702478
10.1002/anie.201805319
10.1021/acsami.1c08233
10.1021/acs.macromol.9b01947
10.1021/acsapm.0c01270
10.1002/chem.201801521
10.1557/s43580-022-00478-x
10.1126/science.276.5317.1401
10.1107/S1600576718017296
10.1021/ja011262j
10.1039/C9NR04038B
10.1088/0957-4484/16/8/014
10.1021/accountsmr.1c00186
10.1002/adem.201000231
10.1021/am507727f
10.1021/am402285e
10.1039/c3tb20603c
10.1021/acsanm.3c00959
10.1039/D2RA04803E
10.1039/D1AN01708J
10.1039/c3sm27130g
10.1063/1.2161926
10.1063/1.555688
10.1038/nmat2162
10.1016/j.colsurfa.2010.10.034
10.1021/j100834a012
10.1039/C7RA09149D
10.1021/ma301531a
10.1039/C5TC04342E
10.1117/1.2363167
10.1021/nn900077s
10.1007/s00339-004-2841-5
10.1021/acscatal.7b02844
10.1021/nn800073f
10.1021/nl0515753
10.1088/0963-0252/17/3/035021
10.1016/j.surfcoat.2015.10.070
10.1039/b915317a
10.1021/acsapm.1c00585
10.1021/acsami.1c03905
10.1021/la034891a
10.1002/adfm.201706226
10.1002/adpr.202200127
10.1021/ma071321z
10.1021/acsami.9b08594
10.1103/RevModPhys.57.827
10.1021/jp804505k
10.1039/C6RA23923D
10.1021/acsmacrolett.8b00119
10.1002/admi.201600271
10.1039/D1NR01480C
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOI 10.1039/d3nr03215a
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database

MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 15774
ExternalDocumentID oai_DiVA_org_kth_338743
10_1039_D3NR03215A
d3nr03215a
GroupedDBID ---
-JG
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ABIQK
ACRPL
ADNMO
ADTPV
AFDQA
AGQPQ
AHGXI
ALSGL
ANBJS
ANLMG
AOWAS
ASPBG
AVWKF
CAG
COF
D8T
D8V
EJD
FEDTE
HVGLF
J3G
J3H
L-8
R56
ZZAVC
ID FETCH-LOGICAL-c388t-987c57a59741b9e8cdb5a1619739c5f06759d11a3c4edd0e8e7657b9d617cceb3
ISSN 2040-3364
2040-3372
IngestDate Thu Aug 21 07:20:14 EDT 2025
Fri Jul 11 15:28:12 EDT 2025
Mon Jun 30 04:38:06 EDT 2025
Thu Apr 24 23:05:56 EDT 2025
Tue Jul 01 00:42:10 EDT 2025
Tue Dec 17 20:58:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c388t-987c57a59741b9e8cdb5a1619739c5f06759d11a3c4edd0e8e7657b9d617cceb3
Notes https://doi.org/10.1039/d3nr03215a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3931-5635
0000-0002-0823-6216
0000-0002-6940-6012
0000-0003-3877-9999
0000-0002-3770-6344
0000-0003-3367-1655
0000-0002-9566-6088
0000-0003-1294-3527
0000-0003-0090-3990
0000-0003-0552-3188
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-338743
PQID 2872683790
PQPubID 2047485
PageCount 7
ParticipantIDs proquest_miscellaneous_2868118288
proquest_journals_2872683790
crossref_citationtrail_10_1039_D3NR03215A
crossref_primary_10_1039_D3NR03215A
rsc_primary_d3nr03215a
swepub_primary_oai_DiVA_org_kth_338743
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-05
PublicationDateYYYYMMDD 2023-10-05
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-05
  day: 05
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Nanoscale
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Qiang (D3NR03215A/cit20/1) 2018; 7
Roth (D3NR03215A/cit43/1) 2015; 7
Yi (D3NR03215A/cit7/1) 2017; 7
Guo (D3NR03215A/cit4/1) 2023; 6
Amarandei (D3NR03215A/cit39/1) 2014; 6
Park (D3NR03215A/cit41/1) 2008; 2
Bandorf (D3NR03215A/cit47/1) 2016; 290
Zhang (D3NR03215A/cit53/1) 2021; 13
De Gennes (D3NR03215A/cit58/1) 1985; 57
Jung (D3NR03215A/cit8/1) 2019; 11
Roth (D3NR03215A/cit45/1) 2006; 88
Amarandei (D3NR03215A/cit38/1) 2013; 5
Amarandei (D3NR03215A/cit40/1) 2013; 9
Le (D3NR03215A/cit11/1) 2020; 53
Mezzenga (D3NR03215A/cit14/1) 2003; 19
Piper (D3NR03215A/cit26/1) 2023
Issa (D3NR03215A/cit54/1) 2021; 13
Sherry (D3NR03215A/cit29/1) 2005; 5
Faupel (D3NR03215A/cit32/1) 2010; 12
Lundin (D3NR03215A/cit46/1) 2008; 17
Liu (D3NR03215A/cit24/1) 2018; 57
Walter (D3NR03215A/cit3/1) 2006; 45
Chakraborty (D3NR03215A/cit37/1) 2013; 1
Zheng (D3NR03215A/cit36/1) 2021; 2
Zhang (D3NR03215A/cit51/1) 2021; 3
Nelson (D3NR03215A/cit60/1) 2019; 52
Cataliotti (D3NR03215A/cit49/1) 2009; 11
Ai (D3NR03215A/cit21/1) 2017; 4
Wang (D3NR03215A/cit55/1) 2021; 13
Good (D3NR03215A/cit59/1) 1960; 64
Park (D3NR03215A/cit17/1) 1997; 276
Noei (D3NR03215A/cit56/1) 2016; 2
Gensch (D3NR03215A/cit31/1) 2019; 11
Chang (D3NR03215A/cit25/1) 2018; 8
Sarathlal (D3NR03215A/cit2/1) 2011; 98
Schwartzkopf (D3NR03215A/cit48/1) 2017; 9
Zhang (D3NR03215A/cit1/1) 2022; 12
Pyatenko (D3NR03215A/cit52/1) 2004; 79
Wang (D3NR03215A/cit35/1) 2001; 123
Cho (D3NR03215A/cit10/1) 2017; 50
Zhang (D3NR03215A/cit15/1) 2012; 45
Singha (D3NR03215A/cit50/1) 2021; 3
Cao (D3NR03215A/cit34/1) 2022; 3
Tsao (D3NR03215A/cit27/1) 2021; 146
Vargaftik (D3NR03215A/cit57/1) 1983; 12
Tang (D3NR03215A/cit18/1) 2008; 322
Alegret (D3NR03215A/cit30/1) 2008; 112
Si (D3NR03215A/cit42/1) 2011; 373
Haider (D3NR03215A/cit6/1) 2016; 6
Park (D3NR03215A/cit13/1) 2007; 40
Schaper (D3NR03215A/cit44/1) 2021; 13
Wi (D3NR03215A/cit12/1) 2016; 4
Dörr (D3NR03215A/cit9/1) 2018; 24
Berezkin (D3NR03215A/cit19/1) 2018; 28
Krishnamoorthy (D3NR03215A/cit22/1) 2008; 20
Schürmann (D3NR03215A/cit33/1) 2005; 16
Shah (D3NR03215A/cit5/1) 2020; 5
Gensch (D3NR03215A/cit16/1) 2021; 4
Shankar (D3NR03215A/cit23/1) 2009; 3
Anker (D3NR03215A/cit28/1) 2008; 7
References_xml – volume: 13
  start-page: 29222
  year: 2021
  ident: D3NR03215A/cit53/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c08712
– volume: 6
  start-page: 20758
  year: 2014
  ident: D3NR03215A/cit39/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5049543
– volume: 9
  start-page: 5629
  year: 2017
  ident: D3NR03215A/cit48/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15172
– volume: 5
  start-page: 3897
  year: 2020
  ident: D3NR03215A/cit5/1
  publication-title: ChemistrySelect
  doi: 10.1002/slct.202000128
– volume: 50
  start-page: 3234
  year: 2017
  ident: D3NR03215A/cit10/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.7b00438
– volume: 4
  start-page: 4245
  year: 2021
  ident: D3NR03215A/cit16/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.1c00829
– volume: 322
  start-page: 429
  year: 2008
  ident: D3NR03215A/cit18/1
  publication-title: Science
  doi: 10.1126/science.1162950
– volume: 20
  start-page: 3533
  year: 2008
  ident: D3NR03215A/cit22/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200702478
– volume: 57
  start-page: 9775
  year: 2018
  ident: D3NR03215A/cit24/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201805319
– volume: 13
  start-page: 34910
  year: 2021
  ident: D3NR03215A/cit55/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c08233
– volume: 53
  start-page: 1967
  year: 2020
  ident: D3NR03215A/cit11/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b01947
– volume: 3
  start-page: 986
  year: 2021
  ident: D3NR03215A/cit51/1
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.0c01270
– volume: 24
  start-page: 8061
  year: 2018
  ident: D3NR03215A/cit9/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201801521
– start-page: 177
  year: 2023
  ident: D3NR03215A/cit26/1
  publication-title: MRS Adv.
  doi: 10.1557/s43580-022-00478-x
– volume: 276
  start-page: 1401
  year: 1997
  ident: D3NR03215A/cit17/1
  publication-title: Science
  doi: 10.1126/science.276.5317.1401
– volume: 52
  start-page: 193
  year: 2019
  ident: D3NR03215A/cit60/1
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S1600576718017296
– volume: 123
  start-page: 12528
  year: 2001
  ident: D3NR03215A/cit35/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja011262j
– volume: 11
  start-page: 18559
  year: 2019
  ident: D3NR03215A/cit8/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR04038B
– volume: 16
  start-page: 1078
  year: 2005
  ident: D3NR03215A/cit33/1
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/16/8/014
– volume: 2
  start-page: 1104
  year: 2021
  ident: D3NR03215A/cit36/1
  publication-title: Acc. Mater. Res.
  doi: 10.1021/accountsmr.1c00186
– volume: 12
  start-page: 1177
  year: 2010
  ident: D3NR03215A/cit32/1
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201000231
– volume: 7
  start-page: 12470
  year: 2015
  ident: D3NR03215A/cit43/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am507727f
– volume: 5
  start-page: 8655
  year: 2013
  ident: D3NR03215A/cit38/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am402285e
– volume: 1
  start-page: 4059
  year: 2013
  ident: D3NR03215A/cit37/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c3tb20603c
– volume: 6
  start-page: 7830
  year: 2023
  ident: D3NR03215A/cit4/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.3c00959
– volume: 12
  start-page: 28376
  year: 2022
  ident: D3NR03215A/cit1/1
  publication-title: RSC Adv.
  doi: 10.1039/D2RA04803E
– volume: 146
  start-page: 7645
  year: 2021
  ident: D3NR03215A/cit27/1
  publication-title: Analyst
  doi: 10.1039/D1AN01708J
– volume: 9
  start-page: 2695
  year: 2013
  ident: D3NR03215A/cit40/1
  publication-title: Soft Matter
  doi: 10.1039/c3sm27130g
– volume: 98
  start-page: 2009
  year: 2011
  ident: D3NR03215A/cit2/1
  publication-title: Appl. Phys. Lett.
– volume: 88
  start-page: 1
  year: 2006
  ident: D3NR03215A/cit45/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2161926
– volume: 12
  start-page: 817
  year: 1983
  ident: D3NR03215A/cit57/1
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555688
– volume: 7
  start-page: 8
  year: 2008
  ident: D3NR03215A/cit28/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2162
– volume: 373
  start-page: 82
  year: 2011
  ident: D3NR03215A/cit42/1
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2010.10.034
– volume: 64
  start-page: 561
  year: 1960
  ident: D3NR03215A/cit59/1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100834a012
– volume: 7
  start-page: 48835
  year: 2017
  ident: D3NR03215A/cit7/1
  publication-title: RSC Adv.
  doi: 10.1039/C7RA09149D
– volume: 45
  start-page: 9139
  year: 2012
  ident: D3NR03215A/cit15/1
  publication-title: Macromolecules
  doi: 10.1021/ma301531a
– volume: 4
  start-page: 2017
  year: 2016
  ident: D3NR03215A/cit12/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC04342E
– volume: 45
  start-page: 103801
  year: 2006
  ident: D3NR03215A/cit3/1
  publication-title: Opt. Eng.
  doi: 10.1117/1.2363167
– volume: 3
  start-page: 893
  year: 2009
  ident: D3NR03215A/cit23/1
  publication-title: ACS Nano
  doi: 10.1021/nn900077s
– volume: 79
  start-page: 803
  year: 2004
  ident: D3NR03215A/cit52/1
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s00339-004-2841-5
– volume: 8
  start-page: 1384
  year: 2018
  ident: D3NR03215A/cit25/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02844
– volume: 2
  start-page: 1363
  year: 2008
  ident: D3NR03215A/cit41/1
  publication-title: ACS Nano
  doi: 10.1021/nn800073f
– volume: 5
  start-page: 2034
  year: 2005
  ident: D3NR03215A/cit29/1
  publication-title: Nano Lett.
  doi: 10.1021/nl0515753
– volume: 17
  start-page: 035021
  year: 2008
  ident: D3NR03215A/cit46/1
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/17/3/035021
– volume: 290
  start-page: 77
  year: 2016
  ident: D3NR03215A/cit47/1
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2015.10.070
– volume: 11
  start-page: 11258
  year: 2009
  ident: D3NR03215A/cit49/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b915317a
– volume: 3
  start-page: 4088
  year: 2021
  ident: D3NR03215A/cit50/1
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.1c00585
– volume: 13
  start-page: 41846
  year: 2021
  ident: D3NR03215A/cit54/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c03905
– volume: 19
  start-page: 8144
  year: 2003
  ident: D3NR03215A/cit14/1
  publication-title: Langmuir
  doi: 10.1021/la034891a
– volume: 28
  start-page: 1706226
  year: 2018
  ident: D3NR03215A/cit19/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706226
– volume: 2
  start-page: 1
  year: 2016
  ident: D3NR03215A/cit56/1
  publication-title: J. Large-Scale Res. Facil.
– volume: 3
  start-page: 2200127
  year: 2022
  ident: D3NR03215A/cit34/1
  publication-title: Adv. Photonics Res.
  doi: 10.1002/adpr.202200127
– volume: 40
  start-page: 9059
  year: 2007
  ident: D3NR03215A/cit13/1
  publication-title: Macromolecules
  doi: 10.1021/ma071321z
– volume: 11
  start-page: 29416
  year: 2019
  ident: D3NR03215A/cit31/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b08594
– volume: 57
  start-page: 827
  year: 1985
  ident: D3NR03215A/cit58/1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.57.827
– volume: 112
  start-page: 14313
  year: 2008
  ident: D3NR03215A/cit30/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp804505k
– volume: 6
  start-page: 106109
  year: 2016
  ident: D3NR03215A/cit6/1
  publication-title: RSC Adv.
  doi: 10.1039/C6RA23923D
– volume: 7
  start-page: 566
  year: 2018
  ident: D3NR03215A/cit20/1
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.8b00119
– volume: 4
  start-page: 1600271
  year: 2017
  ident: D3NR03215A/cit21/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201600271
– volume: 13
  start-page: 10555
  year: 2021
  ident: D3NR03215A/cit44/1
  publication-title: Nanoscale
  doi: 10.1039/D1NR01480C
SSID ssj0069363
Score 2.4439816
Snippet Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular,...
SourceID swepub
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15768
SubjectTerms Block copolymers
Deposition
Direct current
Emission analysis
Field emission microscopy
Polystyrene resins
Polyvinyl pyridine
Self-assembly
Silver
X-ray scattering
Title Diblock copolymer pattern protection by silver cluster reinforcement
URI https://www.proquest.com/docview/2872683790
https://www.proquest.com/docview/2868118288
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-338743
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoe4ED4lURKCgIhIRWKUm8fh0XFqhA9IBa6C2KHaestmxQHofy6xnHTpyFIgGXaNf2ZiPP5JsZe_wNQs90WipSqjwiVNIILFQR5YznkSwZVYlSCet3dD8e06PT-fszcuarbfanS1p5qH5cea7kf6QKbSBXc0r2HyQ73hQa4DPIF64gYbj-lYyXKwm2aD1TptLB5TddG5pUs8I3c_QLRrbgXzYrk_88UxedoUWY1bqnS1U-68V5pwC1VQNC8zvtHTx-j9Jd05XjakwFmGmjfEDKYrVuPY7VhTtZaP3OgdjbbOloi7wDrEzXG1KbuUY8LKUmBxFjyz1-qKdtbBtXyUR_LIWLQ8nEBDkTkwvfbame3_A8xoYOtcCbOsbgnEys1phL6Dt30F4KwQKg3d7iw6t3XwaLTAXuK-qNTz7Q1GLx0v962zHx0cZO3ahfeGR73-PkFrrpgoZwYTXgNrqmN3fQjQmV5F20dLoQjroQOl0IvS6E8jK0uhA6XQi3dOEeOn375uT1UeQqZEQKc95GgjNFWG6CwkQKzVUhSQ4-vGBYwCtookFRJEmO1VwXRay5ZpQwKQrwW5XSEu-j3U210fdRqMpSpHlJiZDFXPGYi5LNSyLNPnOiSxqgF8P0ZMrRx5sqJhdZn8aARbbEx5_6qVwE6Ok49rslTbly1MEwy5l7qZoMAviUcsxEHKAnYzdAntnHyje66swYyk1czHmA9kE64394YQbouRXY2Gdo1Jerz4usqs-zdfs1w5iD9_zgT3d4iK577T9Au23d6Ufgf7bysVOvn-YaiYg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diblock+copolymer+pattern+protection+by+silver+cluster+reinforcement&rft.jtitle=Nanoscale&rft.au=Bulut%2C+Yusuf&rft.au=Sochor%2C+Benedikt&rft.au=Harder%2C+Constantin&rft.au=Reck%2C+Kristian&rft.date=2023-10-05&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=15&rft.issue=38&rft.spage=15768&rft.epage=15774&rft_id=info:doi/10.1039%2Fd3nr03215a&rft.externalDocID=d3nr03215a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon