Quantum Machine Learning Revolution in Healthcare: A Systematic Review of Emerging Perspectives and Applications
Quantum computing (QC) stands apart from traditional computing systems by employing revolutionary techniques for processing information. It leverages the power of quantum bits (qubits) and harnesses the unique properties exhibited by subatomic particles, such as superposition, entanglement, and inte...
Saved in:
Published in | IEEE access Vol. 12; pp. 11423 - 11450 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
2024
IEEE |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2024.3353461 |
Cover
Loading…
Abstract | Quantum computing (QC) stands apart from traditional computing systems by employing revolutionary techniques for processing information. It leverages the power of quantum bits (qubits) and harnesses the unique properties exhibited by subatomic particles, such as superposition, entanglement, and interference. These quantum phenomena enable quantum computers to operate on an entirely different level, exponentially surpassing the computational capabilities of classical computers. By manipulating qubits and capitalising on their quantum states, QC holds the promise of solving complex problems that are currently intractable in the case of traditional computers. The potential impact of QC extends beyond its computational power and reaches into various critical sectors, including healthcare. Scientists and engineers are working diligently to overcome various challenges and limitations associated with QC technology. These include issues related to qubit stability, error correction, scalability, and noise reduction. In such a scenario, our proposed work provides a concise summary of the most recent state of the art based on articles published between 2018 and 2023 in the healthcare domain. Additionally, the approach follows the necessary guidelines for conducting a systematic literature review. This includes utilising research questions and evaluating the quality of the articles using specific metrics. Initially, a total of 2,038 records were acquired from multiple databases, with 468 duplicate records and 1,053 records unrelated to healthcare subsequently excluded. A further 258, 68, and 39 records were eliminated based on title, abstract, and full-text criteria, respectively. Ultimately, the remaining 49 articles were subject to evaluation, thus providing a brief overview of the recent literature and contributing to existing knowledge and comprehension of Quantum Machine Learning (QML) algorithms and their applications in the healthcare sector. This analysis establishes a foundational framework for forthcoming research and development at the intersection of QC and machine learning, ultimately paving the way for innovative approaches to addressing complex challenges within the healthcare domain. |
---|---|
AbstractList | Quantum computing (QC) stands apart from traditional computing systems by employing revolutionary techniques for processing information. It leverages the power of quantum bits (qubits) and harnesses the unique properties exhibited by subatomic particles, such as superposition, entanglement, and interference. These quantum phenomena enable quantum computers to operate on an entirely different level, exponentially surpassing the computational capabilities of classical computers. By manipulating qubits and capitalising on their quantum states, QC holds the promise of solving complex problems that are currently intractable in the case of traditional computers. The potential impact of QC extends beyond its computational power and reaches into various critical sectors, including healthcare. Scientists and engineers are working diligently to overcome various challenges and limitations associated with QC technology. These include issues related to qubit stability, error correction, scalability, and noise reduction. In such a scenario, our proposed work provides a concise summary of the most recent state of the art based on articles published between 2018 and 2023 in the healthcare domain. Additionally, the approach follows the necessary guidelines for conducting a systematic literature review. This includes utilising research questions and evaluating the quality of the articles using specific metrics. Initially, a total of 2,038 records were acquired from multiple databases, with 468 duplicate records and 1,053 records unrelated to healthcare subsequently excluded. A further 258, 68, and 39 records were eliminated based on title, abstract, and full-text criteria, respectively. Ultimately, the remaining 49 articles were subject to evaluation, thus providing a brief overview of the recent literature and contributing to existing knowledge and comprehension of Quantum Machine Learning (QML) algorithms and their applications in the healthcare sector. This analysis establishes a foundational framework for forthcoming research and development at the intersection of QC and machine learning, ultimately paving the way for innovative approaches to addressing complex challenges within the healthcare domain. |
Author | Garcia-Zapirain, Begonya Ullah, Ubaid |
Author_xml | – sequence: 1 givenname: Ubaid orcidid: 0000-0001-8149-3430 surname: Ullah fullname: Ullah, Ubaid organization: eVIDA Research Group, University of Deusto, Bilbao, Spain – sequence: 2 givenname: Begonya orcidid: 0000-0002-9356-1186 surname: Garcia-Zapirain fullname: Garcia-Zapirain, Begonya organization: eVIDA Research Group, University of Deusto, Bilbao, Spain |
BookMark | eNp9kUtvEzEUhUeoSJTSX8DGEusEP2Y8HnZRFNpKQTwCa-uOfSd1NLEH2ynqv8fTVAixwJtrX53z2b7ndXXhg8eqesvokjHavV-t15vdbskpr5dCNKKW7EV1yZnsFuUkL_7av6quUzrQslRpNe1lNX09gc-nI_kE5t55JFuE6J3fk2_4EMZTdsET58ktwpjvDUT8QFZk95gyHiE7M8sc_iJhIJsjxv3s_IIxTWiye8BEwFuymqbRGZhZ6U31coAx4fVzvap-fNx8X98utp9v7tar7cIIpfJCso72tWA17Y3kjbJGQtfwpm7ZwA0FWwr0jWht3bRdYwE4IBv6FhtrpezEVXV35toABz1Fd4T4qAM4_dQIca8hlg-MqAVjXPW94pYOhW871puB9oOyshaoVGG9O7OmGH6eMGV9CKfoy_M175iSrIxzVomzysSQUsThz62M6jkpfU5Kz0np56SKq_vHZVx-GlWO4Mb_en8Dgdma5g |
CitedBy_id | crossref_primary_10_3390_medsci12040067 crossref_primary_10_1096_fba_2024_00198 crossref_primary_10_1038_s41598_024_67392_0 crossref_primary_10_1007_s11554_024_01493_x crossref_primary_10_1109_ACCESS_2024_3395512 crossref_primary_10_1109_ACCESS_2024_3408282 crossref_primary_10_1002_widm_1568 crossref_primary_10_1007_s11128_024_04404_y crossref_primary_10_1007_s11831_024_10183_7 crossref_primary_10_1007_s42484_024_00218_4 crossref_primary_10_3390_math12172625 crossref_primary_10_3390_a18030156 crossref_primary_10_1007_s42452_024_06220_6 crossref_primary_10_3389_fpubh_2024_1522673 crossref_primary_10_3390_electronics13224462 crossref_primary_10_3233_XST_230429 |
Cites_doi | 10.1007/s12559-021-09926-6 10.1007/978-1-4020-9107-0 10.1109/IJCNN.2017.7966217 10.1088/1742-6596/2438/1/012093 10.1038/s41534-019-0157-8 10.59275/j.melba.2021-g65b 10.1103/PhysRevApplied.16.024051 10.1007/978-981-19-9989-5_3 10.1515/dx-2019-0104 10.3389/fnins.2016.00248 10.1201/9780429500459-11 10.1103/PhysRevA.101.032308 10.3390/math5010005 10.1109/TETC.2020.3000734 10.1109/COMITCon.2019.8862451 10.1103/PhysRevX.7.041052 10.32604/iasc.2023.032262 10.1109/ACCESS.2022.3232307 10.1038/s41598-022-05971-9 10.1109/ICTC49870.2020.9289439 10.1007/s00521-022-07388-x 10.1088/2058-9565/ac39f5 10.1109/ACCESS.2022.3195044 10.3390/e21080763 10.1016/j.eswa.2022.116512 10.3390/math9040410 10.1007/s10773-020-04656-1 10.1155/2022/5164970 10.1007/978-3-7908-1856-7_11 10.1016/j.neucom.2019.07.026 10.1080/00107514.2014.964942 10.1146/annurev.bi.58.070189.002031 10.1109/ISSPIT51521.2020.9408944 10.1007/BF01011339 10.1145/2663204.2663257 10.1007/978-3-030-36718-3_47 10.1186/2047-2501-2-3 10.1016/j.bspc.2018.03.003 10.1016/j.asoc.2021.107283 10.1137/s0097539796298637 10.1038/s41928-021-00687-6 10.1109/TETC.2019.2901272 10.1038/s41586-019-0980-2 10.1016/S0167-2789(98)00042-6 10.3906/elk-2006-94 10.1007/s11128-020-2587-9 10.1007/978-3-030-83098-4_6 10.1109/TQE.2021.3103050 10.1016/j.jnca.2021.103304 10.23919/INDIACom54597.2022.9763118 10.1109/TNNLS.2021.3084467 10.1038/30687 10.1145/2601248.2601268 10.1021/acsinfecdis.0c00365 10.1007/s10489-019-01604-3 10.1145/367701.367709 10.1093/jcde/qwac003 10.1117/12.339989 10.1098/rspa.1992.0167 10.1007/s40747-021-00398-7 10.32604/cmc.2021.013196 10.1101/2022.05.18.22275295 10.1002/spy2.284 10.1016/j.compbiomed.2022.105472 10.1007/978-3-319-19222-2_23 10.1109/ICECCME55909.2022.9987991 10.1103/PhysRevA.103.032430 10.1007/s10773-021-04742-y 10.1103/PhysRevA.103.042415 10.1002/wcs.1343 10.1109/IITCEE57236.2023.10090957 10.1088/1361-6633/aab406 10.1109/BHI56158.2022.9926814 10.1109/SECON.2014.6950751 10.1109/ACCESS.2020.3041719 10.1088/2632-2153/ac5997 10.1098/rspa.2017.0551 10.1109/ICASSP43922.2022.9747369 10.1109/TNNLS.2023.3240238 10.1016/j.jbi.2020.103671 10.1145/167088.167097 10.1038/nature23474 10.1162/99608f92.5a9fd72c 10.1142/5528 10.1103/PhysRevLett.117.130501 10.1016/j.eswa.2023.120306 10.32604/jqc.2020.015018 10.1504/IJCAT.2018.095942 10.1109/ISVLSI51109.2021.00089 10.26421/qic15.3-4-7 10.1016/s1076-5670(08)70147-2 10.1119/1.1463744 10.1016/j.knosys.2023.110413 10.1007/s11128-021-03384-7 10.1109/DRCN57075.2023.10108230 10.3390/math11020376 10.1002/1878-0261.12924 10.1090/psapm/058/1922896 10.3390/app9081526 10.1109/10.1370 10.1103/PhysRevLett.122.040504 10.1088/1742-6596/2046/1/012007 10.1109/TNNLS.2018.2855446 10.1109/ACCESS.2021.3139323 10.1111/exsy.13308 10.1021/acs.jcim.1c00166 10.1007/s41781-021-00075-x 10.1098/rspa.1985.0070 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3353461 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 11450 |
ExternalDocumentID | oai_doaj_org_article_31128bb82d0f471d91bcf0bf8d643e88 10_1109_ACCESS_2024_3353461 |
GroupedDBID | 0R~ 4.4 5VS 6IK AAJGR AAYXX ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ CITATION EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIG RNS 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c388t-6190b43140bc6258dc6a9525471f2c0ad1f2ab537d45795daa2ae1fb7e5dd6693 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:22:48 EDT 2025 Mon Jun 30 04:35:34 EDT 2025 Tue Jul 01 04:14:17 EDT 2025 Thu Apr 24 22:53:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-6190b43140bc6258dc6a9525471f2c0ad1f2ab537d45795daa2ae1fb7e5dd6693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8149-3430 0000-0002-9356-1186 |
OpenAccessLink | https://doaj.org/article/31128bb82d0f471d91bcf0bf8d643e88 |
PQID | 2918610818 |
PQPubID | 4845423 |
PageCount | 28 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_31128bb82d0f471d91bcf0bf8d643e88 proquest_journals_2918610818 crossref_primary_10_1109_ACCESS_2024_3353461 crossref_citationtrail_10_1109_ACCESS_2024_3353461 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationYear | 2024 |
Publisher | The Institute of Electrical and Electronics Engineers, Inc. (IEEE) IEEE |
Publisher_xml | – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: IEEE |
References | ref57 ref56 Schuld (ref14) 2021 ref59 ref58 ref53 ref52 ref55 ref54 Mathur (ref98) 2021 Dl (ref109); 15 ref51 ref50 ref46 ref48 ref47 ref41 ref44 ref43 Sridevi (ref119) Mardirosian (ref83) 2019 ref49 ref7 Garca (ref26) 2022 ref9 ref4 ref3 ref5 ref100 ref40 ref35 ref34 ref37 ref36 García (ref8) 2022 ref31 ref30 ref33 ref32 ref38 Farhi (ref45) 2018 ref23 Schuld (ref24) 2017 ref25 ref20 ref22 ref21 Solenov (ref2) 2018; 115 Lloyd (ref42) 2013 ref28 ref27 ref29 Myrvold (ref6) 2009 Chen (ref84) 2019 ref13 Teplan (ref111) 2002; 2 ref12 ref15 ref128 ref129 ref97 Shin (ref132) 2014 ref96 ref11 ref99 ref124 ref10 ref17 ref16 ref18 Maheshwari (ref67) 2023; 13 Khadiev (ref125); 2842 ref93 ref133 ref92 ref95 ref94 ref130 ref91 ref90 ref89 ref86 ref85 ref88 ref87 Altaisky (ref127) 2001 Basheer (ref126) 2020 Solenov (ref19) 2018; 115 ref82 ref81 Heidari (ref73) 2022 Dutt (ref101) 2020; 7 ref80 ref79 ref108 ref78 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref1 Delgado (ref39) 2022 Cross (ref131) ref71 ref70 ref112 ref72 ref110 Srikanth (ref63) 2022 ref68 ref117 ref69 ref118 ref64 ref115 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
References_xml | – ident: ref97 doi: 10.1007/s12559-021-09926-6 – volume: 115 start-page: 463 issue: 5 year: 2018 ident: ref19 article-title: The potential of quantum computing and machine learning to advance clinical research and change the practice of medicine publication-title: Missouri Med. – start-page: 379 volume-title: Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle: Essays in Honour of Abner Shimony year: 2009 ident: ref6 article-title: Quantum gravity computers: On the theory of computation with indefinite causal structure doi: 10.1007/978-1-4020-9107-0 – ident: ref18 doi: 10.1109/IJCNN.2017.7966217 – ident: ref55 doi: 10.1088/1742-6596/2438/1/012093 – ident: ref104 doi: 10.1038/s41534-019-0157-8 – ident: ref99 doi: 10.59275/j.melba.2021-g65b – ident: ref54 doi: 10.1103/PhysRevApplied.16.024051 – ident: ref7 doi: 10.1007/978-981-19-9989-5_3 – ident: ref62 doi: 10.1515/dx-2019-0104 – ident: ref106 doi: 10.3389/fnins.2016.00248 – ident: ref31 doi: 10.1201/9780429500459-11 – ident: ref46 doi: 10.1103/PhysRevA.101.032308 – ident: ref56 doi: 10.3390/math5010005 – ident: ref122 doi: 10.1109/TETC.2020.3000734 – ident: ref1 doi: 10.1109/COMITCon.2019.8862451 – ident: ref44 doi: 10.1103/PhysRevX.7.041052 – year: 2001 ident: ref127 article-title: Quantum neural network publication-title: arXiv:quant-ph/0107012 – ident: ref69 doi: 10.32604/iasc.2023.032262 – ident: ref74 doi: 10.1109/ACCESS.2022.3232307 – ident: ref91 doi: 10.1038/s41598-022-05971-9 – ident: ref128 doi: 10.1109/ICTC49870.2020.9289439 – ident: ref93 doi: 10.1007/s00521-022-07388-x – year: 2022 ident: ref63 article-title: Secure quantum computing for healthcare sector: A short analysis publication-title: arXiv:2211.10027 – ident: ref133 doi: 10.1088/2058-9565/ac39f5 – ident: ref25 doi: 10.1109/ACCESS.2022.3195044 – ident: ref105 doi: 10.3390/e21080763 – ident: ref27 doi: 10.1016/j.eswa.2022.116512 – ident: ref78 doi: 10.3390/math9040410 – ident: ref79 doi: 10.1007/s10773-020-04656-1 – ident: ref22 doi: 10.1155/2022/5164970 – ident: ref51 doi: 10.1007/978-3-7908-1856-7_11 – ident: ref102 doi: 10.1016/j.neucom.2019.07.026 – ident: ref59 doi: 10.1103/PhysRevA.101.032308 – year: 2019 ident: ref84 article-title: VQNet: Library for a quantum-classical hybrid neural network publication-title: arXiv:1901.09133 – ident: ref47 doi: 10.1080/00107514.2014.964942 – ident: ref60 doi: 10.1146/annurev.bi.58.070189.002031 – ident: ref81 doi: 10.1109/ISSPIT51521.2020.9408944 – ident: ref30 doi: 10.1007/BF01011339 – ident: ref118 doi: 10.1145/2663204.2663257 – ident: ref85 doi: 10.1007/978-3-030-36718-3_47 – ident: ref21 doi: 10.1186/2047-2501-2-3 – ident: ref110 doi: 10.1016/j.bspc.2018.03.003 – ident: ref75 doi: 10.1016/j.asoc.2021.107283 – ident: ref35 doi: 10.1137/s0097539796298637 – ident: ref66 doi: 10.1038/s41928-021-00687-6 – ident: ref86 doi: 10.1109/TETC.2019.2901272 – ident: ref57 doi: 10.1038/s41586-019-0980-2 – ident: ref37 doi: 10.1016/S0167-2789(98)00042-6 – ident: ref96 doi: 10.3906/elk-2006-94 – ident: ref100 doi: 10.1007/s11128-020-2587-9 – ident: ref48 doi: 10.1007/978-3-030-83098-4_6 – ident: ref76 doi: 10.1109/TQE.2021.3103050 – ident: ref64 doi: 10.1016/j.jnca.2021.103304 – ident: ref117 doi: 10.23919/INDIACom54597.2022.9763118 – ident: ref103 doi: 10.1109/TNNLS.2021.3084467 – ident: ref4 doi: 10.1038/30687 – ident: ref29 doi: 10.1145/2601248.2601268 – ident: ref65 doi: 10.1021/acsinfecdis.0c00365 – year: 2022 ident: ref8 article-title: Systematic literature review: Quantum machine learning and its applications publication-title: arXiv:2201.04093 – year: 2021 ident: ref98 article-title: Medical image classification via quantum neural networks publication-title: arXiv:2109.01831 – ident: ref80 doi: 10.1007/s10489-019-01604-3 – ident: ref36 doi: 10.1145/367701.367709 – ident: ref92 doi: 10.1093/jcde/qwac003 – ident: ref17 doi: 10.1117/12.339989 – ident: ref33 doi: 10.1098/rspa.1992.0167 – ident: ref72 doi: 10.1007/s40747-021-00398-7 – year: 2018 ident: ref45 article-title: Classification with quantum neural networks on near term processors publication-title: arXiv:1802.06002 – ident: ref82 doi: 10.32604/cmc.2021.013196 – ident: ref115 doi: 10.1101/2022.05.18.22275295 – ident: ref12 doi: 10.1002/spy2.284 – ident: ref94 doi: 10.1016/j.compbiomed.2022.105472 – ident: ref124 doi: 10.1007/978-3-319-19222-2_23 – ident: ref71 doi: 10.1109/ICECCME55909.2022.9987991 – ident: ref16 doi: 10.1103/PhysRevA.103.032430 – ident: ref52 doi: 10.1007/s10773-021-04742-y – ident: ref130 doi: 10.1103/PhysRevA.103.042415 – ident: ref112 doi: 10.1002/wcs.1343 – ident: ref68 doi: 10.1109/IITCEE57236.2023.10090957 – ident: ref11 doi: 10.1088/1361-6633/aab406 – ident: ref116 doi: 10.1109/BHI56158.2022.9926814 – volume: 13 start-page: 1 issue: 6 year: 2023 ident: ref67 article-title: Quantum machine learning applied to electronic healthcare records for ischemic heart disease classification publication-title: Hum.-Cent. Comput. Inf. Sci. – ident: ref107 doi: 10.1109/SECON.2014.6950751 – ident: ref28 doi: 10.1109/ACCESS.2020.3041719 – ident: ref9 doi: 10.1088/2632-2153/ac5997 – start-page: 1 volume-title: Proc. Int. Conf. Innov. Trends Inf. Technol. (ICITIIT) ident: ref119 article-title: Quanvolution neural network to recognize arrhythmia from 2D scaleogram features of ECG signals – ident: ref13 doi: 10.1098/rspa.2017.0551 – ident: ref53 doi: 10.1109/ICASSP43922.2022.9747369 – year: 2019 ident: ref83 article-title: Quantum-enhanced supervised learning with variational quantum circuits – year: 2022 ident: ref26 article-title: Systematic literature review: Quantum machine learning and its applications publication-title: arXiv:2201.04093 – ident: ref89 doi: 10.1109/TNNLS.2023.3240238 – volume: 2842 start-page: 30 volume-title: Proc. CEUR Workshop ident: ref125 article-title: The quantum version of random forest model for binary classification problem – year: 2013 ident: ref42 article-title: Quantum algorithms for supervised and unsupervised machine learning publication-title: arXiv:1307.0411 – ident: ref20 doi: 10.1016/j.jbi.2020.103671 – ident: ref34 doi: 10.1145/167088.167097 – ident: ref15 doi: 10.1038/nature23474 – year: 2014 ident: ref132 article-title: How ‘Quantum’ is the D-wave machine? publication-title: arXiv:1401.7087 – ident: ref23 doi: 10.1162/99608f92.5a9fd72c – volume: 2 start-page: 1 issue: 2 year: 2002 ident: ref111 article-title: Fundamentals of EEG measurement publication-title: Meas. Sci. Technol. – year: 2017 ident: ref24 article-title: Quantum machine learning for supervised pattern recognition – year: 2021 ident: ref14 article-title: Supervised quantum machine learning models are kernel methods publication-title: arXiv:2101.11020 – ident: ref5 doi: 10.1142/5528 – ident: ref43 doi: 10.1103/PhysRevLett.117.130501 – year: 2022 ident: ref39 article-title: Quantum computing for data analysis in high energy physics publication-title: arXiv:2203.08805 – ident: ref114 doi: 10.1016/j.eswa.2023.120306 – ident: ref121 doi: 10.32604/jqc.2020.015018 – ident: ref123 doi: 10.1504/IJCAT.2018.095942 – ident: ref120 doi: 10.1109/ISVLSI51109.2021.00089 – ident: ref41 doi: 10.26421/qic15.3-4-7 – ident: ref50 doi: 10.1016/s1076-5670(08)70147-2 – ident: ref38 doi: 10.1119/1.1463744 – ident: ref88 doi: 10.1016/j.knosys.2023.110413 – ident: ref129 doi: 10.1007/s11128-021-03384-7 – ident: ref70 doi: 10.1109/DRCN57075.2023.10108230 – volume: 15 start-page: 253 volume-title: Proc. Amer. Soc. Clin. Oncol. ident: ref109 article-title: Randomized controlled trial of adjuvant therapy with lymphoblastoid interferon in resected high risk renal cell carcinoma: An EOCG study – ident: ref87 doi: 10.3390/math11020376 – ident: ref61 doi: 10.1002/1878-0261.12924 – ident: ref3 doi: 10.1090/psapm/058/1922896 – ident: ref108 doi: 10.3390/app9081526 – ident: ref113 doi: 10.1109/10.1370 – ident: ref58 doi: 10.1103/PhysRevLett.122.040504 – volume: 7 start-page: 57 issue: 11 year: 2020 ident: ref101 article-title: Quantum neural networks for disease treatment identification publication-title: Eur. J. Mol. Clin. Med. – year: 2020 ident: ref126 article-title: Quantum k-nearest neighbors algorithm publication-title: arXiv:2003.09187 – year: 2022 ident: ref73 article-title: Early heart disease prediction using hybrid quantum classification publication-title: arXiv:2208.08882 – ident: ref95 doi: 10.1088/1742-6596/2046/1/012007 – ident: ref40 doi: 10.1109/TNNLS.2018.2855446 – ident: ref77 doi: 10.1109/ACCESS.2021.3139323 – start-page: L58 volume-title: Proc. APS March Meeting Abstr. ident: ref131 article-title: The IBM Q experience and QISKit open-source quantum computing software – volume: 115 start-page: 463 issue: 5 year: 2018 ident: ref2 article-title: The potential of quantum computing and machine learning to advance clinical research and change the practice of medicine publication-title: Missouri Med. – ident: ref90 doi: 10.1111/exsy.13308 – ident: ref10 doi: 10.1021/acs.jcim.1c00166 – ident: ref49 doi: 10.1007/s41781-021-00075-x – ident: ref32 doi: 10.1098/rspa.1985.0070 |
SSID | ssj0000816957 |
Score | 2.5549524 |
Snippet | Quantum computing (QC) stands apart from traditional computing systems by employing revolutionary techniques for processing information. It leverages the power... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 11423 |
SubjectTerms | Algorithms Error correction Harnesses Health care healthcare Literature reviews Machine learning Quality control Quantum computers Quantum computing Quantum entanglement quantum machine learning algorithms Quantum phenomena Qubits (quantum computing) R&D Research & development systematic review |
Title | Quantum Machine Learning Revolution in Healthcare: A Systematic Review of Emerging Perspectives and Applications |
URI | https://www.proquest.com/docview/2918610818 https://doaj.org/article/31128bb82d0f471d91bcf0bf8d643e88 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXi0mkeTJt7WRVkExSd4C82jImgV3fX3O0njuiLoxVOhJDSdTOaRmfkGoV3dWMa8FAV3nhSltqmROy2C4zrig_EqxOLks3M5vC1P78TdVKuvmBPWwQN3hDvgYBAoaxXzpAFB6jW1riG2UR50aVCpzBd03pQzlWSwolKLKsMMUaIP-oMB_BE4hKzc51zwUtJvqigh9v8QyEnLnCyihWwe4n63rCU0E9plND8FGriCXi7HQI3xEz5LeZABZ4jUe3wV3jMj4YcWDyeZXYe4j68niM24Cwfg5wbHG6nYpAhffJVcvuG69bg_FddeRbcnxzeDYZH7JhSOKzUCb1ATC4ZBSawD90Z5J2stwBOsaMMcqT08ait45UtRaeHrmtWBNrYKwnspNV9Ds-1zG9YRrkQMizYBZsuyIkwHaktZOxWCDsrxHmKfJDQug4rH3haPJjkXRJuO7ibS3WS699DeZNJLh6nx-_CjuDeToREQO70ANjGZTcxfbNJDW587a_IpfTNMUwXmI9gsG__xjU00F9fdXdBsodnR6zhsg8kysjuJOz8A_pzm2A |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Machine+Learning+Revolution+in+Healthcare%3A+A+Systematic+Review+of+Emerging+Perspectives+and+Applications&rft.jtitle=IEEE+access&rft.au=Ullah%2C+Ubaid&rft.au=Garcia-Zapirain%2C+Begonya&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=11423&rft.epage=11450&rft_id=info:doi/10.1109%2FACCESS.2024.3353461&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3353461 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |