A sharp Lagrange multiplier theorem for nonlinear programs

For a nonlinear program with inequalities and under a Slater constraint qualification, it is shown that the duality between optimal solutions and saddle points for the corresponding Lagrangian is equivalent to the infsup-convexity—a not very restrictive generalization of convexity which arises natur...

Full description

Saved in:
Bibliographic Details
Published inJournal of global optimization Vol. 65; no. 3; pp. 513 - 530
Main Author Galan, MRuiz
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2016
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0925-5001
1573-2916
DOI10.1007/s10898-015-0379-z

Cover

Abstract For a nonlinear program with inequalities and under a Slater constraint qualification, it is shown that the duality between optimal solutions and saddle points for the corresponding Lagrangian is equivalent to the infsup-convexity—a not very restrictive generalization of convexity which arises naturally in minimax theory—of a finite family of suitable functions. Even if we dispense with the Slater condition, it is proven that the infsup-convexity is nothing more than an equivalent reformulation of the Fritz John conditions for the nonlinear optimization problem under consideration.
AbstractList For a nonlinear program with inequalities and under a Slater constraint qualification, it is shown that the duality between optimal solutions and saddle points for the corresponding Lagrangian is equivalent to the infsup-convexity-a not very restrictive generalization of convexity which arises naturally in minimax theory-of a finite family of suitable functions. Even if we dispense with the Slater condition, it is proven that the infsup-convexity is nothing more than an equivalent reformulation of the Fritz John conditions for the nonlinear optimization problem under consideration.
Audience Academic
Author Galán, M. Ruiz
Author_xml – sequence: 1
  givenname: MRuiz
  surname: Galan
  fullname: Galan, MRuiz
BookMark eNp9kc1KxDAURoMoOI4-gLuCGzfVe5NJc-tuEP9gwM3sQ2yTmUjbjElnoU9vpC5EULIIhO_k3Hw5YYdDGCxj5whXCKCuEwLVVALKEoSqy48DNkOpRMlrrA7ZDGouSwmAx-wkpVcAqEnyGbtZFmlr4q5YmU00w8YW_b4b_a7zNhbj1oZo-8KFWGRf5wdrYrGLIUf7dMqOnOmSPfve52x9f7e-fSxXzw9Pt8tV2QiisSRnBQrgxnGkVghFjpArUlJUxlUtr0G0poKmelFAsiVpTEuiQjTNQizEnF1O12bv296mUfc-NbbrzGDDPmkkLheKgKocvfgVfQ37OOThNKpaSK4gy-bsakptTGe1H1wYo2nyam3vm1yr8_l8qZAWKLCiDOAENDGkFK3Tu-h7E981gv5qX0_t69y-_mpff2RG_WIaP5rRhyHLfPcvyScyZUv-kPjjEX9CnzB6mYQ
CitedBy_id crossref_primary_10_1016_j_cnsns_2020_105339
crossref_primary_10_1002_mma_5566
crossref_primary_10_1007_s10957_016_0959_1
crossref_primary_10_1007_s11590_017_1124_y
crossref_primary_10_1016_j_jmaa_2017_06_007
Cites_doi 10.1007/BF00934081
10.1080/02331930600819969
10.1155/S1110757X04304018
10.2307/1911819
10.1023/A:1021781308794
10.1007/s11117-008-2220-0
10.2140/pjm.1972.40.709
10.1016/0022-247X(67)90163-1
10.1080/0233193021000031615
10.1007/978-3-0348-0439-4
10.1007/s11117-013-0238-4
10.1007/BF02190126
10.1137/120901805
10.1007/s10957-013-0456-8
10.1080/02331930903552473
10.1007/PL00000466
10.1007/s10957-014-0546-2
10.1016/j.na.2010.09.066
10.1073/pnas.39.1.42
10.1016/j.hm.2003.07.001
10.4153/CMB-2012-028-5
10.1137/100817061
10.1137/1.9781611971088
10.1007/BFb0093633
10.1525/9780520411586-036
10.4064/sm-13-2-137-179
10.1155/2014/453912
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
COPYRIGHT 2016 Springer
Springer Science+Business Media New York 2016
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: COPYRIGHT 2016 Springer
– notice: Springer Science+Business Media New York 2016
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10898-015-0379-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
Computer and Information Systems Abstracts
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 530
ExternalDocumentID 4076402401
A718413168
10_1007_s10898_015_0379_z
Genre Feature
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L.0
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c388t-8fe31302af218d3378f812787536af6d2903da60c6b7085d85aad83611ac4343
IEDL.DBID 8FG
ISSN 0925-5001
IngestDate Fri Sep 05 12:49:07 EDT 2025
Sat Aug 23 14:35:13 EDT 2025
Tue Jun 10 20:37:37 EDT 2025
Thu Apr 24 22:59:28 EDT 2025
Tue Jul 01 00:52:58 EDT 2025
Fri Feb 21 02:42:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Fritz John conditions
90C30
90C46
Lagrange multipliers
Karush–Kuhn–Tucker conditions
46A22
Nonlinear programming
26B25
Infsup-convexity
Separation theorem
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-8fe31302af218d3378f812787536af6d2903da60c6b7085d85aad83611ac4343
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1793527090
PQPubID 29930
PageCount 18
ParticipantIDs proquest_miscellaneous_1825478086
proquest_journals_1793527090
gale_infotracacademiconefile_A718413168
crossref_primary_10_1007_s10898_015_0379_z
crossref_citationtrail_10_1007_s10898_015_0379_z
springer_journals_10_1007_s10898_015_0379_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160700
2016-7-00
20160701
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 7
  year: 2016
  text: 20160700
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2016
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Hayasi, Komiya (CR13) 1982; 38
Mangasarian, Fromovitz (CR22) 1967; 17
Chieu, Lee (CR4) 2014; 163
Suzuki, Kuroiwa (CR34) 2011; 74
Dăneţ, Dăneţ (CR5) 2009; 13
Giorgi, Kjeldsen (CR11) 2014
CR18
CR16
CR32
Fan (CR8) 1953; 39
Guerraggio, Molho (CR12) 2004; 31
CR30
Borwein, Zhu (CR2) 2005
Rabier (CR24) 2014; 57
Simons (CR29) 2007; 56
Zeng (CR36) 2002; 51
Dinh, Goberna, López, Mo (CR6) 2014; 24
Ito, Kunisch (CR15) 2011; 49
Kassay, Kolumbán (CR17) 1996; 91
König (CR19) 2001; 77
Brezhnevaa, Tret’yakov (CR3) 2011; 60
CR7
Flores-Bazán (CR10) 2014; 161
CR28
CR9
CR27
CR26
CR25
Illés, Kassay (CR14) 1999; 101
Mazur, Orlicz (CR23) 1953; 13
Kruger, Minchenko, Outrata (CR20) 2014; 18
Uzawa, Arrow, Hurwicz, Uzawa (CR35) 1958
CR21
Stefanescu (CR33) 2004; 2004
Simons (CR31) 1972; 40
Arrow, Enthoven (CR1) 1961; 29
JM Borwein (379_CR2) 2005
S Simons (379_CR31) 1972; 40
H Uzawa (379_CR35) 1958
K Ito (379_CR15) 2011; 49
G Kassay (379_CR17) 1996; 91
K Fan (379_CR8) 1953; 39
379_CR9
379_CR30
379_CR32
S Simons (379_CR29) 2007; 56
379_CR16
A Guerraggio (379_CR12) 2004; 31
M Hayasi (379_CR13) 1982; 38
N Dăneţ (379_CR5) 2009; 13
NH Chieu (379_CR4) 2014; 163
F Flores-Bazán (379_CR10) 2014; 161
T Illés (379_CR14) 1999; 101
A Stefanescu (379_CR33) 2004; 2004
O Brezhnevaa (379_CR3) 2011; 60
S Suzuki (379_CR34) 2011; 74
379_CR21
379_CR26
PJ Rabier (379_CR24) 2014; 57
379_CR25
379_CR28
379_CR27
379_CR18
S Mazur (379_CR23) 1953; 13
N Dinh (379_CR6) 2014; 24
H König (379_CR19) 2001; 77
AY Kruger (379_CR20) 2014; 18
OL Mangasarian (379_CR22) 1967; 17
KJ Arrow (379_CR1) 1961; 29
379_CR7
R Zeng (379_CR36) 2002; 51
G Giorgi (379_CR11) 2014
References_xml – volume: 38
  start-page: 179
  year: 1982
  end-page: 189
  ident: CR13
  article-title: Perfect duality for convexlike programs
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00934081
– volume: 56
  start-page: 149
  year: 2007
  end-page: 169
  ident: CR29
  article-title: The Hahn–Banach–Lagrange theorem
  publication-title: Optimization
  doi: 10.1080/02331930600819969
– ident: CR18
– volume: 2004
  start-page: 167
  year: 2004
  end-page: 177
  ident: CR33
  article-title: A theorem of the alternative and a two-function minimax theorem
  publication-title: J. Appl. Math.
  doi: 10.1155/S1110757X04304018
– volume: 29
  start-page: 779
  year: 1961
  end-page: 800
  ident: CR1
  article-title: Quasi-concave programming
  publication-title: Econometrica
  doi: 10.2307/1911819
– volume: 101
  start-page: 243
  year: 1999
  end-page: 257
  ident: CR14
  article-title: Theorems of the alternative and optimality conditions for convexlike and general convexlike programming
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1021781308794
– volume: 13
  start-page: 89
  year: 2009
  end-page: 106
  ident: CR5
  article-title: Existence and extensions of positive linear operators
  publication-title: Positivity
  doi: 10.1007/s11117-008-2220-0
– volume: 40
  start-page: 709
  year: 1972
  end-page: 718
  ident: CR31
  article-title: Maximinimax, minimax, and antiminimax theorems and a result of R.C. James
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1972.40.709
– ident: CR16
– year: 2005
  ident: CR2
  publication-title: Techniques of Variational Analysis, CMS Books in Mathematics/Ouvrages de Mathèmatiques de la SMC 20
– volume: 17
  start-page: 37
  year: 1967
  end-page: 47
  ident: CR22
  article-title: The Fritz John necessary optimality conditions in the presence of equality and inequality constraints
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(67)90163-1
– ident: CR30
– volume: 13
  start-page: 137
  year: 1953
  end-page: 179
  ident: CR23
  article-title: Sur les espaces métriques linéaires II
  publication-title: Stud. Math.
– volume: 51
  start-page: 709
  year: 2002
  end-page: 717
  ident: CR36
  article-title: A general Gordan alternative theorem with weakened convexity and its application
  publication-title: Optimization
  doi: 10.1080/0233193021000031615
– year: 2014
  ident: CR11
  publication-title: Traces and Emergence of Nonlinear Programming
  doi: 10.1007/978-3-0348-0439-4
– volume: 18
  start-page: 171
  year: 2014
  end-page: 189
  ident: CR20
  article-title: On relaxing the Mangasarian–Fromovitz constraint qualification
  publication-title: Positivity
  doi: 10.1007/s11117-013-0238-4
– start-page: 32
  year: 1958
  end-page: 37
  ident: CR35
  article-title: The Kuhn-Tucker theorem in concave programming
  publication-title: Studies in Linear and Nonlinear Programming
– volume: 91
  start-page: 651
  year: 1996
  end-page: 670
  ident: CR17
  article-title: On a generalized sup-inf problem
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF02190126
– ident: CR25
– ident: CR27
– ident: CR21
– volume: 24
  start-page: 678
  year: 2014
  end-page: 701
  ident: CR6
  article-title: From the Farkas lemma to the Hahn–Banach theorem
  publication-title: SIAM J. Optim.
  doi: 10.1137/120901805
– volume: 161
  start-page: 807
  year: 2014
  end-page: 818
  ident: CR10
  article-title: Fritz John necessary optimality conditions of the alternative-type
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-013-0456-8
– volume: 60
  start-page: 613
  year: 2011
  end-page: 618
  ident: CR3
  article-title: An elementary proof of the Karush–Kuhn–Tucker theorem in normed linear spaces for problems with a finite number of inequality constraints
  publication-title: Optimization
  doi: 10.1080/02331930903552473
– volume: 77
  start-page: 56
  year: 2001
  end-page: 64
  ident: CR19
  article-title: Sublinear functionals and conical measures
  publication-title: Archiv der Mathematik
  doi: 10.1007/PL00000466
– ident: CR9
– volume: 163
  start-page: 755
  year: 2014
  end-page: 776
  ident: CR4
  article-title: Constraint qualifications for mathematical programs with equilibrium constraints and their local preservation property
  publication-title: J Optim Theory Appl
  doi: 10.1007/s10957-014-0546-2
– ident: CR32
– volume: 74
  start-page: 1279
  year: 2011
  end-page: 1285
  ident: CR34
  article-title: Optimality conditions and the basic constraint qualification for quasiconvex programming
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2010.09.066
– ident: CR7
– volume: 39
  start-page: 42
  year: 1953
  end-page: 47
  ident: CR8
  article-title: Minimax theorems
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.39.1.42
– volume: 31
  start-page: 62
  year: 2004
  end-page: 75
  ident: CR12
  article-title: The origins of quasi-concavity: a development between mathematics and economics
  publication-title: Hist. Math.
  doi: 10.1016/j.hm.2003.07.001
– volume: 57
  start-page: 178
  year: 2014
  end-page: 187
  ident: CR24
  article-title: Quasiconvexity and density topology
  publication-title: Can. Math. Bull.
  doi: 10.4153/CMB-2012-028-5
– volume: 49
  start-page: 2133
  year: 2011
  end-page: 2154
  ident: CR15
  article-title: Karush–Kuhn–Tucker conditions for nonsmooth mathematical programming problems in function spaces
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/100817061
– ident: CR28
– ident: CR26
– volume: 91
  start-page: 651
  year: 1996
  ident: 379_CR17
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF02190126
– ident: 379_CR18
– volume: 38
  start-page: 179
  year: 1982
  ident: 379_CR13
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00934081
– ident: 379_CR26
– volume: 49
  start-page: 2133
  year: 2011
  ident: 379_CR15
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/100817061
– ident: 379_CR16
– volume: 39
  start-page: 42
  year: 1953
  ident: 379_CR8
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.39.1.42
– ident: 379_CR7
  doi: 10.1137/1.9781611971088
– volume: 13
  start-page: 89
  year: 2009
  ident: 379_CR5
  publication-title: Positivity
  doi: 10.1007/s11117-008-2220-0
– volume: 24
  start-page: 678
  year: 2014
  ident: 379_CR6
  publication-title: SIAM J. Optim.
  doi: 10.1137/120901805
– volume: 163
  start-page: 755
  year: 2014
  ident: 379_CR4
  publication-title: J Optim Theory Appl
  doi: 10.1007/s10957-014-0546-2
– volume: 161
  start-page: 807
  year: 2014
  ident: 379_CR10
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-013-0456-8
– ident: 379_CR30
  doi: 10.1007/BFb0093633
– volume-title: Techniques of Variational Analysis, CMS Books in Mathematics/Ouvrages de Mathèmatiques de la SMC 20
  year: 2005
  ident: 379_CR2
– volume: 60
  start-page: 613
  year: 2011
  ident: 379_CR3
  publication-title: Optimization
  doi: 10.1080/02331930903552473
– volume: 77
  start-page: 56
  year: 2001
  ident: 379_CR19
  publication-title: Archiv der Mathematik
  doi: 10.1007/PL00000466
– volume: 29
  start-page: 779
  year: 1961
  ident: 379_CR1
  publication-title: Econometrica
  doi: 10.2307/1911819
– ident: 379_CR28
– volume: 40
  start-page: 709
  year: 1972
  ident: 379_CR31
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1972.40.709
– volume: 31
  start-page: 62
  year: 2004
  ident: 379_CR12
  publication-title: Hist. Math.
  doi: 10.1016/j.hm.2003.07.001
– volume: 18
  start-page: 171
  year: 2014
  ident: 379_CR20
  publication-title: Positivity
  doi: 10.1007/s11117-013-0238-4
– volume: 57
  start-page: 178
  year: 2014
  ident: 379_CR24
  publication-title: Can. Math. Bull.
  doi: 10.4153/CMB-2012-028-5
– ident: 379_CR21
  doi: 10.1525/9780520411586-036
– volume: 101
  start-page: 243
  year: 1999
  ident: 379_CR14
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1021781308794
– volume: 13
  start-page: 137
  year: 1953
  ident: 379_CR23
  publication-title: Stud. Math.
  doi: 10.4064/sm-13-2-137-179
– ident: 379_CR25
– ident: 379_CR9
  doi: 10.1155/2014/453912
– volume-title: Traces and Emergence of Nonlinear Programming
  year: 2014
  ident: 379_CR11
  doi: 10.1007/978-3-0348-0439-4
– volume: 74
  start-page: 1279
  year: 2011
  ident: 379_CR34
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2010.09.066
– volume: 51
  start-page: 709
  year: 2002
  ident: 379_CR36
  publication-title: Optimization
  doi: 10.1080/0233193021000031615
– ident: 379_CR32
– volume: 17
  start-page: 37
  year: 1967
  ident: 379_CR22
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(67)90163-1
– ident: 379_CR27
– volume: 56
  start-page: 149
  year: 2007
  ident: 379_CR29
  publication-title: Optimization
  doi: 10.1080/02331930600819969
– volume: 2004
  start-page: 167
  year: 2004
  ident: 379_CR33
  publication-title: J. Appl. Math.
  doi: 10.1155/S1110757X04304018
– start-page: 32
  volume-title: Studies in Linear and Nonlinear Programming
  year: 1958
  ident: 379_CR35
SSID ssj0009852
Score 2.1529992
Snippet For a nonlinear program with inequalities and under a Slater constraint qualification, it is shown that the duality between optimal solutions and saddle points...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 513
SubjectTerms Computer Science
Convex analysis
Equivalence
Euclidean space
Inequalities
Lagrange multiplier
Lagrange multipliers
Mathematical analysis
Mathematical functions
Mathematics
Mathematics and Statistics
Minimax technique
Nonlinear programming
Nonlinearity
Operations Research/Decision Theory
Optimization
Real Functions
Saddle points
Studies
Theorems
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-29KV7WNt0o97SokKh3YZAtmxZ6VsoC2E0fUqgb0K2pe1hS4OdvvSv310sJ9nWDfZofJbNne-Lu_sdwIUstSu1z3hcJZKnSZFyW6WOSx8nwsYafQolitM7NZmnX-6z-zDH3XTd7l1Jcm2pd4bdNI2DxRkXMh_yp5ewl2HqTto4T0ZbpF29XrMjhknGMzTCXSnzuSN-cUa_m-Q_aqNrlzM-hNchVmSjVrhH8MIt-nDQ7WFgQS378GoHVBCvphsk1qYPR4GqYVcBYfrDMVyPWPPN1kt2a7_WNF3AQl8h-kjWjjb-YBjNskULpGFrFvq4mjcwG3-e3Ux4WKLAS6n1imvvJBUnrUdnXkmZa4_8zylNUdarKhkKWVklSlXkGH5VOrO20lLFsS1p6vQt9PBd7gSYKIrYpaJEWfrUKasxFKhoebHynuZZIxAdM00ZAMZpz8V3s4VGJv4b5L8h_punCD5uHlm26Br_Ir4kCRnSPDy3tGGAAL-OMKzMCN0suuRY6QgGnRBNUMnGkCXKklwMRQTnm9uoTFQhsQv38Ig0lC_nGtO8CD51wt854m-f9u6_qN_DPoZdqm36HUBvVT-6UwxtVsXZ-lf-CXmY7Ys
  priority: 102
  providerName: Springer Nature
Title A sharp Lagrange multiplier theorem for nonlinear programs
URI https://link.springer.com/article/10.1007/s10898-015-0379-z
https://www.proquest.com/docview/1793527090
https://www.proquest.com/docview/1825478086
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4EDogVEaKmMhFSgsrDjxPFyQQHttipQIdRK5RQ5fsABttvN9tJfz8zG6ZYieoqUOLY1D39jj2cG4KVyJjgTSy59rniRtwW3vghcRZkLKw1iCm0Uvxzpg5Pi8LQ8TQduXbpWOayJy4Xanzk6I39LglTmlRiJ97NzTlWjyLuaSmjchXWJSENybib7q6S7ZllxR4zykpe4Hg9ezT50zlBwmSy5UNWIX_6FSzdX53_cpEv0mTyEB8lsZHXP5w24E6abcP9aMsFN2Ehq2rFXKZf060fwrmbdTzufsc_2x5ziCFi6QYhoyPogxt8M7VY27VNm2DlLN7a6x3A8GR9_POCpXAJ3ypgFNzEockPaiLDtlapMREpXtCHRNmqfj4TyVgun2woNLW9Ka71RWkrrKL70CazhWOEpMNG2MhTCIddiEbQ1CPqeyhTrGClyNQMx0KpxKZU4VbT41aySIBN5GyRvQ-RtLjN4c_XLrM-jcVvjXWJAQzqG_TqbQgVwdpStqqkRUBF8pTYZbA88apLydc1KVDJ4cfUZ1YZ8IXYazi6wDe2MK4Mbugz2Bt5e6-J_U3t2-4BbcA8tKt3f592GtcX8IjxHq2XR7ixFcwfW6_3vn8b4_DA--voN357k9R_lpemj
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N7gF4QGyACAwwEohfsnDixHGRECqwqWNdhVAn7c1ybAceoCtNJ8T-J_5H7hpnHSD2tucktnW-83eX83cH8Eg6HZyuC576TPI8q3JufR64rNNM2FQjplCguD9Ww4P8w2FxuAa_Oi4MXavszsTlQe2PHP0jf0mKVGSl6Is3s--cukZRdrVrodGqxV74-QNDtub17nvc38dZtrM9eTfksasAd1LrBdd1kJStszWim5ey1DUuqCS_Xdla-awvpLdKOFWV6I94XVjrtVRpah3RMHHYS7CeE6G1B-tvt8cfP62q_Oplix_RzwpeIAB0adSWq6eJzZYWXMiyz0_-AMK_4eCfvOwS7nauw7Xop7JBq1gbsBamm3D1TPXCTdiI50LDnsbi1c9uwKsBa77Y-YyN7Oc5ERdYvLKI8Mta1uQ3ho4ym7Y1OuycxStizU2YXIQkb0EP5wq3gYmqSkMuHKpJnQdlNXoZnvoiq7omqmwCopOVcbF2ObXQ-GpWVZdJvAbFa0i85iSB56efzNrCHee9_IQ2wJBR47jORm4Cro7KY5kBIjiifap0AlvdHplo7Y1Z6WYCD08fo51S8sVOw9ExvkOheKkxgkzgRbe3Z4b439LunD_hA7g8nOyPzGh3vHcXrqA7p9rLxFvQW8yPwz10mRbV_aioDMwFm8ZvTOYhcg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IFpABAoYCcSjsurEieNFQmhFWVpaKg5F6s1y_IBDu102WyH6z_h3zGycbgHRW8_xS-MZfzOZF8BT6XRwOlY894XkZdGU3PoycBnzQthcI6aQofhpT219KT8eVAdL8KvPhaGwyv5NnD_U_tjRP_INYqSqqMVAbMQUFvF5c_R28p1TBynytPbtNDoW2Qk_f6D51r7Z3sS7flYUo_f777Z46jDAndR6xnUMkjx3NiLSeSlrHfFwNenwykbli4GQ3irhVFOjbuJ1Za3XUuW5dZSSictegau1rAdk9-nRh0W9Xz1v9iMGRcUrhILeodpl7WnKa8srLnAmP_0DEv8Ghn88tHPgG92Cm0ljZcOOxVZgKYxX4ca5OoarsJJeiJa9SGWsX96G10PWfrPTCdu1X6eUwsBS8CICMevyJ48Yqsxs3FXrsFOWgsXaO7B_GXS8C8u4V7gHTDRNHkrhkGFiGZTVqG946pCsYqSk2QxETyvjUhVzaqZxaBb1l4m8BslriLzmNINXZ1MmXQmPiwY_pwswJN64rrMpSwFPR4WyzBCxHHE_VzqDtf6OTJL71iy4NIMnZ59RYskNY8fh-ATHkFFea7QlM1jv7_bcEv872v2LN3wM11AgzO723s4DuI56neqiitdgeTY9CQ9Rd5o1j-ZcysBcslT8BvgeJEI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sharp+Lagrange+multiplier+theorem+for+nonlinear+programs&rft.jtitle=Journal+of+global+optimization&rft.au=Gal%C3%A1n%2C+M.+Ruiz&rft.date=2016-07-01&rft.pub=Springer&rft.issn=0925-5001&rft.volume=65&rft.issue=3&rft.spage=513&rft_id=info:doi/10.1007%2Fs10898-015-0379-z&rft.externalDocID=A718413168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon