Diblock copolymer pattern protection by silver cluster reinforcement
Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular, polystyrene- block -poly-4-vinylpyridine (PS- b -P4VP) is a fascinating base material as it forms an ordered micellar structure on silicon sur...
Saved in:
Published in | Nanoscale Vol. 15; no. 38; pp. 15768 - 15774 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
05.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular, polystyrene-
block
-poly-4-vinylpyridine (PS-
b
-P4VP) is a fascinating base material as it forms an ordered micellar structure on silicon surfaces. In this work, silver (Ag) is applied using direct current magnetron sputter deposition and high-power impulse magnetron sputter deposition on an ordered micellar PS-
b
-P4VP layer. The fabricated hybrid materials are structurally analyzed by field emission scanning electron microscopy, atomic force microscopy, and grazing incidence small angle X-ray scattering. When applying simple aqueous posttreatment, the pattern is stable and reinforced by Ag clusters, making micellar PS-
b
-P4VP ordered layers ideal candidates for lithography.
The pristine micellar pattern of the diblock copolymer PS-
b
-P4VP degrades upon drying of a water droplet, which can be stabilized and inhibited upon deposition of silver clusters. |
---|---|
AbstractList | Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular, polystyrene-
block
-poly-4-vinylpyridine (PS-
b
-P4VP) is a fascinating base material as it forms an ordered micellar structure on silicon surfaces. In this work, silver (Ag) is applied using direct current magnetron sputter deposition and high-power impulse magnetron sputter deposition on an ordered micellar PS-
b
-P4VP layer. The fabricated hybrid materials are structurally analyzed by field emission scanning electron microscopy, atomic force microscopy, and grazing incidence small angle X-ray scattering. When applying simple aqueous posttreatment, the pattern is stable and reinforced by Ag clusters, making micellar PS-
b
-P4VP ordered layers ideal candidates for lithography. Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular, polystyrene-block-poly-4-vinylpyridine (PS-b-P4VP) is a fascinating base material as it forms an ordered micellar structure on silicon surfaces. In this work, silver (Ag) is applied using direct current magnetron sputter deposition and high-power impulse magnetron sputter deposition on an ordered micellar PS-b-P4VP layer. The fabricated hybrid materials are structurally analyzed by field emission scanning electron microscopy, atomic force microscopy, and grazing incidence small angle X-ray scattering. When applying simple aqueous posttreatment, the pattern is stable and reinforced by Ag clusters, making micellar PS-b-P4VP ordered layers ideal candidates for lithography. Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular, polystyrene- block -poly-4-vinylpyridine (PS- b -P4VP) is a fascinating base material as it forms an ordered micellar structure on silicon surfaces. In this work, silver (Ag) is applied using direct current magnetron sputter deposition and high-power impulse magnetron sputter deposition on an ordered micellar PS- b -P4VP layer. The fabricated hybrid materials are structurally analyzed by field emission scanning electron microscopy, atomic force microscopy, and grazing incidence small angle X-ray scattering. When applying simple aqueous posttreatment, the pattern is stable and reinforced by Ag clusters, making micellar PS- b -P4VP ordered layers ideal candidates for lithography. The pristine micellar pattern of the diblock copolymer PS- b -P4VP degrades upon drying of a water droplet, which can be stabilized and inhibited upon deposition of silver clusters. Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular, polystyrene-block-poly-4-vinylpyridine (PS-b-P4VP) is a fascinating base material as it forms an ordered micellar structure on silicon surfaces. In this work, silver (Ag) is applied using direct current magnetron sputter deposition and high-power impulse magnetron sputter deposition on an ordered micellar PS-b-P4VP layer. The fabricated hybrid materials are structurally analyzed by field emission scanning electron microscopy, atomic force microscopy, and grazing incidence small angle X-ray scattering. When applying simple aqueous posttreatment, the pattern is stable and reinforced by Ag clusters, making micellar PS-b-P4VP ordered layers ideal candidates for lithography.Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular, polystyrene-block-poly-4-vinylpyridine (PS-b-P4VP) is a fascinating base material as it forms an ordered micellar structure on silicon surfaces. In this work, silver (Ag) is applied using direct current magnetron sputter deposition and high-power impulse magnetron sputter deposition on an ordered micellar PS-b-P4VP layer. The fabricated hybrid materials are structurally analyzed by field emission scanning electron microscopy, atomic force microscopy, and grazing incidence small angle X-ray scattering. When applying simple aqueous posttreatment, the pattern is stable and reinforced by Ag clusters, making micellar PS-b-P4VP ordered layers ideal candidates for lithography. Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular, polystyrene-block-poly-4-vinylpyridine (PS-b-P4VP) is a fascinating base material as it forms an ordered micellar structure on silicon surfaces. In this work, silver (Ag) is applied using direct current magnetron sputter deposition and high-power impulse magnetron sputter deposition on an ordered micellar PS-b-P4VP layer. The fabricated hybrid materials are structurally analyzed by field emission scanning electron microscopy, atomic force microscopy, and grazing incidence small angle X-ray scattering. When applying simple aqueous posttreatment, the pattern is stable and reinforced by Ag clusters, making micellar PS-b-P4VP ordered layers ideal candidates for lithography. The pristine micellar pattern of the diblock copolymer PS-b-P4VP degrades upon drying of a water droplet, which can be stabilized and inhibited upon deposition of silver clusters. |
Author | Noei, Heshmat Harder, Constantin Müller-Buschbaum, Peter Strunskus, Thomas Keller, Thomas F Jeromin, Arno Reck, Kristian Kohantorabi, Mona Sochor, Benedikt Xu, Zhuijun Jiang, Xiongzhuo Faupel, Franz Meinhardt, Alexander Roth, Stephan V Bulut, Yusuf Drewes, Jonas |
AuthorAffiliation | Technical University of Munich Chair for Functional Materials Centre for X-ray and Nano Science CXNS KTH Royal Institute of Technology Deutsches Elektronen-Synchrotron DESY Christian-Albrechts Universität zu Kiel Department of Physics Technische Universität München Chair for Multicomponent Materials Faculty of Engineering Deutsches Elektronen-Synchtrotron DESY Department of Materials Science TUM School of Natural Sciences University of Hamburg Heinz Maier-Leibnitz Zentrum (MLZ) |
AuthorAffiliation_xml | – sequence: 0 name: Department of Materials Science – sequence: 0 name: KTH Royal Institute of Technology – sequence: 0 name: University of Hamburg – sequence: 0 name: Faculty of Engineering – sequence: 0 name: Heinz Maier-Leibnitz Zentrum (MLZ) – sequence: 0 name: Chair for Functional Materials – sequence: 0 name: Technische Universität München – sequence: 0 name: Technical University of Munich – sequence: 0 name: TUM School of Natural Sciences – sequence: 0 name: Christian-Albrechts Universität zu Kiel – sequence: 0 name: Department of Physics – sequence: 0 name: Chair for Multicomponent Materials – sequence: 0 name: Deutsches Elektronen-Synchrotron DESY – sequence: 0 name: Deutsches Elektronen-Synchtrotron DESY – sequence: 0 name: Centre for X-ray and Nano Science CXNS |
Author_xml | – sequence: 1 givenname: Yusuf surname: Bulut fullname: Bulut, Yusuf – sequence: 2 givenname: Benedikt surname: Sochor fullname: Sochor, Benedikt – sequence: 3 givenname: Constantin surname: Harder fullname: Harder, Constantin – sequence: 4 givenname: Kristian surname: Reck fullname: Reck, Kristian – sequence: 5 givenname: Jonas surname: Drewes fullname: Drewes, Jonas – sequence: 6 givenname: Zhuijun surname: Xu fullname: Xu, Zhuijun – sequence: 7 givenname: Xiongzhuo surname: Jiang fullname: Jiang, Xiongzhuo – sequence: 8 givenname: Alexander surname: Meinhardt fullname: Meinhardt, Alexander – sequence: 9 givenname: Arno surname: Jeromin fullname: Jeromin, Arno – sequence: 10 givenname: Mona surname: Kohantorabi fullname: Kohantorabi, Mona – sequence: 11 givenname: Heshmat surname: Noei fullname: Noei, Heshmat – sequence: 12 givenname: Thomas F surname: Keller fullname: Keller, Thomas F – sequence: 13 givenname: Thomas surname: Strunskus fullname: Strunskus, Thomas – sequence: 14 givenname: Franz surname: Faupel fullname: Faupel, Franz – sequence: 15 givenname: Peter surname: Müller-Buschbaum fullname: Müller-Buschbaum, Peter – sequence: 16 givenname: Stephan V surname: Roth fullname: Roth, Stephan V |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-338743$$DView record from Swedish Publication Index |
BookMark | eNpt0d9rFDEQB_AgLXjX-uK7sOCLCGuTnd38eDzu_AWlhVJ9DdnsnOa6l6xJVrn_3tSzFYpPCcxnQma-S3Lig0dCXjL6jlFQFwP4SKFhnXlGFg1taQ0gmpPHO2-fk2VKO0q5Ag4Lstm4fgz2rrJhCuNhj7GaTM4YfTXFkNFmF3zVH6rkxp-laMc5lWoV0fltiBb36PM5Od2aMeGLv-cZ-fLh_e36U315_fHzenVZW5Ay10oK2wnTKdGyXqG0Q98ZxpkSoGy3pVx0amDMgG1xGChKFLwTvRo4E9ZiD2ekPr6bfuE093qKbm_iQQfj9MZ9XekQv-m7_F0DSNFC8W-OvozyY8aU9d4li-NoPIY56UZyyZhspCz09RO6C3P0ZZqiRMMlCEWLokdlY0gp4lZbl839inI0btSM6vsY9Aaubv7EsCotb5-0PPz6v_jVEcdkH92_TOE3hIGUEA |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2024_160392 crossref_primary_10_1021_acsami_4c12138 crossref_primary_10_1039_D4NH00159A crossref_primary_10_1021_acs_langmuir_4c02344 |
Cites_doi | 10.1021/acsami.1c08712 10.1021/am5049543 10.1021/acsami.6b15172 10.1002/slct.202000128 10.1021/acs.macromol.7b00438 10.1021/acsanm.1c00829 10.1126/science.1162950 10.1002/adma.200702478 10.1002/anie.201805319 10.1021/acsami.1c08233 10.1021/acs.macromol.9b01947 10.1021/acsapm.0c01270 10.1002/chem.201801521 10.1557/s43580-022-00478-x 10.1126/science.276.5317.1401 10.1107/S1600576718017296 10.1021/ja011262j 10.1039/C9NR04038B 10.1088/0957-4484/16/8/014 10.1021/accountsmr.1c00186 10.1002/adem.201000231 10.1021/am507727f 10.1021/am402285e 10.1039/c3tb20603c 10.1021/acsanm.3c00959 10.1039/D2RA04803E 10.1039/D1AN01708J 10.1039/c3sm27130g 10.1063/1.2161926 10.1063/1.555688 10.1038/nmat2162 10.1016/j.colsurfa.2010.10.034 10.1021/j100834a012 10.1039/C7RA09149D 10.1021/ma301531a 10.1039/C5TC04342E 10.1117/1.2363167 10.1021/nn900077s 10.1007/s00339-004-2841-5 10.1021/acscatal.7b02844 10.1021/nn800073f 10.1021/nl0515753 10.1088/0963-0252/17/3/035021 10.1016/j.surfcoat.2015.10.070 10.1039/b915317a 10.1021/acsapm.1c00585 10.1021/acsami.1c03905 10.1021/la034891a 10.1002/adfm.201706226 10.1002/adpr.202200127 10.1021/ma071321z 10.1021/acsami.9b08594 10.1103/RevModPhys.57.827 10.1021/jp804505k 10.1039/C6RA23923D 10.1021/acsmacrolett.8b00119 10.1002/admi.201600271 10.1039/D1NR01480C |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 ADTPV AFDQA AOWAS D8T D8V ZZAVC |
DOI | 10.1039/d3nr03215a |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 15774 |
ExternalDocumentID | oai_DiVA_org_kth_338743 10_1039_D3NR03215A d3nr03215a |
GroupedDBID | --- -JG 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K DU5 EBS ECGLT EE0 EF- F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY AAYXX AFRZK AKMSF ALUYA CITATION 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 ABIQK ACRPL ADNMO ADTPV AFDQA AGQPQ AHGXI ALSGL ANBJS ANLMG AOWAS ASPBG AVWKF CAG COF D8T D8V EJD FEDTE HVGLF J3G J3H L-8 R56 ZZAVC |
ID | FETCH-LOGICAL-c388t-987c57a59741b9e8cdb5a1619739c5f06759d11a3c4edd0e8e7657b9d617cceb3 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Thu Aug 21 07:20:14 EDT 2025 Fri Jul 11 15:28:12 EDT 2025 Mon Jun 30 04:38:06 EDT 2025 Thu Apr 24 23:05:56 EDT 2025 Tue Jul 01 00:42:10 EDT 2025 Tue Dec 17 20:58:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c388t-987c57a59741b9e8cdb5a1619739c5f06759d11a3c4edd0e8e7657b9d617cceb3 |
Notes | https://doi.org/10.1039/d3nr03215a Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3931-5635 0000-0002-0823-6216 0000-0002-6940-6012 0000-0003-3877-9999 0000-0002-3770-6344 0000-0003-3367-1655 0000-0002-9566-6088 0000-0003-1294-3527 0000-0003-0090-3990 0000-0003-0552-3188 |
OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-338743 |
PQID | 2872683790 |
PQPubID | 2047485 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2868118288 proquest_journals_2872683790 crossref_citationtrail_10_1039_D3NR03215A crossref_primary_10_1039_D3NR03215A rsc_primary_d3nr03215a swepub_primary_oai_DiVA_org_kth_338743 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-05 |
PublicationDateYYYYMMDD | 2023-10-05 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Qiang (D3NR03215A/cit20/1) 2018; 7 Roth (D3NR03215A/cit43/1) 2015; 7 Yi (D3NR03215A/cit7/1) 2017; 7 Guo (D3NR03215A/cit4/1) 2023; 6 Amarandei (D3NR03215A/cit39/1) 2014; 6 Park (D3NR03215A/cit41/1) 2008; 2 Bandorf (D3NR03215A/cit47/1) 2016; 290 Zhang (D3NR03215A/cit53/1) 2021; 13 De Gennes (D3NR03215A/cit58/1) 1985; 57 Jung (D3NR03215A/cit8/1) 2019; 11 Roth (D3NR03215A/cit45/1) 2006; 88 Amarandei (D3NR03215A/cit38/1) 2013; 5 Amarandei (D3NR03215A/cit40/1) 2013; 9 Le (D3NR03215A/cit11/1) 2020; 53 Mezzenga (D3NR03215A/cit14/1) 2003; 19 Piper (D3NR03215A/cit26/1) 2023 Issa (D3NR03215A/cit54/1) 2021; 13 Sherry (D3NR03215A/cit29/1) 2005; 5 Faupel (D3NR03215A/cit32/1) 2010; 12 Lundin (D3NR03215A/cit46/1) 2008; 17 Liu (D3NR03215A/cit24/1) 2018; 57 Walter (D3NR03215A/cit3/1) 2006; 45 Chakraborty (D3NR03215A/cit37/1) 2013; 1 Zheng (D3NR03215A/cit36/1) 2021; 2 Zhang (D3NR03215A/cit51/1) 2021; 3 Nelson (D3NR03215A/cit60/1) 2019; 52 Cataliotti (D3NR03215A/cit49/1) 2009; 11 Ai (D3NR03215A/cit21/1) 2017; 4 Wang (D3NR03215A/cit55/1) 2021; 13 Good (D3NR03215A/cit59/1) 1960; 64 Park (D3NR03215A/cit17/1) 1997; 276 Noei (D3NR03215A/cit56/1) 2016; 2 Gensch (D3NR03215A/cit31/1) 2019; 11 Chang (D3NR03215A/cit25/1) 2018; 8 Sarathlal (D3NR03215A/cit2/1) 2011; 98 Schwartzkopf (D3NR03215A/cit48/1) 2017; 9 Zhang (D3NR03215A/cit1/1) 2022; 12 Pyatenko (D3NR03215A/cit52/1) 2004; 79 Wang (D3NR03215A/cit35/1) 2001; 123 Cho (D3NR03215A/cit10/1) 2017; 50 Zhang (D3NR03215A/cit15/1) 2012; 45 Singha (D3NR03215A/cit50/1) 2021; 3 Cao (D3NR03215A/cit34/1) 2022; 3 Tsao (D3NR03215A/cit27/1) 2021; 146 Vargaftik (D3NR03215A/cit57/1) 1983; 12 Tang (D3NR03215A/cit18/1) 2008; 322 Alegret (D3NR03215A/cit30/1) 2008; 112 Si (D3NR03215A/cit42/1) 2011; 373 Haider (D3NR03215A/cit6/1) 2016; 6 Park (D3NR03215A/cit13/1) 2007; 40 Schaper (D3NR03215A/cit44/1) 2021; 13 Wi (D3NR03215A/cit12/1) 2016; 4 Dörr (D3NR03215A/cit9/1) 2018; 24 Berezkin (D3NR03215A/cit19/1) 2018; 28 Krishnamoorthy (D3NR03215A/cit22/1) 2008; 20 Schürmann (D3NR03215A/cit33/1) 2005; 16 Shah (D3NR03215A/cit5/1) 2020; 5 Gensch (D3NR03215A/cit16/1) 2021; 4 Shankar (D3NR03215A/cit23/1) 2009; 3 Anker (D3NR03215A/cit28/1) 2008; 7 |
References_xml | – volume: 13 start-page: 29222 year: 2021 ident: D3NR03215A/cit53/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c08712 – volume: 6 start-page: 20758 year: 2014 ident: D3NR03215A/cit39/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5049543 – volume: 9 start-page: 5629 year: 2017 ident: D3NR03215A/cit48/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15172 – volume: 5 start-page: 3897 year: 2020 ident: D3NR03215A/cit5/1 publication-title: ChemistrySelect doi: 10.1002/slct.202000128 – volume: 50 start-page: 3234 year: 2017 ident: D3NR03215A/cit10/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.7b00438 – volume: 4 start-page: 4245 year: 2021 ident: D3NR03215A/cit16/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.1c00829 – volume: 322 start-page: 429 year: 2008 ident: D3NR03215A/cit18/1 publication-title: Science doi: 10.1126/science.1162950 – volume: 20 start-page: 3533 year: 2008 ident: D3NR03215A/cit22/1 publication-title: Adv. Mater. doi: 10.1002/adma.200702478 – volume: 57 start-page: 9775 year: 2018 ident: D3NR03215A/cit24/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201805319 – volume: 13 start-page: 34910 year: 2021 ident: D3NR03215A/cit55/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c08233 – volume: 53 start-page: 1967 year: 2020 ident: D3NR03215A/cit11/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.9b01947 – volume: 3 start-page: 986 year: 2021 ident: D3NR03215A/cit51/1 publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.0c01270 – volume: 24 start-page: 8061 year: 2018 ident: D3NR03215A/cit9/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201801521 – start-page: 177 year: 2023 ident: D3NR03215A/cit26/1 publication-title: MRS Adv. doi: 10.1557/s43580-022-00478-x – volume: 276 start-page: 1401 year: 1997 ident: D3NR03215A/cit17/1 publication-title: Science doi: 10.1126/science.276.5317.1401 – volume: 52 start-page: 193 year: 2019 ident: D3NR03215A/cit60/1 publication-title: J. Appl. Crystallogr. doi: 10.1107/S1600576718017296 – volume: 123 start-page: 12528 year: 2001 ident: D3NR03215A/cit35/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja011262j – volume: 11 start-page: 18559 year: 2019 ident: D3NR03215A/cit8/1 publication-title: Nanoscale doi: 10.1039/C9NR04038B – volume: 16 start-page: 1078 year: 2005 ident: D3NR03215A/cit33/1 publication-title: Nanotechnology doi: 10.1088/0957-4484/16/8/014 – volume: 2 start-page: 1104 year: 2021 ident: D3NR03215A/cit36/1 publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.1c00186 – volume: 12 start-page: 1177 year: 2010 ident: D3NR03215A/cit32/1 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201000231 – volume: 7 start-page: 12470 year: 2015 ident: D3NR03215A/cit43/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am507727f – volume: 5 start-page: 8655 year: 2013 ident: D3NR03215A/cit38/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am402285e – volume: 1 start-page: 4059 year: 2013 ident: D3NR03215A/cit37/1 publication-title: J. Mater. Chem. B doi: 10.1039/c3tb20603c – volume: 6 start-page: 7830 year: 2023 ident: D3NR03215A/cit4/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.3c00959 – volume: 12 start-page: 28376 year: 2022 ident: D3NR03215A/cit1/1 publication-title: RSC Adv. doi: 10.1039/D2RA04803E – volume: 146 start-page: 7645 year: 2021 ident: D3NR03215A/cit27/1 publication-title: Analyst doi: 10.1039/D1AN01708J – volume: 9 start-page: 2695 year: 2013 ident: D3NR03215A/cit40/1 publication-title: Soft Matter doi: 10.1039/c3sm27130g – volume: 98 start-page: 2009 year: 2011 ident: D3NR03215A/cit2/1 publication-title: Appl. Phys. Lett. – volume: 88 start-page: 1 year: 2006 ident: D3NR03215A/cit45/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2161926 – volume: 12 start-page: 817 year: 1983 ident: D3NR03215A/cit57/1 publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555688 – volume: 7 start-page: 8 year: 2008 ident: D3NR03215A/cit28/1 publication-title: Nat. Mater. doi: 10.1038/nmat2162 – volume: 373 start-page: 82 year: 2011 ident: D3NR03215A/cit42/1 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2010.10.034 – volume: 64 start-page: 561 year: 1960 ident: D3NR03215A/cit59/1 publication-title: J. Phys. Chem. doi: 10.1021/j100834a012 – volume: 7 start-page: 48835 year: 2017 ident: D3NR03215A/cit7/1 publication-title: RSC Adv. doi: 10.1039/C7RA09149D – volume: 45 start-page: 9139 year: 2012 ident: D3NR03215A/cit15/1 publication-title: Macromolecules doi: 10.1021/ma301531a – volume: 4 start-page: 2017 year: 2016 ident: D3NR03215A/cit12/1 publication-title: J. Mater. Chem. C doi: 10.1039/C5TC04342E – volume: 45 start-page: 103801 year: 2006 ident: D3NR03215A/cit3/1 publication-title: Opt. Eng. doi: 10.1117/1.2363167 – volume: 3 start-page: 893 year: 2009 ident: D3NR03215A/cit23/1 publication-title: ACS Nano doi: 10.1021/nn900077s – volume: 79 start-page: 803 year: 2004 ident: D3NR03215A/cit52/1 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s00339-004-2841-5 – volume: 8 start-page: 1384 year: 2018 ident: D3NR03215A/cit25/1 publication-title: ACS Catal. doi: 10.1021/acscatal.7b02844 – volume: 2 start-page: 1363 year: 2008 ident: D3NR03215A/cit41/1 publication-title: ACS Nano doi: 10.1021/nn800073f – volume: 5 start-page: 2034 year: 2005 ident: D3NR03215A/cit29/1 publication-title: Nano Lett. doi: 10.1021/nl0515753 – volume: 17 start-page: 035021 year: 2008 ident: D3NR03215A/cit46/1 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/17/3/035021 – volume: 290 start-page: 77 year: 2016 ident: D3NR03215A/cit47/1 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2015.10.070 – volume: 11 start-page: 11258 year: 2009 ident: D3NR03215A/cit49/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b915317a – volume: 3 start-page: 4088 year: 2021 ident: D3NR03215A/cit50/1 publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.1c00585 – volume: 13 start-page: 41846 year: 2021 ident: D3NR03215A/cit54/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c03905 – volume: 19 start-page: 8144 year: 2003 ident: D3NR03215A/cit14/1 publication-title: Langmuir doi: 10.1021/la034891a – volume: 28 start-page: 1706226 year: 2018 ident: D3NR03215A/cit19/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706226 – volume: 2 start-page: 1 year: 2016 ident: D3NR03215A/cit56/1 publication-title: J. Large-Scale Res. Facil. – volume: 3 start-page: 2200127 year: 2022 ident: D3NR03215A/cit34/1 publication-title: Adv. Photonics Res. doi: 10.1002/adpr.202200127 – volume: 40 start-page: 9059 year: 2007 ident: D3NR03215A/cit13/1 publication-title: Macromolecules doi: 10.1021/ma071321z – volume: 11 start-page: 29416 year: 2019 ident: D3NR03215A/cit31/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b08594 – volume: 57 start-page: 827 year: 1985 ident: D3NR03215A/cit58/1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.57.827 – volume: 112 start-page: 14313 year: 2008 ident: D3NR03215A/cit30/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp804505k – volume: 6 start-page: 106109 year: 2016 ident: D3NR03215A/cit6/1 publication-title: RSC Adv. doi: 10.1039/C6RA23923D – volume: 7 start-page: 566 year: 2018 ident: D3NR03215A/cit20/1 publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.8b00119 – volume: 4 start-page: 1600271 year: 2017 ident: D3NR03215A/cit21/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201600271 – volume: 13 start-page: 10555 year: 2021 ident: D3NR03215A/cit44/1 publication-title: Nanoscale doi: 10.1039/D1NR01480C |
SSID | ssj0069363 |
Score | 2.4439816 |
Snippet | Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular,... |
SourceID | swepub proquest crossref rsc |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 15768 |
SubjectTerms | Block copolymers Deposition Direct current Emission analysis Field emission microscopy Polystyrene resins Polyvinyl pyridine Self-assembly Silver X-ray scattering |
Title | Diblock copolymer pattern protection by silver cluster reinforcement |
URI | https://www.proquest.com/docview/2872683790 https://www.proquest.com/docview/2868118288 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-338743 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoe4ED4lURKCgIhIRWKUm8fh0XFqhA9IBa6C2KHaestmxQHofy6xnHTpyFIgGXaNf2ZiPP5JsZe_wNQs90WipSqjwiVNIILFQR5YznkSwZVYlSCet3dD8e06PT-fszcuarbfanS1p5qH5cea7kf6QKbSBXc0r2HyQ73hQa4DPIF64gYbj-lYyXKwm2aD1TptLB5TddG5pUs8I3c_QLRrbgXzYrk_88UxedoUWY1bqnS1U-68V5pwC1VQNC8zvtHTx-j9Jd05XjakwFmGmjfEDKYrVuPY7VhTtZaP3OgdjbbOloi7wDrEzXG1KbuUY8LKUmBxFjyz1-qKdtbBtXyUR_LIWLQ8nEBDkTkwvfbame3_A8xoYOtcCbOsbgnEys1phL6Dt30F4KwQKg3d7iw6t3XwaLTAXuK-qNTz7Q1GLx0v962zHx0cZO3ahfeGR73-PkFrrpgoZwYTXgNrqmN3fQjQmV5F20dLoQjroQOl0IvS6E8jK0uhA6XQi3dOEeOn375uT1UeQqZEQKc95GgjNFWG6CwkQKzVUhSQ4-vGBYwCtookFRJEmO1VwXRay5ZpQwKQrwW5XSEu-j3U210fdRqMpSpHlJiZDFXPGYi5LNSyLNPnOiSxqgF8P0ZMrRx5sqJhdZn8aARbbEx5_6qVwE6Ok49rslTbly1MEwy5l7qZoMAviUcsxEHKAnYzdAntnHyje66swYyk1czHmA9kE64394YQbouRXY2Gdo1Jerz4usqs-zdfs1w5iD9_zgT3d4iK577T9Au23d6Ufgf7bysVOvn-YaiYg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diblock+copolymer+pattern+protection+by+silver+cluster+reinforcement&rft.jtitle=Nanoscale&rft.au=Bulut%2C+Yusuf&rft.au=Sochor%2C+Benedikt&rft.au=Harder%2C+Constantin&rft.au=Reck%2C+Kristian&rft.date=2023-10-05&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=15&rft.issue=38&rft.spage=15768&rft.epage=15774&rft_id=info:doi/10.1039%2Fd3nr03215a&rft.externalDocID=d3nr03215a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |