Bayesian joint models for multi-regional clinical trials
In recent years, multi-regional clinical trials (MRCTs) have increased in popularity in the pharmaceutical industry due to their ability to accelerate the global drug development process. To address potential challenges with MRCTs, the International Council for Harmonisation released the E17 guidanc...
Saved in:
Published in | Biostatistics (Oxford, England) Vol. 25; no. 3; pp. 852 - 866 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford Publishing Limited (England)
01.07.2024
Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, multi-regional clinical trials (MRCTs) have increased in popularity in the pharmaceutical industry due to their ability to accelerate the global drug development process. To address potential challenges with MRCTs, the International Council for Harmonisation released the E17 guidance document which suggests the use of statistical methods that utilize information borrowing across regions if regional sample sizes are small. We develop an approach that allows for information borrowing via Bayesian model averaging in the context of a joint analysis of survival and longitudinal data from MRCTs. In this novel application of joint models to MRCTs, we use Laplace’s method to integrate over subject-specific random effects and to approximate posterior distributions for region-specific treatment effects on the time-to-event outcome. Through simulation studies, we demonstrate that the joint modeling approach can result in an increased rejection rate when testing the global treatment effect compared with methods that analyze survival data alone. We then apply the proposed approach to data from a cardiovascular outcomes MRCT. |
---|---|
AbstractList | In recent years, multi-regional clinical trials (MRCTs) have increased in popularity in the pharmaceutical industry due to their ability to accelerate the global drug development process. To address potential challenges with MRCTs, the International Council for Harmonisation released the E17 guidance document which suggests the use of statistical methods that utilize information borrowing across regions if regional sample sizes are small. We develop an approach that allows for information borrowing via Bayesian model averaging in the context of a joint analysis of survival and longitudinal data from MRCTs. In this novel application of joint models to MRCTs, we use Laplace’s method to integrate over subject-specific random effects and to approximate posterior distributions for region-specific treatment effects on the time-to-event outcome. Through simulation studies, we demonstrate that the joint modeling approach can result in an increased rejection rate when testing the global treatment effect compared with methods that analyze survival data alone. We then apply the proposed approach to data from a cardiovascular outcomes MRCT. In recent years, multi-regional clinical trials (MRCTs) have increased in popularity in the pharmaceutical industry due to their ability to accelerate the global drug development process. To address potential challenges with MRCTs, the International Council for Harmonisation released the E17 guidance document which suggests the use of statistical methods that utilize information borrowing across regions if regional sample sizes are small. We develop an approach that allows for information borrowing via Bayesian model averaging in the context of a joint analysis of survival and longitudinal data from MRCTs. In this novel application of joint models to MRCTs, we use Laplace's method to integrate over subject-specific random effects and to approximate posterior distributions for region-specific treatment effects on the time-to-event outcome. Through simulation studies, we demonstrate that the joint modeling approach can result in an increased rejection rate when testing the global treatment effect compared with methods that analyze survival data alone. We then apply the proposed approach to data from a cardiovascular outcomes MRCT.In recent years, multi-regional clinical trials (MRCTs) have increased in popularity in the pharmaceutical industry due to their ability to accelerate the global drug development process. To address potential challenges with MRCTs, the International Council for Harmonisation released the E17 guidance document which suggests the use of statistical methods that utilize information borrowing across regions if regional sample sizes are small. We develop an approach that allows for information borrowing via Bayesian model averaging in the context of a joint analysis of survival and longitudinal data from MRCTs. In this novel application of joint models to MRCTs, we use Laplace's method to integrate over subject-specific random effects and to approximate posterior distributions for region-specific treatment effects on the time-to-event outcome. Through simulation studies, we demonstrate that the joint modeling approach can result in an increased rejection rate when testing the global treatment effect compared with methods that analyze survival data alone. We then apply the proposed approach to data from a cardiovascular outcomes MRCT. |
Author | Ibrahim, Joseph G Psioda, Matthew A Bean, Nathan W |
Author_xml | – sequence: 1 givenname: Nathan W orcidid: 0000-0001-9946-0119 surname: Bean fullname: Bean, Nathan W – sequence: 2 givenname: Joseph G surname: Ibrahim fullname: Ibrahim, Joseph G – sequence: 3 givenname: Matthew A orcidid: 0000-0002-4450-6981 surname: Psioda fullname: Psioda, Matthew A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37669215$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtLBDEQhIOs-P4JyoAXL6N5T3ISFV8geNFzyCYZzTqTrElG3H_vrK6inrqgP4rqrm0wCTE4APYRPEZQkpOpj7no4nPxJp-8vGsLMVkDW4hyUVPCmsmnZjXllG6C7ZxnEGJMONkAm6ThXGLEtoA41wuXvQ7VLPpQqj5a1-Wqjanqh674OrknH4PuKtP54M0oSvK6y7tgvR2H21vNHfB4dflwcVPf3V_fXpzd1YYIUWretg4yQTVEWAsDGZ0SYiV3uGkY5UZgiRveImlZa6l0RgjLnTDCOm6lIGQHnH75zodp76xxoSTdqXnyvU4LFbVXfzfBP6un-KYQwrRBgo8ORyuHFF8Hl4vqfTau63RwccgKC444JZjLET38h87ikMbrsyIYESZhQ5eGB78j_WT5_uoIsC_ApJhzcu0PgqBatqf-tKdW7ZEPm6uSrg |
Cites_doi | 10.2307/2532087 10.3389/fmed.2021.662775 10.1093/biomet/83.2.447 10.1080/01621459.1995.10476572 10.1214/ss/1009212519 10.1007/978-3-0348-0431-8 10.1002/sim.6141 10.1002/sim.4263 10.1111/j.0006-341X.2000.01016.x 10.1016/S0167-9473(97)00012-1 10.1111/1541-0420.00028 10.1007/978-3-030-33439-0 10.2307/2533118 10.1111/j.1541-0420.2005.00448.x 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1 10.2307/2533439 10.1200/JCO.2009.25.0654 10.1093/biostatistics/kxaa044 10.1198/016214501753208591 10.1093/biostatistics/kxz014 10.1177/1740774518813573 10.1201/9781003109785-11 10.1056/NEJMoa1603827 10.1002/gepi.20043 10.1111/j.1467-9868.2008.00704.x 10.1186/s12874-020-00976-2 10.1111/biom.13820 10.1007/s12561-012-9054-9 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press. All rights reserved. [br]For permissions, please e-mail: journals.permissions@oup.com. The Author(s) 2023. Published by Oxford University Press. All rights reserved. [br]For permissions, please e-mail: journals.permissions@oup.com The Author(s) 2023. Published by Oxford University Press. All rights reserved. [br]For permissions, please e-mail: journals.permissions@oup.com 2023 |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. [br]For permissions, please e-mail: journals.permissions@oup.com. – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. [br]For permissions, please e-mail: journals.permissions@oup.com – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. [br]For permissions, please e-mail: journals.permissions@oup.com 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1093/biostatistics/kxad023 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Biotechnology Research Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Nursing & Allied Health Premium MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1468-4357 |
EndPage | 866 |
ExternalDocumentID | PMC11247186 37669215 10_1093_biostatistics_kxad023 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: T32ES007018 – fundername: ; grantid: T32ES007018 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5VS 5WA 6PF 70D AAIJN AAJKP AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAVAP AAWTL AAYXX ABDFA ABDTM ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFRAH AGINJ AGKEF AGORE AGQXC AGSYK AHGBF AHMBA AHXPO AIJHB AJBYB AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG APIBT APWMN ATGXG AXUDD AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQUQU BTQHN CDBKE CITATION CS3 CZ4 DAKXR DILTD DU5 D~K E3Z EBS EE~ F5P F9B FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KOP KQ8 KSI KSN M-Z N9A NGC NMDNZ NOMLY O9- ODMLO OJQWA OJZSN OK1 OVD P2P PAFKI PEELM PQQKQ Q1. Q5Y RD5 ROL ROX RUSNO RW1 RXO TEORI TJP TN5 TR2 WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 CGR CUY CVF EBD ECM EIF EMOBN NPM SV3 7QO 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c388t-6ffe0584a012a8c054b33d96e277546c829276f19d5fd49ec88d6e8c8de6d9833 |
ISSN | 1465-4644 1468-4357 |
IngestDate | Thu Aug 21 18:35:47 EDT 2025 Thu Jul 10 17:46:01 EDT 2025 Sun Jul 13 04:43:52 EDT 2025 Mon Jul 21 05:36:48 EDT 2025 Tue Jul 01 03:45:57 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | LEADER trial Bayesian model averaging Joint models Bayesian clinical trials Multi-regional clinical trials Laplace approximation |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights The Author(s) 2023. Published by Oxford University Press. All rights reserved. [br]For permissions, please e-mail: journals.permissions@oup.com. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights) |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c388t-6ffe0584a012a8c054b33d96e277546c829276f19d5fd49ec88d6e8c8de6d9833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9946-0119 0000-0002-4450-6981 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/11247186 |
PMID | 37669215 |
PQID | 3213590746 |
PQPubID | 26167 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11247186 proquest_miscellaneous_2861643269 proquest_journals_3213590746 pubmed_primary_37669215 crossref_primary_10_1093_biostatistics_kxad023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Biostatistics (Oxford, England) |
PublicationTitleAlternate | Biostatistics |
PublicationYear | 2024 |
Publisher | Oxford Publishing Limited (England) Oxford University Press |
Publisher_xml | – name: Oxford Publishing Limited (England) – name: Oxford University Press |
References | Psioda (2024082418053020800_kxad023-B26) 2021; 22 Hoeting (2024082418053020800_kxad023-B13) 1999; 14 Vonesh (2024082418053020800_kxad023-B33) 1996; 83 Rizopoulos (2024082418053020800_kxad023-B29) 2020 International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) (2024082418053020800_kxad023-B17) 2017 Ibrahim (2024082418053020800_kxad023-B16) 2010; 28 Ernst (2024082418053020800_kxad023-B8) 2012 Esbjerg (2024082418053020800_kxad023-B9) 2012 Kass (2024082418053020800_kxad023-B18) 1995; 90 Bean (2024082418053020800_kxad023-B3) 2023 Ibrahim (2024082418053020800_kxad023-B14) 2001 Xu (2024082418053020800_kxad023-B37) 2022; 23 Pankratz (2024082418053020800_kxad023-B25) 2005; 28 Chen (2024082418053020800_kxad023-B5) 2011; 30 Marso (2024082418053020800_kxad023-B22) 2016; 375 Brown (2024082418053020800_kxad023-B4) 2003; 59 Chi (2024082418053020800_kxad023-B6) 2006; 62 Gould (2024082418053020800_kxad023-B12) 2015; 34 Lan (2024082418053020800_kxad023-B19) 2012; 4 Lindstrom (2024082418053020800_kxad023-B21) 1990; 46 O’Quigley (2024082418053020800_kxad023-B24) 2021 Ripatti (2024082418053020800_kxad023-B27) 2000; 56 Rothmann (2024082418053020800_kxad023-B30) 2021 Faucett (2024082418053020800_kxad023-B10) 1996; 15 Gabry (2024082418053020800_kxad023-B11) 2022 Wulfsohn (2024082418053020800_kxad023-B36) 1997; 53 Nielsen (2024082418053020800_kxad023-B23) 2021 Ibrahim (2024082418053020800_kxad023-B15) 2004; 14 Bean (2024082418053020800_kxad023-B2) 2021 Rizopoulos (2024082418053020800_kxad023-B28) 2009; 71 De Gruttola (2024082418053020800_kxad023-B7) 1994; 50 Song (2024082418053020800_kxad023-B31) 2019; 16 Alsefri (2024082418053020800_kxad023-B1) 2020; 20 Wang (2024082418053020800_kxad023-B34) 2001; 96 Wolfinger (2024082418053020800_kxad023-B35) 1997; 25 (2024082418053020800_kxad023-B32) 2008 Li (2024082418053020800_kxad023-B20) 2021 |
References_xml | – volume: 46 start-page: 673 year: 1990 ident: 2024082418053020800_kxad023-B21 article-title: Nonlinear mixed effects models for repeated measures data publication-title: Biometrics doi: 10.2307/2532087 – year: 2021 ident: 2024082418053020800_kxad023-B23 article-title: Evaluation of consistency of treatment response across regions—the LEADER trial in relation to the ICH E17 Guideline publication-title: Frontiers in Medicine. doi: 10.3389/fmed.2021.662775 – volume: 83 start-page: 447 year: 1996 ident: 2024082418053020800_kxad023-B33 article-title: A note on the use of Laplace’s approximation for nonlinear mixed-effects models publication-title: Biometrika doi: 10.1093/biomet/83.2.447 – volume: 90 start-page: 773 year: 1995 ident: 2024082418053020800_kxad023-B18 article-title: Bayes factors publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1995.10476572 – volume: 14 start-page: 382 year: 1999 ident: 2024082418053020800_kxad023-B13 article-title: Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors) publication-title: Statistical Science doi: 10.1214/ss/1009212519 – volume-title: A Comprehensive Treatment of Q-Calculus year: 2012 ident: 2024082418053020800_kxad023-B8 doi: 10.1007/978-3-0348-0431-8 – volume: 34 start-page: 2181 year: 2015 ident: 2024082418053020800_kxad023-B12 article-title: Joint modeling of survival and longitudinal non-survival data: current methods and issues. Report of the DIA Bayesian joint modeling working group publication-title: Statistics in Medicine doi: 10.1002/sim.6141 – year: 2020 ident: 2024082418053020800_kxad023-B29 – volume: 30 start-page: 2295 year: 2011 ident: 2024082418053020800_kxad023-B5 article-title: Sample size and power determination in joint modeling of longitudinal and survival data publication-title: Statistics in Medicine doi: 10.1002/sim.4263 – volume: 56 start-page: 1016 year: 2000 ident: 2024082418053020800_kxad023-B27 article-title: Estimation of multivariate frailty models using penalized partial likelihood publication-title: Biometrics doi: 10.1111/j.0006-341X.2000.01016.x – volume: 25 start-page: 465 year: 1997 ident: 2024082418053020800_kxad023-B35 article-title: Two Taylor-series approximation methods for nonlinear mixed models publication-title: Computational Statistics & Data Analysis doi: 10.1016/S0167-9473(97)00012-1 – year: 2008 ident: 2024082418053020800_kxad023-B32 – year: 2021 ident: 2024082418053020800_kxad023-B30 – volume: 59 start-page: 221 year: 2003 ident: 2024082418053020800_kxad023-B4 article-title: A Bayesian semiparametric joint hierarchical model for longitudinal and survival data publication-title: Biometrics doi: 10.1111/1541-0420.00028 – year: 2017 ident: 2024082418053020800_kxad023-B17 – volume-title: Survival Analysis: Proportional and Non-Proportional Hazards Regression year: 2021 ident: 2024082418053020800_kxad023-B24 doi: 10.1007/978-3-030-33439-0 – volume: 53 start-page: 330 year: 1997 ident: 2024082418053020800_kxad023-B36 article-title: A joint model for survival and longitudinal data measured with error publication-title: Biometrics doi: 10.2307/2533118 – volume: 62 start-page: 432 year: 2006 ident: 2024082418053020800_kxad023-B6 article-title: Joint models for multivariate longitudinal and multivariate survival data publication-title: Biometrics doi: 10.1111/j.1541-0420.2005.00448.x – volume: 15 start-page: 1663 year: 1996 ident: 2024082418053020800_kxad023-B10 article-title: Simultaneously modelling censored survival data and repeatedly measured covariates: a Gibbs sampling approach publication-title: Statistics in Medicine doi: 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1 – year: 2021 ident: 2024082418053020800_kxad023-B2 article-title: Bayesian multiregional clinical trials using model averaging publication-title: Biostatistics. – volume: 50 start-page: 1003 year: 1994 ident: 2024082418053020800_kxad023-B7 article-title: Modelling progression of CD4-lymphocyte count and its relationship to survival time publication-title: Biometrics doi: 10.2307/2533439 – volume: 28 start-page: 2796 year: 2010 ident: 2024082418053020800_kxad023-B16 article-title: Basic concepts and methods for joint models of longitudinal and survival data publication-title: Journal of Clinical Oncology doi: 10.1200/JCO.2009.25.0654 – volume: 23 start-page: 591 year: 2022 ident: 2024082418053020800_kxad023-B37 article-title: Bayesian design of clinical trials using joint models for longitudinal and time-to-event data publication-title: Biostatistics doi: 10.1093/biostatistics/kxaa044 – volume: 96 start-page: 895 year: 2001 ident: 2024082418053020800_kxad023-B34 article-title: Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome publication-title: Journal of the American Statistical Association doi: 10.1198/016214501753208591 – volume: 22 start-page: 19 year: 2021 ident: 2024082418053020800_kxad023-B26 article-title: Bayesian adaptive basket trial design using model averaging publication-title: Biostatistics doi: 10.1093/biostatistics/kxz014 – volume: 16 start-page: 98 year: 2019 ident: 2024082418053020800_kxad023-B31 article-title: Strategic inclusion of regions in multiregional clinical trials publication-title: Clinical Trials doi: 10.1177/1740774518813573 – start-page: 137 volume-title: Simultaneous Global New Drug Development year: 2021 ident: 2024082418053020800_kxad023-B20 doi: 10.1201/9781003109785-11 – volume-title: Bayesian Survival Analysis, Springer Series in Statistics year: 2001 ident: 2024082418053020800_kxad023-B14 – volume: 14 start-page: 863 year: 2004 ident: 2024082418053020800_kxad023-B15 article-title: Bayesian methods for joint modeling of longitudinal and survival data with applications to cancer vaccine studies publication-title: Statistica Sinica – volume: 375 start-page: 311 year: 2016 ident: 2024082418053020800_kxad023-B22 article-title: Liraglutide and cardiovascular outcomes in type 2 diabetes publication-title: New England Journal of Medicine doi: 10.1056/NEJMoa1603827 – volume: 28 start-page: 97 year: 2005 ident: 2024082418053020800_kxad023-B25 article-title: Random-effects Cox proportional hazards model: general variance components methods for time-to-event data publication-title: Genetic Epidemiology doi: 10.1002/gepi.20043 – volume: 71 start-page: 637 year: 2009 ident: 2024082418053020800_kxad023-B28 article-title: Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.1467-9868.2008.00704.x – year: 2022 ident: 2024082418053020800_kxad023-B11 – volume: 20 start-page: 94 year: 2020 ident: 2024082418053020800_kxad023-B1 article-title: Bayesian joint modelling of longitudinal and time to event data: a methodological review publication-title: BMC Medical Research Methodology doi: 10.1186/s12874-020-00976-2 – year: 2012 ident: 2024082418053020800_kxad023-B9 – year: 2023 ident: 2024082418053020800_kxad023-B3 article-title: Bayesian design of multi-regional clinical trials with time-to-event endpoints publication-title: Biometrics. doi: 10.1111/biom.13820 – volume: 4 start-page: 235 year: 2012 ident: 2024082418053020800_kxad023-B19 article-title: Combined estimation of treatment effects under a discrete random effects model publication-title: Statistics in Biosciences doi: 10.1007/s12561-012-9054-9 |
SSID | ssj0022363 |
Score | 2.3919683 |
Snippet | In recent years, multi-regional clinical trials (MRCTs) have increased in popularity in the pharmaceutical industry due to their ability to accelerate the... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 852 |
SubjectTerms | Bayes Theorem Bayesian analysis Biostatistics - methods Clinical trials Clinical Trials as Topic - methods Drug development Humans Information processing Mathematical models Models, Statistical Multicenter Studies as Topic - methods Pharmaceutical industry Regional development Rejection rate Statistical methods Survival Survival Analysis |
Title | Bayesian joint models for multi-regional clinical trials |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37669215 https://www.proquest.com/docview/3213590746 https://www.proquest.com/docview/2861643269 https://pubmed.ncbi.nlm.nih.gov/PMC11247186 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEBIviO8FBgoSbyhdayeO_bhNmwZMRUit1Lco8YdWkJKJZmLjr-fsc0KyIQS8RK1T1Y7v7Nyd7_c7Qt4qYWmubJrkogIHxao8kYKaJJ9VGhaIAbXxWb4LfrpKP6yz9WTyfYguaaup-vFbXMn_SBXaQK4OJfsPku3_FBrgM8gXriBhuP6VjA_La-NBkF-aTd1iVRvPr4B5gomruuAjfT3-0Rfp2I5OcjeNAxUFvmZHPnrV5buHAh-DYMGhwXjpwkfc3_Xxmffgc59jXWY8UhiU7NpuGl0iLMiXFg_R0xBpoGmfldoOEYyD8FjAYLmx3RgRbqYpz5KUI7_j1HRtIgETLR_uwAh9DprGBtupQHbb7s2M9VlubfpIiFUNpwu-f70q9QyxzGOa7cWn4mR1dlYsj9fLO-QuBf_Clb74-Lk_fgKTyZfg6x-gg35Jtj_qZj90MjZqbnkqNxNuBxbM8iF5EFyP-AD16BGZmPoxuYfFSK-fENFpU-y1KUZtikEa8Vib4k6bYtSmp2R1crw8Ok1CXY1EMSHahFtrZmB4lmCclEKB0V4xpiU31NEhciWopDm3c6kzq1NplBCaG6GENlxLwdgzslM3tdklsaUzmRsrjeNgUlYLRw4lhc70XM61ziMy7SamuED6lALTHlgxmskizGRE9rrpK8JK2xaMzlnmojg8Im_627APusOtsjbN5baggoPnD86IjMhznO2-R3iJcgm2bUTESA79DxzH-vhOvTn3XOvgjjjzjb_487hekvu_Vswe2Wm_XZpXYK221WuvWT8B1MGbIQ |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+joint+models+for+multi-regional+clinical+trials&rft.jtitle=Biostatistics+%28Oxford%2C+England%29&rft.au=Bean%2C+Nathan+W&rft.au=Ibrahim%2C+Joseph+G&rft.au=Psioda%2C+Matthew+A&rft.date=2024-07-01&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1465-4644&rft.eissn=1468-4357&rft.volume=25&rft.issue=3&rft.spage=852&rft.epage=866&rft_id=info:doi/10.1093%2Fbiostatistics%2Fkxad023&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-4644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-4644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-4644&client=summon |