Integrated design optimization of spar floating wind turbines

A linearized aero-hydro-servo-elastic floating wind turbine model is presented and used to perform integrated design optimization of the platform, tower, mooring system, and blade-pitch controller for a 10 MW spar floating wind turbine. Optimal design solutions are found using gradient-based optimiz...

Full description

Saved in:
Bibliographic Details
Published inMarine structures Vol. 72; pp. 102771 - 28
Main Authors Hegseth, John Marius, Bachynski, Erin E., Martins, Joaquim R.R.A.
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.07.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A linearized aero-hydro-servo-elastic floating wind turbine model is presented and used to perform integrated design optimization of the platform, tower, mooring system, and blade-pitch controller for a 10 MW spar floating wind turbine. Optimal design solutions are found using gradient-based optimization with analytic derivatives, considering both fatigue and extreme response constraints, where the objective function is a weighted combination of system cost and power quality. Optimization results show that local minima exist both in the soft-stiff and stiff-stiff range for the first tower bending mode and that a stiff-stiff tower design is needed to reach a solution that satisfies the fatigue constraints. The optimized platform has a relatively small diameter in the wave zone to limit the wave loads on the structure and an hourglass shape far below the waterline. The shape increases the restoring moment and natural frequency in pitch, which leads to improved behaviour in the low-frequency range. The importance of integrated optimization is shown in the solutions for the tower and blade-pitch control system, which are clearly affected by the simultaneous design of the platform. State-of-the-art nonlinear time-domain analyses show that the linearized model is conservative in general, but reasonably accurate in capturing trends, suggesting that the presented methodology is suitable for preliminary integrated design calculations. •A linearized aero-hydro-servo-elastic floating wind turbine model was developed.•Integrated design was performed using gradient-based optimization.•A stiff-stiff tower design was needed to satisfy fatigue constraints.•Tower and blade-pitch controller were affected by the integrated design process.•Optimized design was verified using nonlinear time-domain simulations.
AbstractList A linearized aero-hydro-servo-elastic floating wind turbine model is presented and used to perform integrated design optimization of the platform, tower, mooring system, and blade-pitch controller for a 10 MW spar floating wind turbine. Optimal design solutions are found using gradient-based optimization with analytic derivatives, considering both fatigue and extreme response constraints, where the objective function is a weighted combination of system cost and power quality. Optimization results show that local minima exist both in the soft-stiff and stiff-stiff range for the first tower bending mode and that a stiff-stiff tower design is needed to reach a solution that satisfies the fatigue constraints. The optimized platform has a relatively small diameter in the wave zone to limit the wave loads on the structure and an hourglass shape far below the waterline. The shape increases the restoring moment and natural frequency in pitch, which leads to improved behaviour in the low-frequency range. The importance of integrated optimization is shown in the solutions for the tower and blade-pitch control system, which are clearly affected by the simultaneous design of the platform. State-of-the-art nonlinear time-domain analyses show that the linearized model is conservative in general, but reasonably accurate in capturing trends, suggesting that the presented methodology is suitable for preliminary integrated design calculations. •A linearized aero-hydro-servo-elastic floating wind turbine model was developed.•Integrated design was performed using gradient-based optimization.•A stiff-stiff tower design was needed to satisfy fatigue constraints.•Tower and blade-pitch controller were affected by the integrated design process.•Optimized design was verified using nonlinear time-domain simulations.
A linearized aero-hydro-servo-elastic floating wind turbine model is presented and used to perform integrated design optimization of the platform, tower, mooring system, and blade-pitch controller for a 10 MW spar floating wind turbine. Optimal design solutions are found using gradient-based optimization with analytic derivatives, considering both fatigue and extreme response constraints, where the objective function is a weighted combination of system cost and power quality. Optimization results show that local minima exist both in the soft-stiff and stiff-stiff range for the first tower bending mode and that a stiff-stiff tower design is needed to reach a solution that satisfies the fatigue constraints. The optimized platform has a relatively small diameter in the wave zone to limit the wave loads on the structure and an hourglass shape far below the waterline. The shape increases the restoring moment and natural frequency in pitch, which leads to improved behaviour in the low-frequency range. The importance of integrated optimization is shown in the solutions for the tower and blade-pitch control system, which are clearly affected by the simultaneous design of the platform. State-of-the-art nonlinear time-domain analyses show that the linearized model is conservative in general, but reasonably accurate in capturing trends, suggesting that the presented methodology is suitable for preliminary integrated design calculations.
ArticleNumber 102771
Author Bachynski, Erin E.
Martins, Joaquim R.R.A.
Hegseth, John Marius
Author_xml – sequence: 1
  givenname: John Marius
  orcidid: 0000-0003-3739-9548
  surname: Hegseth
  fullname: Hegseth, John Marius
  email: john.m.hegseth@ntnu.no
  organization: Department of Marine Technology, NTNU, 7491, Trondheim, Norway
– sequence: 2
  givenname: Erin E.
  surname: Bachynski
  fullname: Bachynski, Erin E.
  organization: Department of Marine Technology, NTNU, 7491, Trondheim, Norway
– sequence: 3
  givenname: Joaquim R.R.A.
  surname: Martins
  fullname: Martins, Joaquim R.R.A.
  organization: Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
BookMark eNqFkE9LxDAQxYOs4Lr6FaTguWumadIUFJTFPwsLXvQcss10SdlNa5Iq-untWr142dPMPObN8H6nZOJah4RcAJ0DBXHVzHfah-j7ap7RbC9mRQFHZAqyYGkOBZ2QKS05pJKx8oSchtBQCgUATMnN0kXceB3RJAaD3bik7aLd2S8dbTsMdRI67ZN62w6C2yQf1pkk9n5tHYYzclzrbcDz3zojrw_3L4undPX8uFzcrdKKSRnTUmhTM8o5y1CCAVGUsjCMs7KmORcoAA0HjRnPkBqx5lwO7ZrVhgkGWrAZuRzvdr596zFE1bS9d8NLleWFkDzPhqwzIsatyrcheKxV5-3A5lMBVXtUqlF_qNQelRpRDcbrf8bKxp_80Wu7PWy_He04IHi36FWoLLoKjfVYRWVae-jEN6puiwc
CitedBy_id crossref_primary_10_1080_19386362_2025_2459278
crossref_primary_10_1016_j_oceaneng_2022_112952
crossref_primary_10_1088_1742_6596_2265_4_042029
crossref_primary_10_1016_j_apor_2021_102998
crossref_primary_10_1016_j_ress_2021_107706
crossref_primary_10_1016_j_rser_2022_112787
crossref_primary_10_1016_j_enconman_2022_115933
crossref_primary_10_1002_ese3_1602
crossref_primary_10_1007_s40684_021_00390_z
crossref_primary_10_3389_fenrg_2024_1373586
crossref_primary_10_1016_j_oceaneng_2024_119915
crossref_primary_10_1016_j_renene_2024_119973
crossref_primary_10_1007_s42241_024_0022_x
crossref_primary_10_1016_j_oceaneng_2023_115756
crossref_primary_10_1016_j_energy_2024_134247
crossref_primary_10_1016_j_oceaneng_2022_111375
crossref_primary_10_1088_1742_6596_2018_1_012032
crossref_primary_10_3390_jmse10081021
crossref_primary_10_1088_1742_6596_2362_1_012025
crossref_primary_10_1016_j_ress_2023_109817
crossref_primary_10_1115_1_4067798
crossref_primary_10_5194_wes_7_259_2022
crossref_primary_10_3390_en17184722
crossref_primary_10_1088_1755_1315_682_1_012004
crossref_primary_10_1016_j_marstruc_2022_103182
crossref_primary_10_1016_j_apenergy_2023_122036
crossref_primary_10_1016_j_renene_2022_08_121
crossref_primary_10_1007_s40722_020_00181_9
crossref_primary_10_1016_j_apenergy_2023_121941
crossref_primary_10_1016_j_oceaneng_2024_118634
crossref_primary_10_1016_j_oceaneng_2021_108585
crossref_primary_10_3390_en16145371
crossref_primary_10_1088_1742_6596_2265_4_042020
crossref_primary_10_1088_1742_6596_2265_4_042021
crossref_primary_10_1016_j_energy_2024_132257
crossref_primary_10_1016_j_rineng_2024_102008
crossref_primary_10_1016_j_egyr_2023_09_148
crossref_primary_10_1016_j_rser_2024_115231
crossref_primary_10_1016_j_apor_2024_104120
crossref_primary_10_1016_j_horiz_2024_100125
crossref_primary_10_1016_j_oceaneng_2022_111002
crossref_primary_10_1016_j_oceaneng_2022_113103
crossref_primary_10_1016_j_oceaneng_2023_115247
crossref_primary_10_1016_j_jweia_2023_105409
crossref_primary_10_1109_ACCESS_2023_3343874
crossref_primary_10_3390_en13236407
crossref_primary_10_3390_jmse10040542
crossref_primary_10_1016_j_renene_2021_09_090
crossref_primary_10_1016_j_marstruc_2023_103437
crossref_primary_10_5194_wes_9_1053_2024
crossref_primary_10_1088_1742_6596_2647_11_112011
crossref_primary_10_1016_j_oceaneng_2022_112727
crossref_primary_10_1016_j_oceaneng_2022_111474
crossref_primary_10_1016_j_marstruc_2020_102866
crossref_primary_10_1016_j_marstruc_2024_103715
crossref_primary_10_3390_en17246316
crossref_primary_10_1016_j_rser_2022_112477
crossref_primary_10_1088_1742_6596_1669_1_012010
crossref_primary_10_1016_j_apenergy_2024_124533
crossref_primary_10_1088_1742_6596_1618_4_042028
crossref_primary_10_32604_cmc_2022_029315
crossref_primary_10_1016_j_marstruc_2024_103768
crossref_primary_10_1016_j_marstruc_2023_103547
crossref_primary_10_1016_j_oceaneng_2025_120350
Cites_doi 10.1016/S0141-1187(96)00028-4
10.1145/3182393
10.1016/j.renene.2014.01.017
10.1007/s00158-019-02211-z
10.1002/we.1970
10.1061/(ASCE)0733-9399(2008)134:8(628)
10.1007/s00158-011-0666-3
10.1016/j.egypro.2012.06.111
10.1016/j.oceaneng.2004.04.005
10.1007/s40722-016-0072-4
10.1260/0309-524X.33.6.541
10.1002/we.1750
10.1016/j.marstruc.2018.10.015
10.1137/S1052623499350013
10.1002/we.1639
10.1115/1.4041996
10.5194/wes-4-163-2019
10.1061/(ASCE)EM.1943-7889.0000194
10.1088/1742-6596/75/1/012073
10.1016/j.marstruc.2012.09.001
10.2514/1.J051895
10.1016/j.egypro.2013.07.174
10.1007/s00158-016-1495-1
10.1016/j.renene.2014.02.045
10.1007/s00158-012-0763-y
10.2514/1.J052184
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright Elsevier BV Jul 2020
Copyright_xml – notice: 2020 The Author(s)
– notice: Copyright Elsevier BV Jul 2020
DBID 6I.
AAFTH
AAYXX
CITATION
7ST
7TB
7TN
8FD
C1K
F1W
FR3
KR7
SOI
DOI 10.1016/j.marstruc.2020.102771
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Oceanic Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Military & Naval Science
EISSN 1873-4170
EndPage 28
ExternalDocumentID 10_1016_j_marstruc_2020_102771
S0951833920300654
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
7TB
7TN
8FD
C1K
EFKBS
F1W
FR3
KR7
SOI
ID FETCH-LOGICAL-c388t-96adf305532e81d167987d3539f0456e61ed51ae252e0d6b558252b3fd3631a63
IEDL.DBID .~1
ISSN 0951-8339
IngestDate Wed Aug 13 09:39:16 EDT 2025
Tue Jul 01 02:36:55 EDT 2025
Thu Apr 24 22:58:41 EDT 2025
Fri Feb 23 02:46:46 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Integrated design
Offshore wind energy
Floating wind turbines
Gradient-based optimization
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-96adf305532e81d167987d3539f0456e61ed51ae252e0d6b558252b3fd3631a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3739-9548
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0951833920300654
PQID 2476854287
PQPubID 2045436
PageCount 28
ParticipantIDs proquest_journals_2476854287
crossref_primary_10_1016_j_marstruc_2020_102771
crossref_citationtrail_10_1016_j_marstruc_2020_102771
elsevier_sciencedirect_doi_10_1016_j_marstruc_2020_102771
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Marine structures
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References (bib53) 2019
Ashuri, Zaaijer, Martins, van Bussel, van Kuik (bib16) 2014; 68
Nejad, Bachynski, Moan (bib58) 2019; 141
Manwell, McGowan, Rogers (bib32) 2009
Strach-Sonsalla, Muskulus (bib12) 2016
Merz (bib21) 2011
(bib66) 2018
Karimi, Hall, Buckham, Crawford (bib8) 2017; 3
Saha, Naess (bib76) 2010; 136
Bak, Zahle, Bitsche, Yde, Henriksen, Natarajan, Hansen (bib19) 2013
(bib56) 2019
Steinert, Ehlers, Kvittem, Merino, Ebbesen (bib57) 2016
Larsen, Hanson (bib50) 2007; 75
Musial, Butterfield, Boone (bib73) 2004
Gray, Hwang, Martins, Moore, Naylor (bib15) 2019; 59
Hansen, Henriksen (bib70) 2013
Lie, Sødahl (bib25) 1993
(bib59) 2017
Gilloteaux, Bozonnet (bib4) 2014
Sandner, Schlipf, Matha, Cheng (bib69) 2014
Lambe, Martins (bib42) 2012; 46
Jonkman, Butterfield, Musial, Scott (bib26) 2009
Bachynski, Moan (bib3) 2012; 29
Lemmer, Müller, Yu, Schlipf, Cheng (bib14) 2017
Martins, Lambe (bib1) 2013; 51
Farkas, Jármai (bib45) 2013
(bib36) 2016
Lambe, Kennedy, Martins (bib63) 2017; 55
Koo, Kim, Randall (bib60) 2004; 31
Jonkman (bib71) 2010
Myhr, Nygaard (bib9) 2012
Gill, Murray, Saunders (bib43) 2002; 12
(bib67) 2018
Chen (bib68) 2013
Hall, Buckham, Crawford (bib7) 2013
Perez, Jansen, Martins (bib44) 2012; 45
Hwang, Martins (bib40) 2018; 44
Lackner (bib52) 2009; 33
Teillant, Krügel, Guérinel, Vicente, Debruyne, Malerba, Gradowski, Roveda, Neumann, Noorloos, Schuitema, Gomes, Henriques, Gato, Combourieu, Neau, Borgarino, Doussal, Philippe, Moretti, Fontana (bib46) 2016
Lie, Gao, Moan (bib74) 2007
Larsen (bib48) 2019
Skaare, Nielsen, Hanson, Yttervik, Havmøller, Rekdal (bib75) 2015; 18
Fylling, Berthelsen (bib11) 2011
Halfpenny (bib33) 1998
van der Veen, Couchman, Bowyer (bib51) 2012
Barltrop (bib49) 1998
Madsen, Zahle, Sørensen, Martins (bib18) 2019; 4
Tibaldi, Hansen, Henriksen (bib13) 2014; 555
Brommundt, Krause, Merz, Muskulus (bib6) 2012; 24
Myhr, Bjerkseter, Ågotnes, Nygaard (bib47) 2014; 66
Bachynski, Etemaddar, Kvittem, Luan, Moan (bib22) 2013; 35
Kreisselmeier, Steinhauser (bib62) 1979
Dirlik (bib29) 1985
Haslum, Faltinsen (bib61) 1999
(bib55) 2013
Ashuri, Martins, Zaaijer, van Kuik, van Bussel (bib17) 2016; 19
(bib65) 2018
Naess, Gaidai (bib30) 2008; 134
Tracy (bib2) 2007
Müller, Lemmer, Yu (bib72) 2018
(bib35) 2016
(bib64) 2007
Naess, Moan (bib27) 2013
Jonkman, Kilcher (bib37) 2009
(bib28) 2016
Hegseth, Bachynski (bib20) 2019; 64
Larsen, Sandvik (bib24) 1990
Clauss, Birk (bib5) 1996; 18
(bib34) 2005
Muskulus, Schafhirt (bib10) 2014; 1
Jiang, Karimirad, Moan (bib23) 2014; 17
Burton, Jenkins, Sharpe, Bossanyi (bib31) 2011
Martins, Hwang (bib41) 2013; 51
(bib38) 2009
Johannessen, Meling, Haver (bib39) 2002; 12
(bib54) 2018
Jonkman (10.1016/j.marstruc.2020.102771_bib26) 2009
(10.1016/j.marstruc.2020.102771_bib66) 2018
Burton (10.1016/j.marstruc.2020.102771_bib31) 2011
Barltrop (10.1016/j.marstruc.2020.102771_bib49) 1998
Koo (10.1016/j.marstruc.2020.102771_bib60) 2004; 31
Kreisselmeier (10.1016/j.marstruc.2020.102771_bib62) 1979
Halfpenny (10.1016/j.marstruc.2020.102771_bib33) 1998
Martins (10.1016/j.marstruc.2020.102771_bib1) 2013; 51
Brommundt (10.1016/j.marstruc.2020.102771_bib6) 2012; 24
Perez (10.1016/j.marstruc.2020.102771_bib44) 2012; 45
(10.1016/j.marstruc.2020.102771_bib53) 2019
Chen (10.1016/j.marstruc.2020.102771_bib68) 2013
Gray (10.1016/j.marstruc.2020.102771_bib15) 2019; 59
Jiang (10.1016/j.marstruc.2020.102771_bib23) 2014; 17
Nejad (10.1016/j.marstruc.2020.102771_bib58) 2019; 141
Larsen (10.1016/j.marstruc.2020.102771_bib48) 2019
Fylling (10.1016/j.marstruc.2020.102771_bib11) 2011
Manwell (10.1016/j.marstruc.2020.102771_bib32) 2009
Merz (10.1016/j.marstruc.2020.102771_bib21) 2011
Lackner (10.1016/j.marstruc.2020.102771_bib52) 2009; 33
Muskulus (10.1016/j.marstruc.2020.102771_bib10) 2014; 1
(10.1016/j.marstruc.2020.102771_bib38) 2009
Bak (10.1016/j.marstruc.2020.102771_bib19) 2013
Gill (10.1016/j.marstruc.2020.102771_bib43) 2002; 12
Lemmer (10.1016/j.marstruc.2020.102771_bib14) 2017
Naess (10.1016/j.marstruc.2020.102771_bib30) 2008; 134
(10.1016/j.marstruc.2020.102771_bib55) 2013
Larsen (10.1016/j.marstruc.2020.102771_bib24) 1990
Karimi (10.1016/j.marstruc.2020.102771_bib8) 2017; 3
Lambe (10.1016/j.marstruc.2020.102771_bib63) 2017; 55
Jonkman (10.1016/j.marstruc.2020.102771_bib37) 2009
Hansen (10.1016/j.marstruc.2020.102771_bib70) 2013
Steinert (10.1016/j.marstruc.2020.102771_bib57) 2016
Strach-Sonsalla (10.1016/j.marstruc.2020.102771_bib12) 2016
van der Veen (10.1016/j.marstruc.2020.102771_bib51) 2012
(10.1016/j.marstruc.2020.102771_bib54) 2018
Larsen (10.1016/j.marstruc.2020.102771_bib50) 2007; 75
Bachynski (10.1016/j.marstruc.2020.102771_bib22) 2013; 35
Bachynski (10.1016/j.marstruc.2020.102771_bib3) 2012; 29
Madsen (10.1016/j.marstruc.2020.102771_bib18) 2019; 4
Skaare (10.1016/j.marstruc.2020.102771_bib75) 2015; 18
Myhr (10.1016/j.marstruc.2020.102771_bib47) 2014; 66
Musial (10.1016/j.marstruc.2020.102771_bib73) 2004
Jonkman (10.1016/j.marstruc.2020.102771_bib71) 2010
Tibaldi (10.1016/j.marstruc.2020.102771_bib13) 2014; 555
Haslum (10.1016/j.marstruc.2020.102771_bib61) 1999
Clauss (10.1016/j.marstruc.2020.102771_bib5) 1996; 18
Teillant (10.1016/j.marstruc.2020.102771_bib46) 2016
Myhr (10.1016/j.marstruc.2020.102771_bib9) 2012
(10.1016/j.marstruc.2020.102771_bib28) 2016
Dirlik (10.1016/j.marstruc.2020.102771_bib29) 1985
(10.1016/j.marstruc.2020.102771_bib34) 2005
Gilloteaux (10.1016/j.marstruc.2020.102771_bib4) 2014
Lie (10.1016/j.marstruc.2020.102771_bib74) 2007
(10.1016/j.marstruc.2020.102771_bib35) 2016
(10.1016/j.marstruc.2020.102771_bib64) 2007
Johannessen (10.1016/j.marstruc.2020.102771_bib39) 2002; 12
(10.1016/j.marstruc.2020.102771_bib65) 2018
Ashuri (10.1016/j.marstruc.2020.102771_bib17) 2016; 19
Lambe (10.1016/j.marstruc.2020.102771_bib42) 2012; 46
Farkas (10.1016/j.marstruc.2020.102771_bib45) 2013
Hall (10.1016/j.marstruc.2020.102771_bib7) 2013
(10.1016/j.marstruc.2020.102771_bib67) 2018
Martins (10.1016/j.marstruc.2020.102771_bib41) 2013; 51
Hwang (10.1016/j.marstruc.2020.102771_bib40) 2018; 44
Müller (10.1016/j.marstruc.2020.102771_bib72) 2018
Lie (10.1016/j.marstruc.2020.102771_bib25) 1993
Sandner (10.1016/j.marstruc.2020.102771_bib69) 2014
Ashuri (10.1016/j.marstruc.2020.102771_bib16) 2014; 68
Naess (10.1016/j.marstruc.2020.102771_bib27) 2013
(10.1016/j.marstruc.2020.102771_bib59) 2017
(10.1016/j.marstruc.2020.102771_bib36) 2016
(10.1016/j.marstruc.2020.102771_bib56) 2019
Saha (10.1016/j.marstruc.2020.102771_bib76) 2010; 136
Tracy (10.1016/j.marstruc.2020.102771_bib2) 2007
Hegseth (10.1016/j.marstruc.2020.102771_bib20) 2019; 64
References_xml – year: 2019
  ident: bib56
  article-title: Buckling strength of shells
– year: 2016
  ident: bib35
  article-title: RIFLEX user guide
– year: 2013
  ident: bib55
  article-title: Design of floating wind turbine structures
– volume: 1
  start-page: 12
  year: 2014
  end-page: 22
  ident: bib10
  article-title: Design optimization of wind turbine support structures - a review
  publication-title: J Ocean Wind Energy
– volume: 18
  start-page: 1105
  year: 2015
  end-page: 1122
  ident: bib75
  article-title: Analysis of measurements and simulations from the Hywind Demo floating wind turbine
  publication-title: Wind Energy
– year: 2011
  ident: bib31
  article-title: Wind energy handbook
– year: 2016
  ident: bib28
  article-title: Loads and site conditions for wind turbines
– year: 2014
  ident: bib69
  article-title: Integrated optimization of floating wind turbine systems
  publication-title: Proceedings of the ASME 2014 33rd international conference on ocean, offshore and Arctic engineering (OMAE2014), san Francisco, California, USA
– volume: 29
  start-page: 89
  year: 2012
  end-page: 114
  ident: bib3
  article-title: Design considerations for tension leg platform wind turbines
  publication-title: Mar Struct
– year: 2016
  ident: bib46
  article-title: WETFEET wave energy transition to future by evolution of engineering and technology D2.3: engineering challenges related to full scale and large deployment implementation of the proposed breakthroughs
– year: 2013
  ident: bib19
  article-title: Description of the DTU 10 MW reference wind turbine
– year: 1985
  ident: bib29
  article-title: Application of computers in fatigue analysis
– volume: 66
  start-page: 714
  year: 2014
  end-page: 728
  ident: bib47
  article-title: Levelised cost of energy for offshore floating wind turbines in a life cycle perspective
  publication-title: Renew Energy
– year: 2018
  ident: bib67
  article-title: Position mooring
– volume: 68
  start-page: 893
  year: 2014
  end-page: 905
  ident: bib16
  article-title: Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy
  publication-title: Renew Energy
– volume: 12
  start-page: 979
  year: 2002
  end-page: 1006
  ident: bib43
  article-title: SNOPT: an SQP algorithm for large-scale constrained optimization
  publication-title: SIAM J Optim
– volume: 555
  year: 2014
  ident: bib13
  article-title: Optimal tuning for a classical wind turbine controller
  publication-title: J Phys Conf
– volume: 141
  year: 2019
  ident: bib58
  article-title: Effect of axial acceleration on drivetrain responses in a spar-type floating wind turbine
  publication-title: J Offshore Mech Arctic Eng
– volume: 31
  start-page: 2175
  year: 2004
  end-page: 2208
  ident: bib60
  article-title: Mathieu instability of a spar platform with mooring and risers
  publication-title: Ocean Eng
– year: 2009
  ident: bib32
  article-title: Wind energy explained
– year: 2017
  ident: bib14
  article-title: Optimization of floating offshore wind turbine platforms with a self-tuning controller
  publication-title: Proceedings of the ASME 2017 36th international conference on ocean, offshore and Arctic engineering (OMAE2017), trondheim, Norway
– volume: 24
  start-page: 289
  year: 2012
  end-page: 296
  ident: bib6
  article-title: Mooring system optimization for floating wind turbines using frequency domain analysis
  publication-title: Energy Procedia
– year: 2017
  ident: bib59
  article-title: Modelling and analysis of marine operations
– year: 2011
  ident: bib11
  article-title: WINDOPT- an optimization tool for floating support structures for deep water wind turbines
  publication-title: Proceedings of the ASME 2011 30th international conference on ocean, offshore and Arctic engineering (OMAE2011), Rotterdam, The Netherlands
– year: 2014
  ident: bib4
  article-title: Parametric analysis of a cylinder-like shape floating platform dedicated to multi-megawatt wind turbine
  publication-title: Proceedings of the twenty-fourth (2014) international ocean and polar engineering conference (ISOPE2014)
– year: 2009
  ident: bib38
  article-title: Wind turbines - part 3: design requirements for offshore wind turbines
– year: 2004
  ident: bib73
  article-title: Feasibility of floating platform systems for wind turbines
  publication-title: 23rd ASME wind energy symposium, Reno, Nevada, USA
– year: 1999
  ident: bib61
  article-title: Alternative shape of spar platforms for use in hostile areas
  publication-title: Offshore technology conference
– volume: 75
  year: 2007
  ident: bib50
  article-title: A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine
  publication-title: J Phys Conf Ser
– volume: 3
  start-page: 69
  year: 2017
  end-page: 87
  ident: bib8
  article-title: A multi-objective design optimization approach for floating offshore wind turbine support structures
  publication-title: J Ocean Eng Mar Energy
– year: 2012
  ident: bib9
  article-title: Load reductions and optimizations on tension-leg-buoy offshore wind turbine platforms
  publication-title: Proceedings of the twenty-second (2012) international offshore and polar engineering conference (ISOPE2012), Rhodes, Greece
– volume: 19
  start-page: 2071
  year: 2016
  end-page: 2087
  ident: bib17
  article-title: Aeroservoelastic design definition of a 20 MW common research wind turbine model
  publication-title: Wind Energy
– year: 1979
  ident: bib62
  article-title: Systematic control design by optimizing a vector performance index
  publication-title: International federation of active controls symposium on computer-aided design of control systems, Zurich, Switzerland
– year: 2007
  ident: bib74
  article-title: Mooring line damping estimation by a simplified dynamic model
  publication-title: Proceedings of OMAE 2007 26h international conference on offshore mechanics and Arctic engineering, san Diego, California, USA
– volume: 35
  start-page: 210
  year: 2013
  end-page: 222
  ident: bib22
  article-title: Dynamic analysis of floating wind turbines during pitch actuator fault, grid loss, and shutdown
  publication-title: Energy Procedia
– start-page: 3148
  year: 2012
  end-page: 3153
  ident: bib51
  article-title: Control of floating wind turbines
  publication-title: 2012 American control conference
– year: 2007
  ident: bib64
  article-title: Eurocode 3: design of steel structures, part 1-6: strength and stability of shell structures
– year: 2013
  ident: bib45
  article-title: Optimum design of steel structures
– year: 2016
  ident: bib36
  article-title: SIMO user guide
– year: 2018
  ident: bib65
  article-title: Support structures for wind turbines
– volume: 4
  start-page: 163
  year: 2019
  end-page: 192
  ident: bib18
  article-title: Multipoint high-fidelity CFD-based aerodynamic shape optimization of a 10 MW wind turbine
  publication-title: Wind Energy Sci
– volume: 51
  start-page: 2582
  year: 2013
  end-page: 2599
  ident: bib41
  article-title: Review and unification of methods for computing derivatives of multidisciplinary computational models
  publication-title: AIAA J
– year: 2009
  ident: bib37
  article-title: TurbSim user's guide: version 1.50
– volume: 55
  start-page: 257
  year: 2017
  end-page: 277
  ident: bib63
  article-title: An evaluation of constraint aggregation strategies for wing box mass minimization
  publication-title: Struct Multidiscip Optim
– volume: 12
  start-page: 1
  year: 2002
  end-page: 8
  ident: bib39
  article-title: Joint distribution for wind and waves in the Northern North Sea
  publication-title: Int J Offshore Polar Eng
– year: 2005
  ident: bib34
  article-title: Wind turbines - part 1: design requirements
– year: 2011
  ident: bib21
  article-title: Conceptual design of a stall-regulated rotor for a deepwater offshore wind turbine
– volume: 46
  start-page: 273
  year: 2012
  end-page: 284
  ident: bib42
  article-title: Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes
  publication-title: Struct Multidiscip Optim
– volume: 17
  start-page: 1385
  year: 2014
  end-page: 1409
  ident: bib23
  article-title: Dynamic response analysis of wind turbines under blade pitch system fault, grid loss, and shutdown events
  publication-title: Wind Energy
– volume: 45
  start-page: 101
  year: 2012
  end-page: 118
  ident: bib44
  article-title: pyOpt: A Python-based object-oriented framework for nonlinear constrained optimization
  publication-title: Struct Multidiscip Optim
– volume: 44
  year: 2018
  ident: bib40
  article-title: A computational architecture for coupling heterogeneous numerical models and computing coupled derivatives
  publication-title: ACM Trans Math Softw
– year: 1998
  ident: bib49
  article-title: Floating structures: a guide for design and analysis
– year: 2019
  ident: bib48
  article-title: Personal communication
– volume: 18
  start-page: 157
  year: 1996
  end-page: 171
  ident: bib5
  article-title: Hydrodynamic shape optimization of large offshore structures
  publication-title: Appl Ocean Res
– volume: 51
  start-page: 2049
  year: 2013
  end-page: 2075
  ident: bib1
  article-title: Multidisciplinary design optimization: a survey of architectures
  publication-title: AIAA J
– year: 2010
  ident: bib71
  article-title: Definition of the floating system for phase IV of OC3
– year: 2007
  ident: bib2
  article-title: Parametric design of floating wind turbines. Master's thesis
– year: 2013
  ident: bib7
  article-title: Evolving offshore wind: a genetic algorithm-based support structure optimization framework for floating wind turbines
  publication-title: OCEANS 2013 MTS/IEEE bergen: the challenges of the Northern dimension
– year: 2009
  ident: bib26
  article-title: Definition of a 5-MW reference wind turbine for offshore system development
– year: 2018
  ident: bib54
  article-title: Floating wind turbine structures
– volume: 136
  start-page: 1491
  year: 2010
  end-page: 1501
  ident: bib76
  article-title: Monte Carlo-based method for predicting extreme value statistics of uncertain structures
  publication-title: J Eng Mech
– year: 2018
  ident: bib66
  article-title: Offshore mooring chain
– year: 2013
  ident: bib68
  article-title: Linear system theory and design
– year: 2013
  ident: bib27
  article-title: Stochastic dynamics of marine structures
– year: 2013
  ident: bib70
  article-title: Basic DTU wind energy controller
– volume: 33
  start-page: 541
  year: 2009
  end-page: 553
  ident: bib52
  article-title: Controlling platform motions and reducing blade loads for floating wind turbines
  publication-title: Wind Eng
– year: 2019
  ident: bib53
  article-title: Fatigue design of offshore steel structures
– year: 1993
  ident: bib25
  article-title: Simplified dynamic model for estimation of extreme anchor line tension
  publication-title: Offshore Australia, the 2nd Australian oil, gas & petrochemical exhibition and conference, Melbourne, Australia
– year: 2016
  ident: bib12
  article-title: Dynamics and design of floating wind turbines
  publication-title: Proceedings of the twenty-sixth (2016) international ocean and polar engineering conference (ISOPE2016), Rhodes, Greece
– year: 1998
  ident: bib33
  article-title: Dynamic analysis of both on and offshore wind turbines in the frequency domain
– year: 2018
  ident: bib72
  article-title: LIFES50+ D4.2: public definition of the two LIFES50+ 10MW floater concepts
– volume: 134
  start-page: 628
  year: 2008
  end-page: 636
  ident: bib30
  article-title: Monte Carlo methods for estimating the extreme response of dynamical systems
  publication-title: J Eng Mech
– start-page: 419
  year: 2016
  end-page: 426
  ident: bib57
  article-title: Cost assessment for a semi-submersible floating wind turbine with respect to the hydrodynamic response and tower base bending moments using particle swarm optimisation
  publication-title: Proceedings of the twenty-sixth (2016) international ocean and polar engineering conference (ISOPE2016), Rhodes, Greece
– volume: 64
  start-page: 186
  year: 2019
  end-page: 210
  ident: bib20
  article-title: A semi-analytical frequency domain model for efficient design evaluation of spar floating wind turbines
  publication-title: Mar Struct
– year: 1990
  ident: bib24
  article-title: Efficient methods for the calculation of dynamic mooring line tension
  publication-title: Proceedings of the first (1990) European offshore mechanics symposium, trondheim, Norway
– volume: 59
  start-page: 1075
  year: 2019
  end-page: 1104
  ident: bib15
  article-title: OpenMDAO: an open-source framework for multidisciplinary design, analysis, and optimization
  publication-title: Struct Multidiscip Optim
– year: 2017
  ident: 10.1016/j.marstruc.2020.102771_bib59
– year: 1990
  ident: 10.1016/j.marstruc.2020.102771_bib24
  article-title: Efficient methods for the calculation of dynamic mooring line tension
– year: 2018
  ident: 10.1016/j.marstruc.2020.102771_bib65
– volume: 18
  start-page: 157
  issue: 4
  year: 1996
  ident: 10.1016/j.marstruc.2020.102771_bib5
  article-title: Hydrodynamic shape optimization of large offshore structures
  publication-title: Appl Ocean Res
  doi: 10.1016/S0141-1187(96)00028-4
– year: 2019
  ident: 10.1016/j.marstruc.2020.102771_bib48
– volume: 44
  issue: 4
  year: 2018
  ident: 10.1016/j.marstruc.2020.102771_bib40
  article-title: A computational architecture for coupling heterogeneous numerical models and computing coupled derivatives
  publication-title: ACM Trans Math Softw
  doi: 10.1145/3182393
– volume: 66
  start-page: 714
  year: 2014
  ident: 10.1016/j.marstruc.2020.102771_bib47
  article-title: Levelised cost of energy for offshore floating wind turbines in a life cycle perspective
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.01.017
– volume: 59
  start-page: 1075
  year: 2019
  ident: 10.1016/j.marstruc.2020.102771_bib15
  article-title: OpenMDAO: an open-source framework for multidisciplinary design, analysis, and optimization
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-019-02211-z
– year: 1985
  ident: 10.1016/j.marstruc.2020.102771_bib29
– volume: 12
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.marstruc.2020.102771_bib39
  article-title: Joint distribution for wind and waves in the Northern North Sea
  publication-title: Int J Offshore Polar Eng
– volume: 1
  start-page: 12
  issue: 1
  year: 2014
  ident: 10.1016/j.marstruc.2020.102771_bib10
  article-title: Design optimization of wind turbine support structures - a review
  publication-title: J Ocean Wind Energy
– volume: 19
  start-page: 2071
  year: 2016
  ident: 10.1016/j.marstruc.2020.102771_bib17
  article-title: Aeroservoelastic design definition of a 20 MW common research wind turbine model
  publication-title: Wind Energy
  doi: 10.1002/we.1970
– volume: 134
  start-page: 628
  issue: 8
  year: 2008
  ident: 10.1016/j.marstruc.2020.102771_bib30
  article-title: Monte Carlo methods for estimating the extreme response of dynamical systems
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(2008)134:8(628)
– year: 1998
  ident: 10.1016/j.marstruc.2020.102771_bib49
– year: 2019
  ident: 10.1016/j.marstruc.2020.102771_bib53
– year: 2013
  ident: 10.1016/j.marstruc.2020.102771_bib68
– year: 2014
  ident: 10.1016/j.marstruc.2020.102771_bib4
  article-title: Parametric analysis of a cylinder-like shape floating platform dedicated to multi-megawatt wind turbine
– year: 2016
  ident: 10.1016/j.marstruc.2020.102771_bib12
  article-title: Dynamics and design of floating wind turbines
– volume: 45
  start-page: 101
  issue: 1
  year: 2012
  ident: 10.1016/j.marstruc.2020.102771_bib44
  article-title: pyOpt: A Python-based object-oriented framework for nonlinear constrained optimization
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-011-0666-3
– volume: 24
  start-page: 289
  year: 2012
  ident: 10.1016/j.marstruc.2020.102771_bib6
  article-title: Mooring system optimization for floating wind turbines using frequency domain analysis
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2012.06.111
– year: 2011
  ident: 10.1016/j.marstruc.2020.102771_bib21
– year: 2005
  ident: 10.1016/j.marstruc.2020.102771_bib34
– year: 2011
  ident: 10.1016/j.marstruc.2020.102771_bib31
– year: 2013
  ident: 10.1016/j.marstruc.2020.102771_bib70
– year: 2018
  ident: 10.1016/j.marstruc.2020.102771_bib54
– year: 2018
  ident: 10.1016/j.marstruc.2020.102771_bib67
– volume: 31
  start-page: 2175
  year: 2004
  ident: 10.1016/j.marstruc.2020.102771_bib60
  article-title: Mathieu instability of a spar platform with mooring and risers
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2004.04.005
– volume: 3
  start-page: 69
  issue: 1
  year: 2017
  ident: 10.1016/j.marstruc.2020.102771_bib8
  article-title: A multi-objective design optimization approach for floating offshore wind turbine support structures
  publication-title: J Ocean Eng Mar Energy
  doi: 10.1007/s40722-016-0072-4
– volume: 555
  issue: 12099
  year: 2014
  ident: 10.1016/j.marstruc.2020.102771_bib13
  article-title: Optimal tuning for a classical wind turbine controller
  publication-title: J Phys Conf
– volume: 33
  start-page: 541
  issue: 6
  year: 2009
  ident: 10.1016/j.marstruc.2020.102771_bib52
  article-title: Controlling platform motions and reducing blade loads for floating wind turbines
  publication-title: Wind Eng
  doi: 10.1260/0309-524X.33.6.541
– year: 2018
  ident: 10.1016/j.marstruc.2020.102771_bib66
– year: 2016
  ident: 10.1016/j.marstruc.2020.102771_bib28
– year: 2013
  ident: 10.1016/j.marstruc.2020.102771_bib55
– year: 2013
  ident: 10.1016/j.marstruc.2020.102771_bib19
– volume: 18
  start-page: 1105
  year: 2015
  ident: 10.1016/j.marstruc.2020.102771_bib75
  article-title: Analysis of measurements and simulations from the Hywind Demo floating wind turbine
  publication-title: Wind Energy
  doi: 10.1002/we.1750
– year: 2014
  ident: 10.1016/j.marstruc.2020.102771_bib69
  article-title: Integrated optimization of floating wind turbine systems
– year: 2013
  ident: 10.1016/j.marstruc.2020.102771_bib45
– volume: 64
  start-page: 186
  year: 2019
  ident: 10.1016/j.marstruc.2020.102771_bib20
  article-title: A semi-analytical frequency domain model for efficient design evaluation of spar floating wind turbines
  publication-title: Mar Struct
  doi: 10.1016/j.marstruc.2018.10.015
– volume: 12
  start-page: 979
  issue: 4
  year: 2002
  ident: 10.1016/j.marstruc.2020.102771_bib43
  article-title: SNOPT: an SQP algorithm for large-scale constrained optimization
  publication-title: SIAM J Optim
  doi: 10.1137/S1052623499350013
– year: 2017
  ident: 10.1016/j.marstruc.2020.102771_bib14
  article-title: Optimization of floating offshore wind turbine platforms with a self-tuning controller
– volume: 17
  start-page: 1385
  year: 2014
  ident: 10.1016/j.marstruc.2020.102771_bib23
  article-title: Dynamic response analysis of wind turbines under blade pitch system fault, grid loss, and shutdown events
  publication-title: Wind Energy
  doi: 10.1002/we.1639
– start-page: 419
  year: 2016
  ident: 10.1016/j.marstruc.2020.102771_bib57
  article-title: Cost assessment for a semi-submersible floating wind turbine with respect to the hydrodynamic response and tower base bending moments using particle swarm optimisation
– year: 2016
  ident: 10.1016/j.marstruc.2020.102771_bib35
– volume: 141
  year: 2019
  ident: 10.1016/j.marstruc.2020.102771_bib58
  article-title: Effect of axial acceleration on drivetrain responses in a spar-type floating wind turbine
  publication-title: J Offshore Mech Arctic Eng
  doi: 10.1115/1.4041996
– year: 1998
  ident: 10.1016/j.marstruc.2020.102771_bib33
– year: 2018
  ident: 10.1016/j.marstruc.2020.102771_bib72
– volume: 4
  start-page: 163
  year: 2019
  ident: 10.1016/j.marstruc.2020.102771_bib18
  article-title: Multipoint high-fidelity CFD-based aerodynamic shape optimization of a 10 MW wind turbine
  publication-title: Wind Energy Sci
  doi: 10.5194/wes-4-163-2019
– year: 1999
  ident: 10.1016/j.marstruc.2020.102771_bib61
  article-title: Alternative shape of spar platforms for use in hostile areas
– year: 2013
  ident: 10.1016/j.marstruc.2020.102771_bib7
  article-title: Evolving offshore wind: a genetic algorithm-based support structure optimization framework for floating wind turbines
– year: 2009
  ident: 10.1016/j.marstruc.2020.102771_bib32
– year: 2013
  ident: 10.1016/j.marstruc.2020.102771_bib27
– year: 2004
  ident: 10.1016/j.marstruc.2020.102771_bib73
  article-title: Feasibility of floating platform systems for wind turbines
– year: 2012
  ident: 10.1016/j.marstruc.2020.102771_bib9
  article-title: Load reductions and optimizations on tension-leg-buoy offshore wind turbine platforms
– volume: 136
  start-page: 1491
  issue: 12
  year: 2010
  ident: 10.1016/j.marstruc.2020.102771_bib76
  article-title: Monte Carlo-based method for predicting extreme value statistics of uncertain structures
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)EM.1943-7889.0000194
– volume: 75
  year: 2007
  ident: 10.1016/j.marstruc.2020.102771_bib50
  article-title: A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/75/1/012073
– volume: 29
  start-page: 89
  year: 2012
  ident: 10.1016/j.marstruc.2020.102771_bib3
  article-title: Design considerations for tension leg platform wind turbines
  publication-title: Mar Struct
  doi: 10.1016/j.marstruc.2012.09.001
– volume: 51
  start-page: 2049
  issue: 9
  year: 2013
  ident: 10.1016/j.marstruc.2020.102771_bib1
  article-title: Multidisciplinary design optimization: a survey of architectures
  publication-title: AIAA J
  doi: 10.2514/1.J051895
– year: 2007
  ident: 10.1016/j.marstruc.2020.102771_bib64
– year: 1993
  ident: 10.1016/j.marstruc.2020.102771_bib25
  article-title: Simplified dynamic model for estimation of extreme anchor line tension
– volume: 35
  start-page: 210
  year: 2013
  ident: 10.1016/j.marstruc.2020.102771_bib22
  article-title: Dynamic analysis of floating wind turbines during pitch actuator fault, grid loss, and shutdown
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2013.07.174
– volume: 55
  start-page: 257
  year: 2017
  ident: 10.1016/j.marstruc.2020.102771_bib63
  article-title: An evaluation of constraint aggregation strategies for wing box mass minimization
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-016-1495-1
– volume: 68
  start-page: 893
  year: 2014
  ident: 10.1016/j.marstruc.2020.102771_bib16
  article-title: Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.02.045
– year: 2010
  ident: 10.1016/j.marstruc.2020.102771_bib71
– year: 2007
  ident: 10.1016/j.marstruc.2020.102771_bib74
  article-title: Mooring line damping estimation by a simplified dynamic model
– year: 2009
  ident: 10.1016/j.marstruc.2020.102771_bib37
– year: 2007
  ident: 10.1016/j.marstruc.2020.102771_bib2
– year: 2016
  ident: 10.1016/j.marstruc.2020.102771_bib36
– year: 2019
  ident: 10.1016/j.marstruc.2020.102771_bib56
– year: 2009
  ident: 10.1016/j.marstruc.2020.102771_bib38
– year: 2011
  ident: 10.1016/j.marstruc.2020.102771_bib11
  article-title: WINDOPT- an optimization tool for floating support structures for deep water wind turbines
– volume: 46
  start-page: 273
  year: 2012
  ident: 10.1016/j.marstruc.2020.102771_bib42
  article-title: Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-012-0763-y
– start-page: 3148
  year: 2012
  ident: 10.1016/j.marstruc.2020.102771_bib51
  article-title: Control of floating wind turbines
– year: 2009
  ident: 10.1016/j.marstruc.2020.102771_bib26
– volume: 51
  start-page: 2582
  issue: 11
  year: 2013
  ident: 10.1016/j.marstruc.2020.102771_bib41
  article-title: Review and unification of methods for computing derivatives of multidisciplinary computational models
  publication-title: AIAA J
  doi: 10.2514/1.J052184
– year: 2016
  ident: 10.1016/j.marstruc.2020.102771_bib46
– year: 1979
  ident: 10.1016/j.marstruc.2020.102771_bib62
  article-title: Systematic control design by optimizing a vector performance index
SSID ssj0017111
Score 2.4945722
Snippet A linearized aero-hydro-servo-elastic floating wind turbine model is presented and used to perform integrated design optimization of the platform, tower,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102771
SubjectTerms Control systems
Deformation
Design
Design optimization
Fatigue
Floating
Floating wind turbines
Frequency ranges
Gradient-based optimization
Integrated design
Linearization
Mooring systems
Nonlinear analysis
Objective function
Offshore wind energy
Pitch (inclination)
Resonant frequencies
Resonant frequency
Shape
Time domain analysis
Towers
Turbine engines
Turbines
Wind power
Wind turbines
Title Integrated design optimization of spar floating wind turbines
URI https://dx.doi.org/10.1016/j.marstruc.2020.102771
https://www.proquest.com/docview/2476854287
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lXryIT6pWyUG8bdskTdI9FrFUpb1oobeQ3WShxT5QQbz4253JZosK0oPHfWRZZme_mSHffEPIVcczrrTyCdOFhQKlYEmW593EQvXsIIGVOcPm5NFYDSfd-6mc1shN1QuDtMqI_SWmB7SOZ9rRmu31bNZ-xOSgJyC-g59iiyR2sHc1ennrc0PzYJqFGbxhnDze_a1LeN5aQPGIMq1QJ_KgYqA1-ytA_YLqEH8G-2QvJo60X77bAan55SFpjILI9ssHvaZjC05D4796RAKdMAhBOOoCTYOuAB4Wse-SrgoKYPJCi-eVReozfYfqnEIAypAIf0wmg9unm2ESZyUkuej13pJUWVegepfgHlLQsLminZAiLTBp84p5J5n1XHLfcSqTEkpDnonCCSWYVeKE1JerpW8QKmxH-dTqjFndTYVPixyinObccdyEzU-JrAxk8igkjvMsnk3FGJubyrAGDWtKw56S9mbdupTS2LoirexvfjiFAbzfurZZfTATf8tXw8E_ehKrxLN_PPqc7OJRSdptkjpc9xeQmrxll8H3LslO_-5hOP4C0JTiZA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgHOCCeIrHgBwQt7IlWZL1OCHQeKwXmLRblDapxLStCJAQ_x4nTREgIQ5c27qqXMf2J9ufAU67jjKppEuoKg0ClJImeVH0EoPo2WICKwrqh5NHmRyOezcTMVmCi2YWxrdVRt9f-_TgreOVTtRm5-nxsXPvk4M-x_iOdupHJJdhxbNTiRasDK5vh9lnMUHRsIY3bJT3Al8Ghafnc8SPnqkVoSILRAZK0d9i1A9vHULQ1Qasx9yRDOrP24Qlt9iCvVHg2X5-J2ckM2g3JB7XbQgdhYELwhIbOjVIhR5iHkcvSVUS9CfPpJxVxnc_kzcE6ARjUO574XdgfHX5cDFM4rqEpOD9_muSSmNLT-DFmcMsNNRXlOWCp6XP25ykzgpqHBPMda3MhUB0yHJeWi45NZLvQmtRLdweEG660qVG5dSoXspdWhYY6BRjlvk6bLEPolGQLiKXuF9pMdNN09hUN4rVXrG6Vuw-dD7lnmo2jT8l0kb_-ptdaHT5f8q2mx-m48l80ayHAEt4oHjwj1efwOrwYXSn766z20NY83fqHt42tPBZd4SZymt-HC3xA5zp5RU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+design+optimization+of+spar+floating+wind+turbines&rft.jtitle=Marine+structures&rft.au=Hegseth%2C+John+Marius&rft.au=Bachynski%2C+Erin+E.&rft.au=Martins%2C+Joaquim+R.R.A.&rft.date=2020-07-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8339&rft.eissn=1873-4170&rft.volume=72&rft_id=info:doi/10.1016%2Fj.marstruc.2020.102771&rft.externalDocID=S0951833920300654
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8339&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8339&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8339&client=summon