Locating and tracking multiple dynamic optima by a particle swarm model using speciation

This paper proposes an improved particle swarm optimizer using the notion of species to determine its neighborhood best values for solving multimodal optimization problems and for tracking multiple optima in a dynamic environment. In the proposed species-based particle swam optimization (SPSO), the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 10; no. 4; pp. 440 - 458
Main Authors Parrott, D., Xiaodong Li
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes an improved particle swarm optimizer using the notion of species to determine its neighborhood best values for solving multimodal optimization problems and for tracking multiple optima in a dynamic environment. In the proposed species-based particle swam optimization (SPSO), the swarm population is divided into species subpopulations based on their similarity. Each species is grouped around a dominating particle called the species seed. At each iteration step, species seeds are identified from the entire population, and then adopted as neighborhood bests for these individual species groups separately. Species are formed adaptively at each step based on the feedback obtained from the multimodal fitness landscape. Over successive iterations, species are able to simultaneously optimize toward multiple optima, regardless of whether they are global or local optima. Our experiments on using the SPSO to locate multiple optima in a static environment and a dynamic SPSO (DSPSO) to track multiple changing optima in a dynamic environment have demonstrated that SPSO is very effective in dealing with multimodal optimization functions in both environments
AbstractList This paper proposes an improved particle swarm optimizer using the notion of species to determine its neighborhood best values for solving multimodal optimization problems and for tracking multiple optima in a dynamic environment. In the proposed species-based particle swam optimization (SPSO), the swarm population is divided into species subpopulations based on their similarity. Each species is grouped around a dominating particle called the species seed. At each iteration step, species seeds are identified from the entire population, and then adopted as neighborhood bests for these individual species groups separately. Species are formed adaptively at each step based on the feedback obtained from the multimodal fitness landscape. Over successive iterations, species are able to simultaneously optimize toward multiple optima, regardless of whether they are global or local optima. Our experiments on using the SPSO to locate multiple optima in a static environment and a dynamic SPSO (DSPSO) to track multiple changing optima in a dynamic environment have demonstrated that SPSO is very effective in dealing with multimodal optimization functions in both environments
At each iteration step, species seeds are identified from the entire population, and then adopted as neighborhood bests for these individual species groups separately.
Author Parrott, D.
Xiaodong Li
Author_xml – sequence: 1
  givenname: D.
  surname: Parrott
  fullname: Parrott, D.
  organization: Sch. of Comput. Sci. & Inf. Technol., RMIT Univ., Melbourne, Vic
– sequence: 2
  surname: Xiaodong Li
  fullname: Xiaodong Li
  organization: Sch. of Comput. Sci. & Inf. Technol., RMIT Univ., Melbourne, Vic
BookMark eNp9kM1LwzAYh4NM0E3vgpfgxVNnsnwsOcqYHzDwMsVbyJJUom1TkxbZf29qBWEHT0nI7_nxvs8UTJrQOAAuMJpjjOTNdv2ymi8QYnPBJOXiCJxiSXGB0IJP8h0JWSyX4vUETFN6RwhThuUpeN0EozvfvEHdWNhFbT6GR91XnW8rB-2-0bU3MLSdrzXc7aGGrY6dN_kzfelYwzpYV8E-DVxqnfG5LzRn4LjUVXLnv-cMPN-tt6uHYvN0_7i63RSGCNEVS8o0E1QSrktnnaNLujOcSCM5cViXFmtMMdtxhhmVlFBrLSl3QhCbAwtMZuB67G1j-Oxd6lTtk3FVpRsX-qSE5FhyzllOXh0k30MfmzycEpxxTvlPHR9DJoaUoiuV8d3PQtmNrxRGatCtBt1q0K1G3RlEB2Abs7G4_w-5HBHvnPuL51kRWZBvw4GNNQ
CODEN ITEVF5
CitedBy_id crossref_primary_10_1109_TEVC_2010_2052054
crossref_primary_10_1103_PhysRevD_108_084014
crossref_primary_10_1080_03052150802582159
crossref_primary_10_1109_TSMCB_2012_2231068
crossref_primary_10_1109_TEVC_2016_2638437
crossref_primary_10_1109_TNNLS_2014_2298402
crossref_primary_10_1016_j_ins_2012_02_011
crossref_primary_10_1016_j_ins_2012_02_016
crossref_primary_10_1016_j_knosys_2020_105857
crossref_primary_10_1587_transfun_E92_A_2275
crossref_primary_10_1016_j_cam_2017_10_026
crossref_primary_10_1049_iet_epa_20070368
crossref_primary_10_1016_j_swevo_2023_101232
crossref_primary_10_1118_1_4915285
crossref_primary_10_3923_itj_2011_2226_2231
crossref_primary_10_1007_s11721_016_0125_2
crossref_primary_10_1016_j_asoc_2021_107156
crossref_primary_10_1109_JSEN_2019_2928835
crossref_primary_10_1109_TFUZZ_2009_2034529
crossref_primary_10_1007_s11071_019_05414_7
crossref_primary_10_1016_j_adhoc_2011_01_010
crossref_primary_10_1109_TEVC_2021_3060014
crossref_primary_10_1049_iet_epa_20080038
crossref_primary_10_1016_j_asoc_2019_02_042
crossref_primary_10_1109_TEVC_2021_3060012
crossref_primary_10_1109_TEVC_2011_2173577
crossref_primary_10_1109_TEVC_2019_2921830
crossref_primary_10_1109_TII_2012_2230638
crossref_primary_10_1007_s00521_009_0274_y
crossref_primary_10_1016_j_eswa_2015_01_049
crossref_primary_10_1080_0305215X_2015_1016507
crossref_primary_10_1007_s00500_013_1138_z
crossref_primary_10_31590_ejosat_1270905
crossref_primary_10_1109_TSMCA_2009_2013915
crossref_primary_10_1007_s00170_013_5351_9
crossref_primary_10_1541_ieejeiss_135_713
crossref_primary_10_3390_s19092211
crossref_primary_10_1016_j_neucom_2016_09_092
crossref_primary_10_1016_j_ins_2019_01_084
crossref_primary_10_2299_jsp_19_115
crossref_primary_10_1007_s00366_012_0299_1
crossref_primary_10_1016_j_ejor_2011_08_031
crossref_primary_10_1016_j_asoc_2016_07_034
crossref_primary_10_1587_nolta_6_181
crossref_primary_10_1007_s00500_019_03805_x
crossref_primary_10_1016_j_swevo_2021_100924
crossref_primary_10_1016_j_ins_2017_01_038
crossref_primary_10_1016_j_ins_2012_01_005
crossref_primary_10_3390_a11020023
crossref_primary_10_1109_TEVC_2023_3250347
crossref_primary_10_1515_tjj_2017_0003
crossref_primary_10_1007_s00500_010_0612_0
crossref_primary_10_1080_23311916_2019_1654207
crossref_primary_10_1016_j_eswa_2018_11_020
crossref_primary_10_1109_TSMCC_2009_2023676
crossref_primary_10_1016_j_engappai_2010_08_001
crossref_primary_10_1007_s11390_008_9110_6
crossref_primary_10_4018_IJSIR_325006
crossref_primary_10_1587_essfr_5_155
crossref_primary_10_1016_j_engappai_2010_01_006
crossref_primary_10_1016_j_swevo_2017_03_002
crossref_primary_10_1109_TCDS_2023_3345931
crossref_primary_10_1007_s40031_015_0204_6
crossref_primary_10_1109_TCYB_2022_3164143
crossref_primary_10_1109_TFUZZ_2013_2272480
crossref_primary_10_1007_s11047_017_9630_5
crossref_primary_10_1016_j_swevo_2016_12_005
crossref_primary_10_1016_j_swevo_2019_100559
crossref_primary_10_1109_ACCESS_2018_2885036
crossref_primary_10_1016_j_ins_2014_01_017
crossref_primary_10_1016_j_asoc_2022_109528
crossref_primary_10_1007_s00521_014_1661_6
crossref_primary_10_1016_j_ins_2013_11_025
crossref_primary_10_1016_j_ejor_2011_02_026
crossref_primary_10_1016_j_aej_2022_10_072
crossref_primary_10_1587_transfun_E94_A_430
crossref_primary_10_1007_s00521_013_1375_1
crossref_primary_10_1016_j_advengsoft_2021_102994
crossref_primary_10_1243_09544100JAERO151
crossref_primary_10_3390_agriengineering6010012
crossref_primary_10_1007_s10851_019_00906_y
crossref_primary_10_1016_j_asoc_2020_106264
crossref_primary_10_1016_j_fss_2011_02_004
crossref_primary_10_1016_j_asoc_2022_108684
crossref_primary_10_1080_15435075_2019_1618309
crossref_primary_10_1016_j_ins_2011_01_006
crossref_primary_10_1109_TCYB_2021_3079346
crossref_primary_10_1016_j_swevo_2012_05_001
crossref_primary_10_1109_TEVC_2011_2169966
crossref_primary_10_1016_j_asoc_2015_04_001
crossref_primary_10_15446_ing_investig_v40n1_78822
crossref_primary_10_1016_S1672_6529_11_60020_6
crossref_primary_10_1016_j_rser_2014_01_080
crossref_primary_10_1016_j_swevo_2017_05_010
crossref_primary_10_1016_j_engappai_2016_05_006
crossref_primary_10_1016_j_eswa_2014_07_034
crossref_primary_10_1109_ACCESS_2018_2847334
crossref_primary_10_1080_0305215X_2012_654787
crossref_primary_10_1016_j_ins_2018_04_056
crossref_primary_10_1109_TMI_2013_2263152
crossref_primary_10_1016_j_jocs_2019_04_009
crossref_primary_10_1016_j_swevo_2021_100870
crossref_primary_10_1109_TSMCB_2012_2217491
crossref_primary_10_1007_s00500_016_2360_2
crossref_primary_10_1109_TSMCB_2009_2015956
crossref_primary_10_1109_TEVC_2011_2180533
crossref_primary_10_1155_2017_5193013
crossref_primary_10_1109_TEVC_2016_2604362
crossref_primary_10_3390_math10071032
crossref_primary_10_1016_j_asoc_2016_02_042
crossref_primary_10_1007_s42853_023_00185_x
crossref_primary_10_1016_j_asoc_2012_08_038
crossref_primary_10_1016_j_ejor_2016_02_042
crossref_primary_10_1016_j_eswa_2012_04_063
crossref_primary_10_1080_02564602_2021_1894250
crossref_primary_10_1155_2013_982354
crossref_primary_10_1109_TCYB_2013_2278188
crossref_primary_10_1016_j_amc_2012_02_059
crossref_primary_10_1007_s00500_015_1951_7
crossref_primary_10_1016_j_eswa_2018_08_007
crossref_primary_10_1016_j_knosys_2020_105711
crossref_primary_10_3390_make1010010
crossref_primary_10_1016_j_cam_2018_04_036
crossref_primary_10_1088_1741_2552_ab7264
crossref_primary_10_1007_s11633_009_0406_y
crossref_primary_10_1109_TMAG_2007_914855
crossref_primary_10_3390_biomimetics9100643
crossref_primary_10_1016_j_eswa_2012_08_050
crossref_primary_10_31209_2018_100000017
crossref_primary_10_1109_TCYB_2021_3117359
crossref_primary_10_1016_j_eswa_2010_09_076
crossref_primary_10_1109_TSUSC_2019_2929811
crossref_primary_10_1088_1755_1315_612_1_012001
crossref_primary_10_1016_j_amc_2011_05_051
crossref_primary_10_2299_jsp_16_519
crossref_primary_10_1016_j_neucom_2015_08_065
crossref_primary_10_1109_TEVC_2018_2843566
crossref_primary_10_1162_EVCO_a_00117
crossref_primary_10_1016_j_eswa_2022_119075
crossref_primary_10_1109_TCYB_2022_3193888
crossref_primary_10_1109_TCST_2011_2180386
crossref_primary_10_1016_j_swevo_2014_06_004
crossref_primary_10_1016_j_eswa_2017_11_048
crossref_primary_10_32604_cmc_2023_027448
crossref_primary_10_1016_j_asoc_2019_105876
crossref_primary_10_1007_s10489_021_02969_0
crossref_primary_10_1109_TMC_2012_204
crossref_primary_10_1016_j_swevo_2020_100819
crossref_primary_10_3390_math11010017
crossref_primary_10_1007_s11721_007_0002_0
crossref_primary_10_1007_s11721_012_0069_0
crossref_primary_10_1177_1550147717717190
crossref_primary_10_1109_TSMCB_2010_2043527
crossref_primary_10_1002_wcm_1024
crossref_primary_10_1016_j_swevo_2013_08_001
crossref_primary_10_1109_TSMCB_2009_2015281
crossref_primary_10_1007_s00521_012_0939_9
crossref_primary_10_1016_j_ins_2019_10_024
crossref_primary_10_1016_j_asoc_2012_05_019
crossref_primary_10_1109_TEVC_2012_2231685
crossref_primary_10_1016_j_asoc_2019_105886
crossref_primary_10_1117_1_3281669
crossref_primary_10_1016_j_ins_2020_09_008
crossref_primary_10_1109_TFUZZ_2012_2202665
crossref_primary_10_21307_ijssis_2017_493
crossref_primary_10_1016_j_procs_2014_05_177
crossref_primary_10_1007_s13042_018_0810_0
crossref_primary_10_1080_03052150903247736
crossref_primary_10_1587_nolta_5_523
crossref_primary_10_1016_j_tre_2015_01_001
crossref_primary_10_4028_www_scientific_net_AMM_571_572_232
crossref_primary_10_1007_s11227_021_03721_8
crossref_primary_10_1016_j_neucom_2011_12_062
crossref_primary_10_1109_TPEL_2008_925420
crossref_primary_10_1007_s00500_011_0744_x
crossref_primary_10_1016_j_asoc_2011_07_019
crossref_primary_10_1080_18756891_2015_1046324
crossref_primary_10_1007_s10462_016_9463_0
crossref_primary_10_1016_j_swevo_2013_05_002
crossref_primary_10_1016_j_swevo_2018_09_002
crossref_primary_10_1016_j_eswa_2010_07_131
crossref_primary_10_1007_s12293_012_0090_2
crossref_primary_10_1016_j_amc_2008_05_025
crossref_primary_10_4018_ijfsa_2012010104
crossref_primary_10_1109_TFUZZ_2009_2038150
crossref_primary_10_1007_s00500_014_1273_1
crossref_primary_10_1007_s11042_022_13790_3
crossref_primary_10_1016_j_ceramint_2012_07_073
crossref_primary_10_1016_j_ins_2014_10_062
crossref_primary_10_1016_j_asoc_2016_05_032
crossref_primary_10_1109_TFUZZ_2011_2104364
crossref_primary_10_1016_j_swevo_2025_101865
crossref_primary_10_4028_www_scientific_net_AMM_571_572_245
crossref_primary_10_1007_s44196_023_00183_z
crossref_primary_10_1109_TII_2010_2100130
crossref_primary_10_1016_j_asoc_2022_109923
crossref_primary_10_1016_j_microrel_2013_01_006
crossref_primary_10_1109_TIE_2010_2072892
crossref_primary_10_1007_s10479_024_06112_3
crossref_primary_10_1109_TPEL_2008_2002081
crossref_primary_10_15248_proc_1_162
crossref_primary_10_1016_j_asoc_2012_06_005
crossref_primary_10_1016_j_neucom_2017_06_024
crossref_primary_10_1109_TIE_2014_2319213
crossref_primary_10_1162_EVCO_a_00042
crossref_primary_10_1016_j_ins_2010_11_014
crossref_primary_10_1587_transfun_E95_A_406
crossref_primary_10_1007_s11768_012_0217_5
crossref_primary_10_1007_s12530_013_9081_x
crossref_primary_10_1109_TCYB_2015_2474153
crossref_primary_10_1007_s11047_014_9470_5
crossref_primary_10_1007_s00521_012_1256_z
crossref_primary_10_1016_j_renene_2019_06_009
crossref_primary_10_1007_s00500_008_0347_3
crossref_primary_10_1080_10556780903034514
crossref_primary_10_1080_0952813X_2020_1721568
crossref_primary_10_1109_TEVC_2015_2504383
crossref_primary_10_4018_jsir_2010040102
crossref_primary_10_1007_s10489_017_0963_7
crossref_primary_10_1007_s11633_007_0243_9
crossref_primary_10_1016_j_swevo_2014_05_002
crossref_primary_10_1162_EVCO_a_00049
crossref_primary_10_1007_s10994_015_5522_z
crossref_primary_10_3390_e22030362
crossref_primary_10_1016_j_asoc_2011_11_032
crossref_primary_10_1007_s10732_013_9215_0
crossref_primary_10_1016_j_asoc_2010_06_017
crossref_primary_10_1080_08839514_2014_927683
crossref_primary_10_1109_TEVC_2014_2306677
crossref_primary_10_1587_transinf_E92_D_1354
crossref_primary_10_1016_j_ins_2014_09_030
crossref_primary_10_1016_j_asoc_2011_05_036
crossref_primary_10_1109_TEVC_2009_2026270
crossref_primary_10_1007_s00034_014_9800_y
crossref_primary_10_1007_s10845_008_0140_2
crossref_primary_10_1016_j_ijepes_2014_05_066
crossref_primary_10_1109_TEVC_2010_2046667
crossref_primary_10_1109_TEVC_2016_2567644
crossref_primary_10_1109_TPEL_2009_2022166
crossref_primary_10_1515_math_2018_0132
crossref_primary_10_1109_TBME_2013_2277609
crossref_primary_10_1016_j_swevo_2018_04_011
crossref_primary_10_1016_j_swevo_2022_101184
crossref_primary_10_1016_j_csfx_2022_100089
crossref_primary_10_1142_S0219467814500016
crossref_primary_10_1016_j_knosys_2016_07_001
crossref_primary_10_1109_ACCESS_2020_2999161
crossref_primary_10_1007_s10878_023_01102_w
crossref_primary_10_1109_TEVC_2019_2902626
crossref_primary_10_1016_j_asoc_2019_04_014
crossref_primary_10_1109_TCYB_2020_3036100
crossref_primary_10_1016_j_ins_2014_04_043
crossref_primary_10_1109_ACCESS_2017_2723862
crossref_primary_10_1155_2012_808361
crossref_primary_10_1007_s10489_013_0483_z
crossref_primary_10_1016_j_swevo_2013_10_003
crossref_primary_10_1109_ACCESS_2021_3106062
crossref_primary_10_1260_026309207781487466
crossref_primary_10_1109_TASC_2021_3061338
crossref_primary_10_1115_1_3149842
crossref_primary_10_1016_j_swevo_2011_05_005
crossref_primary_10_1155_2014_735310
crossref_primary_10_3389_fams_2024_1304268
crossref_primary_10_1007_s12559_012_9144_5
crossref_primary_10_1109_ACCESS_2018_2811542
crossref_primary_10_1109_TEVC_2021_3064835
crossref_primary_10_1007_s10514_007_9076_1
crossref_primary_10_1080_00207721_2011_605966
crossref_primary_10_2299_jsp_22_1
crossref_primary_10_1007_s11047_009_9176_2
crossref_primary_10_1080_00207721_2011_605965
crossref_primary_10_1016_j_amc_2008_05_100
crossref_primary_10_1016_j_ins_2014_09_053
crossref_primary_10_1080_18756891_2014_960291
crossref_primary_10_3390_rs13040594
crossref_primary_10_3233_IDA_163392
crossref_primary_10_1016_j_knosys_2014_04_006
crossref_primary_10_1109_TSMC_2024_3448453
crossref_primary_10_1016_j_camwa_2012_03_040
crossref_primary_10_1016_j_swevo_2018_10_010
crossref_primary_10_1016_j_robot_2015_08_010
crossref_primary_10_2200_S00521ED1V01Y201307IVM014
crossref_primary_10_1016_j_asoc_2012_12_020
crossref_primary_10_1016_j_asoc_2013_07_008
crossref_primary_10_1016_j_eswa_2017_05_047
Cites_doi 10.1109/CEC.2001.934376
10.1109/CEC.2002.1004493
10.1109/TEVC.2004.826076
10.1109/ICEC.1996.542703
10.1109/CEC.2004.1330843
10.1007/978-3-7091-6230-9_80
10.1162/106365602760234081
10.1109/CEC.2004.1331058
10.1109/ICNN.1995.488968
10.1109/SIS.2003.1202273
10.1007/978-1-4615-0911-0
10.1007/978-3-662-06560-0
10.1109/ICEC.1998.699326
10.1109/4235.985692
10.1162/evco.1993.1.2.101
10.1109/CEC.1999.785513
10.1109/CEC.2002.1004492
10.1109/ICSMC.2002.1176019
10.1109/TEVC.2005.846356
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TEVC.2005.859468
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 458
ExternalDocumentID 2342486131
10_1109_TEVC_2005_859468
1665032
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c388t-745a584936afedee474bc639c963e1afd1a1415b651549434ddd3fb883d63e213
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Fri Jul 11 14:18:06 EDT 2025
Sun Jun 29 15:45:31 EDT 2025
Tue Jul 01 01:56:18 EDT 2025
Thu Apr 24 23:07:12 EDT 2025
Tue Aug 26 16:40:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-745a584936afedee474bc639c963e1afd1a1415b651549434ddd3fb883d63e213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 865664621
PQPubID 85418
PageCount 19
ParticipantIDs crossref_citationtrail_10_1109_TEVC_2005_859468
proquest_journals_865664621
proquest_miscellaneous_896196665
ieee_primary_1665032
crossref_primary_10_1109_TEVC_2005_859468
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-08-01
PublicationDateYYYYMMDD 2006-08-01
PublicationDate_xml – month: 08
  year: 2006
  text: 2006-08-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2006
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
brits (ref7) 2002
ref15
van den bergh (ref34) 2002
ref31
morrison (ref26) 2004
ref30
ref11
ref32
ref1
ref17
ref18
carlisle (ref10) 2000
parsopoulos (ref28) 2001
branke (ref6) 2000
de jong (ref14) 1999
blackwell (ref4) 2004; 3005
ref24
ref23
vesterstroem (ref35) 2002
ref22
ref21
li (ref25) 2004; lncs 3102
blackwell (ref2) 2003; 2723
ref27
kennedy (ref19) 2000
ref29
ref8
kennedy (ref20) 2001
ref9
ref5
ursem (ref33) 2000
blackwell (ref3) 2002
deb (ref13) 1989
fasulo (ref16) 1999
References_xml – ident: ref15
  doi: 10.1109/CEC.2001.934376
– year: 2001
  ident: ref20
  publication-title: Swarm Intelligence
– ident: ref22
  doi: 10.1109/CEC.2002.1004493
– ident: ref30
  doi: 10.1109/TEVC.2004.826076
– start-page: 2047
  year: 1999
  ident: ref14
  article-title: A test problem generator for nonstationary environments
  publication-title: Proc Congr Evol Comput
– ident: ref31
  doi: 10.1109/ICEC.1996.542703
– ident: ref27
  doi: 10.1109/CEC.2004.1330843
– start-page: 42
  year: 1989
  ident: ref13
  article-title: An investigation of niche and species formation in genetic function optimization
  publication-title: Proc 3rd Int Conf Genetic Algorithms
– start-page: 299
  year: 2000
  ident: ref6
  publication-title: Adaptive Computing in Design and Manufacturing 2000
– ident: ref29
  doi: 10.1007/978-3-7091-6230-9_80
– ident: ref24
  doi: 10.1162/106365602760234081
– ident: ref32
  doi: 10.1109/CEC.2004.1331058
– start-page: 22
  year: 2001
  ident: ref28
  article-title: Stretchingtechnique for obtaining global minimizers through particle swarm optimization
  publication-title: Proc Particle Swarm Optimization Workshop
– year: 2002
  ident: ref34
  publication-title: An analysis of particle swarm optimizers
– volume: lncs 3102
  start-page: 105
  year: 2004
  ident: ref25
  article-title: Adaptively choosing neighborhood bests using species in a particle swarm optimizer for multimodal function optimization
  publication-title: Proc Genetic Evol Comput Conf
– ident: ref21
  doi: 10.1109/ICNN.1995.488968
– ident: ref9
  doi: 10.1109/SIS.2003.1202273
– start-page: 1507
  year: 2000
  ident: ref19
  article-title: Stereotyping: Improving particle swarm performance with cluster analysis
  publication-title: Proc Congr Evol Comput
– volume: 3005
  start-page: 489
  year: 2004
  ident: ref4
  article-title: Multi-swarm optimization in dynamic environments
  publication-title: Proc Appl Evol Comput EvoWorkshops 2004 EvoBIO EvoCOMNET EvoHOT EvoISAP EvoMUSART and EvoSTOC
– ident: ref5
  doi: 10.1007/978-1-4615-0911-0
– year: 2004
  ident: ref26
  publication-title: Designing Evolutionary Algorithms for Dynamic Environments
  doi: 10.1007/978-3-662-06560-0
– start-page: 19
  year: 2000
  ident: ref33
  article-title: Multinational GAs: Multimodal optimization techniques in dynamic environments
  publication-title: Proc 2nd Genetic Evol Comput Conf
– start-page: 19
  year: 2002
  ident: ref3
  article-title: Dynamic search with charged swarms
  publication-title: Proc Genetic Evol Comput Conf
– ident: ref23
  doi: 10.1109/ICEC.1998.699326
– ident: ref12
  doi: 10.1109/4235.985692
– ident: ref1
  doi: 10.1162/evco.1993.1.2.101
– volume: 2723
  start-page: 1
  year: 2003
  ident: ref2
  article-title: Swarms in dynamic environments
  publication-title: Proc Genetic Evol Comput Conf
– ident: ref11
  doi: 10.1109/CEC.1999.785513
– ident: ref17
  doi: 10.1109/CEC.2002.1004492
– ident: ref8
  doi: 10.1109/ICSMC.2002.1176019
– ident: ref18
  doi: 10.1109/TEVC.2005.846356
– year: 1999
  ident: ref16
  publication-title: An analysis of recent work on clustering algorithms
– year: 2002
  ident: ref35
  publication-title: Particle swarms Extensions for improved local multi-modal and dynamic search in numerical optimization
– start-page: 429
  year: 2000
  ident: ref10
  article-title: Adapting particle swarm optimization to dynamic environments
  publication-title: Proc Int Conf Artif Intell
– start-page: 692
  year: 2002
  ident: ref7
  article-title: A niching particle swarm optimizer
  publication-title: Proc 3rd Asia-Pacific Conf Simulated Evol Learning
SSID ssj0014519
Score 2.3988504
Snippet This paper proposes an improved particle swarm optimizer using the notion of species to determine its neighborhood best values for solving multimodal...
At each iteration step, species seeds are identified from the entire population, and then adopted as neighborhood bests for these individual species groups...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 440
SubjectTerms Australia
Computer science
Dynamics
Feedback
Information technology
Iterative methods
Mathematical analysis
Multimodal optimization
Optimization
optimization in dynamic environments
particle swam optimization (PSO)
Particle swarm optimization
Particle tracking
Seeds
Shape
Similarity
Speciation
Studies
Tracking
tracking optima in dynamic environments
Title Locating and tracking multiple dynamic optima by a particle swarm model using speciation
URI https://ieeexplore.ieee.org/document/1665032
https://www.proquest.com/docview/865664621
https://www.proquest.com/docview/896196665
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS-RAEC5cT-5hfa04vuiDF8HMmHQn6RxFFBH1pDK30OmueNg1kZkMor_eqnQyiop4C6QSGqqr-6vnB7BfppKja-TkSJSBSk0cEI5TQYSRzVBqGypuTr66Ts5v1cU4Hi_A4bwXBhHb4jMc8mOby3e1nXGobBQmhCckHbi_yHHzvVrzjAGPSfHF9BkhRj3uU5JH2ejm9O7ER090nCkeqvruCmo5VT4dxO3tcrYMV_26fFHJv-GsKYb25cPIxp8ufAX-dDBTHPt9sQoLWK3Bck_hIDqLXoPf7-YRrsP4suYIXnUvTOVEMzGWA-miLzoUztPXi5rOmQcjimdhxGO398T0yUweRMusI7ia_l5MW2571vxfuD07vTk5DzrqhcBKrZsgVbEhaJLJxJToEFWqCktgxpK9YmhKF5qQrv6CidQVj5hzzsmy0Fo6EohCuQGLVV3hJoikjCKD5LcVsVPkjxijLaZxIZU1WmocwKjXRm67ueRMj_E_b_2Toyxn_TFdZpx7_Q3gYP7Fo5_J8Y3sOqvjTc5rYgDbvcLzzminuWZsq5IoHICYvyVr4xSKqbCekUhGDid5fPHW1__dhiUfo-EKwR1YbCYz3CXU0hR77XZ9BTvp6Rk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAcaGlBLOXhAxckstvEduIcUdVqgd2etmhvkWNPeihNqt2sEP31nYmTpYIKcYuUSWRpPJ5vHp4P4EOVSc6uUZAjUUYqszoiHKeiBBOXozQuVnw5eX6eTi_U16Ve7sCn7V0YROyaz3DMj10t3zduw6mySZwSnpB04D4iv6-TcFtrWzPgQSmhnT4nzGiWQ1HyOJ8sTr-fhPyJ0bnisar3nFDHqvLXUdz5l7M9mA8rC20lV-NNW47d7R9DG_936fvwrAea4nPYGc9hB-sD2BtIHERv0wfw9N5EwkNYzhrO4dWXwtZetCvrOJUuhrZD4QOBvWjopLm2ovwlrLjpd59Y_7Sra9Fx6wjup78U647dnnX_Ai7OThcn06gnX4icNKaNMqUtgZNcprZCj6gyVTqCM44sFmNb-djG5PxLplJXPGTOey-r0hjpSSCJ5UvYrZsaX4FIqySxSJFbqb2iiMRa4zDTpVTOGmlwBJNBG4XrJ5MzQcaPootQjvOC9ceEmboI-hvBx-0XN2Eqxz9kD1kdv-WCJkZwNCi86M12XRhGtypN4hGI7VuyNy6i2BqbDYnkFHJSzKdfP_zf9_B4upjPitmX829H8CRkbLhf8A3stqsNviUM05bvuq17B4t87GM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Locating+and+tracking+multiple+dynamic+optima+by+a+particle+swarm+model+using+speciation&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Parrott%2C+D.&rft.au=Xiaodong+Li&rft.date=2006-08-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=10&rft.issue=4&rft.spage=440&rft.epage=458&rft_id=info:doi/10.1109%2FTEVC.2005.859468&rft.externalDocID=1665032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon