Missing Value Estimation for Mixed-Attribute Data Sets
Missing data imputation is a key issue in learning from incomplete data. Various techniques have been developed with great successes on dealing with missing values in data sets with homogeneous attributes (their independent attributes are all either continuous or discrete). This paper studies a new...
Saved in:
Published in | IEEE transactions on knowledge and data engineering Vol. 23; no. 1; pp. 110 - 121 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.01.2011
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Missing data imputation is a key issue in learning from incomplete data. Various techniques have been developed with great successes on dealing with missing values in data sets with homogeneous attributes (their independent attributes are all either continuous or discrete). This paper studies a new setting of missing data imputation, i.e., imputing missing data in data sets with heterogeneous attributes (their independent attributes are of different types), referred to as imputing mixed-attribute data sets. Although many real applications are in this setting, there is no estimator designed for imputing mixed-attribute data sets. This paper first proposes two consistent estimators for discrete and continuous missing target values, respectively. And then, a mixture-kernel-based iterative estimator is advocated to impute mixed-attribute data sets. The proposed method is evaluated with extensive experiments compared with some typical algorithms, and the result demonstrates that the proposed approach is better than these existing imputation methods in terms of classification accuracy and root mean square error (RMSE) at different missing ratios. |
---|---|
AbstractList | Missing data imputation is a key issue in learning from incomplete data. Various techniques have been developed with great successes on dealing with missing values in data sets with homogeneous attributes (their independent attributes are all either continuous or discrete). This paper studies a new setting of missing data imputation, i.e., imputing missing data in data sets with heterogeneous attributes (their independent attributes are of different types), referred to as imputing mixed-attribute data sets. Although many real applications are in this setting, there is no estimator designed for imputing mixed-attribute data sets. This paper first proposes two consistent estimators for discrete and continuous missing target values, respectively. And then, a mixture-kernel-based iterative estimator is advocated to impute mixed-attribute data sets. The proposed method is evaluated with extensive experiments compared with some typical algorithms, and the result demonstrates that the proposed approach is better than these existing imputation methods in terms of classification accuracy and root mean square error (RMSE) at different missing ratios. |
Author | Zili Zhang Zhi Jin Xiaofeng Zhu Shichao Zhang Zhuoming Xu |
Author_xml | – sequence: 1 givenname: Xiaofeng surname: Zhu fullname: Zhu, Xiaofeng – sequence: 2 givenname: Shichao surname: Zhang fullname: Zhang, Shichao – sequence: 3 givenname: Zhi surname: Jin fullname: Jin, Zhi – sequence: 4 givenname: Zili surname: Zhang fullname: Zhang, Zili – sequence: 5 givenname: Zhuoming surname: Xu fullname: Xu, Zhuoming |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23711517$$DView record in Pascal Francis |
BookMark | eNpdkEtLAzEQx4Mo2FZv3rwsiHhxa5LN81ja-sAWD1avIbubSMp2tyZZ0G9vSksPwsDMML95_YfgtO1aA8AVgmOEoHxYvc7mYwxTKuUJGCBKRY6RRKcphgTlpCD8HAxDWEMIBRdoANjSheDar-xTN73J5iG6jY6uazPb-WzpfkydT2L0ruyjyWY66uzdxHABzqxugrk8-BH4eJyvps_54u3pZTpZ5FUhRMwlo4RTiyWDlEGiESwErgU2pi6hrVkJhcGUV5ZTQXQpGWK2JNQmqwlHRTECd_u5W9999yZEtXGhMk2jW9P1QQkiieCUiUTe_CPXXe_bdJxKWyFikkKaqPs9VfkuBG-s2vr0sP9NkNppqHYaqp2GSsqE3x6G6lDpxnrdVi4ce3DBEaKIJ-56zzljzLFMd6dhWPwBNOh4lw |
CODEN | ITKEEH |
CitedBy_id | crossref_primary_10_4018_IJGHPC_2018040101 crossref_primary_10_1016_j_jag_2021_102395 crossref_primary_10_1016_j_media_2022_102419 crossref_primary_10_1007_s00521_020_05486_2 crossref_primary_10_1016_j_patrec_2022_01_025 crossref_primary_10_1109_TKDE_2019_2956530 crossref_primary_10_1109_TMBMC_2022_3181514 crossref_primary_10_1109_TNNLS_2016_2521602 crossref_primary_10_3390_fi15070229 crossref_primary_10_1145_3533381 crossref_primary_10_1016_j_mtcomm_2023_106674 crossref_primary_10_1016_j_neucom_2015_07_145 crossref_primary_10_3390_electronics9091467 crossref_primary_10_1016_j_knosys_2017_06_027 crossref_primary_10_1016_j_neucom_2015_08_115 crossref_primary_10_3390_app11146310 crossref_primary_10_1007_s10489_018_1139_9 crossref_primary_10_1007_s00521_018_3836_z crossref_primary_10_1016_j_imu_2021_100799 crossref_primary_10_1109_ACCESS_2018_2877847 crossref_primary_10_1016_j_neucom_2015_08_112 crossref_primary_10_3390_app10072344 crossref_primary_10_1007_s11042_017_5381_7 crossref_primary_10_1016_j_patrec_2018_01_013 crossref_primary_10_1016_j_knosys_2013_08_023 crossref_primary_10_1016_j_neucom_2017_01_100 crossref_primary_10_1142_S1793536914500095 crossref_primary_10_1007_s00521_016_2353_1 crossref_primary_10_1007_s11042_018_6909_1 crossref_primary_10_1007_s11280_018_0622_x crossref_primary_10_1007_s11042_018_6083_5 crossref_primary_10_1007_s11704_016_6319_3 crossref_primary_10_1007_s11042_016_3943_8 crossref_primary_10_1007_s10462_019_09709_4 crossref_primary_10_1007_s10115_015_0822_y crossref_primary_10_1016_j_neucom_2018_05_117 crossref_primary_10_1007_s11042_018_6488_1 crossref_primary_10_1016_j_asoc_2020_106437 crossref_primary_10_1007_s00530_015_0487_0 crossref_primary_10_1016_j_neunet_2019_04_015 crossref_primary_10_55020_iojpe_1390421 crossref_primary_10_1007_s10586_017_0795_6 crossref_primary_10_1016_j_neucom_2017_01_098 crossref_primary_10_1016_j_neucom_2018_11_060 crossref_primary_10_1109_TKDE_2018_2873378 crossref_primary_10_1016_j_procs_2024_04_237 crossref_primary_10_1007_s11042_017_5235_3 crossref_primary_10_1007_s11042_016_4121_8 crossref_primary_10_1109_TKDE_2015_2411276 crossref_primary_10_1016_j_neucom_2015_06_107 crossref_primary_10_1109_TKDE_2023_3270118 crossref_primary_10_1155_2018_1817479 crossref_primary_10_1145_2990508 crossref_primary_10_1109_JSEN_2021_3121506 crossref_primary_10_1109_TBME_2015_2466616 crossref_primary_10_1109_ACCESS_2020_3008514 crossref_primary_10_1109_TNNLS_2017_2673241 crossref_primary_10_1007_s11280_013_0263_z crossref_primary_10_1007_s13369_016_2176_5 crossref_primary_10_1016_j_neucom_2015_09_126 crossref_primary_10_1016_j_isprsjprs_2023_05_032 crossref_primary_10_1007_s00521_016_2352_2 crossref_primary_10_1109_TKDE_2018_2822662 crossref_primary_10_1155_2012_974638 crossref_primary_10_1007_s13278_014_0207_3 crossref_primary_10_1145_3412364 crossref_primary_10_1007_s11280_017_0508_3 crossref_primary_10_1515_jisys_2014_0172 crossref_primary_10_1016_j_media_2018_01_002 crossref_primary_10_1109_TNNLS_2014_2382606 crossref_primary_10_1016_j_patrec_2017_12_018 crossref_primary_10_1049_iet_rpg_2017_0736 crossref_primary_10_1016_j_chaos_2021_111236 crossref_primary_10_1007_s00530_015_0486_1 crossref_primary_10_1007_s13042_015_0354_5 crossref_primary_10_1016_j_neucom_2016_10_087 crossref_primary_10_1016_j_csa_2024_100063 crossref_primary_10_1007_s11280_018_0619_5 crossref_primary_10_1016_j_neucom_2016_10_089 crossref_primary_10_1145_3488055 crossref_primary_10_1109_TKDE_2021_3049511 crossref_primary_10_1080_08839514_2015_1051887 crossref_primary_10_1145_3411823 crossref_primary_10_1002_pmic_202200092 crossref_primary_10_1007_s11042_018_6643_8 crossref_primary_10_1109_TCYB_2015_2403356 crossref_primary_10_1007_s00003_023_01439_8 crossref_primary_10_3390_math11010073 crossref_primary_10_1016_j_neucom_2015_09_119 crossref_primary_10_1155_2021_8759922 crossref_primary_10_1016_j_mlwa_2022_100431 crossref_primary_10_1007_s11704_016_6195_x crossref_primary_10_1016_j_patrec_2018_08_028 crossref_primary_10_1016_j_patrec_2018_08_029 crossref_primary_10_13005_ojcst_10_04_11 crossref_primary_10_3390_app13085214 crossref_primary_10_1016_j_catena_2018_03_003 crossref_primary_10_1007_s00521_021_06004_8 crossref_primary_10_1016_j_neucom_2016_08_138 crossref_primary_10_1109_TKDE_2023_3266755 crossref_primary_10_1109_TSMCB_2012_2231411 crossref_primary_10_1007_s10916_018_1134_z crossref_primary_10_1109_JSTARS_2014_2341276 crossref_primary_10_1016_j_neucom_2016_10_013 crossref_primary_10_1007_s00521_022_07702_7 crossref_primary_10_1109_ACCESS_2018_2803755 crossref_primary_10_1016_j_ins_2015_09_046 crossref_primary_10_1016_j_neucom_2013_02_016 crossref_primary_10_3233_IFS_151592 crossref_primary_10_1007_s42979_021_00459_1 crossref_primary_10_1109_TFUZZ_2017_2754998 crossref_primary_10_1016_j_dcan_2018_09_004 crossref_primary_10_1186_s40537_021_00516_9 crossref_primary_10_1007_s10489_021_02741_4 crossref_primary_10_1007_s11042_016_4131_6 crossref_primary_10_1016_j_patrec_2018_06_029 crossref_primary_10_1007_s11042_016_3980_3 crossref_primary_10_1016_j_neuroimage_2014_01_033 crossref_primary_10_32628_CSEIT195220 crossref_primary_10_1007_s10618_020_00706_8 crossref_primary_10_1016_j_jss_2016_08_093 crossref_primary_10_1007_s11280_017_0510_9 crossref_primary_10_1007_s11280_017_0514_5 crossref_primary_10_1109_TCYB_2020_3031610 crossref_primary_10_1016_j_media_2015_10_008 crossref_primary_10_1016_j_neucom_2020_10_114 crossref_primary_10_1007_s11280_016_0425_x crossref_primary_10_1155_2019_3213808 crossref_primary_10_1016_j_energy_2017_07_034 crossref_primary_10_3389_fenrg_2022_988183 crossref_primary_10_1109_TKDE_2020_3001694 crossref_primary_10_1007_s11042_019_07885_7 crossref_primary_10_1016_j_jss_2012_05_073 crossref_primary_10_3390_app12157477 crossref_primary_10_3390_ijgi8060248 crossref_primary_10_1016_j_patrec_2017_09_022 crossref_primary_10_1016_j_patcog_2017_01_016 crossref_primary_10_1016_j_jhydrol_2018_08_027 crossref_primary_10_1007_s11042_017_5272_y crossref_primary_10_1016_j_jhydrol_2014_03_008 crossref_primary_10_1016_j_eswa_2016_05_037 crossref_primary_10_4018_IJDWM_2017100104 crossref_primary_10_1007_s00530_015_0492_3 crossref_primary_10_1016_j_compeleceng_2017_11_030 crossref_primary_10_1016_j_rsase_2021_100643 crossref_primary_10_1109_JSYST_2016_2576026 crossref_primary_10_1016_j_ins_2021_08_016 crossref_primary_10_1109_TKDE_2017_2763618 crossref_primary_10_1016_j_neucom_2016_11_076 crossref_primary_10_1007_s10115_012_0562_1 crossref_primary_10_1007_s10115_022_01661_0 crossref_primary_10_1111_exsy_12155 crossref_primary_10_2200_S00870ED1V01Y201807DTM050 crossref_primary_10_1016_j_knosys_2015_12_006 crossref_primary_10_1007_s11063_020_10295_8 crossref_primary_10_1016_j_neucom_2016_05_081 crossref_primary_10_1007_s11042_016_4119_2 crossref_primary_10_1016_j_chb_2018_10_015 crossref_primary_10_1109_LSP_2016_2611485 crossref_primary_10_3390_math9070746 |
Cites_doi | 10.1214/aos/1028674845 10.1177/0013164407305582 10.1080/713827181 10.1007/s10489-006-0032-0 10.1016/B978-1-55860-036-2.50048-5 10.1016/0378-3758(94)90028-0 10.1007/978-3-540-71701-0_122 10.1002/9780470316696 10.2307/2171778 10.1093/biomet/63.3.413 10.1007/978-1-4899-3324-9 10.1109/ICDE.2000.839427 10.1016/B978-1-55860-335-6.50023-4 10.1109/IJCNN.2002.1007589 10.1137/1.9781611972764.53 10.1023/A:1008334909089 10.2307/1911191 10.1201/9781439821862 10.1002/9781119013563 10.1080/01621459.1983.10478031 10.1007/s10489-009-0207-6 10.1145/1390156.1390186 10.1109/TKDE.2005.188 10.1108/02635570310497657 10.1016/j.patrec.2004.09.003 10.1093/biomet/86.4.948 10.1109/MIS.2004.1274905 10.1016/S0304-4076(03)00157-X 10.1016/j.eswa.2008.01.059 10.1080/01621459.1996.10476701 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2011 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2011 |
DBID | 97E RIA RIE IQODW AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1109/TKDE.2010.99 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore Pascal-Francis CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Applied Sciences |
EISSN | 1558-2191 |
EndPage | 121 |
ExternalDocumentID | 2724247481 10_1109_TKDE_2010_99 23711517 5487520 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 1OL 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AASAJ AAYOK ABFSI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIC RIE RIG RNI RNS RXW RZB TAE TAF TN5 UHB VH1 XFK ABPTK IQODW VOH AAYXX AGSQL CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c388t-965475f29605604a10382d82eedb0fd6b08e257cf7584ab9616fb45f45fd47133 |
IEDL.DBID | RIE |
ISSN | 1041-4347 |
IngestDate | Tue Dec 03 06:49:49 EST 2024 Thu Oct 10 16:44:19 EDT 2024 Fri Dec 06 01:48:14 EST 2024 Sun Oct 22 16:05:01 EDT 2023 Wed Jun 26 19:28:22 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Data analysis Methodology methodologies Iterative method Data mining machine learning Mean square error Kernel method Missing data Consistent estimator Learning (artificial intelligence) Classification Incomplete information Artificial intelligence |
Language | English |
License | CC BY 4.0 https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-965475f29605604a10382d82eedb0fd6b08e257cf7584ab9616fb45f45fd47133 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1030169505 |
PQPubID | 85438 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_849487568 crossref_primary_10_1109_TKDE_2010_99 pascalfrancis_primary_23711517 proquest_journals_1030169505 ieee_primary_5487520 |
PublicationCentury | 2000 |
PublicationDate | 2011-Jan. 2011 2011-01-00 20110101 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – month: 01 year: 2011 text: 2011-Jan. |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE transactions on knowledge and data engineering |
PublicationTitleAbbrev | TKDE |
PublicationYear | 2011 |
Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | rubin (bibttk201101011031) 1987 bibttk201101011040 schafer (bibttk201101011032) 1997 bibttk201101011021 bibttk201101011043 bibttk201101011022 bibttk201101011041 bibttk201101011042 bibttk201101011025 bibttk201101011026 cios (bibttk201101011010) 2002 dempster (bibttk201101011013) 1977; 39 caruana (bibttk20110101109) 2001 bibttk201101011029 bibttk201101011027 bibttk20110101108 quinlan (bibttk201101011028) 1993 bibttk20110101106 huisman (bibttk201101011017) 2007 jordaan (bibttk201101011020) 2002 bibttk20110101105 bibttk20110101104 bibttk20110101103 bibttk20110101101 marco (bibttk201101011023) 1997 blake (bibttk20110101107) 1998 zhang (bibttk201101011038) 2008 allison (bibttk20110101102) 2001 bibttk201101011033 bibttk201101011011 bibttk201101011030 bibttk201101011014 bibttk201101011036 bibttk201101011037 bibttk201101011034 bibttk201101011035 bibttk201101011018 bibttk201101011019 bibttk201101011039 dempster (bibttk201101011012) 1983; 2 ghahramani (bibttk201101011015) 1997 peng (bibttk201101011024) 2008; 68 han (bibttk201101011016) 2006 |
References_xml | – ident: bibttk201101011035 doi: 10.1214/aos/1028674845 – year: 2002 ident: bibttk201101011020 publication-title: "Development of Robust Inferential Sensors Industrial Application of Support Vector Machines for Regression " contributor: fullname: jordaan – volume: 68 start-page: 58 year: 2008 ident: bibttk201101011024 article-title: Comparison of Two Approaches for Handling Missing Covariates in Logistic Regression publication-title: Educational and Psychological Measurement doi: 10.1177/0013164407305582 contributor: fullname: peng – ident: bibttk20110101105 doi: 10.1080/713827181 – start-page: 32 year: 2008 ident: bibttk201101011038 article-title: Parimputation: From Imputation and Null-Imputation to Partially Imputation publication-title: IEEE Intelligent Informatics Bull contributor: fullname: zhang – ident: bibttk201101011025 doi: 10.1007/s10489-006-0032-0 – ident: bibttk201101011027 doi: 10.1016/B978-1-55860-036-2.50048-5 – year: 2001 ident: bibttk20110101102 publication-title: Missing Data contributor: fullname: allison – ident: bibttk20110101101 doi: 10.1016/0378-3758(94)90028-0 – year: 1993 ident: bibttk201101011028 publication-title: C4 5 Programs for Machine Learning contributor: fullname: quinlan – ident: bibttk201101011042 doi: 10.1007/978-3-540-71701-0_122 – year: 1987 ident: bibttk201101011031 publication-title: Multiple Imputation for Nonresponse in Surveys doi: 10.1002/9780470316696 contributor: fullname: rubin – ident: bibttk201101011011 doi: 10.2307/2171778 – ident: bibttk20110101103 doi: 10.1093/biomet/63.3.413 – ident: bibttk201101011033 doi: 10.1007/978-1-4899-3324-9 – ident: bibttk201101011040 doi: 10.1109/ICDE.2000.839427 – year: 1998 ident: bibttk20110101107 contributor: fullname: blake – ident: bibttk201101011018 doi: 10.1016/B978-1-55860-335-6.50023-4 – ident: bibttk201101011034 doi: 10.1109/IJCNN.2002.1007589 – year: 2007 ident: bibttk201101011017 article-title: Missing Data in Social Network publication-title: Proc Int'l Sunbelt Social Network Conf (Sunbelt XXVII) contributor: fullname: huisman – ident: bibttk201101011030 doi: 10.1137/1.9781611972764.53 – ident: bibttk201101011021 doi: 10.1023/A:1008334909089 – volume: 2 start-page: 3 year: 1983 ident: bibttk201101011012 publication-title: Incomplete Data in Sample Surveys Theory and Bibliography contributor: fullname: dempster – ident: bibttk201101011043 doi: 10.2307/1911191 – year: 1997 ident: bibttk201101011032 publication-title: Analysis of Incomplete Multivariate Data doi: 10.1201/9781439821862 contributor: fullname: schafer – start-page: 67 year: 1997 ident: bibttk201101011015 publication-title: Computational Learning Theory and Natural Learning Systems contributor: fullname: ghahramani – ident: bibttk201101011022 doi: 10.1002/9781119013563 – ident: bibttk20110101106 doi: 10.1080/01621459.1983.10478031 – ident: bibttk201101011039 doi: 10.1007/s10489-009-0207-6 – ident: bibttk201101011014 doi: 10.1145/1390156.1390186 – ident: bibttk201101011036 doi: 10.1109/TKDE.2005.188 – volume: 39 start-page: 1 year: 1977 ident: bibttk201101011013 article-title: Maximum Likelihood from Incomplete Data via the EM Algorithm publication-title: J Royal Statistical Soc contributor: fullname: dempster – ident: bibttk20110101108 doi: 10.1108/02635570310497657 – ident: bibttk201101011041 doi: 10.1016/j.patrec.2004.09.003 – ident: bibttk20110101104 doi: 10.1093/biomet/86.4.948 – year: 2001 ident: bibttk20110101109 article-title: A Non-Parametric EM-Style Algorithm for Imputing Missing Value publication-title: Artificial Intelligence and Statistics contributor: fullname: caruana – ident: bibttk201101011037 doi: 10.1109/MIS.2004.1274905 – year: 2002 ident: bibttk201101011010 publication-title: Trends in Data Mining and Knowledge Discovery contributor: fullname: cios – ident: bibttk201101011029 doi: 10.1016/S0304-4076(03)00157-X – year: 1997 ident: bibttk201101011023 article-title: Learning Bayesian Networks from Incomplete Databases contributor: fullname: marco – ident: bibttk201101011026 doi: 10.1016/j.eswa.2008.01.059 – ident: bibttk201101011019 doi: 10.1080/01621459.1996.10476701 – year: 2006 ident: bibttk201101011016 publication-title: Data Mining Concepts and Techniques contributor: fullname: han |
SSID | ssj0008781 |
Score | 2.505511 |
Snippet | Missing data imputation is a key issue in learning from incomplete data. Various techniques have been developed with great successes on dealing with missing... |
SourceID | proquest crossref pascalfrancis ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 110 |
SubjectTerms | Algorithms Applied sciences Artificial intelligence Bibliographies Classification Computer science; control theory; systems Data mining Data processing. List processing. Character string processing Dealing Estimators Exact sciences and technology Information science Iterative algorithms Iterative methods Kernel Learning Machine learning Machine learning algorithms Mean square values Memory organisation. Data processing methodologies Missing data Operations research Root mean square Software Studies |
Title | Missing Value Estimation for Mixed-Attribute Data Sets |
URI | https://ieeexplore.ieee.org/document/5487520 https://www.proquest.com/docview/1030169505 https://search.proquest.com/docview/849487568 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RTnDotjzEtgvyAW7NkmQdP46oLFoVLRce4hbZiS1VRbtVN5Eqfj0zdjalwAHJB0uxlGTG4_nGHs8HcJyKPLMTKn1Z5Twhj5WoOi0SLr10wlTo9GhDf34lZrf8x31xvwHf-rswzrmQfObG1A1n-fWyammr7DSg6xwD9A9Sy3hXq191lQyEpBhdYEw04bJPctenN5fn05jEFSq8_nM_gU-FsiHNCgXiI5PFq0U5eJqLAczX3xgTTH6N28aOq8cX5Rvf-xOf4GMHOdlZnCOfYcMtdmCwpnNgnXXvwPaz2oS7IOaoEuyxO_PQOjbFpSDecmQIc9n8519XJ2dN5Mty7Nw0hl27ZrUHtxfTm--zpCNZSKqJUk2iiX248DlGMgh-uKGC6XmtcvSdNvW1sKlyaNaVx8CCG6tFJrzlhcdWc4pw92FzsVy4A2CZtwhoqlrZynCvvC6kc6agivcE9PQQTtayL3_HWhpliEFSXZKOStJRqXHcLomtH9NJbAhH_ymqf55PJOLaTA5htNZc2VniqiQatUxoBHpDYP1jtCE6GDELt2xXpaIaObIQ6svbb_4KW3ErmdoINps_rTtELNLYozAJnwC_CNlq |
link.rule.ids | 315,781,785,797,4025,27928,27929,27930,54763 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCaK7rD10Gx9YOmyTofuNqe2I8vyMVhTZGvdS9OiN0GyJaDYkAyNDRT99SUlx3seBuggwAJsk6L4UaI-ApzEIk3MhKgvq5RH5LEiWcdZxHOXW6ErdHq0oV9eifkN_3qX3W3Bp_4ujLXWJ5_ZMXX9WX69qlraKjv16DrFAP1FxtEuwm2tft2VuS9JivEFRkUTnvdp7sXp4uJsFtK4PMfrTwfkK6pQPqReo0hcqGXx17Lsfc35AMrNV4YUk2_jtjHj6ukPAsf__Y3XsNuBTjYNs-QNbNnlHgw2BR1YZ997sPMLO-E-iBKVgj12q7-3ls1wMQj3HBkCXVbeP9o6mjahYpZlZ7rR7No26wO4OZ8tPs-jrsxCVE2kbKKC6g9nLsVYBuEP10SZntYyRe9pYlcLE0uLhl05DC24NoVIhDM8c9hqTjHuIWwvV0v7FljiDEKaqpam0txJV2S5tTojznuCesUQPm5kr34ENg3lo5C4UKQjRTpSBY7bJ7H1YzqJDeH4N0X1z9NJjsg2yYcw2mhOdba4VlRILREFQr0hsP4xWhEdjeilXbVrJYklJ8-EPPr3mz_Ay_mivFSXX64u3sGrsLFMbQTbzUNr3yMyacyxn5DPTNfcuA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Missing+Value+Estimation+for+Mixed-Attribute+Data+Sets&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=XIAOFENG+ZHU&rft.au=SHICHAO+ZHANG&rft.au=ZHI+JIN&rft.au=ZILI+ZHANG&rft.date=2011&rft.pub=IEEE+Computer+Society&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=23&rft.issue=1&rft.spage=110&rft.epage=121&rft_id=info:doi/10.1109%2FTKDE.2010.99&rft.externalDBID=n%2Fa&rft.externalDocID=23711517 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |