Selective oxidation of active site aromatic residues in engineered Cu proteins
Recent studies have revealed critical roles for the local environments surrounding metallocofactors, such as the newly identified Cu D site in particulate methane monooxygenases (pMMOs) and the second sphere aromatic residues in lytic polysaccharide monooxygenases (LPMOs), implicated in the protecti...
Saved in:
Published in | Chemical science (Cambridge) Vol. 16; no. 1; pp. 98 - 13 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
18.12.2024
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent studies have revealed critical roles for the local environments surrounding metallocofactors, such as the newly identified Cu
D
site in particulate methane monooxygenases (pMMOs) and the second sphere aromatic residues in lytic polysaccharide monooxygenases (LPMOs), implicated in the protection against oxidative damage. However, these features are subjects of continued debate. Our work utilizes biotin-streptavidin (Sav) technology to develop artificial metalloproteins (ArMs) that mimic the active sites of natural copper metalloenzymes. By engineering ArMs with aromatic residues within their secondary coordination spheres, we systematically investigate the influence of these residues on Cu reactivity and oxidant activation. We demonstrate that the placement and orientation of tyrosine relative to the Cu cofactor critically affect the oxidation outcomes upon exposure to hydrogen peroxide. A key finding is the interplay between the coordination of an active site asparagine and the incorporation of aromatic residues proximal to the artificial Cu cofactor, which are the only variants where oxidation of an engineered residues is observed. These findings underscore the importance of the secondary coordination sphere in modulating Cu center reactivity, suggest a role for amide coordination in C-H bond activation by pMMOs, and potential inactivation pathways in natural copper enzymes like LPMOs.
Engineered metalloproteins that mimic the active sites of natural copper metalloenzymes are used to systematically investigate the influence of aromatic residues within the secondary coordination sphere on reactivity. |
---|---|
AbstractList | Recent studies have revealed critical roles for the local environments surrounding metallocofactors, such as the newly identified Cu
site in particulate methane monooxygenases (pMMOs) and the second sphere aromatic residues in lytic polysaccharide monooxygenases (LPMOs), implicated in the protection against oxidative damage. However, these features are subjects of continued debate. Our work utilizes biotin-streptavidin (Sav) technology to develop artificial metalloproteins (ArMs) that mimic the active sites of natural copper metalloenzymes. By engineering ArMs with aromatic residues within their secondary coordination spheres, we systematically investigate the influence of these residues on Cu reactivity and oxidant activation. We demonstrate that the placement and orientation of tyrosine relative to the Cu cofactor critically affect the oxidation outcomes upon exposure to hydrogen peroxide. A key finding is the interplay between the coordination of an active site asparagine and the incorporation of aromatic residues proximal to the artificial Cu cofactor, which are the only variants where oxidation of an engineered residues is observed. These findings underscore the importance of the secondary coordination sphere in modulating Cu center reactivity, suggest a role for amide coordination in C-H bond activation by pMMOs, and potential inactivation pathways in natural copper enzymes like LPMOs. Recent studies have revealed critical roles for the local environments surrounding metallocofactors, such as the newly identified Cu D site in particulate methane monooxygenases (pMMOs) and the second sphere aromatic residues in lytic polysaccharide monooxygenases (LPMOs), implicated in the protection against oxidative damage. However, these features are subjects of continued debate. Our work utilizes biotin–streptavidin (Sav) technology to develop artificial metalloproteins (ArMs) that mimic the active sites of natural copper metalloenzymes. By engineering ArMs with aromatic residues within their secondary coordination spheres, we systematically investigate the influence of these residues on Cu reactivity and oxidant activation. We demonstrate that the placement and orientation of tyrosine relative to the Cu cofactor critically affect the oxidation outcomes upon exposure to hydrogen peroxide. A key finding is the interplay between the coordination of an active site asparagine and the incorporation of aromatic residues proximal to the artificial Cu cofactor, which are the only variants where oxidation of an engineered residues is observed. These findings underscore the importance of the secondary coordination sphere in modulating Cu center reactivity, suggest a role for amide coordination in C–H bond activation by pMMOs, and potential inactivation pathways in natural copper enzymes like LPMOs. Engineered metalloproteins that mimic the active sites of natural copper metalloenzymes are used to systematically investigate the influence of aromatic residues within the secondary coordination sphere on reactivity. Recent studies have revealed critical roles for the local environments surrounding metallocofactors, such as the newly identified CuD site in particulate methane monooxygenases (pMMOs) and the second sphere aromatic residues in lytic polysaccharide monooxygenases (LPMOs), implicated in the protection against oxidative damage. However, these features are subjects of continued debate. Our work utilizes biotin–streptavidin (Sav) technology to develop artificial metalloproteins (ArMs) that mimic the active sites of natural copper metalloenzymes. By engineering ArMs with aromatic residues within their secondary coordination spheres, we systematically investigate the influence of these residues on Cu reactivity and oxidant activation. We demonstrate that the placement and orientation of tyrosine relative to the Cu cofactor critically affect the oxidation outcomes upon exposure to hydrogen peroxide. A key finding is the interplay between the coordination of an active site asparagine and the incorporation of aromatic residues proximal to the artificial Cu cofactor, which are the only variants where oxidation of an engineered residues is observed. These findings underscore the importance of the secondary coordination sphere in modulating Cu center reactivity, suggest a role for amide coordination in C–H bond activation by pMMOs, and potential inactivation pathways in natural copper enzymes like LPMOs. Recent studies have revealed critical roles for the local environments surrounding metallocofactors, such as the newly identified CuD site in particulate methane monooxygenases (pMMOs) and the second sphere aromatic residues in lytic polysaccharide monooxygenases (LPMOs), implicated in the protection against oxidative damage. However, these features are subjects of continued debate. Our work utilizes biotin-streptavidin (Sav) technology to develop artificial metalloproteins (ArMs) that mimic the active sites of natural copper metalloenzymes. By engineering ArMs with aromatic residues within their secondary coordination spheres, we systematically investigate the influence of these residues on Cu reactivity and oxidant activation. We demonstrate that the placement and orientation of tyrosine relative to the Cu cofactor critically affect the oxidation outcomes upon exposure to hydrogen peroxide. A key finding is the interplay between the coordination of an active site asparagine and the incorporation of aromatic residues proximal to the artificial Cu cofactor, which are the only variants where oxidation of an engineered residues is observed. These findings underscore the importance of the secondary coordination sphere in modulating Cu center reactivity, suggest a role for amide coordination in C-H bond activation by pMMOs, and potential inactivation pathways in natural copper enzymes like LPMOs.Recent studies have revealed critical roles for the local environments surrounding metallocofactors, such as the newly identified CuD site in particulate methane monooxygenases (pMMOs) and the second sphere aromatic residues in lytic polysaccharide monooxygenases (LPMOs), implicated in the protection against oxidative damage. However, these features are subjects of continued debate. Our work utilizes biotin-streptavidin (Sav) technology to develop artificial metalloproteins (ArMs) that mimic the active sites of natural copper metalloenzymes. By engineering ArMs with aromatic residues within their secondary coordination spheres, we systematically investigate the influence of these residues on Cu reactivity and oxidant activation. We demonstrate that the placement and orientation of tyrosine relative to the Cu cofactor critically affect the oxidation outcomes upon exposure to hydrogen peroxide. A key finding is the interplay between the coordination of an active site asparagine and the incorporation of aromatic residues proximal to the artificial Cu cofactor, which are the only variants where oxidation of an engineered residues is observed. These findings underscore the importance of the secondary coordination sphere in modulating Cu center reactivity, suggest a role for amide coordination in C-H bond activation by pMMOs, and potential inactivation pathways in natural copper enzymes like LPMOs. Recent studies have revealed critical roles for the local environments surrounding metallocofactors, such as the newly identified Cu D site in particulate methane monooxygenases (pMMOs) and the second sphere aromatic residues in lytic polysaccharide monooxygenases (LPMOs), implicated in the protection against oxidative damage. However, these features are subjects of continued debate. Our work utilizes biotin–streptavidin (Sav) technology to develop artificial metalloproteins (ArMs) that mimic the active sites of natural copper metalloenzymes. By engineering ArMs with aromatic residues within their secondary coordination spheres, we systematically investigate the influence of these residues on Cu reactivity and oxidant activation. We demonstrate that the placement and orientation of tyrosine relative to the Cu cofactor critically affect the oxidation outcomes upon exposure to hydrogen peroxide. A key finding is the interplay between the coordination of an active site asparagine and the incorporation of aromatic residues proximal to the artificial Cu cofactor, which are the only variants where oxidation of an engineered residues is observed. These findings underscore the importance of the secondary coordination sphere in modulating Cu center reactivity, suggest a role for amide coordination in C–H bond activation by pMMOs, and potential inactivation pathways in natural copper enzymes like LPMOs. |
Author | Uyeda, Kylie S Follmer, Alec H Borovik, A. S |
AuthorAffiliation | Department of Chemistry University of California-Irvine |
AuthorAffiliation_xml | – name: University of California-Irvine – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Kylie S surname: Uyeda fullname: Uyeda, Kylie S – sequence: 2 givenname: Alec H surname: Follmer fullname: Follmer, Alec H – sequence: 3 givenname: A. S surname: Borovik fullname: Borovik, A. S |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39600509$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtPAyEUhYnR-KjduNeQuDEmVRgYZlgZU5-J0UV1TShzp2KmUGGm0X8vtVofd8MN98vhHs4OWnfeAUJ7lJxQwuRpxaMhQohisoa2M8LpQORMrq_6jGyhfowvJBVjNM-KTbTFpCAkJ3Ib3Y-gAdPaOWD_ZivdWu-wr7Fe3kXbAtbBT9PA4ADRVh1EbB0GN7EOIECFhx2eBd-CdXEXbdS6idD_Onvo6erycXgzuHu4vh2e3w0MK8t2IArN6qLUDIypTJ0xlpmxrLjhXEgqaT2m3MAYGMhM81pymeU5GKgzyA2vKOuhs6XurBtPoTLg2qAbNQt2qsO78tqqvxNnn9XEzxWleVmUJU8KR18Kwb8mT62a2migabQD30XFKGNcEJkvHjv8h774LrjkL1Fc0JKT5KCHDn6vtNrl-68TcLwETPAxBqhXCCVqkaW64KPhZ5bXCd5fwiGaFfeTNfsAPOebeg |
Cites_doi | 10.1021/cr950046o 10.1021/acschembio.7b00016 10.1039/C8CC01931B 10.1021/ic901550k 10.1021/acs.inorgchem.9b00901 10.1021/acs.inorgchem.9b01752 10.1021/jacs.6b05428 10.1021/ja00319a036 10.1038/nprot.2016.019 10.1021/jacs.9b09833 10.1039/c000760a 10.1021/ja972809q 10.1073/pnas.1105776108 10.1016/B978-0-12-409547-2.14859-0 10.1021/jacs.5b08707 10.1038/nchembio.2470 10.1021/jacs.7b10452 10.1016/j.trechm.2019.01.007 10.1021/acs.inorgchem.0c03441 10.1039/c39810000881 10.1016/j.jinorgbio.2022.112056 10.1021/acs.chemrev.6b00636 10.1021/jacs.3c05342 10.1186/s13068-019-1526-4 10.1039/D3DT01781H 10.1021/jacs.3c06607 10.1021/jacs.7b13052 10.1126/science.abm3282 10.1016/j.jinorgbio.2021.111557 10.1073/pnas.1512704112 10.1039/D0SC05262K 10.1038/s41929-018-0110-9 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2025 This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2025 – notice: This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d4sc06667g |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 13 |
ExternalDocumentID | PMC11587884 39600509 10_1039_D4SC06667G d4sc06667g |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM120349 – fundername: NIGMS NIH HHS grantid: P30 GM124169 – fundername: NIGMS NIH HHS grantid: P30 GM133894 – fundername: NIGMS NIH HHS grantid: R01 GM057353 – fundername: ; grantid: GM120349 – fundername: ; grantid: GM57353 – fundername: ; grantid: Unassigned |
GroupedDBID | -JG 0-7 0R~ 53G 705 7~J AAEMU AAFWJ AAIWI AAJAE AARTK AAXHV ABEMK ABPDG ABXOH ACGFS ACIWK ADBBV ADMRA AEFDR AENEX AESAV AFLYV AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS APEMP AUDPV AZFZN BCNDV BLAPV BSQNT C6K D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ~ H~N O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ AAYXX ABIQK AFPKN CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c388t-67a3f78a3eccdcf2332cb9d4c4469191fb14cebe3e92a4f949255ecef2e5c4d13 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 18:32:30 EDT 2025 Fri Jul 11 07:46:46 EDT 2025 Wed Aug 13 10:50:12 EDT 2025 Thu Apr 03 07:06:58 EDT 2025 Tue Jul 01 01:31:12 EDT 2025 Wed Dec 18 15:34:39 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This journal is © The Royal Society of Chemistry. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c388t-67a3f78a3eccdcf2332cb9d4c4469191fb14cebe3e92a4f949255ecef2e5c4d13 |
Notes | https://doi.org/10.1039/d4sc06667g Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5049-9952 0000-0002-3159-795X 0000-0002-6244-6804 |
OpenAccessLink | http://dx.doi.org/10.1039/d4sc06667g |
PMID | 39600509 |
PQID | 3146184023 |
PQPubID | 2047492 |
PageCount | 6 |
ParticipantIDs | proquest_journals_3146184023 crossref_primary_10_1039_D4SC06667G rsc_primary_d4sc06667g proquest_miscellaneous_3133460951 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11587884 pubmed_primary_39600509 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-18 |
PublicationDateYYYYMMDD | 2024-12-18 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Koo (D4SC06667G/cit5/1) 2022; 375 Hangasky (D4SC06667G/cit12/1) 2020 Itoh (D4SC06667G/cit30/1) 1998; 120 Mann (D4SC06667G/cit6/1) 2018; 54 Hartwig (D4SC06667G/cit1/1) 2016; 138 Zhao (D4SC06667G/cit15/1) 2023; 145 Fujieda (D4SC06667G/cit31/1) 2010; 39 Olshansky (D4SC06667G/cit21/1) 2018; 140 Quinlan (D4SC06667G/cit4/1) 2011; 108 Shook (D4SC06667G/cit7/1) 2010; 49 Miyanishi (D4SC06667G/cit9/1) 2019; 58 Mann (D4SC06667G/cit18/1) 2017; 139 McEvoy (D4SC06667G/cit14/1) 2021; 12 Wegeberg (D4SC06667G/cit8/1) 2021; 60 Hangasky (D4SC06667G/cit11/1) 2019; 1 Elwell (D4SC06667G/cit3/1) 2017; 117 Mallin (D4SC06667G/cit22/1) 2016; 11 Karlin (D4SC06667G/cit27/1) 1981 Dixit (D4SC06667G/cit23/1) 2019; 12 Follmer (D4SC06667G/cit2/1) 2023; 52 Mann (D4SC06667G/cit17/1) 2016; 138 Cordas (D4SC06667G/cit24/1) 2023; 238 Karlin (D4SC06667G/cit28/1) 1984; 106 Solomon (D4SC06667G/cit29/1) 1996; 96 Span (D4SC06667G/cit10/1) 2017; 12 Paradisi (D4SC06667G/cit13/1) 2019; 141 Gray (D4SC06667G/cit32/1) 2015; 112 Trammell (D4SC06667G/cit25/1) 2019; 58 Bissaro (D4SC06667G/cit19/1) 2017; 13 Zhang (D4SC06667G/cit26/1) 2021; 223 Ciano (D4SC06667G/cit16/1) 2018; 1 Hall (D4SC06667G/cit20/1) 2023; 145 |
References_xml | – issn: 2020 end-page: p 298-331 publication-title: Comprehensive Natural Products III doi: Hangasky Detomasi Lemon Marletta – volume: 96 start-page: 2563 year: 1996 ident: D4SC06667G/cit29/1 publication-title: Chem. Rev. doi: 10.1021/cr950046o – volume: 12 start-page: 1095 year: 2017 ident: D4SC06667G/cit10/1 publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.7b00016 – volume: 54 start-page: 4413 year: 2018 ident: D4SC06667G/cit6/1 publication-title: Chem. Commun. doi: 10.1039/C8CC01931B – volume: 49 start-page: 3646 year: 2010 ident: D4SC06667G/cit7/1 publication-title: Inorg. Chem. doi: 10.1021/ic901550k – volume: 58 start-page: 7584 year: 2019 ident: D4SC06667G/cit25/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b00901 – volume: 58 start-page: 12280 year: 2019 ident: D4SC06667G/cit9/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b01752 – volume: 138 start-page: 9073 year: 2016 ident: D4SC06667G/cit17/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05428 – volume: 106 start-page: 2121 year: 1984 ident: D4SC06667G/cit28/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00319a036 – volume: 11 start-page: 835 year: 2016 ident: D4SC06667G/cit22/1 publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.019 – volume: 141 start-page: 18585 year: 2019 ident: D4SC06667G/cit13/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09833 – volume: 39 start-page: 3083 year: 2010 ident: D4SC06667G/cit31/1 publication-title: Dalton Trans. doi: 10.1039/c000760a – volume: 120 start-page: 2890 year: 1998 ident: D4SC06667G/cit30/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja972809q – volume: 108 start-page: 15079 year: 2011 ident: D4SC06667G/cit4/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1105776108 – start-page: 298 volume-title: Comprehensive Natural Products III year: 2020 ident: D4SC06667G/cit12/1 doi: 10.1016/B978-0-12-409547-2.14859-0 – volume: 138 start-page: 2 year: 2016 ident: D4SC06667G/cit1/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08707 – volume: 13 start-page: 1123 year: 2017 ident: D4SC06667G/cit19/1 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2470 – volume: 139 start-page: 17289 year: 2017 ident: D4SC06667G/cit18/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10452 – volume: 1 start-page: 198 year: 2019 ident: D4SC06667G/cit11/1 publication-title: Trends Chem doi: 10.1016/j.trechm.2019.01.007 – volume: 60 start-page: 1975 year: 2021 ident: D4SC06667G/cit8/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c03441 – start-page: 881 year: 1981 ident: D4SC06667G/cit27/1 publication-title: J. Chem. Soc. Chem. Commun. doi: 10.1039/c39810000881 – volume: 238 start-page: 112056 year: 2023 ident: D4SC06667G/cit24/1 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2022.112056 – volume: 117 start-page: 2059 year: 2017 ident: D4SC06667G/cit3/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00636 – volume: 145 start-page: 18888 year: 2023 ident: D4SC06667G/cit20/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c05342 – volume: 12 start-page: 185 year: 2019 ident: D4SC06667G/cit23/1 publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-019-1526-4 – volume: 52 start-page: 11005 year: 2023 ident: D4SC06667G/cit2/1 publication-title: Dalton Trans. doi: 10.1039/D3DT01781H – volume: 145 start-page: 20672 year: 2023 ident: D4SC06667G/cit15/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c06607 – volume: 140 start-page: 2739 year: 2018 ident: D4SC06667G/cit21/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b13052 – volume: 375 start-page: 1287 year: 2022 ident: D4SC06667G/cit5/1 publication-title: Science doi: 10.1126/science.abm3282 – volume: 223 start-page: 111557 year: 2021 ident: D4SC06667G/cit26/1 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2021.111557 – volume: 112 start-page: 10920 year: 2015 ident: D4SC06667G/cit32/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1512704112 – volume: 12 start-page: 352 year: 2021 ident: D4SC06667G/cit14/1 publication-title: Chem. Sci. doi: 10.1039/D0SC05262K – volume: 1 start-page: 571 year: 2018 ident: D4SC06667G/cit16/1 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0110-9 |
SSID | ssj0000331527 |
Score | 2.436345 |
Snippet | Recent studies have revealed critical roles for the local environments surrounding metallocofactors, such as the newly identified Cu
D
site in particulate... Recent studies have revealed critical roles for the local environments surrounding metallocofactors, such as the newly identified Cu site in particulate... Recent studies have revealed critical roles for the local environments surrounding metallocofactors, such as the newly identified CuD site in particulate... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 98 |
SubjectTerms | Biotin Chemistry Coordination Copper Hydrogen bonds Hydrogen peroxide Oxidation Oxidizing agents Polysaccharides Residues Tyrosine |
Title | Selective oxidation of active site aromatic residues in engineered Cu proteins |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39600509 https://www.proquest.com/docview/3146184023 https://www.proquest.com/docview/3133460951 https://pubmed.ncbi.nlm.nih.gov/PMC11587884 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYdoAL4muQMSYjuEUpie18HUv5qJDYga6onKLEdkYllExdIzH-ep7t2GkJh8Elquwkdfyen9-H3-8h9LpWkOqMkqASKQmAQ1iQJRUL4izhYSJCmdTK3_H5PJkv2adVvBrOqurskm014b_-mlfyP1SFNqCrypL9B8q6l0ID_Ab6whUoDNdb0Xihi9iosz_tz7Vwyl9p2lRc2C83rcVphvF1-viVL3sQQuXd7XwN1bDuvXYWtMDiCNi0HxXsteldO96D5Y0UJqnsBpRZfzEZdrUftjDLFAbpz13P21Z5MbQQnk7sE73fgWh0w11RSUIWBUlMTFRF7rYZeCInX5MRHxlhacpP99tupKEOxhI9pAoQ9R1bzJSllX4c9i0bq_9jO3OHDHV4nebF8OwBOiJgTYA4PPrydbn65pxxIaV9eV_3VRbKluZvhhfsKy8ji2R8sPZgY-vIaH3l4gG63xsaeGq45iG6I5tH6O7M1vd7jM4d92DHPbitseEerLgHW-7BlnvwusED9-BZhy33PEHLD-8vZvOgr64RcJpl2yBJS1qnWUlhEQteE0oJr3LBOGNJDlZ8XUWMwxKnMiclq3OFYhlLLmsiY85ERI_RYdM28hnCNJOE8VCUSclYTcK8pqkqVCBzGQrQMT30yk5bcWVAVIoxdTx0ame06BfZdUFV3fmMgWbpoZeuG2ZKxbXKRraduodSpoATIw89NQRwf0PBQlcQRx7K9kjjblDw6vs9zfq7hlkHWylLQXh56Bio6B4Q7JrrAV-e3OqznqN7w_I5RYfbTSdfgCK7rc60A-isZ8bfYK-dxg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+oxidation+of+active+site+aromatic+residues+in+engineered+Cu+proteins&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Uyeda%2C+Kylie+S.&rft.au=Follmer%2C+Alec+H.&rft.au=Borovik%2C+A.+S.&rft.date=2024-12-18&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=16&rft.issue=1&rft.spage=98&rft.epage=103&rft_id=info:doi/10.1039%2FD4SC06667G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4SC06667G |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |