Integrated design optimization of spar floating wind turbines
A linearized aero-hydro-servo-elastic floating wind turbine model is presented and used to perform integrated design optimization of the platform, tower, mooring system, and blade-pitch controller for a 10 MW spar floating wind turbine. Optimal design solutions are found using gradient-based optimiz...
Saved in:
Published in | Marine structures Vol. 72; pp. 102771 - 28 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.07.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A linearized aero-hydro-servo-elastic floating wind turbine model is presented and used to perform integrated design optimization of the platform, tower, mooring system, and blade-pitch controller for a 10 MW spar floating wind turbine. Optimal design solutions are found using gradient-based optimization with analytic derivatives, considering both fatigue and extreme response constraints, where the objective function is a weighted combination of system cost and power quality. Optimization results show that local minima exist both in the soft-stiff and stiff-stiff range for the first tower bending mode and that a stiff-stiff tower design is needed to reach a solution that satisfies the fatigue constraints. The optimized platform has a relatively small diameter in the wave zone to limit the wave loads on the structure and an hourglass shape far below the waterline. The shape increases the restoring moment and natural frequency in pitch, which leads to improved behaviour in the low-frequency range. The importance of integrated optimization is shown in the solutions for the tower and blade-pitch control system, which are clearly affected by the simultaneous design of the platform. State-of-the-art nonlinear time-domain analyses show that the linearized model is conservative in general, but reasonably accurate in capturing trends, suggesting that the presented methodology is suitable for preliminary integrated design calculations.
•A linearized aero-hydro-servo-elastic floating wind turbine model was developed.•Integrated design was performed using gradient-based optimization.•A stiff-stiff tower design was needed to satisfy fatigue constraints.•Tower and blade-pitch controller were affected by the integrated design process.•Optimized design was verified using nonlinear time-domain simulations. |
---|---|
AbstractList | A linearized aero-hydro-servo-elastic floating wind turbine model is presented and used to perform integrated design optimization of the platform, tower, mooring system, and blade-pitch controller for a 10 MW spar floating wind turbine. Optimal design solutions are found using gradient-based optimization with analytic derivatives, considering both fatigue and extreme response constraints, where the objective function is a weighted combination of system cost and power quality. Optimization results show that local minima exist both in the soft-stiff and stiff-stiff range for the first tower bending mode and that a stiff-stiff tower design is needed to reach a solution that satisfies the fatigue constraints. The optimized platform has a relatively small diameter in the wave zone to limit the wave loads on the structure and an hourglass shape far below the waterline. The shape increases the restoring moment and natural frequency in pitch, which leads to improved behaviour in the low-frequency range. The importance of integrated optimization is shown in the solutions for the tower and blade-pitch control system, which are clearly affected by the simultaneous design of the platform. State-of-the-art nonlinear time-domain analyses show that the linearized model is conservative in general, but reasonably accurate in capturing trends, suggesting that the presented methodology is suitable for preliminary integrated design calculations.
•A linearized aero-hydro-servo-elastic floating wind turbine model was developed.•Integrated design was performed using gradient-based optimization.•A stiff-stiff tower design was needed to satisfy fatigue constraints.•Tower and blade-pitch controller were affected by the integrated design process.•Optimized design was verified using nonlinear time-domain simulations. A linearized aero-hydro-servo-elastic floating wind turbine model is presented and used to perform integrated design optimization of the platform, tower, mooring system, and blade-pitch controller for a 10 MW spar floating wind turbine. Optimal design solutions are found using gradient-based optimization with analytic derivatives, considering both fatigue and extreme response constraints, where the objective function is a weighted combination of system cost and power quality. Optimization results show that local minima exist both in the soft-stiff and stiff-stiff range for the first tower bending mode and that a stiff-stiff tower design is needed to reach a solution that satisfies the fatigue constraints. The optimized platform has a relatively small diameter in the wave zone to limit the wave loads on the structure and an hourglass shape far below the waterline. The shape increases the restoring moment and natural frequency in pitch, which leads to improved behaviour in the low-frequency range. The importance of integrated optimization is shown in the solutions for the tower and blade-pitch control system, which are clearly affected by the simultaneous design of the platform. State-of-the-art nonlinear time-domain analyses show that the linearized model is conservative in general, but reasonably accurate in capturing trends, suggesting that the presented methodology is suitable for preliminary integrated design calculations. |
ArticleNumber | 102771 |
Author | Bachynski, Erin E. Martins, Joaquim R.R.A. Hegseth, John Marius |
Author_xml | – sequence: 1 givenname: John Marius orcidid: 0000-0003-3739-9548 surname: Hegseth fullname: Hegseth, John Marius email: john.m.hegseth@ntnu.no organization: Department of Marine Technology, NTNU, 7491, Trondheim, Norway – sequence: 2 givenname: Erin E. surname: Bachynski fullname: Bachynski, Erin E. organization: Department of Marine Technology, NTNU, 7491, Trondheim, Norway – sequence: 3 givenname: Joaquim R.R.A. surname: Martins fullname: Martins, Joaquim R.R.A. organization: Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, 48109, USA |
BookMark | eNqFkE9LxDAQxYOs4Lr6FaTguWumadIUFJTFPwsLXvQcss10SdlNa5Iq-untWr142dPMPObN8H6nZOJah4RcAJ0DBXHVzHfah-j7ap7RbC9mRQFHZAqyYGkOBZ2QKS05pJKx8oSchtBQCgUATMnN0kXceB3RJAaD3bik7aLd2S8dbTsMdRI67ZN62w6C2yQf1pkk9n5tHYYzclzrbcDz3zojrw_3L4undPX8uFzcrdKKSRnTUmhTM8o5y1CCAVGUsjCMs7KmORcoAA0HjRnPkBqx5lwO7ZrVhgkGWrAZuRzvdr596zFE1bS9d8NLleWFkDzPhqwzIsatyrcheKxV5-3A5lMBVXtUqlF_qNQelRpRDcbrf8bKxp_80Wu7PWy_He04IHi36FWoLLoKjfVYRWVae-jEN6puiwc |
CitedBy_id | crossref_primary_10_1080_19386362_2025_2459278 crossref_primary_10_1016_j_oceaneng_2022_112952 crossref_primary_10_1088_1742_6596_2265_4_042029 crossref_primary_10_1016_j_apor_2021_102998 crossref_primary_10_1016_j_ress_2021_107706 crossref_primary_10_1016_j_rser_2022_112787 crossref_primary_10_1016_j_enconman_2022_115933 crossref_primary_10_1002_ese3_1602 crossref_primary_10_1007_s40684_021_00390_z crossref_primary_10_3389_fenrg_2024_1373586 crossref_primary_10_1016_j_oceaneng_2024_119915 crossref_primary_10_1016_j_renene_2024_119973 crossref_primary_10_1007_s42241_024_0022_x crossref_primary_10_1016_j_oceaneng_2023_115756 crossref_primary_10_1016_j_energy_2024_134247 crossref_primary_10_1016_j_oceaneng_2022_111375 crossref_primary_10_1088_1742_6596_2018_1_012032 crossref_primary_10_3390_jmse10081021 crossref_primary_10_1088_1742_6596_2362_1_012025 crossref_primary_10_1016_j_ress_2023_109817 crossref_primary_10_1115_1_4067798 crossref_primary_10_5194_wes_7_259_2022 crossref_primary_10_3390_en17184722 crossref_primary_10_1088_1755_1315_682_1_012004 crossref_primary_10_1016_j_marstruc_2022_103182 crossref_primary_10_1016_j_apenergy_2023_122036 crossref_primary_10_1016_j_renene_2022_08_121 crossref_primary_10_1007_s40722_020_00181_9 crossref_primary_10_1016_j_apenergy_2023_121941 crossref_primary_10_1016_j_oceaneng_2024_118634 crossref_primary_10_1016_j_oceaneng_2021_108585 crossref_primary_10_3390_en16145371 crossref_primary_10_1088_1742_6596_2265_4_042020 crossref_primary_10_1088_1742_6596_2265_4_042021 crossref_primary_10_1016_j_energy_2024_132257 crossref_primary_10_1016_j_rineng_2024_102008 crossref_primary_10_1016_j_egyr_2023_09_148 crossref_primary_10_1016_j_rser_2024_115231 crossref_primary_10_1016_j_apor_2024_104120 crossref_primary_10_1016_j_horiz_2024_100125 crossref_primary_10_1016_j_oceaneng_2022_111002 crossref_primary_10_1016_j_oceaneng_2022_113103 crossref_primary_10_1016_j_oceaneng_2023_115247 crossref_primary_10_1016_j_jweia_2023_105409 crossref_primary_10_1109_ACCESS_2023_3343874 crossref_primary_10_3390_en13236407 crossref_primary_10_3390_jmse10040542 crossref_primary_10_1016_j_renene_2021_09_090 crossref_primary_10_1016_j_marstruc_2023_103437 crossref_primary_10_5194_wes_9_1053_2024 crossref_primary_10_1088_1742_6596_2647_11_112011 crossref_primary_10_1016_j_oceaneng_2022_112727 crossref_primary_10_1016_j_oceaneng_2022_111474 crossref_primary_10_1016_j_marstruc_2020_102866 crossref_primary_10_1016_j_marstruc_2024_103715 crossref_primary_10_3390_en17246316 crossref_primary_10_1016_j_rser_2022_112477 crossref_primary_10_1088_1742_6596_1669_1_012010 crossref_primary_10_1016_j_apenergy_2024_124533 crossref_primary_10_1088_1742_6596_1618_4_042028 crossref_primary_10_32604_cmc_2022_029315 crossref_primary_10_1016_j_marstruc_2024_103768 crossref_primary_10_1016_j_marstruc_2023_103547 crossref_primary_10_1016_j_oceaneng_2025_120350 |
Cites_doi | 10.1016/S0141-1187(96)00028-4 10.1145/3182393 10.1016/j.renene.2014.01.017 10.1007/s00158-019-02211-z 10.1002/we.1970 10.1061/(ASCE)0733-9399(2008)134:8(628) 10.1007/s00158-011-0666-3 10.1016/j.egypro.2012.06.111 10.1016/j.oceaneng.2004.04.005 10.1007/s40722-016-0072-4 10.1260/0309-524X.33.6.541 10.1002/we.1750 10.1016/j.marstruc.2018.10.015 10.1137/S1052623499350013 10.1002/we.1639 10.1115/1.4041996 10.5194/wes-4-163-2019 10.1061/(ASCE)EM.1943-7889.0000194 10.1088/1742-6596/75/1/012073 10.1016/j.marstruc.2012.09.001 10.2514/1.J051895 10.1016/j.egypro.2013.07.174 10.1007/s00158-016-1495-1 10.1016/j.renene.2014.02.045 10.1007/s00158-012-0763-y 10.2514/1.J052184 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) Copyright Elsevier BV Jul 2020 |
Copyright_xml | – notice: 2020 The Author(s) – notice: Copyright Elsevier BV Jul 2020 |
DBID | 6I. AAFTH AAYXX CITATION 7ST 7TB 7TN 8FD C1K F1W FR3 KR7 SOI |
DOI | 10.1016/j.marstruc.2020.102771 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Oceanic Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Military & Naval Science |
EISSN | 1873-4170 |
EndPage | 28 |
ExternalDocumentID | 10_1016_j_marstruc_2020_102771 S0951833920300654 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7ST 7TB 7TN 8FD C1K EFKBS F1W FR3 KR7 SOI |
ID | FETCH-LOGICAL-c388t-96adf305532e81d167987d3539f0456e61ed51ae252e0d6b558252b3fd3631a63 |
IEDL.DBID | .~1 |
ISSN | 0951-8339 |
IngestDate | Wed Aug 13 09:39:16 EDT 2025 Tue Jul 01 02:36:55 EDT 2025 Thu Apr 24 22:58:41 EDT 2025 Fri Feb 23 02:46:46 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Integrated design Offshore wind energy Floating wind turbines Gradient-based optimization |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-96adf305532e81d167987d3539f0456e61ed51ae252e0d6b558252b3fd3631a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3739-9548 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0951833920300654 |
PQID | 2476854287 |
PQPubID | 2045436 |
PageCount | 28 |
ParticipantIDs | proquest_journals_2476854287 crossref_primary_10_1016_j_marstruc_2020_102771 crossref_citationtrail_10_1016_j_marstruc_2020_102771 elsevier_sciencedirect_doi_10_1016_j_marstruc_2020_102771 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2020 2020-07-00 20200701 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Marine structures |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | (bib53) 2019 Ashuri, Zaaijer, Martins, van Bussel, van Kuik (bib16) 2014; 68 Nejad, Bachynski, Moan (bib58) 2019; 141 Manwell, McGowan, Rogers (bib32) 2009 Strach-Sonsalla, Muskulus (bib12) 2016 Merz (bib21) 2011 (bib66) 2018 Karimi, Hall, Buckham, Crawford (bib8) 2017; 3 Saha, Naess (bib76) 2010; 136 Bak, Zahle, Bitsche, Yde, Henriksen, Natarajan, Hansen (bib19) 2013 (bib56) 2019 Steinert, Ehlers, Kvittem, Merino, Ebbesen (bib57) 2016 Larsen, Hanson (bib50) 2007; 75 Musial, Butterfield, Boone (bib73) 2004 Gray, Hwang, Martins, Moore, Naylor (bib15) 2019; 59 Hansen, Henriksen (bib70) 2013 Lie, Sødahl (bib25) 1993 (bib59) 2017 Gilloteaux, Bozonnet (bib4) 2014 Sandner, Schlipf, Matha, Cheng (bib69) 2014 Lambe, Martins (bib42) 2012; 46 Jonkman, Butterfield, Musial, Scott (bib26) 2009 Bachynski, Moan (bib3) 2012; 29 Lemmer, Müller, Yu, Schlipf, Cheng (bib14) 2017 Martins, Lambe (bib1) 2013; 51 Farkas, Jármai (bib45) 2013 (bib36) 2016 Lambe, Kennedy, Martins (bib63) 2017; 55 Koo, Kim, Randall (bib60) 2004; 31 Jonkman (bib71) 2010 Myhr, Nygaard (bib9) 2012 Gill, Murray, Saunders (bib43) 2002; 12 (bib67) 2018 Chen (bib68) 2013 Hall, Buckham, Crawford (bib7) 2013 Perez, Jansen, Martins (bib44) 2012; 45 Hwang, Martins (bib40) 2018; 44 Lackner (bib52) 2009; 33 Teillant, Krügel, Guérinel, Vicente, Debruyne, Malerba, Gradowski, Roveda, Neumann, Noorloos, Schuitema, Gomes, Henriques, Gato, Combourieu, Neau, Borgarino, Doussal, Philippe, Moretti, Fontana (bib46) 2016 Lie, Gao, Moan (bib74) 2007 Larsen (bib48) 2019 Skaare, Nielsen, Hanson, Yttervik, Havmøller, Rekdal (bib75) 2015; 18 Fylling, Berthelsen (bib11) 2011 Halfpenny (bib33) 1998 van der Veen, Couchman, Bowyer (bib51) 2012 Barltrop (bib49) 1998 Madsen, Zahle, Sørensen, Martins (bib18) 2019; 4 Tibaldi, Hansen, Henriksen (bib13) 2014; 555 Brommundt, Krause, Merz, Muskulus (bib6) 2012; 24 Myhr, Bjerkseter, Ågotnes, Nygaard (bib47) 2014; 66 Bachynski, Etemaddar, Kvittem, Luan, Moan (bib22) 2013; 35 Kreisselmeier, Steinhauser (bib62) 1979 Dirlik (bib29) 1985 Haslum, Faltinsen (bib61) 1999 (bib55) 2013 Ashuri, Martins, Zaaijer, van Kuik, van Bussel (bib17) 2016; 19 (bib65) 2018 Naess, Gaidai (bib30) 2008; 134 Tracy (bib2) 2007 Müller, Lemmer, Yu (bib72) 2018 (bib35) 2016 (bib64) 2007 Naess, Moan (bib27) 2013 Jonkman, Kilcher (bib37) 2009 (bib28) 2016 Hegseth, Bachynski (bib20) 2019; 64 Larsen, Sandvik (bib24) 1990 Clauss, Birk (bib5) 1996; 18 (bib34) 2005 Muskulus, Schafhirt (bib10) 2014; 1 Jiang, Karimirad, Moan (bib23) 2014; 17 Burton, Jenkins, Sharpe, Bossanyi (bib31) 2011 Martins, Hwang (bib41) 2013; 51 (bib38) 2009 Johannessen, Meling, Haver (bib39) 2002; 12 (bib54) 2018 Jonkman (10.1016/j.marstruc.2020.102771_bib26) 2009 (10.1016/j.marstruc.2020.102771_bib66) 2018 Burton (10.1016/j.marstruc.2020.102771_bib31) 2011 Barltrop (10.1016/j.marstruc.2020.102771_bib49) 1998 Koo (10.1016/j.marstruc.2020.102771_bib60) 2004; 31 Kreisselmeier (10.1016/j.marstruc.2020.102771_bib62) 1979 Halfpenny (10.1016/j.marstruc.2020.102771_bib33) 1998 Martins (10.1016/j.marstruc.2020.102771_bib1) 2013; 51 Brommundt (10.1016/j.marstruc.2020.102771_bib6) 2012; 24 Perez (10.1016/j.marstruc.2020.102771_bib44) 2012; 45 (10.1016/j.marstruc.2020.102771_bib53) 2019 Chen (10.1016/j.marstruc.2020.102771_bib68) 2013 Gray (10.1016/j.marstruc.2020.102771_bib15) 2019; 59 Jiang (10.1016/j.marstruc.2020.102771_bib23) 2014; 17 Nejad (10.1016/j.marstruc.2020.102771_bib58) 2019; 141 Larsen (10.1016/j.marstruc.2020.102771_bib48) 2019 Fylling (10.1016/j.marstruc.2020.102771_bib11) 2011 Manwell (10.1016/j.marstruc.2020.102771_bib32) 2009 Merz (10.1016/j.marstruc.2020.102771_bib21) 2011 Lackner (10.1016/j.marstruc.2020.102771_bib52) 2009; 33 Muskulus (10.1016/j.marstruc.2020.102771_bib10) 2014; 1 (10.1016/j.marstruc.2020.102771_bib38) 2009 Bak (10.1016/j.marstruc.2020.102771_bib19) 2013 Gill (10.1016/j.marstruc.2020.102771_bib43) 2002; 12 Lemmer (10.1016/j.marstruc.2020.102771_bib14) 2017 Naess (10.1016/j.marstruc.2020.102771_bib30) 2008; 134 (10.1016/j.marstruc.2020.102771_bib55) 2013 Larsen (10.1016/j.marstruc.2020.102771_bib24) 1990 Karimi (10.1016/j.marstruc.2020.102771_bib8) 2017; 3 Lambe (10.1016/j.marstruc.2020.102771_bib63) 2017; 55 Jonkman (10.1016/j.marstruc.2020.102771_bib37) 2009 Hansen (10.1016/j.marstruc.2020.102771_bib70) 2013 Steinert (10.1016/j.marstruc.2020.102771_bib57) 2016 Strach-Sonsalla (10.1016/j.marstruc.2020.102771_bib12) 2016 van der Veen (10.1016/j.marstruc.2020.102771_bib51) 2012 (10.1016/j.marstruc.2020.102771_bib54) 2018 Larsen (10.1016/j.marstruc.2020.102771_bib50) 2007; 75 Bachynski (10.1016/j.marstruc.2020.102771_bib22) 2013; 35 Bachynski (10.1016/j.marstruc.2020.102771_bib3) 2012; 29 Madsen (10.1016/j.marstruc.2020.102771_bib18) 2019; 4 Skaare (10.1016/j.marstruc.2020.102771_bib75) 2015; 18 Myhr (10.1016/j.marstruc.2020.102771_bib47) 2014; 66 Musial (10.1016/j.marstruc.2020.102771_bib73) 2004 Jonkman (10.1016/j.marstruc.2020.102771_bib71) 2010 Tibaldi (10.1016/j.marstruc.2020.102771_bib13) 2014; 555 Haslum (10.1016/j.marstruc.2020.102771_bib61) 1999 Clauss (10.1016/j.marstruc.2020.102771_bib5) 1996; 18 Teillant (10.1016/j.marstruc.2020.102771_bib46) 2016 Myhr (10.1016/j.marstruc.2020.102771_bib9) 2012 (10.1016/j.marstruc.2020.102771_bib28) 2016 Dirlik (10.1016/j.marstruc.2020.102771_bib29) 1985 (10.1016/j.marstruc.2020.102771_bib34) 2005 Gilloteaux (10.1016/j.marstruc.2020.102771_bib4) 2014 Lie (10.1016/j.marstruc.2020.102771_bib74) 2007 (10.1016/j.marstruc.2020.102771_bib35) 2016 (10.1016/j.marstruc.2020.102771_bib64) 2007 Johannessen (10.1016/j.marstruc.2020.102771_bib39) 2002; 12 (10.1016/j.marstruc.2020.102771_bib65) 2018 Ashuri (10.1016/j.marstruc.2020.102771_bib17) 2016; 19 Lambe (10.1016/j.marstruc.2020.102771_bib42) 2012; 46 Farkas (10.1016/j.marstruc.2020.102771_bib45) 2013 Hall (10.1016/j.marstruc.2020.102771_bib7) 2013 (10.1016/j.marstruc.2020.102771_bib67) 2018 Martins (10.1016/j.marstruc.2020.102771_bib41) 2013; 51 Hwang (10.1016/j.marstruc.2020.102771_bib40) 2018; 44 Müller (10.1016/j.marstruc.2020.102771_bib72) 2018 Lie (10.1016/j.marstruc.2020.102771_bib25) 1993 Sandner (10.1016/j.marstruc.2020.102771_bib69) 2014 Ashuri (10.1016/j.marstruc.2020.102771_bib16) 2014; 68 Naess (10.1016/j.marstruc.2020.102771_bib27) 2013 (10.1016/j.marstruc.2020.102771_bib59) 2017 (10.1016/j.marstruc.2020.102771_bib36) 2016 (10.1016/j.marstruc.2020.102771_bib56) 2019 Saha (10.1016/j.marstruc.2020.102771_bib76) 2010; 136 Tracy (10.1016/j.marstruc.2020.102771_bib2) 2007 Hegseth (10.1016/j.marstruc.2020.102771_bib20) 2019; 64 |
References_xml | – year: 2019 ident: bib56 article-title: Buckling strength of shells – year: 2016 ident: bib35 article-title: RIFLEX user guide – year: 2013 ident: bib55 article-title: Design of floating wind turbine structures – volume: 1 start-page: 12 year: 2014 end-page: 22 ident: bib10 article-title: Design optimization of wind turbine support structures - a review publication-title: J Ocean Wind Energy – volume: 18 start-page: 1105 year: 2015 end-page: 1122 ident: bib75 article-title: Analysis of measurements and simulations from the Hywind Demo floating wind turbine publication-title: Wind Energy – year: 2011 ident: bib31 article-title: Wind energy handbook – year: 2016 ident: bib28 article-title: Loads and site conditions for wind turbines – year: 2014 ident: bib69 article-title: Integrated optimization of floating wind turbine systems publication-title: Proceedings of the ASME 2014 33rd international conference on ocean, offshore and Arctic engineering (OMAE2014), san Francisco, California, USA – volume: 29 start-page: 89 year: 2012 end-page: 114 ident: bib3 article-title: Design considerations for tension leg platform wind turbines publication-title: Mar Struct – year: 2016 ident: bib46 article-title: WETFEET wave energy transition to future by evolution of engineering and technology D2.3: engineering challenges related to full scale and large deployment implementation of the proposed breakthroughs – year: 2013 ident: bib19 article-title: Description of the DTU 10 MW reference wind turbine – year: 1985 ident: bib29 article-title: Application of computers in fatigue analysis – volume: 66 start-page: 714 year: 2014 end-page: 728 ident: bib47 article-title: Levelised cost of energy for offshore floating wind turbines in a life cycle perspective publication-title: Renew Energy – year: 2018 ident: bib67 article-title: Position mooring – volume: 68 start-page: 893 year: 2014 end-page: 905 ident: bib16 article-title: Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy publication-title: Renew Energy – volume: 12 start-page: 979 year: 2002 end-page: 1006 ident: bib43 article-title: SNOPT: an SQP algorithm for large-scale constrained optimization publication-title: SIAM J Optim – volume: 555 year: 2014 ident: bib13 article-title: Optimal tuning for a classical wind turbine controller publication-title: J Phys Conf – volume: 141 year: 2019 ident: bib58 article-title: Effect of axial acceleration on drivetrain responses in a spar-type floating wind turbine publication-title: J Offshore Mech Arctic Eng – volume: 31 start-page: 2175 year: 2004 end-page: 2208 ident: bib60 article-title: Mathieu instability of a spar platform with mooring and risers publication-title: Ocean Eng – year: 2009 ident: bib32 article-title: Wind energy explained – year: 2017 ident: bib14 article-title: Optimization of floating offshore wind turbine platforms with a self-tuning controller publication-title: Proceedings of the ASME 2017 36th international conference on ocean, offshore and Arctic engineering (OMAE2017), trondheim, Norway – volume: 24 start-page: 289 year: 2012 end-page: 296 ident: bib6 article-title: Mooring system optimization for floating wind turbines using frequency domain analysis publication-title: Energy Procedia – year: 2017 ident: bib59 article-title: Modelling and analysis of marine operations – year: 2011 ident: bib11 article-title: WINDOPT- an optimization tool for floating support structures for deep water wind turbines publication-title: Proceedings of the ASME 2011 30th international conference on ocean, offshore and Arctic engineering (OMAE2011), Rotterdam, The Netherlands – year: 2014 ident: bib4 article-title: Parametric analysis of a cylinder-like shape floating platform dedicated to multi-megawatt wind turbine publication-title: Proceedings of the twenty-fourth (2014) international ocean and polar engineering conference (ISOPE2014) – year: 2009 ident: bib38 article-title: Wind turbines - part 3: design requirements for offshore wind turbines – year: 2004 ident: bib73 article-title: Feasibility of floating platform systems for wind turbines publication-title: 23rd ASME wind energy symposium, Reno, Nevada, USA – year: 1999 ident: bib61 article-title: Alternative shape of spar platforms for use in hostile areas publication-title: Offshore technology conference – volume: 75 year: 2007 ident: bib50 article-title: A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine publication-title: J Phys Conf Ser – volume: 3 start-page: 69 year: 2017 end-page: 87 ident: bib8 article-title: A multi-objective design optimization approach for floating offshore wind turbine support structures publication-title: J Ocean Eng Mar Energy – year: 2012 ident: bib9 article-title: Load reductions and optimizations on tension-leg-buoy offshore wind turbine platforms publication-title: Proceedings of the twenty-second (2012) international offshore and polar engineering conference (ISOPE2012), Rhodes, Greece – volume: 19 start-page: 2071 year: 2016 end-page: 2087 ident: bib17 article-title: Aeroservoelastic design definition of a 20 MW common research wind turbine model publication-title: Wind Energy – year: 1979 ident: bib62 article-title: Systematic control design by optimizing a vector performance index publication-title: International federation of active controls symposium on computer-aided design of control systems, Zurich, Switzerland – year: 2007 ident: bib74 article-title: Mooring line damping estimation by a simplified dynamic model publication-title: Proceedings of OMAE 2007 26h international conference on offshore mechanics and Arctic engineering, san Diego, California, USA – volume: 35 start-page: 210 year: 2013 end-page: 222 ident: bib22 article-title: Dynamic analysis of floating wind turbines during pitch actuator fault, grid loss, and shutdown publication-title: Energy Procedia – start-page: 3148 year: 2012 end-page: 3153 ident: bib51 article-title: Control of floating wind turbines publication-title: 2012 American control conference – year: 2007 ident: bib64 article-title: Eurocode 3: design of steel structures, part 1-6: strength and stability of shell structures – year: 2013 ident: bib45 article-title: Optimum design of steel structures – year: 2016 ident: bib36 article-title: SIMO user guide – year: 2018 ident: bib65 article-title: Support structures for wind turbines – volume: 4 start-page: 163 year: 2019 end-page: 192 ident: bib18 article-title: Multipoint high-fidelity CFD-based aerodynamic shape optimization of a 10 MW wind turbine publication-title: Wind Energy Sci – volume: 51 start-page: 2582 year: 2013 end-page: 2599 ident: bib41 article-title: Review and unification of methods for computing derivatives of multidisciplinary computational models publication-title: AIAA J – year: 2009 ident: bib37 article-title: TurbSim user's guide: version 1.50 – volume: 55 start-page: 257 year: 2017 end-page: 277 ident: bib63 article-title: An evaluation of constraint aggregation strategies for wing box mass minimization publication-title: Struct Multidiscip Optim – volume: 12 start-page: 1 year: 2002 end-page: 8 ident: bib39 article-title: Joint distribution for wind and waves in the Northern North Sea publication-title: Int J Offshore Polar Eng – year: 2005 ident: bib34 article-title: Wind turbines - part 1: design requirements – year: 2011 ident: bib21 article-title: Conceptual design of a stall-regulated rotor for a deepwater offshore wind turbine – volume: 46 start-page: 273 year: 2012 end-page: 284 ident: bib42 article-title: Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes publication-title: Struct Multidiscip Optim – volume: 17 start-page: 1385 year: 2014 end-page: 1409 ident: bib23 article-title: Dynamic response analysis of wind turbines under blade pitch system fault, grid loss, and shutdown events publication-title: Wind Energy – volume: 45 start-page: 101 year: 2012 end-page: 118 ident: bib44 article-title: pyOpt: A Python-based object-oriented framework for nonlinear constrained optimization publication-title: Struct Multidiscip Optim – volume: 44 year: 2018 ident: bib40 article-title: A computational architecture for coupling heterogeneous numerical models and computing coupled derivatives publication-title: ACM Trans Math Softw – year: 1998 ident: bib49 article-title: Floating structures: a guide for design and analysis – year: 2019 ident: bib48 article-title: Personal communication – volume: 18 start-page: 157 year: 1996 end-page: 171 ident: bib5 article-title: Hydrodynamic shape optimization of large offshore structures publication-title: Appl Ocean Res – volume: 51 start-page: 2049 year: 2013 end-page: 2075 ident: bib1 article-title: Multidisciplinary design optimization: a survey of architectures publication-title: AIAA J – year: 2010 ident: bib71 article-title: Definition of the floating system for phase IV of OC3 – year: 2007 ident: bib2 article-title: Parametric design of floating wind turbines. Master's thesis – year: 2013 ident: bib7 article-title: Evolving offshore wind: a genetic algorithm-based support structure optimization framework for floating wind turbines publication-title: OCEANS 2013 MTS/IEEE bergen: the challenges of the Northern dimension – year: 2009 ident: bib26 article-title: Definition of a 5-MW reference wind turbine for offshore system development – year: 2018 ident: bib54 article-title: Floating wind turbine structures – volume: 136 start-page: 1491 year: 2010 end-page: 1501 ident: bib76 article-title: Monte Carlo-based method for predicting extreme value statistics of uncertain structures publication-title: J Eng Mech – year: 2018 ident: bib66 article-title: Offshore mooring chain – year: 2013 ident: bib68 article-title: Linear system theory and design – year: 2013 ident: bib27 article-title: Stochastic dynamics of marine structures – year: 2013 ident: bib70 article-title: Basic DTU wind energy controller – volume: 33 start-page: 541 year: 2009 end-page: 553 ident: bib52 article-title: Controlling platform motions and reducing blade loads for floating wind turbines publication-title: Wind Eng – year: 2019 ident: bib53 article-title: Fatigue design of offshore steel structures – year: 1993 ident: bib25 article-title: Simplified dynamic model for estimation of extreme anchor line tension publication-title: Offshore Australia, the 2nd Australian oil, gas & petrochemical exhibition and conference, Melbourne, Australia – year: 2016 ident: bib12 article-title: Dynamics and design of floating wind turbines publication-title: Proceedings of the twenty-sixth (2016) international ocean and polar engineering conference (ISOPE2016), Rhodes, Greece – year: 1998 ident: bib33 article-title: Dynamic analysis of both on and offshore wind turbines in the frequency domain – year: 2018 ident: bib72 article-title: LIFES50+ D4.2: public definition of the two LIFES50+ 10MW floater concepts – volume: 134 start-page: 628 year: 2008 end-page: 636 ident: bib30 article-title: Monte Carlo methods for estimating the extreme response of dynamical systems publication-title: J Eng Mech – start-page: 419 year: 2016 end-page: 426 ident: bib57 article-title: Cost assessment for a semi-submersible floating wind turbine with respect to the hydrodynamic response and tower base bending moments using particle swarm optimisation publication-title: Proceedings of the twenty-sixth (2016) international ocean and polar engineering conference (ISOPE2016), Rhodes, Greece – volume: 64 start-page: 186 year: 2019 end-page: 210 ident: bib20 article-title: A semi-analytical frequency domain model for efficient design evaluation of spar floating wind turbines publication-title: Mar Struct – year: 1990 ident: bib24 article-title: Efficient methods for the calculation of dynamic mooring line tension publication-title: Proceedings of the first (1990) European offshore mechanics symposium, trondheim, Norway – volume: 59 start-page: 1075 year: 2019 end-page: 1104 ident: bib15 article-title: OpenMDAO: an open-source framework for multidisciplinary design, analysis, and optimization publication-title: Struct Multidiscip Optim – year: 2017 ident: 10.1016/j.marstruc.2020.102771_bib59 – year: 1990 ident: 10.1016/j.marstruc.2020.102771_bib24 article-title: Efficient methods for the calculation of dynamic mooring line tension – year: 2018 ident: 10.1016/j.marstruc.2020.102771_bib65 – volume: 18 start-page: 157 issue: 4 year: 1996 ident: 10.1016/j.marstruc.2020.102771_bib5 article-title: Hydrodynamic shape optimization of large offshore structures publication-title: Appl Ocean Res doi: 10.1016/S0141-1187(96)00028-4 – year: 2019 ident: 10.1016/j.marstruc.2020.102771_bib48 – volume: 44 issue: 4 year: 2018 ident: 10.1016/j.marstruc.2020.102771_bib40 article-title: A computational architecture for coupling heterogeneous numerical models and computing coupled derivatives publication-title: ACM Trans Math Softw doi: 10.1145/3182393 – volume: 66 start-page: 714 year: 2014 ident: 10.1016/j.marstruc.2020.102771_bib47 article-title: Levelised cost of energy for offshore floating wind turbines in a life cycle perspective publication-title: Renew Energy doi: 10.1016/j.renene.2014.01.017 – volume: 59 start-page: 1075 year: 2019 ident: 10.1016/j.marstruc.2020.102771_bib15 article-title: OpenMDAO: an open-source framework for multidisciplinary design, analysis, and optimization publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-019-02211-z – year: 1985 ident: 10.1016/j.marstruc.2020.102771_bib29 – volume: 12 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.marstruc.2020.102771_bib39 article-title: Joint distribution for wind and waves in the Northern North Sea publication-title: Int J Offshore Polar Eng – volume: 1 start-page: 12 issue: 1 year: 2014 ident: 10.1016/j.marstruc.2020.102771_bib10 article-title: Design optimization of wind turbine support structures - a review publication-title: J Ocean Wind Energy – volume: 19 start-page: 2071 year: 2016 ident: 10.1016/j.marstruc.2020.102771_bib17 article-title: Aeroservoelastic design definition of a 20 MW common research wind turbine model publication-title: Wind Energy doi: 10.1002/we.1970 – volume: 134 start-page: 628 issue: 8 year: 2008 ident: 10.1016/j.marstruc.2020.102771_bib30 article-title: Monte Carlo methods for estimating the extreme response of dynamical systems publication-title: J Eng Mech doi: 10.1061/(ASCE)0733-9399(2008)134:8(628) – year: 1998 ident: 10.1016/j.marstruc.2020.102771_bib49 – year: 2019 ident: 10.1016/j.marstruc.2020.102771_bib53 – year: 2013 ident: 10.1016/j.marstruc.2020.102771_bib68 – year: 2014 ident: 10.1016/j.marstruc.2020.102771_bib4 article-title: Parametric analysis of a cylinder-like shape floating platform dedicated to multi-megawatt wind turbine – year: 2016 ident: 10.1016/j.marstruc.2020.102771_bib12 article-title: Dynamics and design of floating wind turbines – volume: 45 start-page: 101 issue: 1 year: 2012 ident: 10.1016/j.marstruc.2020.102771_bib44 article-title: pyOpt: A Python-based object-oriented framework for nonlinear constrained optimization publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-011-0666-3 – volume: 24 start-page: 289 year: 2012 ident: 10.1016/j.marstruc.2020.102771_bib6 article-title: Mooring system optimization for floating wind turbines using frequency domain analysis publication-title: Energy Procedia doi: 10.1016/j.egypro.2012.06.111 – year: 2011 ident: 10.1016/j.marstruc.2020.102771_bib21 – year: 2005 ident: 10.1016/j.marstruc.2020.102771_bib34 – year: 2011 ident: 10.1016/j.marstruc.2020.102771_bib31 – year: 2013 ident: 10.1016/j.marstruc.2020.102771_bib70 – year: 2018 ident: 10.1016/j.marstruc.2020.102771_bib54 – year: 2018 ident: 10.1016/j.marstruc.2020.102771_bib67 – volume: 31 start-page: 2175 year: 2004 ident: 10.1016/j.marstruc.2020.102771_bib60 article-title: Mathieu instability of a spar platform with mooring and risers publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2004.04.005 – volume: 3 start-page: 69 issue: 1 year: 2017 ident: 10.1016/j.marstruc.2020.102771_bib8 article-title: A multi-objective design optimization approach for floating offshore wind turbine support structures publication-title: J Ocean Eng Mar Energy doi: 10.1007/s40722-016-0072-4 – volume: 555 issue: 12099 year: 2014 ident: 10.1016/j.marstruc.2020.102771_bib13 article-title: Optimal tuning for a classical wind turbine controller publication-title: J Phys Conf – volume: 33 start-page: 541 issue: 6 year: 2009 ident: 10.1016/j.marstruc.2020.102771_bib52 article-title: Controlling platform motions and reducing blade loads for floating wind turbines publication-title: Wind Eng doi: 10.1260/0309-524X.33.6.541 – year: 2018 ident: 10.1016/j.marstruc.2020.102771_bib66 – year: 2016 ident: 10.1016/j.marstruc.2020.102771_bib28 – year: 2013 ident: 10.1016/j.marstruc.2020.102771_bib55 – year: 2013 ident: 10.1016/j.marstruc.2020.102771_bib19 – volume: 18 start-page: 1105 year: 2015 ident: 10.1016/j.marstruc.2020.102771_bib75 article-title: Analysis of measurements and simulations from the Hywind Demo floating wind turbine publication-title: Wind Energy doi: 10.1002/we.1750 – year: 2014 ident: 10.1016/j.marstruc.2020.102771_bib69 article-title: Integrated optimization of floating wind turbine systems – year: 2013 ident: 10.1016/j.marstruc.2020.102771_bib45 – volume: 64 start-page: 186 year: 2019 ident: 10.1016/j.marstruc.2020.102771_bib20 article-title: A semi-analytical frequency domain model for efficient design evaluation of spar floating wind turbines publication-title: Mar Struct doi: 10.1016/j.marstruc.2018.10.015 – volume: 12 start-page: 979 issue: 4 year: 2002 ident: 10.1016/j.marstruc.2020.102771_bib43 article-title: SNOPT: an SQP algorithm for large-scale constrained optimization publication-title: SIAM J Optim doi: 10.1137/S1052623499350013 – year: 2017 ident: 10.1016/j.marstruc.2020.102771_bib14 article-title: Optimization of floating offshore wind turbine platforms with a self-tuning controller – volume: 17 start-page: 1385 year: 2014 ident: 10.1016/j.marstruc.2020.102771_bib23 article-title: Dynamic response analysis of wind turbines under blade pitch system fault, grid loss, and shutdown events publication-title: Wind Energy doi: 10.1002/we.1639 – start-page: 419 year: 2016 ident: 10.1016/j.marstruc.2020.102771_bib57 article-title: Cost assessment for a semi-submersible floating wind turbine with respect to the hydrodynamic response and tower base bending moments using particle swarm optimisation – year: 2016 ident: 10.1016/j.marstruc.2020.102771_bib35 – volume: 141 year: 2019 ident: 10.1016/j.marstruc.2020.102771_bib58 article-title: Effect of axial acceleration on drivetrain responses in a spar-type floating wind turbine publication-title: J Offshore Mech Arctic Eng doi: 10.1115/1.4041996 – year: 1998 ident: 10.1016/j.marstruc.2020.102771_bib33 – year: 2018 ident: 10.1016/j.marstruc.2020.102771_bib72 – volume: 4 start-page: 163 year: 2019 ident: 10.1016/j.marstruc.2020.102771_bib18 article-title: Multipoint high-fidelity CFD-based aerodynamic shape optimization of a 10 MW wind turbine publication-title: Wind Energy Sci doi: 10.5194/wes-4-163-2019 – year: 1999 ident: 10.1016/j.marstruc.2020.102771_bib61 article-title: Alternative shape of spar platforms for use in hostile areas – year: 2013 ident: 10.1016/j.marstruc.2020.102771_bib7 article-title: Evolving offshore wind: a genetic algorithm-based support structure optimization framework for floating wind turbines – year: 2009 ident: 10.1016/j.marstruc.2020.102771_bib32 – year: 2013 ident: 10.1016/j.marstruc.2020.102771_bib27 – year: 2004 ident: 10.1016/j.marstruc.2020.102771_bib73 article-title: Feasibility of floating platform systems for wind turbines – year: 2012 ident: 10.1016/j.marstruc.2020.102771_bib9 article-title: Load reductions and optimizations on tension-leg-buoy offshore wind turbine platforms – volume: 136 start-page: 1491 issue: 12 year: 2010 ident: 10.1016/j.marstruc.2020.102771_bib76 article-title: Monte Carlo-based method for predicting extreme value statistics of uncertain structures publication-title: J Eng Mech doi: 10.1061/(ASCE)EM.1943-7889.0000194 – volume: 75 year: 2007 ident: 10.1016/j.marstruc.2020.102771_bib50 article-title: A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/75/1/012073 – volume: 29 start-page: 89 year: 2012 ident: 10.1016/j.marstruc.2020.102771_bib3 article-title: Design considerations for tension leg platform wind turbines publication-title: Mar Struct doi: 10.1016/j.marstruc.2012.09.001 – volume: 51 start-page: 2049 issue: 9 year: 2013 ident: 10.1016/j.marstruc.2020.102771_bib1 article-title: Multidisciplinary design optimization: a survey of architectures publication-title: AIAA J doi: 10.2514/1.J051895 – year: 2007 ident: 10.1016/j.marstruc.2020.102771_bib64 – year: 1993 ident: 10.1016/j.marstruc.2020.102771_bib25 article-title: Simplified dynamic model for estimation of extreme anchor line tension – volume: 35 start-page: 210 year: 2013 ident: 10.1016/j.marstruc.2020.102771_bib22 article-title: Dynamic analysis of floating wind turbines during pitch actuator fault, grid loss, and shutdown publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.07.174 – volume: 55 start-page: 257 year: 2017 ident: 10.1016/j.marstruc.2020.102771_bib63 article-title: An evaluation of constraint aggregation strategies for wing box mass minimization publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-016-1495-1 – volume: 68 start-page: 893 year: 2014 ident: 10.1016/j.marstruc.2020.102771_bib16 article-title: Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy publication-title: Renew Energy doi: 10.1016/j.renene.2014.02.045 – year: 2010 ident: 10.1016/j.marstruc.2020.102771_bib71 – year: 2007 ident: 10.1016/j.marstruc.2020.102771_bib74 article-title: Mooring line damping estimation by a simplified dynamic model – year: 2009 ident: 10.1016/j.marstruc.2020.102771_bib37 – year: 2007 ident: 10.1016/j.marstruc.2020.102771_bib2 – year: 2016 ident: 10.1016/j.marstruc.2020.102771_bib36 – year: 2019 ident: 10.1016/j.marstruc.2020.102771_bib56 – year: 2009 ident: 10.1016/j.marstruc.2020.102771_bib38 – year: 2011 ident: 10.1016/j.marstruc.2020.102771_bib11 article-title: WINDOPT- an optimization tool for floating support structures for deep water wind turbines – volume: 46 start-page: 273 year: 2012 ident: 10.1016/j.marstruc.2020.102771_bib42 article-title: Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-012-0763-y – start-page: 3148 year: 2012 ident: 10.1016/j.marstruc.2020.102771_bib51 article-title: Control of floating wind turbines – year: 2009 ident: 10.1016/j.marstruc.2020.102771_bib26 – volume: 51 start-page: 2582 issue: 11 year: 2013 ident: 10.1016/j.marstruc.2020.102771_bib41 article-title: Review and unification of methods for computing derivatives of multidisciplinary computational models publication-title: AIAA J doi: 10.2514/1.J052184 – year: 2016 ident: 10.1016/j.marstruc.2020.102771_bib46 – year: 1979 ident: 10.1016/j.marstruc.2020.102771_bib62 article-title: Systematic control design by optimizing a vector performance index |
SSID | ssj0017111 |
Score | 2.4945722 |
Snippet | A linearized aero-hydro-servo-elastic floating wind turbine model is presented and used to perform integrated design optimization of the platform, tower,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102771 |
SubjectTerms | Control systems Deformation Design Design optimization Fatigue Floating Floating wind turbines Frequency ranges Gradient-based optimization Integrated design Linearization Mooring systems Nonlinear analysis Objective function Offshore wind energy Pitch (inclination) Resonant frequencies Resonant frequency Shape Time domain analysis Towers Turbine engines Turbines Wind power Wind turbines |
Title | Integrated design optimization of spar floating wind turbines |
URI | https://dx.doi.org/10.1016/j.marstruc.2020.102771 https://www.proquest.com/docview/2476854287 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lXryIT6pWyUG8bdskTdI9FrFUpb1oobeQ3WShxT5QQbz4253JZosK0oPHfWRZZme_mSHffEPIVcczrrTyCdOFhQKlYEmW593EQvXsIIGVOcPm5NFYDSfd-6mc1shN1QuDtMqI_SWmB7SOZ9rRmu31bNZ-xOSgJyC-g59iiyR2sHc1ennrc0PzYJqFGbxhnDze_a1LeN5aQPGIMq1QJ_KgYqA1-ytA_YLqEH8G-2QvJo60X77bAan55SFpjILI9ssHvaZjC05D4796RAKdMAhBOOoCTYOuAB4Wse-SrgoKYPJCi-eVReozfYfqnEIAypAIf0wmg9unm2ESZyUkuej13pJUWVegepfgHlLQsLminZAiLTBp84p5J5n1XHLfcSqTEkpDnonCCSWYVeKE1JerpW8QKmxH-dTqjFndTYVPixyinObccdyEzU-JrAxk8igkjvMsnk3FGJubyrAGDWtKw56S9mbdupTS2LoirexvfjiFAbzfurZZfTATf8tXw8E_ehKrxLN_PPqc7OJRSdptkjpc9xeQmrxll8H3LslO_-5hOP4C0JTiZA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgHOCCeIrHgBwQt7IlWZL1OCHQeKwXmLRblDapxLStCJAQ_x4nTREgIQ5c27qqXMf2J9ufAU67jjKppEuoKg0ClJImeVH0EoPo2WICKwrqh5NHmRyOezcTMVmCi2YWxrdVRt9f-_TgreOVTtRm5-nxsXPvk4M-x_iOdupHJJdhxbNTiRasDK5vh9lnMUHRsIY3bJT3Al8Ghafnc8SPnqkVoSILRAZK0d9i1A9vHULQ1Qasx9yRDOrP24Qlt9iCvVHg2X5-J2ckM2g3JB7XbQgdhYELwhIbOjVIhR5iHkcvSVUS9CfPpJxVxnc_kzcE6ARjUO574XdgfHX5cDFM4rqEpOD9_muSSmNLT-DFmcMsNNRXlOWCp6XP25ykzgpqHBPMda3MhUB0yHJeWi45NZLvQmtRLdweEG660qVG5dSoXspdWhYY6BRjlvk6bLEPolGQLiKXuF9pMdNN09hUN4rVXrG6Vuw-dD7lnmo2jT8l0kb_-ptdaHT5f8q2mx-m48l80ayHAEt4oHjwj1efwOrwYXSn766z20NY83fqHt42tPBZd4SZymt-HC3xA5zp5RU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+design+optimization+of+spar+floating+wind+turbines&rft.jtitle=Marine+structures&rft.au=Hegseth%2C+John+Marius&rft.au=Bachynski%2C+Erin+E.&rft.au=Martins%2C+Joaquim+R.R.A.&rft.date=2020-07-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8339&rft.eissn=1873-4170&rft.volume=72&rft_id=info:doi/10.1016%2Fj.marstruc.2020.102771&rft.externalDocID=S0951833920300654 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8339&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8339&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8339&client=summon |