A Novel SAR Image Despeckling Method Based on Local Filter With Nonlocal Preprocessing

Owing to the characteristics of long distance and strong penetration, a synthetic aperture radar (SAR) imaging system could provide ground information with high resolution under a poor climate environment. Nevertheless, speckle is still a common interference of the output that deteriorates the conte...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 16; pp. 2915 - 2930
Main Authors Wang, Chao, Guo, Baolong, He, Fangliang
Format Journal Article
LanguageEnglish
Published Piscataway The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
IEEE
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Owing to the characteristics of long distance and strong penetration, a synthetic aperture radar (SAR) imaging system could provide ground information with high resolution under a poor climate environment. Nevertheless, speckle is still a common interference of the output that deteriorates the content of SAR images and further affects the recognition of real objects. In this article, a new speckle suppression method is proposed from the perspective of exploring nonlocal and local SAR image features. Considering the statistical distribution of SAR images, a novel local filter termed SAR-orientated guided bilateral filter is proposed to characterize the range and spatial similarity of SAR images. Meanwhile, an optimized nonlocal filter based on the weight Schatten-[Formula Omitted] norm is introduced to characterize the nonlocal self-similarity of SAR images by a low-rank model. As a preprocessing step, it yields nonlocal filtering features as the guidance image of the proposed SAR-oriented guided bilateral filter. By incorporating the nonlocal filtering feature into the local filter, the structured method could achieve desirable despeckling results. Extensive experiments on real SAR images demonstrate that the proposed method outperforms several state-of-the-art methods in terms of both visual satisfaction and quantitative metrics.
AbstractList Owing to the characteristics of long distance and strong penetration, a synthetic aperture radar (SAR) imaging system could provide ground information with high resolution under a poor climate environment. Nevertheless, speckle is still a common interference of the output that deteriorates the content of SAR images and further affects the recognition of real objects. In this article, a new speckle suppression method is proposed from the perspective of exploring nonlocal and local SAR image features. Considering the statistical distribution of SAR images, a novel local filter termed SAR-orientated guided bilateral filter is proposed to characterize the range and spatial similarity of SAR images. Meanwhile, an optimized nonlocal filter based on the weight Schatten-[Formula Omitted] norm is introduced to characterize the nonlocal self-similarity of SAR images by a low-rank model. As a preprocessing step, it yields nonlocal filtering features as the guidance image of the proposed SAR-oriented guided bilateral filter. By incorporating the nonlocal filtering feature into the local filter, the structured method could achieve desirable despeckling results. Extensive experiments on real SAR images demonstrate that the proposed method outperforms several state-of-the-art methods in terms of both visual satisfaction and quantitative metrics.
Owing to the characteristics of long distance and strong penetration, a synthetic aperture radar (SAR) imaging system could provide ground information with high resolution under a poor climate environment. Nevertheless, speckle is still a common interference of the output that deteriorates the content of SAR images and further affects the recognition of real objects. In this article, a new speckle suppression method is proposed from the perspective of exploring nonlocal and local SAR image features. Considering the statistical distribution of SAR images, a novel local filter termed SAR-orientated guided bilateral filter is proposed to characterize the range and spatial similarity of SAR images. Meanwhile, an optimized nonlocal filter based on the weight Schatten-<tex-math notation="LaTeX">$p$</tex-math> norm is introduced to characterize the nonlocal self-similarity of SAR images by a low-rank model. As a preprocessing step, it yields nonlocal filtering features as the guidance image of the proposed SAR-oriented guided bilateral filter. By incorporating the nonlocal filtering feature into the local filter, the structured method could achieve desirable despeckling results. Extensive experiments on real SAR images demonstrate that the proposed method outperforms several state-of-the-art methods in terms of both visual satisfaction and quantitative metrics.
Author Wang, Chao
Guo, Baolong
He, Fangliang
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0001-5254-5414
  surname: Wang
  fullname: Wang, Chao
  organization: Institute of Intelligent Control and Image Engineering, Xidian University, Xi'an, China
– sequence: 2
  givenname: Baolong
  orcidid: 0000-0001-9531-4632
  surname: Guo
  fullname: Guo, Baolong
  organization: Institute of Intelligent Control and Image Engineering, Xidian University, Xi'an, China
– sequence: 3
  givenname: Fangliang
  surname: He
  fullname: He, Fangliang
  organization: Institute of Intelligent Control and Image Engineering, Xidian University, Xi'an, China
BookMark eNo9UctOwzAQtBBItMAXcLHEOcXPxDmWQqGoPNTyOFqOs25T0rjYAYm_J20Rp5VGM7OzO3102PgGEDqnZEApyS_v5y_D2XzACOMDzqQSTBygHqOSJlRyeYh6NOd5QgURx6gf44qQlGU576G3IX7031Dj-XCGJ2uzAHwNcQP2o66aBX6AdulLfGUilNg3eOqtqfG4qlsI-L1ql526qXfgc4BN8BZi7ISn6MiZOsLZ3zxBr-Obl9FdMn26nYyG08RypdpE0cLJLE2FsdyVRkqlFCu4IJm1osw4KMkzVjhQmTVdYlcWRhgjeW6dNVnBT9Bk71t6s9KbUK1N-NHeVHoH-LDQJrSVrUETypQwXGXOOVGkIrd5CTRNnaSKUCk6r4u9V3fG5xfEVq_8V2i6-Hr7K0ZykqqOxfcsG3yMAdz_Vkr0tgy9L0Nvy9B_ZfBfRo59jg
CitedBy_id crossref_primary_10_1080_23311916_2024_2359999
crossref_primary_10_1007_s11042_024_19304_7
Cites_doi 10.1109/TGRS.2015.2462120
10.1109/LGRS.2021.3131201
10.1109/JSTARS.2022.3203195
10.1109/IAEAC50856.2021.9390728
10.1007/978-3-642-15549-9_1
10.1109/TIP.2016.2599290
10.1109/ICCV.2013.34
10.1007/s11263-016-0930-5
10.1109/LGRS.2012.2200875
10.1109/PIERS.2016.7735372
10.1109/LGRS.2020.3047196
10.1109/TPAMI.1982.4767223
10.1016/j.cam.2014.02.015
10.1109/TGRS.2018.2885089
10.1016/j.bspc.2019.101625
10.1109/IGARSS46834.2022.9884848
10.1109/TPAMI.1980.4766994
10.1109/ICCV.1998.710815
10.1109/TPAMI.1985.4767641
10.1109/TGRS.2018.2876339
10.1134/S1064562420050348
10.1109/TGRS.2021.3055516
10.1109/TGRS.2022.3199036
10.1109/LGRS.2013.2271650
10.1109/LGRS.2021.3108774
10.1109/TGRS.2002.1000333
10.1016/j.image.2020.116061
10.1109/TGRS.2019.2948890
10.1109/TIP.2009.2029593
10.1109/TGRS.2019.2952662
10.1109/TIP.2007.901238
10.1109/83.892442
10.1109/JSTARS.2019.2907655
10.1145/1360612.1360666
10.1109/JSTARS.2022.3216623
10.1137/040616024
10.1109/TIP.2010.2045029
10.1109/TIP.2012.2221729
10.1049/el.2009.1591
10.1109/TGRS.2011.2161586
10.1145/1015706.1015777
10.1109/TIP.2015.2389617
10.1109/TGRS.2020.2983420
10.1109/TGRS.2020.2985400
10.1109/TGRS.2020.3002561
10.1109/IGARSS.2016.7729706
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2023.3258424
DatabaseName CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 2930
ExternalDocumentID oai_doaj_org_article_01284a387fff4b649c9de166f5180154
10_1109_JSTARS_2023_3258424
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
AAFWJ
AAJGR
AAYXX
ACIWK
AENEX
AETIX
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
DU5
EBS
EJD
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIE
RIG
RNS
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c388t-81bf57664ac3fda558882b3407cc4d73e85372bfe87ca627fdba4aa539cfca7b3
IEDL.DBID DOA
ISSN 1939-1404
IngestDate Tue Oct 22 15:12:51 EDT 2024
Thu Oct 10 19:38:44 EDT 2024
Fri Aug 23 00:40:00 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-81bf57664ac3fda558882b3407cc4d73e85372bfe87ca627fdba4aa539cfca7b3
ORCID 0000-0001-9531-4632
0000-0001-5254-5414
OpenAccessLink https://doaj.org/article/01284a387fff4b649c9de166f5180154
PQID 2793209068
PQPubID 75722
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_01284a387fff4b649c9de166f5180154
proquest_journals_2793209068
crossref_primary_10_1109_JSTARS_2023_3258424
PublicationCentury 2000
PublicationDate 2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationYear 2023
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
IEEE
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
Fan (ref46) 2019; 32
ref18
ref24
ref23
ref45
ref26
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref20
  doi: 10.1109/TGRS.2015.2462120
– ident: ref35
  doi: 10.1109/LGRS.2021.3131201
– ident: ref4
  doi: 10.1109/JSTARS.2022.3203195
– ident: ref6
  doi: 10.1109/IAEAC50856.2021.9390728
– ident: ref21
  doi: 10.1007/978-3-642-15549-9_1
– ident: ref37
  doi: 10.1109/TIP.2016.2599290
– ident: ref43
  doi: 10.1109/ICCV.2013.34
– ident: ref42
  doi: 10.1007/s11263-016-0930-5
– ident: ref45
  doi: 10.1109/LGRS.2012.2200875
– ident: ref32
  doi: 10.1109/PIERS.2016.7735372
– ident: ref1
  doi: 10.1109/LGRS.2020.3047196
– ident: ref9
  doi: 10.1109/TPAMI.1982.4767223
– ident: ref41
  doi: 10.1016/j.cam.2014.02.015
– ident: ref33
  doi: 10.1109/TGRS.2018.2885089
– volume: 32
  start-page: 5104
  volume-title: Proc. 33rd Int. Conf. Adv. Neural Inf. Process. Syst.
  year: 2019
  ident: ref46
  article-title: Factor group-sparse regularization for efficient low-rank matrix recovery
  contributor:
    fullname: Fan
– ident: ref22
  doi: 10.1016/j.bspc.2019.101625
– ident: ref2
  doi: 10.1109/IGARSS46834.2022.9884848
– ident: ref7
  doi: 10.1109/TPAMI.1980.4766994
– ident: ref17
  doi: 10.1109/ICCV.1998.710815
– ident: ref8
  doi: 10.1109/TPAMI.1985.4767641
– ident: ref34
  doi: 10.1109/TGRS.2018.2876339
– ident: ref29
  doi: 10.1134/S1064562420050348
– ident: ref12
  doi: 10.1109/TGRS.2021.3055516
– ident: ref3
  doi: 10.1109/TGRS.2022.3199036
– ident: ref47
  doi: 10.1109/LGRS.2013.2271650
– ident: ref28
  doi: 10.1109/LGRS.2021.3108774
– ident: ref40
  doi: 10.1109/TGRS.2002.1000333
– ident: ref13
  doi: 10.1016/j.image.2020.116061
– ident: ref15
  doi: 10.1109/TGRS.2019.2948890
– ident: ref25
  doi: 10.1109/TIP.2009.2029593
– ident: ref14
  doi: 10.1109/TGRS.2019.2952662
– ident: ref39
  doi: 10.1109/TIP.2007.901238
– ident: ref10
  doi: 10.1109/83.892442
– ident: ref26
  doi: 10.1109/JSTARS.2019.2907655
– ident: ref19
  doi: 10.1145/1360612.1360666
– ident: ref5
  doi: 10.1109/JSTARS.2022.3216623
– ident: ref24
  doi: 10.1137/040616024
– ident: ref11
  doi: 10.1109/TIP.2010.2045029
– ident: ref30
  doi: 10.1109/TIP.2012.2221729
– ident: ref44
  doi: 10.1049/el.2009.1591
– ident: ref27
  doi: 10.1109/TGRS.2011.2161586
– ident: ref38
  doi: 10.1145/1015706.1015777
– ident: ref23
  doi: 10.1109/TIP.2015.2389617
– ident: ref31
  doi: 10.1109/TGRS.2020.2983420
– ident: ref36
  doi: 10.1109/TGRS.2020.2985400
– ident: ref16
  doi: 10.1109/TGRS.2020.3002561
– ident: ref18
  doi: 10.1109/IGARSS.2016.7729706
SSID ssj0062793
Score 2.3737555
Snippet Owing to the characteristics of long distance and strong penetration, a synthetic aperture radar (SAR) imaging system could provide ground information with...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 2915
SubjectTerms Despeckling
guided bilateral filter (GBF)
Image filters
Methods
nonlocal low-rank (NLR)
Preprocessing
Radar imaging
SAR (radar)
Self-similarity
Synthetic aperture radar
synthetic aperture radar (SAR) image
Title A Novel SAR Image Despeckling Method Based on Local Filter With Nonlocal Preprocessing
URI https://www.proquest.com/docview/2793209068
https://doaj.org/article/01284a387fff4b649c9de166f5180154
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vcvBotZukaXJcxXUVdxF1dW8hTxW0K7oK_nsnaVcUD168tgkN30znm69pZhDaNTEpCJ5nQXifMS5kpktiMy5BrDgijJPxgHN_wHtDdjYqRt9afcV_wurywDVwBymAairKEAIznEkrnW9zHoq2iPyfom8up2KqjsGcgNs1NYbg5gE4eefyaj-2Ct-nBDiXsB88lMr1_4rGiWK6i2ihyQ1xp17TEprx1TKaO0m9dz9W0E0HD8bv_hFfdS7x6RMEAgyq8dnb2HT9DvdTL2h8CLTk8LjC55GlcPchbofj24fJPcyuEnXhi1jKMh0QgImraNg9vj7qZU1bhMxSISYZJJoBVAJn2tLgdFGAiCWGgjKzlrmSemDgkpjgRWk1IBGc0UzrgkobrC4NXUOz1bjy6wiL3BpekkJb7hlxhdSlMHmA0c56KnUL7U1BUs919QuVVEMuVY2pipiqBtMWOoxAfg2NpavTBTCoagyq_jJoC21NzaCa9-lVRXuSXOZcbPzHMzbRfFx3_SllC81OXt78NiQXE7OT_OgT5kPJ7A
link.rule.ids 315,783,787,867,2109,4031,27935,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+SAR+Image+Despeckling+Method+Based+on+Local+Filter+With+Nonlocal+Preprocessing&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Wang%2C+Chao&rft.au=Guo%2C+Baolong&rft.au=He%2C+Fangliang&rft.date=2023&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=16&rft.spage=2915&rft.epage=2930&rft_id=info:doi/10.1109%2FJSTARS.2023.3258424&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2023_3258424
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon