Missing Value Estimation for Mixed-Attribute Data Sets

Missing data imputation is a key issue in learning from incomplete data. Various techniques have been developed with great successes on dealing with missing values in data sets with homogeneous attributes (their independent attributes are all either continuous or discrete). This paper studies a new...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 23; no. 1; pp. 110 - 121
Main Authors Zhu, Xiaofeng, Zhang, Shichao, Jin, Zhi, Zhang, Zili, Xu, Zhuoming
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2011
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Missing data imputation is a key issue in learning from incomplete data. Various techniques have been developed with great successes on dealing with missing values in data sets with homogeneous attributes (their independent attributes are all either continuous or discrete). This paper studies a new setting of missing data imputation, i.e., imputing missing data in data sets with heterogeneous attributes (their independent attributes are of different types), referred to as imputing mixed-attribute data sets. Although many real applications are in this setting, there is no estimator designed for imputing mixed-attribute data sets. This paper first proposes two consistent estimators for discrete and continuous missing target values, respectively. And then, a mixture-kernel-based iterative estimator is advocated to impute mixed-attribute data sets. The proposed method is evaluated with extensive experiments compared with some typical algorithms, and the result demonstrates that the proposed approach is better than these existing imputation methods in terms of classification accuracy and root mean square error (RMSE) at different missing ratios.
AbstractList Missing data imputation is a key issue in learning from incomplete data. Various techniques have been developed with great successes on dealing with missing values in data sets with homogeneous attributes (their independent attributes are all either continuous or discrete). This paper studies a new setting of missing data imputation, i.e., imputing missing data in data sets with heterogeneous attributes (their independent attributes are of different types), referred to as imputing mixed-attribute data sets. Although many real applications are in this setting, there is no estimator designed for imputing mixed-attribute data sets. This paper first proposes two consistent estimators for discrete and continuous missing target values, respectively. And then, a mixture-kernel-based iterative estimator is advocated to impute mixed-attribute data sets. The proposed method is evaluated with extensive experiments compared with some typical algorithms, and the result demonstrates that the proposed approach is better than these existing imputation methods in terms of classification accuracy and root mean square error (RMSE) at different missing ratios.
Author Zili Zhang
Zhi Jin
Xiaofeng Zhu
Shichao Zhang
Zhuoming Xu
Author_xml – sequence: 1
  givenname: Xiaofeng
  surname: Zhu
  fullname: Zhu, Xiaofeng
– sequence: 2
  givenname: Shichao
  surname: Zhang
  fullname: Zhang, Shichao
– sequence: 3
  givenname: Zhi
  surname: Jin
  fullname: Jin, Zhi
– sequence: 4
  givenname: Zili
  surname: Zhang
  fullname: Zhang, Zili
– sequence: 5
  givenname: Zhuoming
  surname: Xu
  fullname: Xu, Zhuoming
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23711517$$DView record in Pascal Francis
BookMark eNpdkEtLAzEQx4Mo2FZv3rwsiHhxa5LN81ja-sAWD1avIbubSMp2tyZZ0G9vSksPwsDMML95_YfgtO1aA8AVgmOEoHxYvc7mYwxTKuUJGCBKRY6RRKcphgTlpCD8HAxDWEMIBRdoANjSheDar-xTN73J5iG6jY6uazPb-WzpfkydT2L0ruyjyWY66uzdxHABzqxugrk8-BH4eJyvps_54u3pZTpZ5FUhRMwlo4RTiyWDlEGiESwErgU2pi6hrVkJhcGUV5ZTQXQpGWK2JNQmqwlHRTECd_u5W9999yZEtXGhMk2jW9P1QQkiieCUiUTe_CPXXe_bdJxKWyFikkKaqPs9VfkuBG-s2vr0sP9NkNppqHYaqp2GSsqE3x6G6lDpxnrdVi4ce3DBEaKIJ-56zzljzLFMd6dhWPwBNOh4lw
CODEN ITKEEH
CitedBy_id crossref_primary_10_4018_IJGHPC_2018040101
crossref_primary_10_1016_j_jag_2021_102395
crossref_primary_10_1016_j_media_2022_102419
crossref_primary_10_1007_s00521_020_05486_2
crossref_primary_10_1016_j_patrec_2022_01_025
crossref_primary_10_1109_TKDE_2019_2956530
crossref_primary_10_1109_TMBMC_2022_3181514
crossref_primary_10_1109_TNNLS_2016_2521602
crossref_primary_10_3390_fi15070229
crossref_primary_10_1145_3533381
crossref_primary_10_1016_j_mtcomm_2023_106674
crossref_primary_10_1016_j_neucom_2015_07_145
crossref_primary_10_3390_electronics9091467
crossref_primary_10_1016_j_knosys_2017_06_027
crossref_primary_10_1016_j_neucom_2015_08_115
crossref_primary_10_3390_app11146310
crossref_primary_10_1007_s10489_018_1139_9
crossref_primary_10_1007_s00521_018_3836_z
crossref_primary_10_1016_j_imu_2021_100799
crossref_primary_10_1109_ACCESS_2018_2877847
crossref_primary_10_1016_j_neucom_2015_08_112
crossref_primary_10_3390_app10072344
crossref_primary_10_1007_s11042_017_5381_7
crossref_primary_10_1016_j_patrec_2018_01_013
crossref_primary_10_1016_j_knosys_2013_08_023
crossref_primary_10_1016_j_neucom_2017_01_100
crossref_primary_10_1142_S1793536914500095
crossref_primary_10_1007_s00521_016_2353_1
crossref_primary_10_1007_s11042_018_6909_1
crossref_primary_10_1007_s11280_018_0622_x
crossref_primary_10_1007_s11042_018_6083_5
crossref_primary_10_1007_s11704_016_6319_3
crossref_primary_10_1007_s11042_016_3943_8
crossref_primary_10_1007_s10462_019_09709_4
crossref_primary_10_1007_s10115_015_0822_y
crossref_primary_10_1016_j_neucom_2018_05_117
crossref_primary_10_1007_s11042_018_6488_1
crossref_primary_10_1016_j_asoc_2020_106437
crossref_primary_10_1007_s00530_015_0487_0
crossref_primary_10_1016_j_neunet_2019_04_015
crossref_primary_10_55020_iojpe_1390421
crossref_primary_10_1007_s10586_017_0795_6
crossref_primary_10_1016_j_neucom_2017_01_098
crossref_primary_10_1016_j_neucom_2018_11_060
crossref_primary_10_1109_TKDE_2018_2873378
crossref_primary_10_1016_j_procs_2024_04_237
crossref_primary_10_1007_s11042_017_5235_3
crossref_primary_10_1007_s11042_016_4121_8
crossref_primary_10_1109_TKDE_2015_2411276
crossref_primary_10_1016_j_neucom_2015_06_107
crossref_primary_10_1109_TKDE_2023_3270118
crossref_primary_10_1155_2018_1817479
crossref_primary_10_1145_2990508
crossref_primary_10_1109_JSEN_2021_3121506
crossref_primary_10_1109_TBME_2015_2466616
crossref_primary_10_1109_ACCESS_2020_3008514
crossref_primary_10_1109_TNNLS_2017_2673241
crossref_primary_10_1007_s11280_013_0263_z
crossref_primary_10_1007_s13369_016_2176_5
crossref_primary_10_1016_j_neucom_2015_09_126
crossref_primary_10_1016_j_isprsjprs_2023_05_032
crossref_primary_10_1007_s00521_016_2352_2
crossref_primary_10_1109_TKDE_2018_2822662
crossref_primary_10_1155_2012_974638
crossref_primary_10_1007_s13278_014_0207_3
crossref_primary_10_1145_3412364
crossref_primary_10_1007_s11280_017_0508_3
crossref_primary_10_1515_jisys_2014_0172
crossref_primary_10_1016_j_media_2018_01_002
crossref_primary_10_1109_TNNLS_2014_2382606
crossref_primary_10_1016_j_patrec_2017_12_018
crossref_primary_10_1049_iet_rpg_2017_0736
crossref_primary_10_1016_j_chaos_2021_111236
crossref_primary_10_1007_s00530_015_0486_1
crossref_primary_10_1007_s13042_015_0354_5
crossref_primary_10_1016_j_neucom_2016_10_087
crossref_primary_10_1016_j_csa_2024_100063
crossref_primary_10_1007_s11280_018_0619_5
crossref_primary_10_1016_j_neucom_2016_10_089
crossref_primary_10_1145_3488055
crossref_primary_10_1109_TKDE_2021_3049511
crossref_primary_10_1080_08839514_2015_1051887
crossref_primary_10_1145_3411823
crossref_primary_10_1002_pmic_202200092
crossref_primary_10_1007_s11042_018_6643_8
crossref_primary_10_1109_TCYB_2015_2403356
crossref_primary_10_1007_s00003_023_01439_8
crossref_primary_10_3390_math11010073
crossref_primary_10_1016_j_neucom_2015_09_119
crossref_primary_10_1155_2021_8759922
crossref_primary_10_1016_j_mlwa_2022_100431
crossref_primary_10_1007_s11704_016_6195_x
crossref_primary_10_1016_j_patrec_2018_08_028
crossref_primary_10_1016_j_patrec_2018_08_029
crossref_primary_10_13005_ojcst_10_04_11
crossref_primary_10_3390_app13085214
crossref_primary_10_1016_j_catena_2018_03_003
crossref_primary_10_1007_s00521_021_06004_8
crossref_primary_10_1016_j_neucom_2016_08_138
crossref_primary_10_1109_TKDE_2023_3266755
crossref_primary_10_1109_TSMCB_2012_2231411
crossref_primary_10_1007_s10916_018_1134_z
crossref_primary_10_1109_JSTARS_2014_2341276
crossref_primary_10_1016_j_neucom_2016_10_013
crossref_primary_10_1007_s00521_022_07702_7
crossref_primary_10_1109_ACCESS_2018_2803755
crossref_primary_10_1016_j_ins_2015_09_046
crossref_primary_10_1016_j_neucom_2013_02_016
crossref_primary_10_3233_IFS_151592
crossref_primary_10_1007_s42979_021_00459_1
crossref_primary_10_1109_TFUZZ_2017_2754998
crossref_primary_10_1016_j_dcan_2018_09_004
crossref_primary_10_1186_s40537_021_00516_9
crossref_primary_10_1007_s10489_021_02741_4
crossref_primary_10_1007_s11042_016_4131_6
crossref_primary_10_1016_j_patrec_2018_06_029
crossref_primary_10_1007_s11042_016_3980_3
crossref_primary_10_1016_j_neuroimage_2014_01_033
crossref_primary_10_32628_CSEIT195220
crossref_primary_10_1007_s10618_020_00706_8
crossref_primary_10_1016_j_jss_2016_08_093
crossref_primary_10_1007_s11280_017_0510_9
crossref_primary_10_1007_s11280_017_0514_5
crossref_primary_10_1109_TCYB_2020_3031610
crossref_primary_10_1016_j_media_2015_10_008
crossref_primary_10_1016_j_neucom_2020_10_114
crossref_primary_10_1007_s11280_016_0425_x
crossref_primary_10_1155_2019_3213808
crossref_primary_10_1016_j_energy_2017_07_034
crossref_primary_10_3389_fenrg_2022_988183
crossref_primary_10_1109_TKDE_2020_3001694
crossref_primary_10_1007_s11042_019_07885_7
crossref_primary_10_1016_j_jss_2012_05_073
crossref_primary_10_3390_app12157477
crossref_primary_10_3390_ijgi8060248
crossref_primary_10_1016_j_patrec_2017_09_022
crossref_primary_10_1016_j_patcog_2017_01_016
crossref_primary_10_1016_j_jhydrol_2018_08_027
crossref_primary_10_1007_s11042_017_5272_y
crossref_primary_10_1016_j_jhydrol_2014_03_008
crossref_primary_10_1016_j_eswa_2016_05_037
crossref_primary_10_4018_IJDWM_2017100104
crossref_primary_10_1007_s00530_015_0492_3
crossref_primary_10_1016_j_compeleceng_2017_11_030
crossref_primary_10_1016_j_rsase_2021_100643
crossref_primary_10_1109_JSYST_2016_2576026
crossref_primary_10_1016_j_ins_2021_08_016
crossref_primary_10_1109_TKDE_2017_2763618
crossref_primary_10_1016_j_neucom_2016_11_076
crossref_primary_10_1007_s10115_012_0562_1
crossref_primary_10_1007_s10115_022_01661_0
crossref_primary_10_1111_exsy_12155
crossref_primary_10_2200_S00870ED1V01Y201807DTM050
crossref_primary_10_1016_j_knosys_2015_12_006
crossref_primary_10_1007_s11063_020_10295_8
crossref_primary_10_1016_j_neucom_2016_05_081
crossref_primary_10_1007_s11042_016_4119_2
crossref_primary_10_1016_j_chb_2018_10_015
crossref_primary_10_1109_LSP_2016_2611485
crossref_primary_10_3390_math9070746
Cites_doi 10.1214/aos/1028674845
10.1177/0013164407305582
10.1080/713827181
10.1007/s10489-006-0032-0
10.1016/B978-1-55860-036-2.50048-5
10.1016/0378-3758(94)90028-0
10.1007/978-3-540-71701-0_122
10.1002/9780470316696
10.2307/2171778
10.1093/biomet/63.3.413
10.1007/978-1-4899-3324-9
10.1109/ICDE.2000.839427
10.1016/B978-1-55860-335-6.50023-4
10.1109/IJCNN.2002.1007589
10.1137/1.9781611972764.53
10.1023/A:1008334909089
10.2307/1911191
10.1201/9781439821862
10.1002/9781119013563
10.1080/01621459.1983.10478031
10.1007/s10489-009-0207-6
10.1145/1390156.1390186
10.1109/TKDE.2005.188
10.1108/02635570310497657
10.1016/j.patrec.2004.09.003
10.1093/biomet/86.4.948
10.1109/MIS.2004.1274905
10.1016/S0304-4076(03)00157-X
10.1016/j.eswa.2008.01.059
10.1080/01621459.1996.10476701
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2011
DBID 97E
RIA
RIE
IQODW
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TKDE.2010.99
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Xplore
Pascal-Francis
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1558-2191
EndPage 121
ExternalDocumentID 2724247481
10_1109_TKDE_2010_99
23711517
5487520
Genre orig-research
GroupedDBID -~X
.DC
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AASAJ
AAYOK
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIC
RIE
RIG
RNI
RNS
RXW
RZB
TAE
TAF
TN5
UHB
VH1
XFK
ABPTK
IQODW
VOH
AAYXX
AGSQL
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c388t-965475f29605604a10382d82eedb0fd6b08e257cf7584ab9616fb45f45fd47133
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Tue Dec 03 06:49:49 EST 2024
Thu Oct 10 16:44:19 EDT 2024
Fri Dec 06 01:48:14 EST 2024
Sun Oct 22 16:05:01 EDT 2023
Wed Jun 26 19:28:22 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Data analysis
Methodology
methodologies
Iterative method
Data mining
machine learning
Mean square error
Kernel method
Missing data
Consistent estimator
Learning (artificial intelligence)
Classification
Incomplete information
Artificial intelligence
Language English
License CC BY 4.0
https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-965475f29605604a10382d82eedb0fd6b08e257cf7584ab9616fb45f45fd47133
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1030169505
PQPubID 85438
PageCount 12
ParticipantIDs proquest_miscellaneous_849487568
crossref_primary_10_1109_TKDE_2010_99
pascalfrancis_primary_23711517
proquest_journals_1030169505
ieee_primary_5487520
PublicationCentury 2000
PublicationDate 2011-Jan.
2011
2011-01-00
20110101
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-Jan.
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2011
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References rubin (bibttk201101011031) 1987
bibttk201101011040
schafer (bibttk201101011032) 1997
bibttk201101011021
bibttk201101011043
bibttk201101011022
bibttk201101011041
bibttk201101011042
bibttk201101011025
bibttk201101011026
cios (bibttk201101011010) 2002
dempster (bibttk201101011013) 1977; 39
caruana (bibttk20110101109) 2001
bibttk201101011029
bibttk201101011027
bibttk20110101108
quinlan (bibttk201101011028) 1993
bibttk20110101106
huisman (bibttk201101011017) 2007
jordaan (bibttk201101011020) 2002
bibttk20110101105
bibttk20110101104
bibttk20110101103
bibttk20110101101
marco (bibttk201101011023) 1997
blake (bibttk20110101107) 1998
zhang (bibttk201101011038) 2008
allison (bibttk20110101102) 2001
bibttk201101011033
bibttk201101011011
bibttk201101011030
bibttk201101011014
bibttk201101011036
bibttk201101011037
bibttk201101011034
bibttk201101011035
bibttk201101011018
bibttk201101011019
bibttk201101011039
dempster (bibttk201101011012) 1983; 2
ghahramani (bibttk201101011015) 1997
peng (bibttk201101011024) 2008; 68
han (bibttk201101011016) 2006
References_xml – ident: bibttk201101011035
  doi: 10.1214/aos/1028674845
– year: 2002
  ident: bibttk201101011020
  publication-title: "Development of Robust Inferential Sensors Industrial Application of Support Vector Machines for Regression "
  contributor:
    fullname: jordaan
– volume: 68
  start-page: 58
  year: 2008
  ident: bibttk201101011024
  article-title: Comparison of Two Approaches for Handling Missing Covariates in Logistic Regression
  publication-title: Educational and Psychological Measurement
  doi: 10.1177/0013164407305582
  contributor:
    fullname: peng
– ident: bibttk20110101105
  doi: 10.1080/713827181
– start-page: 32
  year: 2008
  ident: bibttk201101011038
  article-title: Parimputation: From Imputation and Null-Imputation to Partially Imputation
  publication-title: IEEE Intelligent Informatics Bull
  contributor:
    fullname: zhang
– ident: bibttk201101011025
  doi: 10.1007/s10489-006-0032-0
– ident: bibttk201101011027
  doi: 10.1016/B978-1-55860-036-2.50048-5
– year: 2001
  ident: bibttk20110101102
  publication-title: Missing Data
  contributor:
    fullname: allison
– ident: bibttk20110101101
  doi: 10.1016/0378-3758(94)90028-0
– year: 1993
  ident: bibttk201101011028
  publication-title: C4 5 Programs for Machine Learning
  contributor:
    fullname: quinlan
– ident: bibttk201101011042
  doi: 10.1007/978-3-540-71701-0_122
– year: 1987
  ident: bibttk201101011031
  publication-title: Multiple Imputation for Nonresponse in Surveys
  doi: 10.1002/9780470316696
  contributor:
    fullname: rubin
– ident: bibttk201101011011
  doi: 10.2307/2171778
– ident: bibttk20110101103
  doi: 10.1093/biomet/63.3.413
– ident: bibttk201101011033
  doi: 10.1007/978-1-4899-3324-9
– ident: bibttk201101011040
  doi: 10.1109/ICDE.2000.839427
– year: 1998
  ident: bibttk20110101107
  contributor:
    fullname: blake
– ident: bibttk201101011018
  doi: 10.1016/B978-1-55860-335-6.50023-4
– ident: bibttk201101011034
  doi: 10.1109/IJCNN.2002.1007589
– year: 2007
  ident: bibttk201101011017
  article-title: Missing Data in Social Network
  publication-title: Proc Int'l Sunbelt Social Network Conf (Sunbelt XXVII)
  contributor:
    fullname: huisman
– ident: bibttk201101011030
  doi: 10.1137/1.9781611972764.53
– ident: bibttk201101011021
  doi: 10.1023/A:1008334909089
– volume: 2
  start-page: 3
  year: 1983
  ident: bibttk201101011012
  publication-title: Incomplete Data in Sample Surveys Theory and Bibliography
  contributor:
    fullname: dempster
– ident: bibttk201101011043
  doi: 10.2307/1911191
– year: 1997
  ident: bibttk201101011032
  publication-title: Analysis of Incomplete Multivariate Data
  doi: 10.1201/9781439821862
  contributor:
    fullname: schafer
– start-page: 67
  year: 1997
  ident: bibttk201101011015
  publication-title: Computational Learning Theory and Natural Learning Systems
  contributor:
    fullname: ghahramani
– ident: bibttk201101011022
  doi: 10.1002/9781119013563
– ident: bibttk20110101106
  doi: 10.1080/01621459.1983.10478031
– ident: bibttk201101011039
  doi: 10.1007/s10489-009-0207-6
– ident: bibttk201101011014
  doi: 10.1145/1390156.1390186
– ident: bibttk201101011036
  doi: 10.1109/TKDE.2005.188
– volume: 39
  start-page: 1
  year: 1977
  ident: bibttk201101011013
  article-title: Maximum Likelihood from Incomplete Data via the EM Algorithm
  publication-title: J Royal Statistical Soc
  contributor:
    fullname: dempster
– ident: bibttk20110101108
  doi: 10.1108/02635570310497657
– ident: bibttk201101011041
  doi: 10.1016/j.patrec.2004.09.003
– ident: bibttk20110101104
  doi: 10.1093/biomet/86.4.948
– year: 2001
  ident: bibttk20110101109
  article-title: A Non-Parametric EM-Style Algorithm for Imputing Missing Value
  publication-title: Artificial Intelligence and Statistics
  contributor:
    fullname: caruana
– ident: bibttk201101011037
  doi: 10.1109/MIS.2004.1274905
– year: 2002
  ident: bibttk201101011010
  publication-title: Trends in Data Mining and Knowledge Discovery
  contributor:
    fullname: cios
– ident: bibttk201101011029
  doi: 10.1016/S0304-4076(03)00157-X
– year: 1997
  ident: bibttk201101011023
  article-title: Learning Bayesian Networks from Incomplete Databases
  contributor:
    fullname: marco
– ident: bibttk201101011026
  doi: 10.1016/j.eswa.2008.01.059
– ident: bibttk201101011019
  doi: 10.1080/01621459.1996.10476701
– year: 2006
  ident: bibttk201101011016
  publication-title: Data Mining Concepts and Techniques
  contributor:
    fullname: han
SSID ssj0008781
Score 2.505511
Snippet Missing data imputation is a key issue in learning from incomplete data. Various techniques have been developed with great successes on dealing with missing...
SourceID proquest
crossref
pascalfrancis
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 110
SubjectTerms Algorithms
Applied sciences
Artificial intelligence
Bibliographies
Classification
Computer science; control theory; systems
Data mining
Data processing. List processing. Character string processing
Dealing
Estimators
Exact sciences and technology
Information science
Iterative algorithms
Iterative methods
Kernel
Learning
Machine learning
Machine learning algorithms
Mean square values
Memory organisation. Data processing
methodologies
Missing data
Operations research
Root mean square
Software
Studies
Title Missing Value Estimation for Mixed-Attribute Data Sets
URI https://ieeexplore.ieee.org/document/5487520
https://www.proquest.com/docview/1030169505
https://search.proquest.com/docview/849487568
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RTnDotjzEtgvyAW7NkmQdP46oLFoVLRce4hbZiS1VRbtVN5Eqfj0zdjalwAHJB0uxlGTG4_nGHs8HcJyKPLMTKn1Z5Twhj5WoOi0SLr10wlTo9GhDf34lZrf8x31xvwHf-rswzrmQfObG1A1n-fWyammr7DSg6xwD9A9Sy3hXq191lQyEpBhdYEw04bJPctenN5fn05jEFSq8_nM_gU-FsiHNCgXiI5PFq0U5eJqLAczX3xgTTH6N28aOq8cX5Rvf-xOf4GMHOdlZnCOfYcMtdmCwpnNgnXXvwPaz2oS7IOaoEuyxO_PQOjbFpSDecmQIc9n8519XJ2dN5Mty7Nw0hl27ZrUHtxfTm--zpCNZSKqJUk2iiX248DlGMgh-uKGC6XmtcvSdNvW1sKlyaNaVx8CCG6tFJrzlhcdWc4pw92FzsVy4A2CZtwhoqlrZynCvvC6kc6agivcE9PQQTtayL3_HWhpliEFSXZKOStJRqXHcLomtH9NJbAhH_ymqf55PJOLaTA5htNZc2VniqiQatUxoBHpDYP1jtCE6GDELt2xXpaIaObIQ6svbb_4KW3ErmdoINps_rTtELNLYozAJnwC_CNlq
link.rule.ids 315,781,785,797,4025,27928,27929,27930,54763
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCaK7rD10Gx9YOmyTofuNqe2I8vyMVhTZGvdS9OiN0GyJaDYkAyNDRT99SUlx3seBuggwAJsk6L4UaI-ApzEIk3MhKgvq5RH5LEiWcdZxHOXW6ErdHq0oV9eifkN_3qX3W3Bp_4ujLXWJ5_ZMXX9WX69qlraKjv16DrFAP1FxtEuwm2tft2VuS9JivEFRkUTnvdp7sXp4uJsFtK4PMfrTwfkK6pQPqReo0hcqGXx17Lsfc35AMrNV4YUk2_jtjHj6ukPAsf__Y3XsNuBTjYNs-QNbNnlHgw2BR1YZ997sPMLO-E-iBKVgj12q7-3ls1wMQj3HBkCXVbeP9o6mjahYpZlZ7rR7No26wO4OZ8tPs-jrsxCVE2kbKKC6g9nLsVYBuEP10SZntYyRe9pYlcLE0uLhl05DC24NoVIhDM8c9hqTjHuIWwvV0v7FljiDEKaqpam0txJV2S5tTojznuCesUQPm5kr34ENg3lo5C4UKQjRTpSBY7bJ7H1YzqJDeH4N0X1z9NJjsg2yYcw2mhOdba4VlRILREFQr0hsP4xWhEdjeilXbVrJYklJ8-EPPr3mz_Ay_mivFSXX64u3sGrsLFMbQTbzUNr3yMyacyxn5DPTNfcuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Missing+Value+Estimation+for+Mixed-Attribute+Data+Sets&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=XIAOFENG+ZHU&rft.au=SHICHAO+ZHANG&rft.au=ZHI+JIN&rft.au=ZILI+ZHANG&rft.date=2011&rft.pub=IEEE+Computer+Society&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=23&rft.issue=1&rft.spage=110&rft.epage=121&rft_id=info:doi/10.1109%2FTKDE.2010.99&rft.externalDBID=n%2Fa&rft.externalDocID=23711517
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon