Bayesian joint models for multi-regional clinical trials

In recent years, multi-regional clinical trials (MRCTs) have increased in popularity in the pharmaceutical industry due to their ability to accelerate the global drug development process. To address potential challenges with MRCTs, the International Council for Harmonisation released the E17 guidanc...

Full description

Saved in:
Bibliographic Details
Published inBiostatistics (Oxford, England) Vol. 25; no. 3; pp. 852 - 866
Main Authors Bean, Nathan W, Ibrahim, Joseph G, Psioda, Matthew A
Format Journal Article
LanguageEnglish
Published England Oxford Publishing Limited (England) 01.07.2024
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, multi-regional clinical trials (MRCTs) have increased in popularity in the pharmaceutical industry due to their ability to accelerate the global drug development process. To address potential challenges with MRCTs, the International Council for Harmonisation released the E17 guidance document which suggests the use of statistical methods that utilize information borrowing across regions if regional sample sizes are small. We develop an approach that allows for information borrowing via Bayesian model averaging in the context of a joint analysis of survival and longitudinal data from MRCTs. In this novel application of joint models to MRCTs, we use Laplace’s method to integrate over subject-specific random effects and to approximate posterior distributions for region-specific treatment effects on the time-to-event outcome. Through simulation studies, we demonstrate that the joint modeling approach can result in an increased rejection rate when testing the global treatment effect compared with methods that analyze survival data alone. We then apply the proposed approach to data from a cardiovascular outcomes MRCT.
AbstractList In recent years, multi-regional clinical trials (MRCTs) have increased in popularity in the pharmaceutical industry due to their ability to accelerate the global drug development process. To address potential challenges with MRCTs, the International Council for Harmonisation released the E17 guidance document which suggests the use of statistical methods that utilize information borrowing across regions if regional sample sizes are small. We develop an approach that allows for information borrowing via Bayesian model averaging in the context of a joint analysis of survival and longitudinal data from MRCTs. In this novel application of joint models to MRCTs, we use Laplace’s method to integrate over subject-specific random effects and to approximate posterior distributions for region-specific treatment effects on the time-to-event outcome. Through simulation studies, we demonstrate that the joint modeling approach can result in an increased rejection rate when testing the global treatment effect compared with methods that analyze survival data alone. We then apply the proposed approach to data from a cardiovascular outcomes MRCT.
In recent years, multi-regional clinical trials (MRCTs) have increased in popularity in the pharmaceutical industry due to their ability to accelerate the global drug development process. To address potential challenges with MRCTs, the International Council for Harmonisation released the E17 guidance document which suggests the use of statistical methods that utilize information borrowing across regions if regional sample sizes are small. We develop an approach that allows for information borrowing via Bayesian model averaging in the context of a joint analysis of survival and longitudinal data from MRCTs. In this novel application of joint models to MRCTs, we use Laplace's method to integrate over subject-specific random effects and to approximate posterior distributions for region-specific treatment effects on the time-to-event outcome. Through simulation studies, we demonstrate that the joint modeling approach can result in an increased rejection rate when testing the global treatment effect compared with methods that analyze survival data alone. We then apply the proposed approach to data from a cardiovascular outcomes MRCT.In recent years, multi-regional clinical trials (MRCTs) have increased in popularity in the pharmaceutical industry due to their ability to accelerate the global drug development process. To address potential challenges with MRCTs, the International Council for Harmonisation released the E17 guidance document which suggests the use of statistical methods that utilize information borrowing across regions if regional sample sizes are small. We develop an approach that allows for information borrowing via Bayesian model averaging in the context of a joint analysis of survival and longitudinal data from MRCTs. In this novel application of joint models to MRCTs, we use Laplace's method to integrate over subject-specific random effects and to approximate posterior distributions for region-specific treatment effects on the time-to-event outcome. Through simulation studies, we demonstrate that the joint modeling approach can result in an increased rejection rate when testing the global treatment effect compared with methods that analyze survival data alone. We then apply the proposed approach to data from a cardiovascular outcomes MRCT.
Author Ibrahim, Joseph G
Psioda, Matthew A
Bean, Nathan W
Author_xml – sequence: 1
  givenname: Nathan W
  orcidid: 0000-0001-9946-0119
  surname: Bean
  fullname: Bean, Nathan W
– sequence: 2
  givenname: Joseph G
  surname: Ibrahim
  fullname: Ibrahim, Joseph G
– sequence: 3
  givenname: Matthew A
  orcidid: 0000-0002-4450-6981
  surname: Psioda
  fullname: Psioda, Matthew A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37669215$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtLBDEQhIOs-P4JyoAXL6N5T3ISFV8geNFzyCYZzTqTrElG3H_vrK6inrqgP4rqrm0wCTE4APYRPEZQkpOpj7no4nPxJp-8vGsLMVkDW4hyUVPCmsmnZjXllG6C7ZxnEGJMONkAm6ThXGLEtoA41wuXvQ7VLPpQqj5a1-Wqjanqh674OrknH4PuKtP54M0oSvK6y7tgvR2H21vNHfB4dflwcVPf3V_fXpzd1YYIUWretg4yQTVEWAsDGZ0SYiV3uGkY5UZgiRveImlZa6l0RgjLnTDCOm6lIGQHnH75zodp76xxoSTdqXnyvU4LFbVXfzfBP6un-KYQwrRBgo8ORyuHFF8Hl4vqfTau63RwccgKC444JZjLET38h87ikMbrsyIYESZhQ5eGB78j_WT5_uoIsC_ApJhzcu0PgqBatqf-tKdW7ZEPm6uSrg
Cites_doi 10.2307/2532087
10.3389/fmed.2021.662775
10.1093/biomet/83.2.447
10.1080/01621459.1995.10476572
10.1214/ss/1009212519
10.1007/978-3-0348-0431-8
10.1002/sim.6141
10.1002/sim.4263
10.1111/j.0006-341X.2000.01016.x
10.1016/S0167-9473(97)00012-1
10.1111/1541-0420.00028
10.1007/978-3-030-33439-0
10.2307/2533118
10.1111/j.1541-0420.2005.00448.x
10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1
10.2307/2533439
10.1200/JCO.2009.25.0654
10.1093/biostatistics/kxaa044
10.1198/016214501753208591
10.1093/biostatistics/kxz014
10.1177/1740774518813573
10.1201/9781003109785-11
10.1056/NEJMoa1603827
10.1002/gepi.20043
10.1111/j.1467-9868.2008.00704.x
10.1186/s12874-020-00976-2
10.1111/biom.13820
10.1007/s12561-012-9054-9
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press. All rights reserved. [br]For permissions, please e-mail: journals.permissions@oup.com.
The Author(s) 2023. Published by Oxford University Press. All rights reserved. [br]For permissions, please e-mail: journals.permissions@oup.com
The Author(s) 2023. Published by Oxford University Press. All rights reserved. [br]For permissions, please e-mail: journals.permissions@oup.com 2023
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. [br]For permissions, please e-mail: journals.permissions@oup.com.
– notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. [br]For permissions, please e-mail: journals.permissions@oup.com
– notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. [br]For permissions, please e-mail: journals.permissions@oup.com 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1093/biostatistics/kxad023
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Nursing & Allied Health Premium
MEDLINE
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1468-4357
EndPage 866
ExternalDocumentID PMC11247186
37669215
10_1093_biostatistics_kxad023
Genre Journal Article
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: T32ES007018
– fundername: ;
  grantid: T32ES007018
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5VS
5WA
6PF
70D
AAIJN
AAJKP
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAWTL
AAYXX
ABDFA
ABDTM
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHGBF
AHMBA
AHXPO
AIJHB
AJBYB
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
ANAKG
APIBT
APWMN
ATGXG
AXUDD
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQUQU
BTQHN
CDBKE
CITATION
CS3
CZ4
DAKXR
DILTD
DU5
D~K
E3Z
EBS
EE~
F5P
F9B
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KOP
KQ8
KSI
KSN
M-Z
N9A
NGC
NMDNZ
NOMLY
O9-
ODMLO
OJQWA
OJZSN
OK1
OVD
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
RD5
ROL
ROX
RUSNO
RW1
RXO
TEORI
TJP
TN5
TR2
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
CGR
CUY
CVF
EBD
ECM
EIF
EMOBN
NPM
SV3
7QO
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c388t-6ffe0584a012a8c054b33d96e277546c829276f19d5fd49ec88d6e8c8de6d9833
ISSN 1465-4644
1468-4357
IngestDate Thu Aug 21 18:35:47 EDT 2025
Thu Jul 10 17:46:01 EDT 2025
Sun Jul 13 04:43:52 EDT 2025
Mon Jul 21 05:36:48 EDT 2025
Tue Jul 01 03:45:57 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords LEADER trial
Bayesian model averaging
Joint models
Bayesian clinical trials
Multi-regional clinical trials
Laplace approximation
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
The Author(s) 2023. Published by Oxford University Press. All rights reserved. [br]For permissions, please e-mail: journals.permissions@oup.com.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c388t-6ffe0584a012a8c054b33d96e277546c829276f19d5fd49ec88d6e8c8de6d9833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9946-0119
0000-0002-4450-6981
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11247186
PMID 37669215
PQID 3213590746
PQPubID 26167
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11247186
proquest_miscellaneous_2861643269
proquest_journals_3213590746
pubmed_primary_37669215
crossref_primary_10_1093_biostatistics_kxad023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Biostatistics (Oxford, England)
PublicationTitleAlternate Biostatistics
PublicationYear 2024
Publisher Oxford Publishing Limited (England)
Oxford University Press
Publisher_xml – name: Oxford Publishing Limited (England)
– name: Oxford University Press
References Psioda (2024082418053020800_kxad023-B26) 2021; 22
Hoeting (2024082418053020800_kxad023-B13) 1999; 14
Vonesh (2024082418053020800_kxad023-B33) 1996; 83
Rizopoulos (2024082418053020800_kxad023-B29) 2020
International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) (2024082418053020800_kxad023-B17) 2017
Ibrahim (2024082418053020800_kxad023-B16) 2010; 28
Ernst (2024082418053020800_kxad023-B8) 2012
Esbjerg (2024082418053020800_kxad023-B9) 2012
Kass (2024082418053020800_kxad023-B18) 1995; 90
Bean (2024082418053020800_kxad023-B3) 2023
Ibrahim (2024082418053020800_kxad023-B14) 2001
Xu (2024082418053020800_kxad023-B37) 2022; 23
Pankratz (2024082418053020800_kxad023-B25) 2005; 28
Chen (2024082418053020800_kxad023-B5) 2011; 30
Marso (2024082418053020800_kxad023-B22) 2016; 375
Brown (2024082418053020800_kxad023-B4) 2003; 59
Chi (2024082418053020800_kxad023-B6) 2006; 62
Gould (2024082418053020800_kxad023-B12) 2015; 34
Lan (2024082418053020800_kxad023-B19) 2012; 4
Lindstrom (2024082418053020800_kxad023-B21) 1990; 46
O’Quigley (2024082418053020800_kxad023-B24) 2021
Ripatti (2024082418053020800_kxad023-B27) 2000; 56
Rothmann (2024082418053020800_kxad023-B30) 2021
Faucett (2024082418053020800_kxad023-B10) 1996; 15
Gabry (2024082418053020800_kxad023-B11) 2022
Wulfsohn (2024082418053020800_kxad023-B36) 1997; 53
Nielsen (2024082418053020800_kxad023-B23) 2021
Ibrahim (2024082418053020800_kxad023-B15) 2004; 14
Bean (2024082418053020800_kxad023-B2) 2021
Rizopoulos (2024082418053020800_kxad023-B28) 2009; 71
De Gruttola (2024082418053020800_kxad023-B7) 1994; 50
Song (2024082418053020800_kxad023-B31) 2019; 16
Alsefri (2024082418053020800_kxad023-B1) 2020; 20
Wang (2024082418053020800_kxad023-B34) 2001; 96
Wolfinger (2024082418053020800_kxad023-B35) 1997; 25
(2024082418053020800_kxad023-B32) 2008
Li (2024082418053020800_kxad023-B20) 2021
References_xml – volume: 46
  start-page: 673
  year: 1990
  ident: 2024082418053020800_kxad023-B21
  article-title: Nonlinear mixed effects models for repeated measures data
  publication-title: Biometrics
  doi: 10.2307/2532087
– year: 2021
  ident: 2024082418053020800_kxad023-B23
  article-title: Evaluation of consistency of treatment response across regions—the LEADER trial in relation to the ICH E17 Guideline
  publication-title: Frontiers in Medicine.
  doi: 10.3389/fmed.2021.662775
– volume: 83
  start-page: 447
  year: 1996
  ident: 2024082418053020800_kxad023-B33
  article-title: A note on the use of Laplace’s approximation for nonlinear mixed-effects models
  publication-title: Biometrika
  doi: 10.1093/biomet/83.2.447
– volume: 90
  start-page: 773
  year: 1995
  ident: 2024082418053020800_kxad023-B18
  article-title: Bayes factors
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1995.10476572
– volume: 14
  start-page: 382
  year: 1999
  ident: 2024082418053020800_kxad023-B13
  article-title: Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors)
  publication-title: Statistical Science
  doi: 10.1214/ss/1009212519
– volume-title: A Comprehensive Treatment of Q-Calculus
  year: 2012
  ident: 2024082418053020800_kxad023-B8
  doi: 10.1007/978-3-0348-0431-8
– volume: 34
  start-page: 2181
  year: 2015
  ident: 2024082418053020800_kxad023-B12
  article-title: Joint modeling of survival and longitudinal non-survival data: current methods and issues. Report of the DIA Bayesian joint modeling working group
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.6141
– year: 2020
  ident: 2024082418053020800_kxad023-B29
– volume: 30
  start-page: 2295
  year: 2011
  ident: 2024082418053020800_kxad023-B5
  article-title: Sample size and power determination in joint modeling of longitudinal and survival data
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.4263
– volume: 56
  start-page: 1016
  year: 2000
  ident: 2024082418053020800_kxad023-B27
  article-title: Estimation of multivariate frailty models using penalized partial likelihood
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.01016.x
– volume: 25
  start-page: 465
  year: 1997
  ident: 2024082418053020800_kxad023-B35
  article-title: Two Taylor-series approximation methods for nonlinear mixed models
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/S0167-9473(97)00012-1
– year: 2008
  ident: 2024082418053020800_kxad023-B32
– year: 2021
  ident: 2024082418053020800_kxad023-B30
– volume: 59
  start-page: 221
  year: 2003
  ident: 2024082418053020800_kxad023-B4
  article-title: A Bayesian semiparametric joint hierarchical model for longitudinal and survival data
  publication-title: Biometrics
  doi: 10.1111/1541-0420.00028
– year: 2017
  ident: 2024082418053020800_kxad023-B17
– volume-title: Survival Analysis: Proportional and Non-Proportional Hazards Regression
  year: 2021
  ident: 2024082418053020800_kxad023-B24
  doi: 10.1007/978-3-030-33439-0
– volume: 53
  start-page: 330
  year: 1997
  ident: 2024082418053020800_kxad023-B36
  article-title: A joint model for survival and longitudinal data measured with error
  publication-title: Biometrics
  doi: 10.2307/2533118
– volume: 62
  start-page: 432
  year: 2006
  ident: 2024082418053020800_kxad023-B6
  article-title: Joint models for multivariate longitudinal and multivariate survival data
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2005.00448.x
– volume: 15
  start-page: 1663
  year: 1996
  ident: 2024082418053020800_kxad023-B10
  article-title: Simultaneously modelling censored survival data and repeatedly measured covariates: a Gibbs sampling approach
  publication-title: Statistics in Medicine
  doi: 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1
– year: 2021
  ident: 2024082418053020800_kxad023-B2
  article-title: Bayesian multiregional clinical trials using model averaging
  publication-title: Biostatistics.
– volume: 50
  start-page: 1003
  year: 1994
  ident: 2024082418053020800_kxad023-B7
  article-title: Modelling progression of CD4-lymphocyte count and its relationship to survival time
  publication-title: Biometrics
  doi: 10.2307/2533439
– volume: 28
  start-page: 2796
  year: 2010
  ident: 2024082418053020800_kxad023-B16
  article-title: Basic concepts and methods for joint models of longitudinal and survival data
  publication-title: Journal of Clinical Oncology
  doi: 10.1200/JCO.2009.25.0654
– volume: 23
  start-page: 591
  year: 2022
  ident: 2024082418053020800_kxad023-B37
  article-title: Bayesian design of clinical trials using joint models for longitudinal and time-to-event data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxaa044
– volume: 96
  start-page: 895
  year: 2001
  ident: 2024082418053020800_kxad023-B34
  article-title: Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214501753208591
– volume: 22
  start-page: 19
  year: 2021
  ident: 2024082418053020800_kxad023-B26
  article-title: Bayesian adaptive basket trial design using model averaging
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxz014
– volume: 16
  start-page: 98
  year: 2019
  ident: 2024082418053020800_kxad023-B31
  article-title: Strategic inclusion of regions in multiregional clinical trials
  publication-title: Clinical Trials
  doi: 10.1177/1740774518813573
– start-page: 137
  volume-title: Simultaneous Global New Drug Development
  year: 2021
  ident: 2024082418053020800_kxad023-B20
  doi: 10.1201/9781003109785-11
– volume-title: Bayesian Survival Analysis, Springer Series in Statistics
  year: 2001
  ident: 2024082418053020800_kxad023-B14
– volume: 14
  start-page: 863
  year: 2004
  ident: 2024082418053020800_kxad023-B15
  article-title: Bayesian methods for joint modeling of longitudinal and survival data with applications to cancer vaccine studies
  publication-title: Statistica Sinica
– volume: 375
  start-page: 311
  year: 2016
  ident: 2024082418053020800_kxad023-B22
  article-title: Liraglutide and cardiovascular outcomes in type 2 diabetes
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMoa1603827
– volume: 28
  start-page: 97
  year: 2005
  ident: 2024082418053020800_kxad023-B25
  article-title: Random-effects Cox proportional hazards model: general variance components methods for time-to-event data
  publication-title: Genetic Epidemiology
  doi: 10.1002/gepi.20043
– volume: 71
  start-page: 637
  year: 2009
  ident: 2024082418053020800_kxad023-B28
  article-title: Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.1467-9868.2008.00704.x
– year: 2022
  ident: 2024082418053020800_kxad023-B11
– volume: 20
  start-page: 94
  year: 2020
  ident: 2024082418053020800_kxad023-B1
  article-title: Bayesian joint modelling of longitudinal and time to event data: a methodological review
  publication-title: BMC Medical Research Methodology
  doi: 10.1186/s12874-020-00976-2
– year: 2012
  ident: 2024082418053020800_kxad023-B9
– year: 2023
  ident: 2024082418053020800_kxad023-B3
  article-title: Bayesian design of multi-regional clinical trials with time-to-event endpoints
  publication-title: Biometrics.
  doi: 10.1111/biom.13820
– volume: 4
  start-page: 235
  year: 2012
  ident: 2024082418053020800_kxad023-B19
  article-title: Combined estimation of treatment effects under a discrete random effects model
  publication-title: Statistics in Biosciences
  doi: 10.1007/s12561-012-9054-9
SSID ssj0022363
Score 2.3919683
Snippet In recent years, multi-regional clinical trials (MRCTs) have increased in popularity in the pharmaceutical industry due to their ability to accelerate the...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 852
SubjectTerms Bayes Theorem
Bayesian analysis
Biostatistics - methods
Clinical trials
Clinical Trials as Topic - methods
Drug development
Humans
Information processing
Mathematical models
Models, Statistical
Multicenter Studies as Topic - methods
Pharmaceutical industry
Regional development
Rejection rate
Statistical methods
Survival
Survival Analysis
Title Bayesian joint models for multi-regional clinical trials
URI https://www.ncbi.nlm.nih.gov/pubmed/37669215
https://www.proquest.com/docview/3213590746
https://www.proquest.com/docview/2861643269
https://pubmed.ncbi.nlm.nih.gov/PMC11247186
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEBIviO8FBgoSbyhdayeO_bhNmwZMRUit1Lco8YdWkJKJZmLjr-fsc0KyIQS8RK1T1Y7v7Nyd7_c7Qt4qYWmubJrkogIHxao8kYKaJJ9VGhaIAbXxWb4LfrpKP6yz9WTyfYguaaup-vFbXMn_SBXaQK4OJfsPku3_FBrgM8gXriBhuP6VjA_La-NBkF-aTd1iVRvPr4B5gomruuAjfT3-0Rfp2I5OcjeNAxUFvmZHPnrV5buHAh-DYMGhwXjpwkfc3_Xxmffgc59jXWY8UhiU7NpuGl0iLMiXFg_R0xBpoGmfldoOEYyD8FjAYLmx3RgRbqYpz5KUI7_j1HRtIgETLR_uwAh9DprGBtupQHbb7s2M9VlubfpIiFUNpwu-f70q9QyxzGOa7cWn4mR1dlYsj9fLO-QuBf_Clb74-Lk_fgKTyZfg6x-gg35Jtj_qZj90MjZqbnkqNxNuBxbM8iF5EFyP-AD16BGZmPoxuYfFSK-fENFpU-y1KUZtikEa8Vib4k6bYtSmp2R1crw8Ok1CXY1EMSHahFtrZmB4lmCclEKB0V4xpiU31NEhciWopDm3c6kzq1NplBCaG6GENlxLwdgzslM3tdklsaUzmRsrjeNgUlYLRw4lhc70XM61ziMy7SamuED6lALTHlgxmskizGRE9rrpK8JK2xaMzlnmojg8Im_627APusOtsjbN5baggoPnD86IjMhznO2-R3iJcgm2bUTESA79DxzH-vhOvTn3XOvgjjjzjb_487hekvu_Vswe2Wm_XZpXYK221WuvWT8B1MGbIQ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+joint+models+for+multi-regional+clinical+trials&rft.jtitle=Biostatistics+%28Oxford%2C+England%29&rft.au=Bean%2C+Nathan+W&rft.au=Ibrahim%2C+Joseph+G&rft.au=Psioda%2C+Matthew+A&rft.date=2024-07-01&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1465-4644&rft.eissn=1468-4357&rft.volume=25&rft.issue=3&rft.spage=852&rft.epage=866&rft_id=info:doi/10.1093%2Fbiostatistics%2Fkxad023&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-4644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-4644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-4644&client=summon