Locating and tracking multiple dynamic optima by a particle swarm model using speciation
This paper proposes an improved particle swarm optimizer using the notion of species to determine its neighborhood best values for solving multimodal optimization problems and for tracking multiple optima in a dynamic environment. In the proposed species-based particle swam optimization (SPSO), the...
Saved in:
Published in | IEEE transactions on evolutionary computation Vol. 10; no. 4; pp. 440 - 458 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes an improved particle swarm optimizer using the notion of species to determine its neighborhood best values for solving multimodal optimization problems and for tracking multiple optima in a dynamic environment. In the proposed species-based particle swam optimization (SPSO), the swarm population is divided into species subpopulations based on their similarity. Each species is grouped around a dominating particle called the species seed. At each iteration step, species seeds are identified from the entire population, and then adopted as neighborhood bests for these individual species groups separately. Species are formed adaptively at each step based on the feedback obtained from the multimodal fitness landscape. Over successive iterations, species are able to simultaneously optimize toward multiple optima, regardless of whether they are global or local optima. Our experiments on using the SPSO to locate multiple optima in a static environment and a dynamic SPSO (DSPSO) to track multiple changing optima in a dynamic environment have demonstrated that SPSO is very effective in dealing with multimodal optimization functions in both environments |
---|---|
AbstractList | This paper proposes an improved particle swarm optimizer using the notion of species to determine its neighborhood best values for solving multimodal optimization problems and for tracking multiple optima in a dynamic environment. In the proposed species-based particle swam optimization (SPSO), the swarm population is divided into species subpopulations based on their similarity. Each species is grouped around a dominating particle called the species seed. At each iteration step, species seeds are identified from the entire population, and then adopted as neighborhood bests for these individual species groups separately. Species are formed adaptively at each step based on the feedback obtained from the multimodal fitness landscape. Over successive iterations, species are able to simultaneously optimize toward multiple optima, regardless of whether they are global or local optima. Our experiments on using the SPSO to locate multiple optima in a static environment and a dynamic SPSO (DSPSO) to track multiple changing optima in a dynamic environment have demonstrated that SPSO is very effective in dealing with multimodal optimization functions in both environments At each iteration step, species seeds are identified from the entire population, and then adopted as neighborhood bests for these individual species groups separately. |
Author | Parrott, D. Xiaodong Li |
Author_xml | – sequence: 1 givenname: D. surname: Parrott fullname: Parrott, D. organization: Sch. of Comput. Sci. & Inf. Technol., RMIT Univ., Melbourne, Vic – sequence: 2 surname: Xiaodong Li fullname: Xiaodong Li organization: Sch. of Comput. Sci. & Inf. Technol., RMIT Univ., Melbourne, Vic |
BookMark | eNp9kM1LwzAYh4NM0E3vgpfgxVNnsnwsOcqYHzDwMsVbyJJUom1TkxbZf29qBWEHT0nI7_nxvs8UTJrQOAAuMJpjjOTNdv2ymi8QYnPBJOXiCJxiSXGB0IJP8h0JWSyX4vUETFN6RwhThuUpeN0EozvfvEHdWNhFbT6GR91XnW8rB-2-0bU3MLSdrzXc7aGGrY6dN_kzfelYwzpYV8E-DVxqnfG5LzRn4LjUVXLnv-cMPN-tt6uHYvN0_7i63RSGCNEVS8o0E1QSrktnnaNLujOcSCM5cViXFmtMMdtxhhmVlFBrLSl3QhCbAwtMZuB67G1j-Oxd6lTtk3FVpRsX-qSE5FhyzllOXh0k30MfmzycEpxxTvlPHR9DJoaUoiuV8d3PQtmNrxRGatCtBt1q0K1G3RlEB2Abs7G4_w-5HBHvnPuL51kRWZBvw4GNNQ |
CODEN | ITEVF5 |
CitedBy_id | crossref_primary_10_1109_TEVC_2010_2052054 crossref_primary_10_1103_PhysRevD_108_084014 crossref_primary_10_1080_03052150802582159 crossref_primary_10_1109_TSMCB_2012_2231068 crossref_primary_10_1109_TEVC_2016_2638437 crossref_primary_10_1109_TNNLS_2014_2298402 crossref_primary_10_1016_j_ins_2012_02_011 crossref_primary_10_1016_j_ins_2012_02_016 crossref_primary_10_1016_j_knosys_2020_105857 crossref_primary_10_1587_transfun_E92_A_2275 crossref_primary_10_1016_j_cam_2017_10_026 crossref_primary_10_1049_iet_epa_20070368 crossref_primary_10_1016_j_swevo_2023_101232 crossref_primary_10_1118_1_4915285 crossref_primary_10_3923_itj_2011_2226_2231 crossref_primary_10_1007_s11721_016_0125_2 crossref_primary_10_1016_j_asoc_2021_107156 crossref_primary_10_1109_JSEN_2019_2928835 crossref_primary_10_1109_TFUZZ_2009_2034529 crossref_primary_10_1007_s11071_019_05414_7 crossref_primary_10_1016_j_adhoc_2011_01_010 crossref_primary_10_1109_TEVC_2021_3060014 crossref_primary_10_1049_iet_epa_20080038 crossref_primary_10_1016_j_asoc_2019_02_042 crossref_primary_10_1109_TEVC_2021_3060012 crossref_primary_10_1109_TEVC_2011_2173577 crossref_primary_10_1109_TEVC_2019_2921830 crossref_primary_10_1109_TII_2012_2230638 crossref_primary_10_1007_s00521_009_0274_y crossref_primary_10_1016_j_eswa_2015_01_049 crossref_primary_10_1080_0305215X_2015_1016507 crossref_primary_10_1007_s00500_013_1138_z crossref_primary_10_31590_ejosat_1270905 crossref_primary_10_1109_TSMCA_2009_2013915 crossref_primary_10_1007_s00170_013_5351_9 crossref_primary_10_1541_ieejeiss_135_713 crossref_primary_10_3390_s19092211 crossref_primary_10_1016_j_neucom_2016_09_092 crossref_primary_10_1016_j_ins_2019_01_084 crossref_primary_10_2299_jsp_19_115 crossref_primary_10_1007_s00366_012_0299_1 crossref_primary_10_1016_j_ejor_2011_08_031 crossref_primary_10_1016_j_asoc_2016_07_034 crossref_primary_10_1587_nolta_6_181 crossref_primary_10_1007_s00500_019_03805_x crossref_primary_10_1016_j_swevo_2021_100924 crossref_primary_10_1016_j_ins_2017_01_038 crossref_primary_10_1016_j_ins_2012_01_005 crossref_primary_10_3390_a11020023 crossref_primary_10_1109_TEVC_2023_3250347 crossref_primary_10_1515_tjj_2017_0003 crossref_primary_10_1007_s00500_010_0612_0 crossref_primary_10_1080_23311916_2019_1654207 crossref_primary_10_1016_j_eswa_2018_11_020 crossref_primary_10_1109_TSMCC_2009_2023676 crossref_primary_10_1016_j_engappai_2010_08_001 crossref_primary_10_1007_s11390_008_9110_6 crossref_primary_10_4018_IJSIR_325006 crossref_primary_10_1587_essfr_5_155 crossref_primary_10_1016_j_engappai_2010_01_006 crossref_primary_10_1016_j_swevo_2017_03_002 crossref_primary_10_1109_TCDS_2023_3345931 crossref_primary_10_1007_s40031_015_0204_6 crossref_primary_10_1109_TCYB_2022_3164143 crossref_primary_10_1109_TFUZZ_2013_2272480 crossref_primary_10_1007_s11047_017_9630_5 crossref_primary_10_1016_j_swevo_2016_12_005 crossref_primary_10_1016_j_swevo_2019_100559 crossref_primary_10_1109_ACCESS_2018_2885036 crossref_primary_10_1016_j_ins_2014_01_017 crossref_primary_10_1016_j_asoc_2022_109528 crossref_primary_10_1007_s00521_014_1661_6 crossref_primary_10_1016_j_ins_2013_11_025 crossref_primary_10_1016_j_ejor_2011_02_026 crossref_primary_10_1016_j_aej_2022_10_072 crossref_primary_10_1587_transfun_E94_A_430 crossref_primary_10_1007_s00521_013_1375_1 crossref_primary_10_1016_j_advengsoft_2021_102994 crossref_primary_10_1243_09544100JAERO151 crossref_primary_10_3390_agriengineering6010012 crossref_primary_10_1007_s10851_019_00906_y crossref_primary_10_1016_j_asoc_2020_106264 crossref_primary_10_1016_j_fss_2011_02_004 crossref_primary_10_1016_j_asoc_2022_108684 crossref_primary_10_1080_15435075_2019_1618309 crossref_primary_10_1016_j_ins_2011_01_006 crossref_primary_10_1109_TCYB_2021_3079346 crossref_primary_10_1016_j_swevo_2012_05_001 crossref_primary_10_1109_TEVC_2011_2169966 crossref_primary_10_1016_j_asoc_2015_04_001 crossref_primary_10_15446_ing_investig_v40n1_78822 crossref_primary_10_1016_S1672_6529_11_60020_6 crossref_primary_10_1016_j_rser_2014_01_080 crossref_primary_10_1016_j_swevo_2017_05_010 crossref_primary_10_1016_j_engappai_2016_05_006 crossref_primary_10_1016_j_eswa_2014_07_034 crossref_primary_10_1109_ACCESS_2018_2847334 crossref_primary_10_1080_0305215X_2012_654787 crossref_primary_10_1016_j_ins_2018_04_056 crossref_primary_10_1109_TMI_2013_2263152 crossref_primary_10_1016_j_jocs_2019_04_009 crossref_primary_10_1016_j_swevo_2021_100870 crossref_primary_10_1109_TSMCB_2012_2217491 crossref_primary_10_1007_s00500_016_2360_2 crossref_primary_10_1109_TSMCB_2009_2015956 crossref_primary_10_1109_TEVC_2011_2180533 crossref_primary_10_1155_2017_5193013 crossref_primary_10_1109_TEVC_2016_2604362 crossref_primary_10_3390_math10071032 crossref_primary_10_1016_j_asoc_2016_02_042 crossref_primary_10_1007_s42853_023_00185_x crossref_primary_10_1016_j_asoc_2012_08_038 crossref_primary_10_1016_j_ejor_2016_02_042 crossref_primary_10_1016_j_eswa_2012_04_063 crossref_primary_10_1080_02564602_2021_1894250 crossref_primary_10_1155_2013_982354 crossref_primary_10_1109_TCYB_2013_2278188 crossref_primary_10_1016_j_amc_2012_02_059 crossref_primary_10_1007_s00500_015_1951_7 crossref_primary_10_1016_j_eswa_2018_08_007 crossref_primary_10_1016_j_knosys_2020_105711 crossref_primary_10_3390_make1010010 crossref_primary_10_1016_j_cam_2018_04_036 crossref_primary_10_1088_1741_2552_ab7264 crossref_primary_10_1007_s11633_009_0406_y crossref_primary_10_1109_TMAG_2007_914855 crossref_primary_10_3390_biomimetics9100643 crossref_primary_10_1016_j_eswa_2012_08_050 crossref_primary_10_31209_2018_100000017 crossref_primary_10_1109_TCYB_2021_3117359 crossref_primary_10_1016_j_eswa_2010_09_076 crossref_primary_10_1109_TSUSC_2019_2929811 crossref_primary_10_1088_1755_1315_612_1_012001 crossref_primary_10_1016_j_amc_2011_05_051 crossref_primary_10_2299_jsp_16_519 crossref_primary_10_1016_j_neucom_2015_08_065 crossref_primary_10_1109_TEVC_2018_2843566 crossref_primary_10_1162_EVCO_a_00117 crossref_primary_10_1016_j_eswa_2022_119075 crossref_primary_10_1109_TCYB_2022_3193888 crossref_primary_10_1109_TCST_2011_2180386 crossref_primary_10_1016_j_swevo_2014_06_004 crossref_primary_10_1016_j_eswa_2017_11_048 crossref_primary_10_32604_cmc_2023_027448 crossref_primary_10_1016_j_asoc_2019_105876 crossref_primary_10_1007_s10489_021_02969_0 crossref_primary_10_1109_TMC_2012_204 crossref_primary_10_1016_j_swevo_2020_100819 crossref_primary_10_3390_math11010017 crossref_primary_10_1007_s11721_007_0002_0 crossref_primary_10_1007_s11721_012_0069_0 crossref_primary_10_1177_1550147717717190 crossref_primary_10_1109_TSMCB_2010_2043527 crossref_primary_10_1002_wcm_1024 crossref_primary_10_1016_j_swevo_2013_08_001 crossref_primary_10_1109_TSMCB_2009_2015281 crossref_primary_10_1007_s00521_012_0939_9 crossref_primary_10_1016_j_ins_2019_10_024 crossref_primary_10_1016_j_asoc_2012_05_019 crossref_primary_10_1109_TEVC_2012_2231685 crossref_primary_10_1016_j_asoc_2019_105886 crossref_primary_10_1117_1_3281669 crossref_primary_10_1016_j_ins_2020_09_008 crossref_primary_10_1109_TFUZZ_2012_2202665 crossref_primary_10_21307_ijssis_2017_493 crossref_primary_10_1016_j_procs_2014_05_177 crossref_primary_10_1007_s13042_018_0810_0 crossref_primary_10_1080_03052150903247736 crossref_primary_10_1587_nolta_5_523 crossref_primary_10_1016_j_tre_2015_01_001 crossref_primary_10_4028_www_scientific_net_AMM_571_572_232 crossref_primary_10_1007_s11227_021_03721_8 crossref_primary_10_1016_j_neucom_2011_12_062 crossref_primary_10_1109_TPEL_2008_925420 crossref_primary_10_1007_s00500_011_0744_x crossref_primary_10_1016_j_asoc_2011_07_019 crossref_primary_10_1080_18756891_2015_1046324 crossref_primary_10_1007_s10462_016_9463_0 crossref_primary_10_1016_j_swevo_2013_05_002 crossref_primary_10_1016_j_swevo_2018_09_002 crossref_primary_10_1016_j_eswa_2010_07_131 crossref_primary_10_1007_s12293_012_0090_2 crossref_primary_10_1016_j_amc_2008_05_025 crossref_primary_10_4018_ijfsa_2012010104 crossref_primary_10_1109_TFUZZ_2009_2038150 crossref_primary_10_1007_s00500_014_1273_1 crossref_primary_10_1007_s11042_022_13790_3 crossref_primary_10_1016_j_ceramint_2012_07_073 crossref_primary_10_1016_j_ins_2014_10_062 crossref_primary_10_1016_j_asoc_2016_05_032 crossref_primary_10_1109_TFUZZ_2011_2104364 crossref_primary_10_1016_j_swevo_2025_101865 crossref_primary_10_4028_www_scientific_net_AMM_571_572_245 crossref_primary_10_1007_s44196_023_00183_z crossref_primary_10_1109_TII_2010_2100130 crossref_primary_10_1016_j_asoc_2022_109923 crossref_primary_10_1016_j_microrel_2013_01_006 crossref_primary_10_1109_TIE_2010_2072892 crossref_primary_10_1007_s10479_024_06112_3 crossref_primary_10_1109_TPEL_2008_2002081 crossref_primary_10_15248_proc_1_162 crossref_primary_10_1016_j_asoc_2012_06_005 crossref_primary_10_1016_j_neucom_2017_06_024 crossref_primary_10_1109_TIE_2014_2319213 crossref_primary_10_1162_EVCO_a_00042 crossref_primary_10_1016_j_ins_2010_11_014 crossref_primary_10_1587_transfun_E95_A_406 crossref_primary_10_1007_s11768_012_0217_5 crossref_primary_10_1007_s12530_013_9081_x crossref_primary_10_1109_TCYB_2015_2474153 crossref_primary_10_1007_s11047_014_9470_5 crossref_primary_10_1007_s00521_012_1256_z crossref_primary_10_1016_j_renene_2019_06_009 crossref_primary_10_1007_s00500_008_0347_3 crossref_primary_10_1080_10556780903034514 crossref_primary_10_1080_0952813X_2020_1721568 crossref_primary_10_1109_TEVC_2015_2504383 crossref_primary_10_4018_jsir_2010040102 crossref_primary_10_1007_s10489_017_0963_7 crossref_primary_10_1007_s11633_007_0243_9 crossref_primary_10_1016_j_swevo_2014_05_002 crossref_primary_10_1162_EVCO_a_00049 crossref_primary_10_1007_s10994_015_5522_z crossref_primary_10_3390_e22030362 crossref_primary_10_1016_j_asoc_2011_11_032 crossref_primary_10_1007_s10732_013_9215_0 crossref_primary_10_1016_j_asoc_2010_06_017 crossref_primary_10_1080_08839514_2014_927683 crossref_primary_10_1109_TEVC_2014_2306677 crossref_primary_10_1587_transinf_E92_D_1354 crossref_primary_10_1016_j_ins_2014_09_030 crossref_primary_10_1016_j_asoc_2011_05_036 crossref_primary_10_1109_TEVC_2009_2026270 crossref_primary_10_1007_s00034_014_9800_y crossref_primary_10_1007_s10845_008_0140_2 crossref_primary_10_1016_j_ijepes_2014_05_066 crossref_primary_10_1109_TEVC_2010_2046667 crossref_primary_10_1109_TEVC_2016_2567644 crossref_primary_10_1109_TPEL_2009_2022166 crossref_primary_10_1515_math_2018_0132 crossref_primary_10_1109_TBME_2013_2277609 crossref_primary_10_1016_j_swevo_2018_04_011 crossref_primary_10_1016_j_swevo_2022_101184 crossref_primary_10_1016_j_csfx_2022_100089 crossref_primary_10_1142_S0219467814500016 crossref_primary_10_1016_j_knosys_2016_07_001 crossref_primary_10_1109_ACCESS_2020_2999161 crossref_primary_10_1007_s10878_023_01102_w crossref_primary_10_1109_TEVC_2019_2902626 crossref_primary_10_1016_j_asoc_2019_04_014 crossref_primary_10_1109_TCYB_2020_3036100 crossref_primary_10_1016_j_ins_2014_04_043 crossref_primary_10_1109_ACCESS_2017_2723862 crossref_primary_10_1155_2012_808361 crossref_primary_10_1007_s10489_013_0483_z crossref_primary_10_1016_j_swevo_2013_10_003 crossref_primary_10_1109_ACCESS_2021_3106062 crossref_primary_10_1260_026309207781487466 crossref_primary_10_1109_TASC_2021_3061338 crossref_primary_10_1115_1_3149842 crossref_primary_10_1016_j_swevo_2011_05_005 crossref_primary_10_1155_2014_735310 crossref_primary_10_3389_fams_2024_1304268 crossref_primary_10_1007_s12559_012_9144_5 crossref_primary_10_1109_ACCESS_2018_2811542 crossref_primary_10_1109_TEVC_2021_3064835 crossref_primary_10_1007_s10514_007_9076_1 crossref_primary_10_1080_00207721_2011_605966 crossref_primary_10_2299_jsp_22_1 crossref_primary_10_1007_s11047_009_9176_2 crossref_primary_10_1080_00207721_2011_605965 crossref_primary_10_1016_j_amc_2008_05_100 crossref_primary_10_1016_j_ins_2014_09_053 crossref_primary_10_1080_18756891_2014_960291 crossref_primary_10_3390_rs13040594 crossref_primary_10_3233_IDA_163392 crossref_primary_10_1016_j_knosys_2014_04_006 crossref_primary_10_1109_TSMC_2024_3448453 crossref_primary_10_1016_j_camwa_2012_03_040 crossref_primary_10_1016_j_swevo_2018_10_010 crossref_primary_10_1016_j_robot_2015_08_010 crossref_primary_10_2200_S00521ED1V01Y201307IVM014 crossref_primary_10_1016_j_asoc_2012_12_020 crossref_primary_10_1016_j_asoc_2013_07_008 crossref_primary_10_1016_j_eswa_2017_05_047 |
Cites_doi | 10.1109/CEC.2001.934376 10.1109/CEC.2002.1004493 10.1109/TEVC.2004.826076 10.1109/ICEC.1996.542703 10.1109/CEC.2004.1330843 10.1007/978-3-7091-6230-9_80 10.1162/106365602760234081 10.1109/CEC.2004.1331058 10.1109/ICNN.1995.488968 10.1109/SIS.2003.1202273 10.1007/978-1-4615-0911-0 10.1007/978-3-662-06560-0 10.1109/ICEC.1998.699326 10.1109/4235.985692 10.1162/evco.1993.1.2.101 10.1109/CEC.1999.785513 10.1109/CEC.2002.1004492 10.1109/ICSMC.2002.1176019 10.1109/TEVC.2005.846356 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1109/TEVC.2005.859468 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0026 |
EndPage | 458 |
ExternalDocumentID | 2342486131 10_1109_TEVC_2005_859468 1665032 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c388t-745a584936afedee474bc639c963e1afd1a1415b651549434ddd3fb883d63e213 |
IEDL.DBID | RIE |
ISSN | 1089-778X |
IngestDate | Fri Jul 11 14:18:06 EDT 2025 Sun Jun 29 15:45:31 EDT 2025 Tue Jul 01 01:56:18 EDT 2025 Thu Apr 24 23:07:12 EDT 2025 Tue Aug 26 16:40:37 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-745a584936afedee474bc639c963e1afd1a1415b651549434ddd3fb883d63e213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 865664621 |
PQPubID | 85418 |
PageCount | 19 |
ParticipantIDs | crossref_citationtrail_10_1109_TEVC_2005_859468 proquest_journals_865664621 proquest_miscellaneous_896196665 ieee_primary_1665032 crossref_primary_10_1109_TEVC_2005_859468 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-08-01 |
PublicationDateYYYYMMDD | 2006-08-01 |
PublicationDate_xml | – month: 08 year: 2006 text: 2006-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on evolutionary computation |
PublicationTitleAbbrev | TEVC |
PublicationYear | 2006 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 brits (ref7) 2002 ref15 van den bergh (ref34) 2002 ref31 morrison (ref26) 2004 ref30 ref11 ref32 ref1 ref17 ref18 carlisle (ref10) 2000 parsopoulos (ref28) 2001 branke (ref6) 2000 de jong (ref14) 1999 blackwell (ref4) 2004; 3005 ref24 ref23 vesterstroem (ref35) 2002 ref22 ref21 li (ref25) 2004; lncs 3102 blackwell (ref2) 2003; 2723 ref27 kennedy (ref19) 2000 ref29 ref8 kennedy (ref20) 2001 ref9 ref5 ursem (ref33) 2000 blackwell (ref3) 2002 deb (ref13) 1989 fasulo (ref16) 1999 |
References_xml | – ident: ref15 doi: 10.1109/CEC.2001.934376 – year: 2001 ident: ref20 publication-title: Swarm Intelligence – ident: ref22 doi: 10.1109/CEC.2002.1004493 – ident: ref30 doi: 10.1109/TEVC.2004.826076 – start-page: 2047 year: 1999 ident: ref14 article-title: A test problem generator for nonstationary environments publication-title: Proc Congr Evol Comput – ident: ref31 doi: 10.1109/ICEC.1996.542703 – ident: ref27 doi: 10.1109/CEC.2004.1330843 – start-page: 42 year: 1989 ident: ref13 article-title: An investigation of niche and species formation in genetic function optimization publication-title: Proc 3rd Int Conf Genetic Algorithms – start-page: 299 year: 2000 ident: ref6 publication-title: Adaptive Computing in Design and Manufacturing 2000 – ident: ref29 doi: 10.1007/978-3-7091-6230-9_80 – ident: ref24 doi: 10.1162/106365602760234081 – ident: ref32 doi: 10.1109/CEC.2004.1331058 – start-page: 22 year: 2001 ident: ref28 article-title: Stretchingtechnique for obtaining global minimizers through particle swarm optimization publication-title: Proc Particle Swarm Optimization Workshop – year: 2002 ident: ref34 publication-title: An analysis of particle swarm optimizers – volume: lncs 3102 start-page: 105 year: 2004 ident: ref25 article-title: Adaptively choosing neighborhood bests using species in a particle swarm optimizer for multimodal function optimization publication-title: Proc Genetic Evol Comput Conf – ident: ref21 doi: 10.1109/ICNN.1995.488968 – ident: ref9 doi: 10.1109/SIS.2003.1202273 – start-page: 1507 year: 2000 ident: ref19 article-title: Stereotyping: Improving particle swarm performance with cluster analysis publication-title: Proc Congr Evol Comput – volume: 3005 start-page: 489 year: 2004 ident: ref4 article-title: Multi-swarm optimization in dynamic environments publication-title: Proc Appl Evol Comput EvoWorkshops 2004 EvoBIO EvoCOMNET EvoHOT EvoISAP EvoMUSART and EvoSTOC – ident: ref5 doi: 10.1007/978-1-4615-0911-0 – year: 2004 ident: ref26 publication-title: Designing Evolutionary Algorithms for Dynamic Environments doi: 10.1007/978-3-662-06560-0 – start-page: 19 year: 2000 ident: ref33 article-title: Multinational GAs: Multimodal optimization techniques in dynamic environments publication-title: Proc 2nd Genetic Evol Comput Conf – start-page: 19 year: 2002 ident: ref3 article-title: Dynamic search with charged swarms publication-title: Proc Genetic Evol Comput Conf – ident: ref23 doi: 10.1109/ICEC.1998.699326 – ident: ref12 doi: 10.1109/4235.985692 – ident: ref1 doi: 10.1162/evco.1993.1.2.101 – volume: 2723 start-page: 1 year: 2003 ident: ref2 article-title: Swarms in dynamic environments publication-title: Proc Genetic Evol Comput Conf – ident: ref11 doi: 10.1109/CEC.1999.785513 – ident: ref17 doi: 10.1109/CEC.2002.1004492 – ident: ref8 doi: 10.1109/ICSMC.2002.1176019 – ident: ref18 doi: 10.1109/TEVC.2005.846356 – year: 1999 ident: ref16 publication-title: An analysis of recent work on clustering algorithms – year: 2002 ident: ref35 publication-title: Particle swarms Extensions for improved local multi-modal and dynamic search in numerical optimization – start-page: 429 year: 2000 ident: ref10 article-title: Adapting particle swarm optimization to dynamic environments publication-title: Proc Int Conf Artif Intell – start-page: 692 year: 2002 ident: ref7 article-title: A niching particle swarm optimizer publication-title: Proc 3rd Asia-Pacific Conf Simulated Evol Learning |
SSID | ssj0014519 |
Score | 2.3988504 |
Snippet | This paper proposes an improved particle swarm optimizer using the notion of species to determine its neighborhood best values for solving multimodal... At each iteration step, species seeds are identified from the entire population, and then adopted as neighborhood bests for these individual species groups... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 440 |
SubjectTerms | Australia Computer science Dynamics Feedback Information technology Iterative methods Mathematical analysis Multimodal optimization Optimization optimization in dynamic environments particle swam optimization (PSO) Particle swarm optimization Particle tracking Seeds Shape Similarity Speciation Studies Tracking tracking optima in dynamic environments |
Title | Locating and tracking multiple dynamic optima by a particle swarm model using speciation |
URI | https://ieeexplore.ieee.org/document/1665032 https://www.proquest.com/docview/865664621 https://www.proquest.com/docview/896196665 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS-RAEC5cT-5hfa04vuiDF8HMmHQn6RxFFBH1pDK30OmueNg1kZkMor_eqnQyiop4C6QSGqqr-6vnB7BfppKja-TkSJSBSk0cEI5TQYSRzVBqGypuTr66Ts5v1cU4Hi_A4bwXBhHb4jMc8mOby3e1nXGobBQmhCckHbi_yHHzvVrzjAGPSfHF9BkhRj3uU5JH2ejm9O7ER090nCkeqvruCmo5VT4dxO3tcrYMV_26fFHJv-GsKYb25cPIxp8ufAX-dDBTHPt9sQoLWK3Bck_hIDqLXoPf7-YRrsP4suYIXnUvTOVEMzGWA-miLzoUztPXi5rOmQcjimdhxGO398T0yUweRMusI7ia_l5MW2571vxfuD07vTk5DzrqhcBKrZsgVbEhaJLJxJToEFWqCktgxpK9YmhKF5qQrv6CidQVj5hzzsmy0Fo6EohCuQGLVV3hJoikjCKD5LcVsVPkjxijLaZxIZU1WmocwKjXRm67ueRMj_E_b_2Toyxn_TFdZpx7_Q3gYP7Fo5_J8Y3sOqvjTc5rYgDbvcLzzminuWZsq5IoHICYvyVr4xSKqbCekUhGDid5fPHW1__dhiUfo-EKwR1YbCYz3CXU0hR77XZ9BTvp6Rk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAcaGlBLOXhAxckstvEduIcUdVqgd2etmhvkWNPeihNqt2sEP31nYmTpYIKcYuUSWRpPJ5vHp4P4EOVSc6uUZAjUUYqszoiHKeiBBOXozQuVnw5eX6eTi_U16Ve7sCn7V0YROyaz3DMj10t3zduw6mySZwSnpB04D4iv6-TcFtrWzPgQSmhnT4nzGiWQ1HyOJ8sTr-fhPyJ0bnisar3nFDHqvLXUdz5l7M9mA8rC20lV-NNW47d7R9DG_936fvwrAea4nPYGc9hB-sD2BtIHERv0wfw9N5EwkNYzhrO4dWXwtZetCvrOJUuhrZD4QOBvWjopLm2ovwlrLjpd59Y_7Sra9Fx6wjup78U647dnnX_Ai7OThcn06gnX4icNKaNMqUtgZNcprZCj6gyVTqCM44sFmNb-djG5PxLplJXPGTOey-r0hjpSSCJ5UvYrZsaX4FIqySxSJFbqb2iiMRa4zDTpVTOGmlwBJNBG4XrJ5MzQcaPootQjvOC9ceEmboI-hvBx-0XN2Eqxz9kD1kdv-WCJkZwNCi86M12XRhGtypN4hGI7VuyNy6i2BqbDYnkFHJSzKdfP_zf9_B4upjPitmX829H8CRkbLhf8A3stqsNviUM05bvuq17B4t87GM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Locating+and+tracking+multiple+dynamic+optima+by+a+particle+swarm+model+using+speciation&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Parrott%2C+D.&rft.au=Xiaodong+Li&rft.date=2006-08-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=10&rft.issue=4&rft.spage=440&rft.epage=458&rft_id=info:doi/10.1109%2FTEVC.2005.859468&rft.externalDocID=1665032 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |