Quantum Machine Learning Revolution in Healthcare: A Systematic Review of Emerging Perspectives and Applications

Quantum computing (QC) stands apart from traditional computing systems by employing revolutionary techniques for processing information. It leverages the power of quantum bits (qubits) and harnesses the unique properties exhibited by subatomic particles, such as superposition, entanglement, and inte...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 11423 - 11450
Main Authors Ullah, Ubaid, Garcia-Zapirain, Begonya
Format Journal Article
LanguageEnglish
Published Piscataway The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
IEEE
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2024.3353461

Cover

Loading…
Abstract Quantum computing (QC) stands apart from traditional computing systems by employing revolutionary techniques for processing information. It leverages the power of quantum bits (qubits) and harnesses the unique properties exhibited by subatomic particles, such as superposition, entanglement, and interference. These quantum phenomena enable quantum computers to operate on an entirely different level, exponentially surpassing the computational capabilities of classical computers. By manipulating qubits and capitalising on their quantum states, QC holds the promise of solving complex problems that are currently intractable in the case of traditional computers. The potential impact of QC extends beyond its computational power and reaches into various critical sectors, including healthcare. Scientists and engineers are working diligently to overcome various challenges and limitations associated with QC technology. These include issues related to qubit stability, error correction, scalability, and noise reduction. In such a scenario, our proposed work provides a concise summary of the most recent state of the art based on articles published between 2018 and 2023 in the healthcare domain. Additionally, the approach follows the necessary guidelines for conducting a systematic literature review. This includes utilising research questions and evaluating the quality of the articles using specific metrics. Initially, a total of 2,038 records were acquired from multiple databases, with 468 duplicate records and 1,053 records unrelated to healthcare subsequently excluded. A further 258, 68, and 39 records were eliminated based on title, abstract, and full-text criteria, respectively. Ultimately, the remaining 49 articles were subject to evaluation, thus providing a brief overview of the recent literature and contributing to existing knowledge and comprehension of Quantum Machine Learning (QML) algorithms and their applications in the healthcare sector. This analysis establishes a foundational framework for forthcoming research and development at the intersection of QC and machine learning, ultimately paving the way for innovative approaches to addressing complex challenges within the healthcare domain.
AbstractList Quantum computing (QC) stands apart from traditional computing systems by employing revolutionary techniques for processing information. It leverages the power of quantum bits (qubits) and harnesses the unique properties exhibited by subatomic particles, such as superposition, entanglement, and interference. These quantum phenomena enable quantum computers to operate on an entirely different level, exponentially surpassing the computational capabilities of classical computers. By manipulating qubits and capitalising on their quantum states, QC holds the promise of solving complex problems that are currently intractable in the case of traditional computers. The potential impact of QC extends beyond its computational power and reaches into various critical sectors, including healthcare. Scientists and engineers are working diligently to overcome various challenges and limitations associated with QC technology. These include issues related to qubit stability, error correction, scalability, and noise reduction. In such a scenario, our proposed work provides a concise summary of the most recent state of the art based on articles published between 2018 and 2023 in the healthcare domain. Additionally, the approach follows the necessary guidelines for conducting a systematic literature review. This includes utilising research questions and evaluating the quality of the articles using specific metrics. Initially, a total of 2,038 records were acquired from multiple databases, with 468 duplicate records and 1,053 records unrelated to healthcare subsequently excluded. A further 258, 68, and 39 records were eliminated based on title, abstract, and full-text criteria, respectively. Ultimately, the remaining 49 articles were subject to evaluation, thus providing a brief overview of the recent literature and contributing to existing knowledge and comprehension of Quantum Machine Learning (QML) algorithms and their applications in the healthcare sector. This analysis establishes a foundational framework for forthcoming research and development at the intersection of QC and machine learning, ultimately paving the way for innovative approaches to addressing complex challenges within the healthcare domain.
Author Garcia-Zapirain, Begonya
Ullah, Ubaid
Author_xml – sequence: 1
  givenname: Ubaid
  orcidid: 0000-0001-8149-3430
  surname: Ullah
  fullname: Ullah, Ubaid
  organization: eVIDA Research Group, University of Deusto, Bilbao, Spain
– sequence: 2
  givenname: Begonya
  orcidid: 0000-0002-9356-1186
  surname: Garcia-Zapirain
  fullname: Garcia-Zapirain, Begonya
  organization: eVIDA Research Group, University of Deusto, Bilbao, Spain
BookMark eNp9kUtvEzEUhUeoSJTSX8DGEusEP2Y8HnZRFNpKQTwCa-uOfSd1NLEH2ynqv8fTVAixwJtrX53z2b7ndXXhg8eqesvokjHavV-t15vdbskpr5dCNKKW7EV1yZnsFuUkL_7av6quUzrQslRpNe1lNX09gc-nI_kE5t55JFuE6J3fk2_4EMZTdsET58ktwpjvDUT8QFZk95gyHiE7M8sc_iJhIJsjxv3s_IIxTWiye8BEwFuymqbRGZhZ6U31coAx4fVzvap-fNx8X98utp9v7tar7cIIpfJCso72tWA17Y3kjbJGQtfwpm7ZwA0FWwr0jWht3bRdYwE4IBv6FhtrpezEVXV35toABz1Fd4T4qAM4_dQIca8hlg-MqAVjXPW94pYOhW871puB9oOyshaoVGG9O7OmGH6eMGV9CKfoy_M175iSrIxzVomzysSQUsThz62M6jkpfU5Kz0np56SKq_vHZVx-GlWO4Mb_en8Dgdma5g
CitedBy_id crossref_primary_10_3390_medsci12040067
crossref_primary_10_1096_fba_2024_00198
crossref_primary_10_1038_s41598_024_67392_0
crossref_primary_10_1007_s11554_024_01493_x
crossref_primary_10_1109_ACCESS_2024_3395512
crossref_primary_10_1109_ACCESS_2024_3408282
crossref_primary_10_1002_widm_1568
crossref_primary_10_1007_s11128_024_04404_y
crossref_primary_10_1007_s11831_024_10183_7
crossref_primary_10_1007_s42484_024_00218_4
crossref_primary_10_3390_math12172625
crossref_primary_10_3390_a18030156
crossref_primary_10_1007_s42452_024_06220_6
crossref_primary_10_3389_fpubh_2024_1522673
crossref_primary_10_3390_electronics13224462
crossref_primary_10_3233_XST_230429
Cites_doi 10.1007/s12559-021-09926-6
10.1007/978-1-4020-9107-0
10.1109/IJCNN.2017.7966217
10.1088/1742-6596/2438/1/012093
10.1038/s41534-019-0157-8
10.59275/j.melba.2021-g65b
10.1103/PhysRevApplied.16.024051
10.1007/978-981-19-9989-5_3
10.1515/dx-2019-0104
10.3389/fnins.2016.00248
10.1201/9780429500459-11
10.1103/PhysRevA.101.032308
10.3390/math5010005
10.1109/TETC.2020.3000734
10.1109/COMITCon.2019.8862451
10.1103/PhysRevX.7.041052
10.32604/iasc.2023.032262
10.1109/ACCESS.2022.3232307
10.1038/s41598-022-05971-9
10.1109/ICTC49870.2020.9289439
10.1007/s00521-022-07388-x
10.1088/2058-9565/ac39f5
10.1109/ACCESS.2022.3195044
10.3390/e21080763
10.1016/j.eswa.2022.116512
10.3390/math9040410
10.1007/s10773-020-04656-1
10.1155/2022/5164970
10.1007/978-3-7908-1856-7_11
10.1016/j.neucom.2019.07.026
10.1080/00107514.2014.964942
10.1146/annurev.bi.58.070189.002031
10.1109/ISSPIT51521.2020.9408944
10.1007/BF01011339
10.1145/2663204.2663257
10.1007/978-3-030-36718-3_47
10.1186/2047-2501-2-3
10.1016/j.bspc.2018.03.003
10.1016/j.asoc.2021.107283
10.1137/s0097539796298637
10.1038/s41928-021-00687-6
10.1109/TETC.2019.2901272
10.1038/s41586-019-0980-2
10.1016/S0167-2789(98)00042-6
10.3906/elk-2006-94
10.1007/s11128-020-2587-9
10.1007/978-3-030-83098-4_6
10.1109/TQE.2021.3103050
10.1016/j.jnca.2021.103304
10.23919/INDIACom54597.2022.9763118
10.1109/TNNLS.2021.3084467
10.1038/30687
10.1145/2601248.2601268
10.1021/acsinfecdis.0c00365
10.1007/s10489-019-01604-3
10.1145/367701.367709
10.1093/jcde/qwac003
10.1117/12.339989
10.1098/rspa.1992.0167
10.1007/s40747-021-00398-7
10.32604/cmc.2021.013196
10.1101/2022.05.18.22275295
10.1002/spy2.284
10.1016/j.compbiomed.2022.105472
10.1007/978-3-319-19222-2_23
10.1109/ICECCME55909.2022.9987991
10.1103/PhysRevA.103.032430
10.1007/s10773-021-04742-y
10.1103/PhysRevA.103.042415
10.1002/wcs.1343
10.1109/IITCEE57236.2023.10090957
10.1088/1361-6633/aab406
10.1109/BHI56158.2022.9926814
10.1109/SECON.2014.6950751
10.1109/ACCESS.2020.3041719
10.1088/2632-2153/ac5997
10.1098/rspa.2017.0551
10.1109/ICASSP43922.2022.9747369
10.1109/TNNLS.2023.3240238
10.1016/j.jbi.2020.103671
10.1145/167088.167097
10.1038/nature23474
10.1162/99608f92.5a9fd72c
10.1142/5528
10.1103/PhysRevLett.117.130501
10.1016/j.eswa.2023.120306
10.32604/jqc.2020.015018
10.1504/IJCAT.2018.095942
10.1109/ISVLSI51109.2021.00089
10.26421/qic15.3-4-7
10.1016/s1076-5670(08)70147-2
10.1119/1.1463744
10.1016/j.knosys.2023.110413
10.1007/s11128-021-03384-7
10.1109/DRCN57075.2023.10108230
10.3390/math11020376
10.1002/1878-0261.12924
10.1090/psapm/058/1922896
10.3390/app9081526
10.1109/10.1370
10.1103/PhysRevLett.122.040504
10.1088/1742-6596/2046/1/012007
10.1109/TNNLS.2018.2855446
10.1109/ACCESS.2021.3139323
10.1111/exsy.13308
10.1021/acs.jcim.1c00166
10.1007/s41781-021-00075-x
10.1098/rspa.1985.0070
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3353461
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 11450
ExternalDocumentID oai_doaj_org_article_31128bb82d0f471d91bcf0bf8d643e88
10_1109_ACCESS_2024_3353461
GroupedDBID 0R~
4.4
5VS
6IK
AAJGR
AAYXX
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIG
RNS
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c388t-6190b43140bc6258dc6a9525471f2c0ad1f2ab537d45795daa2ae1fb7e5dd6693
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:22:48 EDT 2025
Mon Jun 30 04:35:34 EDT 2025
Tue Jul 01 04:14:17 EDT 2025
Thu Apr 24 22:53:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-6190b43140bc6258dc6a9525471f2c0ad1f2ab537d45795daa2ae1fb7e5dd6693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8149-3430
0000-0002-9356-1186
OpenAccessLink https://doaj.org/article/31128bb82d0f471d91bcf0bf8d643e88
PQID 2918610818
PQPubID 4845423
PageCount 28
ParticipantIDs doaj_primary_oai_doaj_org_article_31128bb82d0f471d91bcf0bf8d643e88
proquest_journals_2918610818
crossref_primary_10_1109_ACCESS_2024_3353461
crossref_citationtrail_10_1109_ACCESS_2024_3353461
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationYear 2024
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
IEEE
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: IEEE
References ref57
ref56
Schuld (ref14) 2021
ref59
ref58
ref53
ref52
ref55
ref54
Mathur (ref98) 2021
Dl (ref109); 15
ref51
ref50
ref46
ref48
ref47
ref41
ref44
ref43
Sridevi (ref119)
Mardirosian (ref83) 2019
ref49
ref7
Garca (ref26) 2022
ref9
ref4
ref3
ref5
ref100
ref40
ref35
ref34
ref37
ref36
García (ref8) 2022
ref31
ref30
ref33
ref32
ref38
Farhi (ref45) 2018
ref23
Schuld (ref24) 2017
ref25
ref20
ref22
ref21
Solenov (ref2) 2018; 115
Lloyd (ref42) 2013
ref28
ref27
ref29
Myrvold (ref6) 2009
Chen (ref84) 2019
ref13
Teplan (ref111) 2002; 2
ref12
ref15
ref128
ref129
ref97
Shin (ref132) 2014
ref96
ref11
ref99
ref124
ref10
ref17
ref16
ref18
Maheshwari (ref67) 2023; 13
Khadiev (ref125); 2842
ref93
ref133
ref92
ref95
ref94
ref130
ref91
ref90
ref89
ref86
ref85
ref88
ref87
Altaisky (ref127) 2001
Basheer (ref126) 2020
Solenov (ref19) 2018; 115
ref82
ref81
Heidari (ref73) 2022
Dutt (ref101) 2020; 7
ref80
ref79
ref108
ref78
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref1
Delgado (ref39) 2022
Cross (ref131)
ref71
ref70
ref112
ref72
ref110
Srikanth (ref63) 2022
ref68
ref117
ref69
ref118
ref64
ref115
ref116
ref66
ref113
ref65
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref97
  doi: 10.1007/s12559-021-09926-6
– volume: 115
  start-page: 463
  issue: 5
  year: 2018
  ident: ref19
  article-title: The potential of quantum computing and machine learning to advance clinical research and change the practice of medicine
  publication-title: Missouri Med.
– start-page: 379
  volume-title: Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle: Essays in Honour of Abner Shimony
  year: 2009
  ident: ref6
  article-title: Quantum gravity computers: On the theory of computation with indefinite causal structure
  doi: 10.1007/978-1-4020-9107-0
– ident: ref18
  doi: 10.1109/IJCNN.2017.7966217
– ident: ref55
  doi: 10.1088/1742-6596/2438/1/012093
– ident: ref104
  doi: 10.1038/s41534-019-0157-8
– ident: ref99
  doi: 10.59275/j.melba.2021-g65b
– ident: ref54
  doi: 10.1103/PhysRevApplied.16.024051
– ident: ref7
  doi: 10.1007/978-981-19-9989-5_3
– ident: ref62
  doi: 10.1515/dx-2019-0104
– ident: ref106
  doi: 10.3389/fnins.2016.00248
– ident: ref31
  doi: 10.1201/9780429500459-11
– ident: ref46
  doi: 10.1103/PhysRevA.101.032308
– ident: ref56
  doi: 10.3390/math5010005
– ident: ref122
  doi: 10.1109/TETC.2020.3000734
– ident: ref1
  doi: 10.1109/COMITCon.2019.8862451
– ident: ref44
  doi: 10.1103/PhysRevX.7.041052
– year: 2001
  ident: ref127
  article-title: Quantum neural network
  publication-title: arXiv:quant-ph/0107012
– ident: ref69
  doi: 10.32604/iasc.2023.032262
– ident: ref74
  doi: 10.1109/ACCESS.2022.3232307
– ident: ref91
  doi: 10.1038/s41598-022-05971-9
– ident: ref128
  doi: 10.1109/ICTC49870.2020.9289439
– ident: ref93
  doi: 10.1007/s00521-022-07388-x
– year: 2022
  ident: ref63
  article-title: Secure quantum computing for healthcare sector: A short analysis
  publication-title: arXiv:2211.10027
– ident: ref133
  doi: 10.1088/2058-9565/ac39f5
– ident: ref25
  doi: 10.1109/ACCESS.2022.3195044
– ident: ref105
  doi: 10.3390/e21080763
– ident: ref27
  doi: 10.1016/j.eswa.2022.116512
– ident: ref78
  doi: 10.3390/math9040410
– ident: ref79
  doi: 10.1007/s10773-020-04656-1
– ident: ref22
  doi: 10.1155/2022/5164970
– ident: ref51
  doi: 10.1007/978-3-7908-1856-7_11
– ident: ref102
  doi: 10.1016/j.neucom.2019.07.026
– ident: ref59
  doi: 10.1103/PhysRevA.101.032308
– year: 2019
  ident: ref84
  article-title: VQNet: Library for a quantum-classical hybrid neural network
  publication-title: arXiv:1901.09133
– ident: ref47
  doi: 10.1080/00107514.2014.964942
– ident: ref60
  doi: 10.1146/annurev.bi.58.070189.002031
– ident: ref81
  doi: 10.1109/ISSPIT51521.2020.9408944
– ident: ref30
  doi: 10.1007/BF01011339
– ident: ref118
  doi: 10.1145/2663204.2663257
– ident: ref85
  doi: 10.1007/978-3-030-36718-3_47
– ident: ref21
  doi: 10.1186/2047-2501-2-3
– ident: ref110
  doi: 10.1016/j.bspc.2018.03.003
– ident: ref75
  doi: 10.1016/j.asoc.2021.107283
– ident: ref35
  doi: 10.1137/s0097539796298637
– ident: ref66
  doi: 10.1038/s41928-021-00687-6
– ident: ref86
  doi: 10.1109/TETC.2019.2901272
– ident: ref57
  doi: 10.1038/s41586-019-0980-2
– ident: ref37
  doi: 10.1016/S0167-2789(98)00042-6
– ident: ref96
  doi: 10.3906/elk-2006-94
– ident: ref100
  doi: 10.1007/s11128-020-2587-9
– ident: ref48
  doi: 10.1007/978-3-030-83098-4_6
– ident: ref76
  doi: 10.1109/TQE.2021.3103050
– ident: ref64
  doi: 10.1016/j.jnca.2021.103304
– ident: ref117
  doi: 10.23919/INDIACom54597.2022.9763118
– ident: ref103
  doi: 10.1109/TNNLS.2021.3084467
– ident: ref4
  doi: 10.1038/30687
– ident: ref29
  doi: 10.1145/2601248.2601268
– ident: ref65
  doi: 10.1021/acsinfecdis.0c00365
– year: 2022
  ident: ref8
  article-title: Systematic literature review: Quantum machine learning and its applications
  publication-title: arXiv:2201.04093
– year: 2021
  ident: ref98
  article-title: Medical image classification via quantum neural networks
  publication-title: arXiv:2109.01831
– ident: ref80
  doi: 10.1007/s10489-019-01604-3
– ident: ref36
  doi: 10.1145/367701.367709
– ident: ref92
  doi: 10.1093/jcde/qwac003
– ident: ref17
  doi: 10.1117/12.339989
– ident: ref33
  doi: 10.1098/rspa.1992.0167
– ident: ref72
  doi: 10.1007/s40747-021-00398-7
– year: 2018
  ident: ref45
  article-title: Classification with quantum neural networks on near term processors
  publication-title: arXiv:1802.06002
– ident: ref82
  doi: 10.32604/cmc.2021.013196
– ident: ref115
  doi: 10.1101/2022.05.18.22275295
– ident: ref12
  doi: 10.1002/spy2.284
– ident: ref94
  doi: 10.1016/j.compbiomed.2022.105472
– ident: ref124
  doi: 10.1007/978-3-319-19222-2_23
– ident: ref71
  doi: 10.1109/ICECCME55909.2022.9987991
– ident: ref16
  doi: 10.1103/PhysRevA.103.032430
– ident: ref52
  doi: 10.1007/s10773-021-04742-y
– ident: ref130
  doi: 10.1103/PhysRevA.103.042415
– ident: ref112
  doi: 10.1002/wcs.1343
– ident: ref68
  doi: 10.1109/IITCEE57236.2023.10090957
– ident: ref11
  doi: 10.1088/1361-6633/aab406
– ident: ref116
  doi: 10.1109/BHI56158.2022.9926814
– volume: 13
  start-page: 1
  issue: 6
  year: 2023
  ident: ref67
  article-title: Quantum machine learning applied to electronic healthcare records for ischemic heart disease classification
  publication-title: Hum.-Cent. Comput. Inf. Sci.
– ident: ref107
  doi: 10.1109/SECON.2014.6950751
– ident: ref28
  doi: 10.1109/ACCESS.2020.3041719
– ident: ref9
  doi: 10.1088/2632-2153/ac5997
– start-page: 1
  volume-title: Proc. Int. Conf. Innov. Trends Inf. Technol. (ICITIIT)
  ident: ref119
  article-title: Quanvolution neural network to recognize arrhythmia from 2D scaleogram features of ECG signals
– ident: ref13
  doi: 10.1098/rspa.2017.0551
– ident: ref53
  doi: 10.1109/ICASSP43922.2022.9747369
– year: 2019
  ident: ref83
  article-title: Quantum-enhanced supervised learning with variational quantum circuits
– year: 2022
  ident: ref26
  article-title: Systematic literature review: Quantum machine learning and its applications
  publication-title: arXiv:2201.04093
– ident: ref89
  doi: 10.1109/TNNLS.2023.3240238
– volume: 2842
  start-page: 30
  volume-title: Proc. CEUR Workshop
  ident: ref125
  article-title: The quantum version of random forest model for binary classification problem
– year: 2013
  ident: ref42
  article-title: Quantum algorithms for supervised and unsupervised machine learning
  publication-title: arXiv:1307.0411
– ident: ref20
  doi: 10.1016/j.jbi.2020.103671
– ident: ref34
  doi: 10.1145/167088.167097
– ident: ref15
  doi: 10.1038/nature23474
– year: 2014
  ident: ref132
  article-title: How ‘Quantum’ is the D-wave machine?
  publication-title: arXiv:1401.7087
– ident: ref23
  doi: 10.1162/99608f92.5a9fd72c
– volume: 2
  start-page: 1
  issue: 2
  year: 2002
  ident: ref111
  article-title: Fundamentals of EEG measurement
  publication-title: Meas. Sci. Technol.
– year: 2017
  ident: ref24
  article-title: Quantum machine learning for supervised pattern recognition
– year: 2021
  ident: ref14
  article-title: Supervised quantum machine learning models are kernel methods
  publication-title: arXiv:2101.11020
– ident: ref5
  doi: 10.1142/5528
– ident: ref43
  doi: 10.1103/PhysRevLett.117.130501
– year: 2022
  ident: ref39
  article-title: Quantum computing for data analysis in high energy physics
  publication-title: arXiv:2203.08805
– ident: ref114
  doi: 10.1016/j.eswa.2023.120306
– ident: ref121
  doi: 10.32604/jqc.2020.015018
– ident: ref123
  doi: 10.1504/IJCAT.2018.095942
– ident: ref120
  doi: 10.1109/ISVLSI51109.2021.00089
– ident: ref41
  doi: 10.26421/qic15.3-4-7
– ident: ref50
  doi: 10.1016/s1076-5670(08)70147-2
– ident: ref38
  doi: 10.1119/1.1463744
– ident: ref88
  doi: 10.1016/j.knosys.2023.110413
– ident: ref129
  doi: 10.1007/s11128-021-03384-7
– ident: ref70
  doi: 10.1109/DRCN57075.2023.10108230
– volume: 15
  start-page: 253
  volume-title: Proc. Amer. Soc. Clin. Oncol.
  ident: ref109
  article-title: Randomized controlled trial of adjuvant therapy with lymphoblastoid interferon in resected high risk renal cell carcinoma: An EOCG study
– ident: ref87
  doi: 10.3390/math11020376
– ident: ref61
  doi: 10.1002/1878-0261.12924
– ident: ref3
  doi: 10.1090/psapm/058/1922896
– ident: ref108
  doi: 10.3390/app9081526
– ident: ref113
  doi: 10.1109/10.1370
– ident: ref58
  doi: 10.1103/PhysRevLett.122.040504
– volume: 7
  start-page: 57
  issue: 11
  year: 2020
  ident: ref101
  article-title: Quantum neural networks for disease treatment identification
  publication-title: Eur. J. Mol. Clin. Med.
– year: 2020
  ident: ref126
  article-title: Quantum k-nearest neighbors algorithm
  publication-title: arXiv:2003.09187
– year: 2022
  ident: ref73
  article-title: Early heart disease prediction using hybrid quantum classification
  publication-title: arXiv:2208.08882
– ident: ref95
  doi: 10.1088/1742-6596/2046/1/012007
– ident: ref40
  doi: 10.1109/TNNLS.2018.2855446
– ident: ref77
  doi: 10.1109/ACCESS.2021.3139323
– start-page: L58
  volume-title: Proc. APS March Meeting Abstr.
  ident: ref131
  article-title: The IBM Q experience and QISKit open-source quantum computing software
– volume: 115
  start-page: 463
  issue: 5
  year: 2018
  ident: ref2
  article-title: The potential of quantum computing and machine learning to advance clinical research and change the practice of medicine
  publication-title: Missouri Med.
– ident: ref90
  doi: 10.1111/exsy.13308
– ident: ref10
  doi: 10.1021/acs.jcim.1c00166
– ident: ref49
  doi: 10.1007/s41781-021-00075-x
– ident: ref32
  doi: 10.1098/rspa.1985.0070
SSID ssj0000816957
Score 2.5549524
Snippet Quantum computing (QC) stands apart from traditional computing systems by employing revolutionary techniques for processing information. It leverages the power...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 11423
SubjectTerms Algorithms
Error correction
Harnesses
Health care
healthcare
Literature reviews
Machine learning
Quality control
Quantum computers
Quantum computing
Quantum entanglement
quantum machine learning algorithms
Quantum phenomena
Qubits (quantum computing)
R&D
Research & development
systematic review
Title Quantum Machine Learning Revolution in Healthcare: A Systematic Review of Emerging Perspectives and Applications
URI https://www.proquest.com/docview/2918610818
https://doaj.org/article/31128bb82d0f471d91bcf0bf8d643e88
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXi0mkeTJt7WRVkExSd4C82jImgV3fX3O0njuiLoxVOhJDSdTOaRmfkGoV3dWMa8FAV3nhSltqmROy2C4zrig_EqxOLks3M5vC1P78TdVKuvmBPWwQN3hDvgYBAoaxXzpAFB6jW1riG2UR50aVCpzBd03pQzlWSwolKLKsMMUaIP-oMB_BE4hKzc51zwUtJvqigh9v8QyEnLnCyihWwe4n63rCU0E9plND8FGriCXi7HQI3xEz5LeZABZ4jUe3wV3jMj4YcWDyeZXYe4j68niM24Cwfg5wbHG6nYpAhffJVcvuG69bg_FddeRbcnxzeDYZH7JhSOKzUCb1ATC4ZBSawD90Z5J2stwBOsaMMcqT08ait45UtRaeHrmtWBNrYKwnspNV9Ds-1zG9YRrkQMizYBZsuyIkwHaktZOxWCDsrxHmKfJDQug4rH3haPJjkXRJuO7ibS3WS699DeZNJLh6nx-_CjuDeToREQO70ANjGZTcxfbNJDW587a_IpfTNMUwXmI9gsG__xjU00F9fdXdBsodnR6zhsg8kysjuJOz8A_pzm2A
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Machine+Learning+Revolution+in+Healthcare%3A+A+Systematic+Review+of+Emerging+Perspectives+and+Applications&rft.jtitle=IEEE+access&rft.au=Ullah%2C+Ubaid&rft.au=Garcia-Zapirain%2C+Begonya&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=11423&rft.epage=11450&rft_id=info:doi/10.1109%2FACCESS.2024.3353461&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3353461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon