Selective oxidation of active site aromatic residues in engineered Cu proteins

Recent studies have revealed critical roles for the local environments surrounding metallocofactors, such as the newly identified Cu D site in particulate methane monooxygenases (pMMOs) and the second sphere aromatic residues in lytic polysaccharide monooxygenases (LPMOs), implicated in the protecti...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 16; no. 1; pp. 98 - 13
Main Authors Uyeda, Kylie S, Follmer, Alec H, Borovik, A. S
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 18.12.2024
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent studies have revealed critical roles for the local environments surrounding metallocofactors, such as the newly identified Cu D site in particulate methane monooxygenases (pMMOs) and the second sphere aromatic residues in lytic polysaccharide monooxygenases (LPMOs), implicated in the protection against oxidative damage. However, these features are subjects of continued debate. Our work utilizes biotin-streptavidin (Sav) technology to develop artificial metalloproteins (ArMs) that mimic the active sites of natural copper metalloenzymes. By engineering ArMs with aromatic residues within their secondary coordination spheres, we systematically investigate the influence of these residues on Cu reactivity and oxidant activation. We demonstrate that the placement and orientation of tyrosine relative to the Cu cofactor critically affect the oxidation outcomes upon exposure to hydrogen peroxide. A key finding is the interplay between the coordination of an active site asparagine and the incorporation of aromatic residues proximal to the artificial Cu cofactor, which are the only variants where oxidation of an engineered residues is observed. These findings underscore the importance of the secondary coordination sphere in modulating Cu center reactivity, suggest a role for amide coordination in C-H bond activation by pMMOs, and potential inactivation pathways in natural copper enzymes like LPMOs. Engineered metalloproteins that mimic the active sites of natural copper metalloenzymes are used to systematically investigate the influence of aromatic residues within the secondary coordination sphere on reactivity.
AbstractList Recent studies have revealed critical roles for the local environments surrounding metallocofactors, such as the newly identified Cu site in particulate methane monooxygenases (pMMOs) and the second sphere aromatic residues in lytic polysaccharide monooxygenases (LPMOs), implicated in the protection against oxidative damage. However, these features are subjects of continued debate. Our work utilizes biotin-streptavidin (Sav) technology to develop artificial metalloproteins (ArMs) that mimic the active sites of natural copper metalloenzymes. By engineering ArMs with aromatic residues within their secondary coordination spheres, we systematically investigate the influence of these residues on Cu reactivity and oxidant activation. We demonstrate that the placement and orientation of tyrosine relative to the Cu cofactor critically affect the oxidation outcomes upon exposure to hydrogen peroxide. A key finding is the interplay between the coordination of an active site asparagine and the incorporation of aromatic residues proximal to the artificial Cu cofactor, which are the only variants where oxidation of an engineered residues is observed. These findings underscore the importance of the secondary coordination sphere in modulating Cu center reactivity, suggest a role for amide coordination in C-H bond activation by pMMOs, and potential inactivation pathways in natural copper enzymes like LPMOs.
Recent studies have revealed critical roles for the local environments surrounding metallocofactors, such as the newly identified Cu D site in particulate methane monooxygenases (pMMOs) and the second sphere aromatic residues in lytic polysaccharide monooxygenases (LPMOs), implicated in the protection against oxidative damage. However, these features are subjects of continued debate. Our work utilizes biotin–streptavidin (Sav) technology to develop artificial metalloproteins (ArMs) that mimic the active sites of natural copper metalloenzymes. By engineering ArMs with aromatic residues within their secondary coordination spheres, we systematically investigate the influence of these residues on Cu reactivity and oxidant activation. We demonstrate that the placement and orientation of tyrosine relative to the Cu cofactor critically affect the oxidation outcomes upon exposure to hydrogen peroxide. A key finding is the interplay between the coordination of an active site asparagine and the incorporation of aromatic residues proximal to the artificial Cu cofactor, which are the only variants where oxidation of an engineered residues is observed. These findings underscore the importance of the secondary coordination sphere in modulating Cu center reactivity, suggest a role for amide coordination in C–H bond activation by pMMOs, and potential inactivation pathways in natural copper enzymes like LPMOs. Engineered metalloproteins that mimic the active sites of natural copper metalloenzymes are used to systematically investigate the influence of aromatic residues within the secondary coordination sphere on reactivity.
Recent studies have revealed critical roles for the local environments surrounding metallocofactors, such as the newly identified CuD site in particulate methane monooxygenases (pMMOs) and the second sphere aromatic residues in lytic polysaccharide monooxygenases (LPMOs), implicated in the protection against oxidative damage. However, these features are subjects of continued debate. Our work utilizes biotin–streptavidin (Sav) technology to develop artificial metalloproteins (ArMs) that mimic the active sites of natural copper metalloenzymes. By engineering ArMs with aromatic residues within their secondary coordination spheres, we systematically investigate the influence of these residues on Cu reactivity and oxidant activation. We demonstrate that the placement and orientation of tyrosine relative to the Cu cofactor critically affect the oxidation outcomes upon exposure to hydrogen peroxide. A key finding is the interplay between the coordination of an active site asparagine and the incorporation of aromatic residues proximal to the artificial Cu cofactor, which are the only variants where oxidation of an engineered residues is observed. These findings underscore the importance of the secondary coordination sphere in modulating Cu center reactivity, suggest a role for amide coordination in C–H bond activation by pMMOs, and potential inactivation pathways in natural copper enzymes like LPMOs.
Recent studies have revealed critical roles for the local environments surrounding metallocofactors, such as the newly identified CuD site in particulate methane monooxygenases (pMMOs) and the second sphere aromatic residues in lytic polysaccharide monooxygenases (LPMOs), implicated in the protection against oxidative damage. However, these features are subjects of continued debate. Our work utilizes biotin-streptavidin (Sav) technology to develop artificial metalloproteins (ArMs) that mimic the active sites of natural copper metalloenzymes. By engineering ArMs with aromatic residues within their secondary coordination spheres, we systematically investigate the influence of these residues on Cu reactivity and oxidant activation. We demonstrate that the placement and orientation of tyrosine relative to the Cu cofactor critically affect the oxidation outcomes upon exposure to hydrogen peroxide. A key finding is the interplay between the coordination of an active site asparagine and the incorporation of aromatic residues proximal to the artificial Cu cofactor, which are the only variants where oxidation of an engineered residues is observed. These findings underscore the importance of the secondary coordination sphere in modulating Cu center reactivity, suggest a role for amide coordination in C-H bond activation by pMMOs, and potential inactivation pathways in natural copper enzymes like LPMOs.Recent studies have revealed critical roles for the local environments surrounding metallocofactors, such as the newly identified CuD site in particulate methane monooxygenases (pMMOs) and the second sphere aromatic residues in lytic polysaccharide monooxygenases (LPMOs), implicated in the protection against oxidative damage. However, these features are subjects of continued debate. Our work utilizes biotin-streptavidin (Sav) technology to develop artificial metalloproteins (ArMs) that mimic the active sites of natural copper metalloenzymes. By engineering ArMs with aromatic residues within their secondary coordination spheres, we systematically investigate the influence of these residues on Cu reactivity and oxidant activation. We demonstrate that the placement and orientation of tyrosine relative to the Cu cofactor critically affect the oxidation outcomes upon exposure to hydrogen peroxide. A key finding is the interplay between the coordination of an active site asparagine and the incorporation of aromatic residues proximal to the artificial Cu cofactor, which are the only variants where oxidation of an engineered residues is observed. These findings underscore the importance of the secondary coordination sphere in modulating Cu center reactivity, suggest a role for amide coordination in C-H bond activation by pMMOs, and potential inactivation pathways in natural copper enzymes like LPMOs.
Recent studies have revealed critical roles for the local environments surrounding metallocofactors, such as the newly identified Cu D site in particulate methane monooxygenases (pMMOs) and the second sphere aromatic residues in lytic polysaccharide monooxygenases (LPMOs), implicated in the protection against oxidative damage. However, these features are subjects of continued debate. Our work utilizes biotin–streptavidin (Sav) technology to develop artificial metalloproteins (ArMs) that mimic the active sites of natural copper metalloenzymes. By engineering ArMs with aromatic residues within their secondary coordination spheres, we systematically investigate the influence of these residues on Cu reactivity and oxidant activation. We demonstrate that the placement and orientation of tyrosine relative to the Cu cofactor critically affect the oxidation outcomes upon exposure to hydrogen peroxide. A key finding is the interplay between the coordination of an active site asparagine and the incorporation of aromatic residues proximal to the artificial Cu cofactor, which are the only variants where oxidation of an engineered residues is observed. These findings underscore the importance of the secondary coordination sphere in modulating Cu center reactivity, suggest a role for amide coordination in C–H bond activation by pMMOs, and potential inactivation pathways in natural copper enzymes like LPMOs.
Author Uyeda, Kylie S
Follmer, Alec H
Borovik, A. S
AuthorAffiliation Department of Chemistry
University of California-Irvine
AuthorAffiliation_xml – name: University of California-Irvine
– name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Kylie S
  surname: Uyeda
  fullname: Uyeda, Kylie S
– sequence: 2
  givenname: Alec H
  surname: Follmer
  fullname: Follmer, Alec H
– sequence: 3
  givenname: A. S
  surname: Borovik
  fullname: Borovik, A. S
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39600509$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtPAyEUhYnR-KjduNeQuDEmVRgYZlgZU5-J0UV1TShzp2KmUGGm0X8vtVofd8MN98vhHs4OWnfeAUJ7lJxQwuRpxaMhQohisoa2M8LpQORMrq_6jGyhfowvJBVjNM-KTbTFpCAkJ3Ib3Y-gAdPaOWD_ZivdWu-wr7Fe3kXbAtbBT9PA4ADRVh1EbB0GN7EOIECFhx2eBd-CdXEXbdS6idD_Onvo6erycXgzuHu4vh2e3w0MK8t2IArN6qLUDIypTJ0xlpmxrLjhXEgqaT2m3MAYGMhM81pymeU5GKgzyA2vKOuhs6XurBtPoTLg2qAbNQt2qsO78tqqvxNnn9XEzxWleVmUJU8KR18Kwb8mT62a2migabQD30XFKGNcEJkvHjv8h774LrjkL1Fc0JKT5KCHDn6vtNrl-68TcLwETPAxBqhXCCVqkaW64KPhZ5bXCd5fwiGaFfeTNfsAPOebeg
Cites_doi 10.1021/cr950046o
10.1021/acschembio.7b00016
10.1039/C8CC01931B
10.1021/ic901550k
10.1021/acs.inorgchem.9b00901
10.1021/acs.inorgchem.9b01752
10.1021/jacs.6b05428
10.1021/ja00319a036
10.1038/nprot.2016.019
10.1021/jacs.9b09833
10.1039/c000760a
10.1021/ja972809q
10.1073/pnas.1105776108
10.1016/B978-0-12-409547-2.14859-0
10.1021/jacs.5b08707
10.1038/nchembio.2470
10.1021/jacs.7b10452
10.1016/j.trechm.2019.01.007
10.1021/acs.inorgchem.0c03441
10.1039/c39810000881
10.1016/j.jinorgbio.2022.112056
10.1021/acs.chemrev.6b00636
10.1021/jacs.3c05342
10.1186/s13068-019-1526-4
10.1039/D3DT01781H
10.1021/jacs.3c06607
10.1021/jacs.7b13052
10.1126/science.abm3282
10.1016/j.jinorgbio.2021.111557
10.1073/pnas.1512704112
10.1039/D0SC05262K
10.1038/s41929-018-0110-9
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2025
This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2025
– notice: This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d4sc06667g
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

Materials Research Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 13
ExternalDocumentID PMC11587884
39600509
10_1039_D4SC06667G
d4sc06667g
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM120349
– fundername: NIGMS NIH HHS
  grantid: P30 GM124169
– fundername: NIGMS NIH HHS
  grantid: P30 GM133894
– fundername: NIGMS NIH HHS
  grantid: R01 GM057353
– fundername: ;
  grantid: GM120349
– fundername: ;
  grantid: GM57353
– fundername: ;
  grantid: Unassigned
GroupedDBID -JG
0-7
0R~
53G
705
7~J
AAEMU
AAFWJ
AAIWI
AAJAE
AARTK
AAXHV
ABEMK
ABPDG
ABXOH
ACGFS
ACIWK
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
APEMP
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ~
H~N
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
AAYXX
ABIQK
AFPKN
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c388t-67a3f78a3eccdcf2332cb9d4c4469191fb14cebe3e92a4f949255ecef2e5c4d13
ISSN 2041-6520
IngestDate Thu Aug 21 18:32:30 EDT 2025
Fri Jul 11 07:46:46 EDT 2025
Wed Aug 13 10:50:12 EDT 2025
Thu Apr 03 07:06:58 EDT 2025
Tue Jul 01 01:31:12 EDT 2025
Wed Dec 18 15:34:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This journal is © The Royal Society of Chemistry.
This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c388t-67a3f78a3eccdcf2332cb9d4c4469191fb14cebe3e92a4f949255ecef2e5c4d13
Notes https://doi.org/10.1039/d4sc06667g
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5049-9952
0000-0002-3159-795X
0000-0002-6244-6804
OpenAccessLink http://dx.doi.org/10.1039/d4sc06667g
PMID 39600509
PQID 3146184023
PQPubID 2047492
PageCount 6
ParticipantIDs proquest_journals_3146184023
crossref_primary_10_1039_D4SC06667G
rsc_primary_d4sc06667g
proquest_miscellaneous_3133460951
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11587884
pubmed_primary_39600509
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-18
PublicationDateYYYYMMDD 2024-12-18
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-18
  day: 18
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2024
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Koo (D4SC06667G/cit5/1) 2022; 375
Hangasky (D4SC06667G/cit12/1) 2020
Itoh (D4SC06667G/cit30/1) 1998; 120
Mann (D4SC06667G/cit6/1) 2018; 54
Hartwig (D4SC06667G/cit1/1) 2016; 138
Zhao (D4SC06667G/cit15/1) 2023; 145
Fujieda (D4SC06667G/cit31/1) 2010; 39
Olshansky (D4SC06667G/cit21/1) 2018; 140
Quinlan (D4SC06667G/cit4/1) 2011; 108
Shook (D4SC06667G/cit7/1) 2010; 49
Miyanishi (D4SC06667G/cit9/1) 2019; 58
Mann (D4SC06667G/cit18/1) 2017; 139
McEvoy (D4SC06667G/cit14/1) 2021; 12
Wegeberg (D4SC06667G/cit8/1) 2021; 60
Hangasky (D4SC06667G/cit11/1) 2019; 1
Elwell (D4SC06667G/cit3/1) 2017; 117
Mallin (D4SC06667G/cit22/1) 2016; 11
Karlin (D4SC06667G/cit27/1) 1981
Dixit (D4SC06667G/cit23/1) 2019; 12
Follmer (D4SC06667G/cit2/1) 2023; 52
Mann (D4SC06667G/cit17/1) 2016; 138
Cordas (D4SC06667G/cit24/1) 2023; 238
Karlin (D4SC06667G/cit28/1) 1984; 106
Solomon (D4SC06667G/cit29/1) 1996; 96
Span (D4SC06667G/cit10/1) 2017; 12
Paradisi (D4SC06667G/cit13/1) 2019; 141
Gray (D4SC06667G/cit32/1) 2015; 112
Trammell (D4SC06667G/cit25/1) 2019; 58
Bissaro (D4SC06667G/cit19/1) 2017; 13
Zhang (D4SC06667G/cit26/1) 2021; 223
Ciano (D4SC06667G/cit16/1) 2018; 1
Hall (D4SC06667G/cit20/1) 2023; 145
References_xml – issn: 2020
  end-page: p 298-331
  publication-title: Comprehensive Natural Products III
  doi: Hangasky Detomasi Lemon Marletta
– volume: 96
  start-page: 2563
  year: 1996
  ident: D4SC06667G/cit29/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr950046o
– volume: 12
  start-page: 1095
  year: 2017
  ident: D4SC06667G/cit10/1
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.7b00016
– volume: 54
  start-page: 4413
  year: 2018
  ident: D4SC06667G/cit6/1
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC01931B
– volume: 49
  start-page: 3646
  year: 2010
  ident: D4SC06667G/cit7/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic901550k
– volume: 58
  start-page: 7584
  year: 2019
  ident: D4SC06667G/cit25/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b00901
– volume: 58
  start-page: 12280
  year: 2019
  ident: D4SC06667G/cit9/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b01752
– volume: 138
  start-page: 9073
  year: 2016
  ident: D4SC06667G/cit17/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05428
– volume: 106
  start-page: 2121
  year: 1984
  ident: D4SC06667G/cit28/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00319a036
– volume: 11
  start-page: 835
  year: 2016
  ident: D4SC06667G/cit22/1
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.019
– volume: 141
  start-page: 18585
  year: 2019
  ident: D4SC06667G/cit13/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b09833
– volume: 39
  start-page: 3083
  year: 2010
  ident: D4SC06667G/cit31/1
  publication-title: Dalton Trans.
  doi: 10.1039/c000760a
– volume: 120
  start-page: 2890
  year: 1998
  ident: D4SC06667G/cit30/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja972809q
– volume: 108
  start-page: 15079
  year: 2011
  ident: D4SC06667G/cit4/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1105776108
– start-page: 298
  volume-title: Comprehensive Natural Products III
  year: 2020
  ident: D4SC06667G/cit12/1
  doi: 10.1016/B978-0-12-409547-2.14859-0
– volume: 138
  start-page: 2
  year: 2016
  ident: D4SC06667G/cit1/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08707
– volume: 13
  start-page: 1123
  year: 2017
  ident: D4SC06667G/cit19/1
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2470
– volume: 139
  start-page: 17289
  year: 2017
  ident: D4SC06667G/cit18/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10452
– volume: 1
  start-page: 198
  year: 2019
  ident: D4SC06667G/cit11/1
  publication-title: Trends Chem
  doi: 10.1016/j.trechm.2019.01.007
– volume: 60
  start-page: 1975
  year: 2021
  ident: D4SC06667G/cit8/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c03441
– start-page: 881
  year: 1981
  ident: D4SC06667G/cit27/1
  publication-title: J. Chem. Soc. Chem. Commun.
  doi: 10.1039/c39810000881
– volume: 238
  start-page: 112056
  year: 2023
  ident: D4SC06667G/cit24/1
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2022.112056
– volume: 117
  start-page: 2059
  year: 2017
  ident: D4SC06667G/cit3/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00636
– volume: 145
  start-page: 18888
  year: 2023
  ident: D4SC06667G/cit20/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c05342
– volume: 12
  start-page: 185
  year: 2019
  ident: D4SC06667G/cit23/1
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-019-1526-4
– volume: 52
  start-page: 11005
  year: 2023
  ident: D4SC06667G/cit2/1
  publication-title: Dalton Trans.
  doi: 10.1039/D3DT01781H
– volume: 145
  start-page: 20672
  year: 2023
  ident: D4SC06667G/cit15/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c06607
– volume: 140
  start-page: 2739
  year: 2018
  ident: D4SC06667G/cit21/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b13052
– volume: 375
  start-page: 1287
  year: 2022
  ident: D4SC06667G/cit5/1
  publication-title: Science
  doi: 10.1126/science.abm3282
– volume: 223
  start-page: 111557
  year: 2021
  ident: D4SC06667G/cit26/1
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2021.111557
– volume: 112
  start-page: 10920
  year: 2015
  ident: D4SC06667G/cit32/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1512704112
– volume: 12
  start-page: 352
  year: 2021
  ident: D4SC06667G/cit14/1
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC05262K
– volume: 1
  start-page: 571
  year: 2018
  ident: D4SC06667G/cit16/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0110-9
SSID ssj0000331527
Score 2.436345
Snippet Recent studies have revealed critical roles for the local environments surrounding metallocofactors, such as the newly identified Cu D site in particulate...
Recent studies have revealed critical roles for the local environments surrounding metallocofactors, such as the newly identified Cu site in particulate...
Recent studies have revealed critical roles for the local environments surrounding metallocofactors, such as the newly identified CuD site in particulate...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 98
SubjectTerms Biotin
Chemistry
Coordination
Copper
Hydrogen bonds
Hydrogen peroxide
Oxidation
Oxidizing agents
Polysaccharides
Residues
Tyrosine
Title Selective oxidation of active site aromatic residues in engineered Cu proteins
URI https://www.ncbi.nlm.nih.gov/pubmed/39600509
https://www.proquest.com/docview/3146184023
https://www.proquest.com/docview/3133460951
https://pubmed.ncbi.nlm.nih.gov/PMC11587884
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYdoAL4muQMSYjuEUpie18HUv5qJDYga6onKLEdkYllExdIzH-ep7t2GkJh8Elquwkdfyen9-H3-8h9LpWkOqMkqASKQmAQ1iQJRUL4izhYSJCmdTK3_H5PJkv2adVvBrOqurskm014b_-mlfyP1SFNqCrypL9B8q6l0ID_Ab6whUoDNdb0Xihi9iosz_tz7Vwyl9p2lRc2C83rcVphvF1-viVL3sQQuXd7XwN1bDuvXYWtMDiCNi0HxXsteldO96D5Y0UJqnsBpRZfzEZdrUftjDLFAbpz13P21Z5MbQQnk7sE73fgWh0w11RSUIWBUlMTFRF7rYZeCInX5MRHxlhacpP99tupKEOxhI9pAoQ9R1bzJSllX4c9i0bq_9jO3OHDHV4nebF8OwBOiJgTYA4PPrydbn65pxxIaV9eV_3VRbKluZvhhfsKy8ji2R8sPZgY-vIaH3l4gG63xsaeGq45iG6I5tH6O7M1vd7jM4d92DHPbitseEerLgHW-7BlnvwusED9-BZhy33PEHLD-8vZvOgr64RcJpl2yBJS1qnWUlhEQteE0oJr3LBOGNJDlZ8XUWMwxKnMiclq3OFYhlLLmsiY85ERI_RYdM28hnCNJOE8VCUSclYTcK8pqkqVCBzGQrQMT30yk5bcWVAVIoxdTx0ame06BfZdUFV3fmMgWbpoZeuG2ZKxbXKRraduodSpoATIw89NQRwf0PBQlcQRx7K9kjjblDw6vs9zfq7hlkHWylLQXh56Bio6B4Q7JrrAV-e3OqznqN7w_I5RYfbTSdfgCK7rc60A-isZ8bfYK-dxg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+oxidation+of+active+site+aromatic+residues+in+engineered+Cu+proteins&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Uyeda%2C+Kylie+S.&rft.au=Follmer%2C+Alec+H.&rft.au=Borovik%2C+A.+S.&rft.date=2024-12-18&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=16&rft.issue=1&rft.spage=98&rft.epage=103&rft_id=info:doi/10.1039%2FD4SC06667G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4SC06667G
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon