Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption
This paper introduces a novel methodology for the global optimization of general constrained grey-box problems. A grey-box problem may contain a combination of black-box constraints and constraints with a known functional form. The novel features of this work include (i) the selection of initial sam...
Saved in:
Published in | Journal of global optimization Vol. 67; no. 1-2; pp. 3 - 42 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2017
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0925-5001 1573-2916 |
DOI | 10.1007/s10898-015-0376-2 |
Cover
Loading…
Abstract | This paper introduces a novel methodology for the global optimization of general constrained grey-box problems. A grey-box problem may contain a combination of black-box constraints and constraints with a known functional form. The novel features of this work include (i) the selection of initial samples through a subset selection optimization problem from a large number of faster low-fidelity model samples (when a low-fidelity model is available), (ii) the exploration of a diverse set of interpolating and non-interpolating functional forms for representing the objective function and each of the constraints, (iii) the global optimization of the parameter estimation of surrogate functions and the global optimization of the constrained grey-box formulation, and (iv) the updating of variable bounds based on a clustering technique. The performance of the algorithm is presented for a set of case studies representing an expensive non-linear algebraic partial differential equation simulation of a pressure swing adsorption system for
CO
2
. We address three significant sources of variability and their effects on the consistency and reliability of the algorithm: (i) the initial sampling variability, (ii) the type of surrogate function, and (iii) global versus local optimization of the surrogate function parameter estimation and overall surrogate constrained grey-box problem. It is shown that globally optimizing the parameters in the parameter estimation model, and globally optimizing the constrained grey-box formulation has a significant impact on the performance. The effect of sampling variability is mitigated by a two-stage sampling approach which exploits information from reduced-order models. Finally, the proposed global optimization approach is compared to existing constrained derivative-free optimization algorithms. |
---|---|
AbstractList | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) This paper introduces a novel methodology for the global optimization of general constrained grey-box problems. A grey-box problem may contain a combination of black-box constraints and constraints with a known functional form. The novel features of this work include (i) the selection of initial samples through a subset selection optimization problem from a large number of faster low-fidelity model samples (when a low-fidelity model is available), (ii) the exploration of a diverse set of interpolating and non-interpolating functional forms for representing the objective function and each of the constraints, (iii) the global optimization of the parameter estimation of surrogate functions and the global optimization of the constrained grey-box formulation, and (iv) the updating of variable bounds based on a clustering technique. The performance of the algorithm is presented for a set of case studies representing an expensive non-linear algebraic partial differential equation simulation of a pressure swing adsorption system for ... We address three significant sources of variability and their effects on the consistency and reliability of the algorithm: (i) the initial sampling variability, (ii) the type of surrogate function, and (iii) global versus local optimization of the surrogate function parameter estimation and overall surrogate constrained grey-box problem. It is shown that globally optimizing the parameters in the parameter estimation model, and globally optimizing the constrained grey-box formulation has a significant impact on the performance. The effect of sampling variability is mitigated by a two-stage sampling approach which exploits information from reduced-order models. Finally, the proposed global optimization approach is compared to existing constrained derivative-free optimization algorithms. This paper introduces a novel methodology for the global optimization of general constrained grey-box problems. A grey-box problem may contain a combination of black-box constraints and constraints with a known functional form. The novel features of this work include (i) the selection of initial samples through a subset selection optimization problem from a large number of faster low-fidelity model samples (when a low-fidelity model is available), (ii) the exploration of a diverse set of interpolating and non-interpolating functional forms for representing the objective function and each of the constraints, (iii) the global optimization of the parameter estimation of surrogate functions and the global optimization of the constrained grey-box formulation, and (iv) the updating of variable bounds based on a clustering technique. The performance of the algorithm is presented for a set of case studies representing an expensive non-linear algebraic partial differential equation simulation of a pressure swing adsorption system for CO 2 . We address three significant sources of variability and their effects on the consistency and reliability of the algorithm: (i) the initial sampling variability, (ii) the type of surrogate function, and (iii) global versus local optimization of the surrogate function parameter estimation and overall surrogate constrained grey-box problem. It is shown that globally optimizing the parameters in the parameter estimation model, and globally optimizing the constrained grey-box formulation has a significant impact on the performance. The effect of sampling variability is mitigated by a two-stage sampling approach which exploits information from reduced-order models. Finally, the proposed global optimization approach is compared to existing constrained derivative-free optimization algorithms. This paper introduces a novel methodology for the global optimization of general constrained grey-box problems. A grey-box problem may contain a combination of black-box constraints and constraints with a known functional form. The novel features of this work include (i) the selection of initial samples through a subset selection optimization problem from a large number of faster low-fidelity model samples (when a low-fidelity model is available), (ii) the exploration of a diverse set of interpolating and non-interpolating functional forms for representing the objective function and each of the constraints, (iii) the global optimization of the parameter estimation of surrogate functions and the global optimization of the constrained grey-box formulation, and (iv) the updating of variable bounds based on a clustering technique. The performance of the algorithm is presented for a set of case studies representing an expensive non-linear algebraic partial differential equation simulation of a pressure swing adsorption system for [Formula omitted]. We address three significant sources of variability and their effects on the consistency and reliability of the algorithm: (i) the initial sampling variability, (ii) the type of surrogate function, and (iii) global versus local optimization of the surrogate function parameter estimation and overall surrogate constrained grey-box problem. It is shown that globally optimizing the parameters in the parameter estimation model, and globally optimizing the constrained grey-box formulation has a significant impact on the performance. The effect of sampling variability is mitigated by a two-stage sampling approach which exploits information from reduced-order models. Finally, the proposed global optimization approach is compared to existing constrained derivative-free optimization algorithms. |
Audience | Academic |
Author | Floudas, Christodoulos A. Hasan, M. M. Faruque Boukouvala, Fani |
Author_xml | – sequence: 1 givenname: Fani surname: Boukouvala fullname: Boukouvala, Fani organization: Artie McFerrin Department of Chemical Engineering, Texas A&M University, Texas A&M Energy Institute, Texas A&M University – sequence: 2 givenname: M. M. Faruque surname: Hasan fullname: Hasan, M. M. Faruque organization: Artie McFerrin Department of Chemical Engineering, Texas A&M University, Texas A&M Energy Institute, Texas A&M University – sequence: 3 givenname: Christodoulos A. surname: Floudas fullname: Floudas, Christodoulos A. email: floudas@tamu.edu organization: Artie McFerrin Department of Chemical Engineering, Texas A&M University, Texas A&M Energy Institute, Texas A&M University |
BookMark | eNp9kcFu1jAQhC1UJP4WHoCbJS5cUnadOLa5VaUUpEpwgLPlJHZwldjBzq9SnoGHxiEcoBLIB0ur-cbemVNyEmKwhDxHOEcA8SojSCUrQF5BLdqKPSIH5KKumML2hBxAMV5xAHxCTnO-BQAlOTuQH9dT7MxE47L62X83q4-BRkdHG2wq8z6GvCbjgx3omOx91cVvdI6DnfJrGuwdne36JQ7UhIH6NVOzLJPvd5s1_oV_fHOVqYuJLsnmfEyW5jsfRmqGHNOyEU_JY2embJ_9vs_I57dXny7fVTcfrt9fXtxUfS3lWnFpsOkabFtnUQzMceOg5ig7Dh30UqFzCAJY33QoDLCaNQOaFoxQCErUZ-Tl7ruk-PVo86pnn3s7TSbYeMwapVBKSsXbIn3xQHobjymU3xUVLzJVN5vh-a4azWS1Dy6WpftyBjv7koF1vswvBMoGa4FNAXAH-hRzTtbpJfnZpHuNoLdC9V6oLoXqrVDNCiMeML1ffyW9JTz9l2Q7mcsrYbTpjyX-Cf0EosG3lg |
CitedBy_id | crossref_primary_10_1016_j_coche_2018_12_003 crossref_primary_10_1007_s10898_017_0574_1 crossref_primary_10_1021_acs_iecr_8b00207 crossref_primary_10_1016_j_compchemeng_2018_06_027 crossref_primary_10_1016_j_compchemeng_2021_107447 crossref_primary_10_1021_acs_iecr_7b01688 crossref_primary_10_1016_j_cej_2021_130248 crossref_primary_10_1016_j_cep_2018_07_014 crossref_primary_10_1016_j_compchemeng_2018_01_005 crossref_primary_10_1016_j_compchemeng_2021_107365 crossref_primary_10_1016_j_compchemeng_2019_106580 crossref_primary_10_1016_j_finel_2021_103572 crossref_primary_10_1021_acs_iecr_4c01014 crossref_primary_10_1016_j_compchemeng_2019_03_010 crossref_primary_10_1002_aic_16657 crossref_primary_10_1016_j_compchemeng_2018_02_017 crossref_primary_10_1016_j_compchemeng_2023_108210 crossref_primary_10_1007_s10898_018_0643_0 crossref_primary_10_1016_j_compchemeng_2018_02_014 crossref_primary_10_1002_aic_17189 crossref_primary_10_1021_acs_iecr_9b04173 crossref_primary_10_1021_acs_iecr_8b02543 crossref_primary_10_1002_aic_17624 crossref_primary_10_1016_j_compchemeng_2022_107925 crossref_primary_10_1515_cppm_2022_0081 crossref_primary_10_1016_j_cherd_2022_10_002 crossref_primary_10_1002_cite_201800086 crossref_primary_10_1016_j_compchemeng_2021_107311 crossref_primary_10_1007_s10596_016_9610_3 crossref_primary_10_1016_j_chaos_2023_114154 crossref_primary_10_1016_j_jiec_2024_08_025 crossref_primary_10_1016_j_compchemeng_2020_107051 crossref_primary_10_1016_j_compchemeng_2023_108174 crossref_primary_10_1016_j_compchemeng_2017_10_020 crossref_primary_10_1021_acs_iecr_0c02720 crossref_primary_10_1016_j_compchemeng_2019_106567 crossref_primary_10_1016_j_compchemeng_2024_108584 crossref_primary_10_3390_pr12122753 crossref_primary_10_1016_j_compchemeng_2024_108821 crossref_primary_10_1002_aic_16364 crossref_primary_10_1016_j_compchemeng_2020_106847 crossref_primary_10_1016_j_compchemeng_2018_10_007 crossref_primary_10_1007_s10013_020_00442_y crossref_primary_10_1016_j_compchemeng_2020_106772 crossref_primary_10_1515_revce_2020_0054 crossref_primary_10_32604_cmc_2022_017820 crossref_primary_10_1002_cite_202100083 crossref_primary_10_1016_j_cattod_2019_09_009 crossref_primary_10_1016_j_inpa_2020_02_005 crossref_primary_10_2166_wpt_2024_001 crossref_primary_10_3390_en17092145 crossref_primary_10_1016_j_compchemeng_2019_106714 crossref_primary_10_1016_j_ifacol_2020_12_529 crossref_primary_10_1007_s10898_020_00890_3 crossref_primary_10_1016_j_compchemeng_2019_106519 crossref_primary_10_1002_aic_18338 crossref_primary_10_1016_j_ccst_2024_100319 crossref_primary_10_1016_j_compchemeng_2020_107118 crossref_primary_10_1016_j_cherd_2018_07_009 crossref_primary_10_1007_s00779_019_01270_9 crossref_primary_10_1007_s11590_019_01428_7 crossref_primary_10_1016_j_compchemeng_2021_107371 crossref_primary_10_1021_acs_iecr_9b02383 crossref_primary_10_1007_s40314_021_01562_y crossref_primary_10_1007_s11590_016_1028_2 crossref_primary_10_1016_j_compchemeng_2018_07_016 crossref_primary_10_3390_pr11010197 crossref_primary_10_1016_j_compchemeng_2017_05_006 crossref_primary_10_1109_TSMC_2017_2678605 crossref_primary_10_1016_j_ces_2023_119553 crossref_primary_10_1016_j_compchemeng_2019_05_008 crossref_primary_10_1016_j_compchemeng_2023_108467 crossref_primary_10_1002_cite_202000025 crossref_primary_10_1134_S1064562420030059 crossref_primary_10_1007_s11081_020_09488_w crossref_primary_10_1016_j_compchemeng_2021_107419 |
Cites_doi | 10.1016/j.ejor.2009.05.002 10.1007/s10898-012-9940-1 10.1007/s11081-008-9048-0 10.1016/j.cor.2009.05.003 10.1007/s12247-013-9154-1 10.1007/s11081-007-9030-2 10.1002/wrcr.20326 10.1080/10556788.2011.623162 10.1137/S003614450242889 10.1287/ijoc.6.2.207 10.1016/j.advwatres.2008.01.010 10.2514/2.1570 10.1016/j.paerosci.2003.12.001 10.1021/ie301572n 10.1080/0740817X.2012.706377 10.1137/080716980 10.1287/ijoc.1060.0182 10.1016/j.compchemeng.2012.06.006 10.1016/j.enconman.2007.06.007 10.1007/s10898-006-9075-3 10.1021/ef000241s 10.1016/j.ejor.2007.10.013 10.1002/aic.14442 10.1016/j.compchemeng.2014.03.024 10.1007/s10898-012-9874-7 10.1016/j.cor.2010.09.013 10.1002/9780470770801 10.1016/j.compchemeng.2014.03.019 10.1007/s10898-006-9040-1 10.1137/S105262340138983X 10.1016/j.compchemeng.2013.12.014 10.1080/03052150211751 10.1016/j.cep.2007.02.031 10.1007/s10898-008-9332-8 10.1007/s11081-008-9037-3 10.1109/TEVC.2013.2262111 10.1002/aic.12341 10.1137/1.9780898718768 10.1080/0305215X.2013.765000 10.1137/070691814 10.1080/10556788.2013.777722 10.1002/aic.11228 10.1214/ss/1177012413 10.1145/1916461.1916468 10.1016/j.compchemeng.2005.02.018 10.1137/040603371 10.1007/s10898-012-9951-y 10.1023/A:1013729320435 10.1016/j.paerosci.2008.11.001 10.1021/ie301571d 10.1039/c3cp53627k 10.1007/BF01197708 10.1021/ie402931c 10.1137/070692662 10.1007/s10898-004-0570-0 10.1007/s10898-012-9892-5 10.1080/0305215X.2011.637556 10.1080/00401706.2000.10485979 10.1023/A:1011584207202 10.1007/BF01197554 10.1016/j.ejor.2006.08.040 10.1007/s10898-014-0166-2 10.1007/s11081-009-9087-1 10.1002/aic.11579 10.1023/A:1008306431147 10.1038/nmat3336 10.1016/j.compchemeng.2013.05.024 10.1023/A:1012771025575 10.1007/978-94-015-8330-5_4 10.1016/S0098-1354(02)00254-5 10.1007/s10898-014-0184-0 10.1002/aic.14441 10.1007/s10898-007-9234-1 10.1016/j.jcp.2010.03.005 10.1002/9781119115151 10.1007/3-540-50871-6 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2015 COPYRIGHT 2017 Springer Journal of Global Optimization is a copyright of Springer, 2017. |
Copyright_xml | – notice: Springer Science+Business Media New York 2015 – notice: COPYRIGHT 2017 Springer – notice: Journal of Global Optimization is a copyright of Springer, 2017. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L.0 L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s10898-015-0376-2 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Sciences (General) Computer Science |
EISSN | 1573-2916 |
EndPage | 42 |
ExternalDocumentID | 4300220611 A718413714 10_1007_s10898_015_0376_2 |
Genre | Feature |
GrantInformation_xml | – fundername: Division of Chemical, Bioengineering, Environmental, and Transport Systems grantid: 1263165 funderid: http://dx.doi.org/10.13039/100000146 – fundername: Division of Chemical, Bioengineering, Environmental, and Transport Systems grantid: 0827907 funderid: http://dx.doi.org/10.13039/100000146 |
GroupedDBID | -52 -57 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8T Z8U Z8W Z92 ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L.0 L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c388t-58a14b4166fe17d2f5af03518b50b0c891ff10702c4b17a02324d1a60a7910973 |
IEDL.DBID | BENPR |
ISSN | 0925-5001 |
IngestDate | Thu Jul 10 22:03:29 EDT 2025 Sat Aug 23 13:53:54 EDT 2025 Tue Jun 10 20:37:37 EDT 2025 Thu Apr 24 22:59:45 EDT 2025 Tue Jul 01 00:52:58 EDT 2025 Fri Feb 21 02:42:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Sampling reduction Global optimization Kriging Quadratic Derivative-free optimization Constrained optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-58a14b4166fe17d2f5af03518b50b0c891ff10702c4b17a02324d1a60a7910973 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1857999347 |
PQPubID | 29930 |
PageCount | 40 |
ParticipantIDs | proquest_miscellaneous_1879988956 proquest_journals_1857999347 gale_infotracacademiconefile_A718413714 crossref_primary_10_1007_s10898_015_0376_2 crossref_citationtrail_10_1007_s10898_015_0376_2 springer_journals_10_1007_s10898_015_0376_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170100 2017-1-00 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 1 year: 2017 text: 20170100 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering |
PublicationTitle | Journal of global optimization |
PublicationTitleAbbrev | J Glob Optim |
PublicationYear | 2017 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Wan, Pekny, Reklaitis (CR12) 2005; 29 Sankaran, Audet, Marsden (CR53) 2010; 229 Hasan, First, Floudas (CR40) 2013; 15 Henao, Maravelias (CR10) 2011; 57 Quan, Yin, Ng, Lee (CR62) 2013; 45 Espinet, Shoemaker, Doughty (CR13) 2013; 49 Hemker, Fowler, Farthing, Stryk (CR9) 2008; 9 Wild, Regis, Shoemaker (CR52) 2008; 30 Conn, Le Digabel (CR26) 2013; 28 Li, Feng, Benner, Seidel-Morgenstern (CR17) 2014; 67 Regis, Shoemaker (CR59) 2007; 37 Lucia, Beran, Silva (CR72) 2004; 40 Drud (CR83) 1992; 6 Graciano, Roux (CR8) 2013; 59 Fowler, Reese, Kees, Dennis, Kelley, Miller, Audet, Booker, Couture, Darwin, Farthing, Finkel, Gablonsky, Gray, Kolda (CR7) 2008; 31 Le Digabel (CR54) 2011; 37 Powell, Gomez, Hennart (CR61) 1994 Audet, Dennis (CR42) 2006; 17 Powell (CR56) 2009 Lin, Berger, Martin, Kim, Swisher, Jariwala, Rycroft, Bhown, Deem, Haranczyk, Smit (CR80) 2012; 11 Kleijnen, van Beers, van Nieuwenhuyse (CR11) 2010; 202 Sacks, Welch, Toby, Wynn (CR76) 1989; 4 Forrester, Sóbester, Keane (CR18) 2008 Yao, Chen, Huang, van Tooren (CR33) 2014; 29 Kahrs, Marquardt (CR69) 2007; 46 Viana, Haftka, Watson (CR35) 2013; 56 CR86 CR85 Misener, Floudas (CR66) 2013; 57 Audet, Dennis (CR43) 2009; 20 Jakobsson, Patriksson, Rudholm, Wojciechowski (CR28) 2010; 11 Sobieszczanski-Sobieski, Haftka (CR70) 1997; 14 Hasan, Boukouvala, First, Floudas (CR16) 2014; 53 Forrester, Keane (CR27) 2009; 45 Rios, Sahinidis (CR21) 2013; 56 Regis (CR31) 2014; 46 Bjorkman, Holmstrom (CR23) 2000; 1 Abramson (CR41) 2002 Regis, Shoemaker (CR60) 2013; 56 Boukouvala, Ierapetritou (CR3) 2013; 8 Fahmi, Cremaschi (CR6) 2012; 46 Floudas (CR37) 1999 Abramson, Audet, Dennis, Digabel (CR49) 2009; 20 Audet, Bechard, Digabel (CR50) 2008; 41 Cressie (CR74) 1993 Boukouvala, Ierapetritou (CR25) 2014; 60 First, Hasan, Floudas (CR39) 2014; 60 Egea, Martí, Banga (CR84) 2010; 37 Davis, Ierapetritou (CR36) 2007; 53 Booker, Dennis, Frank, Serafini, Torczon, Trosset (CR24) 1999; 17 Parr, Keane, Forrester, Holden (CR46) 2012; 44 Gramacy, Lee (CR79) 2010 Zhang, Webley, Xiao (CR82) 2008; 49 Kleijnen (CR75) 2009; 192 CR55 Audet, Dennis (CR45) 2004; 14 Audet, Bechard, Chaouki (CR1) 2008; 9 Muller, Shoemaker (CR34) 2014; 60 Holmstrom, Quttineh, Edvall (CR44) 2008; 9 Caballero, Grossmann (CR4) 2008; 54 Kolda, Lewis, Torczon (CR51) 2003; 45 Conn, Scheinberg, Vicente (CR19) 2009 Hasan, Baliban, Elia, Floudas (CR14) 2013; 51 Floudas, Gounaris (CR38) 2009; 45 Misener, Floudas (CR65) 2012; 11 Bjork, Lindberg, Westerlund (CR78) 2003; 27 Mckay, Beckman, Conover (CR68) 2000; 42 Jones (CR29) 2001; 21 Regis, Shoemaker (CR58) 2007; 19 Kolda, Lewis, Torczon (CR22) 2003; 45 Regis (CR48) 2011; 38 Regis, Shoemaker (CR57) 2007; 182 Regis, Shoemaker (CR32) 2005; 31 Li, Floudas (CR73) 2014; 70 Sasena, Papalambros, Goovaerts (CR47) 2002; 34 Martelli, Amaldi (CR20) 2014; 63 Myers, Montgomery (CR77) 1995 Bartholomew-Biggs, Parkhurst, Wilson (CR2) 2002; 21 Siriwardane, Shen, Fisher, Poston (CR81) 2001; 15 CR63 Egea, Rodriguez-Fernandez, Banga, Marti (CR5) 2007; 37 Jones, Schonlau, Welch (CR30) 1998; 13 Hasan, Baliban, Elia, Floudas (CR15) 2013; 51 Willcox, Peraire (CR71) 2002; 40 Regis (CR64) 2014; 18 Misener, Floudas (CR67) 2014; 59 F Boukouvala (376_CR3) 2013; 8 R Misener (376_CR65) 2012; 11 S Li (376_CR17) 2014; 67 XT Wan (376_CR12) 2005; 29 AR Conn (376_CR26) 2013; 28 JA Egea (376_CR84) 2010; 37 A Espinet (376_CR13) 2013; 49 MMF Hasan (376_CR14) 2013; 51 RG Regis (376_CR48) 2011; 38 S Jakobsson (376_CR28) 2010; 11 AJ Booker (376_CR24) 1999; 17 CA Floudas (376_CR38) 2009; 45 J Muller (376_CR34) 2014; 60 AR Conn (376_CR19) 2009 M Abramson (376_CR49) 2009; 20 RG Regis (376_CR32) 2005; 31 RG Regis (376_CR64) 2014; 18 J Sobieszczanski-Sobieski (376_CR70) 1997; 14 O Kahrs (376_CR69) 2007; 46 RV Siriwardane (376_CR81) 2001; 15 T Hemker (376_CR9) 2008; 9 MJD Powell (376_CR56) 2009 EL First (376_CR39) 2014; 60 DJ Lucia (376_CR72) 2004; 40 AIJ Forrester (376_CR18) 2008 R Misener (376_CR67) 2014; 59 JA Egea (376_CR5) 2007; 37 C Audet (376_CR43) 2009; 20 376_CR86 J Sacks (376_CR76) 1989; 4 376_CR85 JA Caballero (376_CR4) 2008; 54 M Abramson (376_CR41) 2002 DR Jones (376_CR30) 1998; 13 C Audet (376_CR42) 2006; 17 AIJ Forrester (376_CR27) 2009; 45 RG Regis (376_CR57) 2007; 182 JPC Kleijnen (376_CR75) 2009; 192 JPC Kleijnen (376_CR11) 2010; 202 MJ Sasena (376_CR47) 2002; 34 RG Regis (376_CR58) 2007; 19 C Audet (376_CR50) 2008; 41 SM Wild (376_CR52) 2008; 30 Z Li (376_CR73) 2014; 70 RH Myers (376_CR77) 1995 CA Henao (376_CR10) 2011; 57 S Le Digabel (376_CR54) 2011; 37 KR Fowler (376_CR7) 2008; 31 LM Rios (376_CR21) 2013; 56 376_CR55 MMF Hasan (376_CR16) 2014; 53 N Quan (376_CR62) 2013; 45 W Yao (376_CR33) 2014; 29 RB Gramacy (376_CR79) 2010 MJD Powell (376_CR61) 1994 K Willcox (376_CR71) 2002; 40 K-M Bjork (376_CR78) 2003; 27 TG Kolda (376_CR51) 2003; 45 DR Jones (376_CR29) 2001; 21 FAC Viana (376_CR35) 2013; 56 L-C Lin (376_CR80) 2012; 11 C Audet (376_CR45) 2004; 14 MC Bartholomew-Biggs (376_CR2) 2002; 21 RG Regis (376_CR31) 2014; 46 K Holmstrom (376_CR44) 2008; 9 MD Mckay (376_CR68) 2000; 42 F Boukouvala (376_CR25) 2014; 60 MMF Hasan (376_CR40) 2013; 15 JM Parr (376_CR46) 2012; 44 RG Regis (376_CR60) 2013; 56 MMF Hasan (376_CR15) 2013; 51 E Martelli (376_CR20) 2014; 63 RG Regis (376_CR59) 2007; 37 C Audet (376_CR1) 2008; 9 TG Kolda (376_CR22) 2003; 45 376_CR63 M Bjorkman (376_CR23) 2000; 1 S Sankaran (376_CR53) 2010; 229 J Zhang (376_CR82) 2008; 49 R Misener (376_CR66) 2013; 57 A Drud (376_CR83) 1992; 6 E Davis (376_CR36) 2007; 53 I Fahmi (376_CR6) 2012; 46 N Cressie (376_CR74) 1993 JEA Graciano (376_CR8) 2013; 59 CA Floudas (376_CR37) 1999 |
References_xml | – volume: 202 start-page: 164 issue: 1 year: 2010 end-page: 174 ident: CR11 article-title: Constrained optimization in expensive simulation: Novel approach publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2009.05.002 – volume: 56 start-page: 1719 issue: 4 year: 2013 end-page: 1753 ident: CR60 article-title: A quasi-multistart framework for global optimization of expensive functions using response surface models publication-title: J. Glob. Optim. doi: 10.1007/s10898-012-9940-1 – volume: 9 start-page: 341 issue: 4 year: 2008 end-page: 360 ident: CR9 article-title: A mixed-integer simulation-based optimization approach with surrogate functions in water resources management publication-title: Optim. Eng. doi: 10.1007/s11081-008-9048-0 – volume: 37 start-page: 315 issue: 2 year: 2010 end-page: 324 ident: CR84 article-title: An evolutionary method for complex-process optimization publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2009.05.003 – volume: 8 start-page: 131 issue: 2 year: 2013 end-page: 145 ident: CR3 article-title: Surrogate-based optimization of expensive flowsheet modeling for continuous pharmaceutical manufacturing publication-title: J. Pharm. Innov. doi: 10.1007/s12247-013-9154-1 – volume: 9 start-page: 143 issue: 2 year: 2008 end-page: 160 ident: CR1 article-title: Spent potliner treatment process optimization using a MADS algorithm publication-title: Optim. Eng. doi: 10.1007/s11081-007-9030-2 – volume: 49 start-page: 4442 issue: 7 year: 2013 end-page: 4464 ident: CR13 article-title: Estimation of plume distribution for carbon sequestration using parameter estimation with limited monitoring data publication-title: Water Resour. Res. doi: 10.1002/wrcr.20326 – volume: 28 start-page: 139 issue: 1 year: 2013 end-page: 158 ident: CR26 article-title: Use of quadratic models with mesh-adaptive direct search for constrained black box optimization publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2011.623162 – volume: 45 start-page: 385 issue: 3 year: 2003 end-page: 482 ident: CR22 article-title: Optimization by direct search: new perspectives on some classical and modern methods publication-title: SIAM Rev. doi: 10.1137/S003614450242889 – volume: 6 start-page: 207 year: 1992 end-page: 216 ident: CR83 article-title: CONOPT—a large-scale GRG code publication-title: ORSA J. Comput. doi: 10.1287/ijoc.6.2.207 – volume: 31 start-page: 743 issue: 5 year: 2008 end-page: 757 ident: CR7 article-title: Comparison of derivative-free optimization methods for groundwater supply and hydraulic capture community problems publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2008.01.010 – volume: 40 start-page: 2323 issue: 11 year: 2002 end-page: 2330 ident: CR71 article-title: Balanced model reduction via the proper orthogonal decomposition publication-title: AIAA J. doi: 10.2514/2.1570 – volume: 40 start-page: 51 issue: 1–2 year: 2004 end-page: 117 ident: CR72 article-title: Reduced-order modeling: new approaches for computational physics publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2003.12.001 – volume: 51 start-page: 15665 issue: 48 year: 2013 end-page: 15682 ident: CR14 article-title: Modeling, simulation, and pptimization of postcombustion capture for variable feed concentration and flow rate. 2. Pressure swing adsorption and vacuum swing adsorption processes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie301572n – volume: 45 start-page: 763 issue: 7 year: 2013 end-page: 780 ident: CR62 article-title: Simulation optimization via kriging: a sequential search using expected improvement with computing budget constraints publication-title: IIE Trans. doi: 10.1080/0740817X.2012.706377 – volume: 20 start-page: 948 issue: 2 year: 2009 end-page: 966 ident: CR49 article-title: OrthoMADS: a deterministic MADS instance with orthogonal directions publication-title: SIAM J. Optim. doi: 10.1137/080716980 – volume: 19 start-page: 497 issue: 4 year: 2007 end-page: 509 ident: CR58 article-title: A stochastic radial basis function method for the global optimization of expensive functions publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.1060.0182 – volume: 46 start-page: 105 year: 2012 end-page: 123 ident: CR6 article-title: Process synthesis of biodiesel production plant using artificial neural networks as the surrogate models publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2012.06.006 – volume: 49 start-page: 346 issue: 2 year: 2008 end-page: 356 ident: CR82 article-title: Effect of process parameters on power requirements of vacuum swing adsorption technology for capture from flue gas publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2007.06.007 – volume: 37 start-page: 481 issue: 3 year: 2007 end-page: 503 ident: CR5 article-title: Scatter search for chemical and bio-process optimization publication-title: J. Glob. Optim. doi: 10.1007/s10898-006-9075-3 – volume: 15 start-page: 279 issue: 2 year: 2001 end-page: 284 ident: CR81 article-title: Adsorption of on molecular sieves and activated carbon publication-title: Energy Fuels doi: 10.1021/ef000241s – volume: 192 start-page: 707 issue: 3 year: 2009 end-page: 716 ident: CR75 article-title: Kriging metamodeling in simulation: a review publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2007.10.013 – volume: 60 start-page: 2462 issue: 7 year: 2014 end-page: 2474 ident: CR25 article-title: Derivative-free optimization for expensive constrained problems using a novel expected improvement objective function publication-title: AIChE J. doi: 10.1002/aic.14442 – volume: 11 start-page: 317 year: 2012 end-page: 336 ident: CR65 article-title: Global optimization of mixed-integer models with quadratic and signomial functions: a review publication-title: Appl. Comput. Math. – volume: 67 start-page: 121 year: 2014 end-page: 132 ident: CR17 article-title: Using surrogate models for efficient optimization of simulated moving bed chromatography publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2014.03.024 – volume: 57 start-page: 3 issue: 1 year: 2013 end-page: 50 ident: CR66 article-title: GloMIQO: global mixed-integer quadratic optimizer publication-title: J. Glob. Optim. doi: 10.1007/s10898-012-9874-7 – volume: 38 start-page: 837 issue: 5 year: 2011 end-page: 853 ident: CR48 article-title: Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2010.09.013 – year: 2008 ident: CR18 publication-title: Engineering Design Via Surrogate Modelling—A Practical Guide doi: 10.1002/9780470770801 – volume: 70 start-page: 50 year: 2014 end-page: 65 ident: CR73 article-title: Optimal scenario reduction framework based on distance of uncertainty distribution and output performance: I. Single reduction via mixed integer linear optimization publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2014.03.019 – volume: 37 start-page: 113 issue: 1 year: 2007 end-page: 135 ident: CR59 article-title: Improved strategies for radial basis function methods for global optimization publication-title: J. Glob. Optim. doi: 10.1007/s10898-006-9040-1 – volume: 14 start-page: 980 issue: 4 year: 2004 end-page: 1010 ident: CR45 article-title: A pattern search filter method for nonlinear programming without derivatives publication-title: SIAM J. Optim. doi: 10.1137/S105262340138983X – ident: CR85 – volume: 63 start-page: 108 year: 2014 end-page: 139 ident: CR20 article-title: PGS-COM: a hybrid method for constrained non-smooth black-box optimization problems: brief review, novel algorithm and comparative evaluation publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2013.12.014 – volume: 34 start-page: 263 issue: 3 year: 2002 end-page: 278 ident: CR47 article-title: Exploration of metamodeling sampling criteria for constrained global optimization publication-title: Eng. Optim. doi: 10.1080/03052150211751 – year: 2002 ident: CR41 publication-title: Pattern Search Algorithms for Mixed Variable General Constrained Optimization Problems – volume: 46 start-page: 1054 issue: 11 year: 2007 end-page: 1066 ident: CR69 article-title: The validity domain of hybrid models and its application in process optimization publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2007.02.031 – year: 1995 ident: CR77 publication-title: Response Surface Methodology: Process and Product in Optimization Using Designed Experiments – volume: 45 start-page: 3 issue: 1 year: 2009 end-page: 38 ident: CR38 article-title: A review of recent advances in global optimization publication-title: J. Glob. Optim. doi: 10.1007/s10898-008-9332-8 – volume: 9 start-page: 311 issue: 4 year: 2008 end-page: 339 ident: CR44 article-title: An adaptive radial basis algorithm (ARBF) for expensive black-box mixed-integer constrained global optimization publication-title: Optim. Eng. doi: 10.1007/s11081-008-9037-3 – volume: 18 start-page: 326 issue: 3 year: 2014 end-page: 347 ident: CR64 article-title: Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2262111 – volume: 57 start-page: 1216 issue: 5 year: 2011 end-page: 1232 ident: CR10 article-title: Surrogate-based superstructure optimization framework publication-title: AIChE J. doi: 10.1002/aic.12341 – year: 2009 ident: CR19 publication-title: Introduction to Derivative-Free Optimization. MPS-SIAM Series on Optimization doi: 10.1137/1.9780898718768 – volume: 46 start-page: 218 issue: 2 year: 2014 end-page: 243 ident: CR31 article-title: Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points publication-title: Eng. Optim. doi: 10.1080/0305215X.2013.765000 – volume: 45 start-page: 385 issue: 3 year: 2003 end-page: 482 ident: CR51 article-title: Optimization by direct search: new perspectives on some classical and modern methods publication-title: SIAM Rev. doi: 10.1137/S003614450242889 – volume: 30 start-page: 3197 issue: 6 year: 2008 end-page: 3219 ident: CR52 article-title: Orbit: optimization by radial basis function interpolation in trust-regions publication-title: SIAM J. Sci. Comput. doi: 10.1137/070691814 – volume: 29 start-page: 406 issue: 2 year: 2014 end-page: 429 ident: CR33 article-title: A surrogate-based optimization method with RBF neural network enhanced by linear interpolation and hybrid infill strategy publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2013.777722 – year: 2010 ident: CR79 publication-title: Optimization Under Unknown Constraints – volume: 53 start-page: 2001 issue: 8 year: 2007 end-page: 2012 ident: CR36 article-title: A kriging method for the solution of nonlinear programs with black-box functions publication-title: AIChE J. doi: 10.1002/aic.11228 – volume: 4 start-page: 409 issue: 4 year: 1989 end-page: 423 ident: CR76 article-title: Design and analysis of computer experiments publication-title: Stat. Sci. doi: 10.1214/ss/1177012413 – volume: 37 start-page: 1 issue: 4 year: 2011 end-page: 15 ident: CR54 article-title: Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm publication-title: ACM Trans. Math. Softw. (TOMS) doi: 10.1145/1916461.1916468 – ident: CR86 – volume: 29 start-page: 1317 issue: 6 year: 2005 end-page: 1328 ident: CR12 article-title: Simulation-based optimization with surrogate models—application to supply chain management publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2005.02.018 – year: 2009 ident: CR56 publication-title: The BOBYQA Algorithm for Bound Constrained Optimization Without Derivatives – year: 1999 ident: CR37 publication-title: Deterministic Global Optimization – volume: 17 start-page: 188 issue: 1 year: 2006 end-page: 217 ident: CR42 article-title: Mesh adaptive direct search algorithms for constrained optimization publication-title: SIAM J. Optim. doi: 10.1137/040603371 – ident: CR63 – volume: 56 start-page: 1247 issue: 3 year: 2013 end-page: 1293 ident: CR21 article-title: Derivative-free optimization: a review of algorithms and comparison of software implementations publication-title: J. Glob. Optim. doi: 10.1007/s10898-012-9951-y – volume: 21 start-page: 311 issue: 3 year: 2002 end-page: 323 ident: CR2 article-title: Using DIRECT to solve an aircraft routing problem publication-title: Comput. Optim. Appl. doi: 10.1023/A:1013729320435 – volume: 45 start-page: 50 issue: 1 year: 2009 end-page: 79 ident: CR27 article-title: Recent advances in surrogate-based optimization publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2008.11.001 – volume: 51 start-page: 15642 issue: 48 year: 2013 end-page: 15664 ident: CR15 article-title: Modeling, simulation, and optimization of postcombustion capture for variable feed concentration and flow rate. 1. Chemical absorption and membrane processes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie301571d – volume: 15 start-page: 17601 issue: 40 year: 2013 end-page: 17618 ident: CR40 article-title: Cost-effective capture based on in silico screening of zeolites and process optimization publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp53627k – volume: 17 start-page: 1 issue: 1 year: 1999 end-page: 13 ident: CR24 article-title: A rigorous framework for optimization of expensive functions by surrogates publication-title: Struct. Multidiscip. Optim. doi: 10.1007/BF01197708 – volume: 53 start-page: 7489 issue: 18 year: 2014 end-page: 7506 ident: CR16 article-title: Nationwide, regional, and statewide capture, utilization, and sequestration supply chain network optimization publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie402931c – volume: 20 start-page: 445 issue: 1 year: 2009 end-page: 472 ident: CR43 article-title: A progressive barrier for derivative-free nonlinear programming publication-title: SIAM J. Optim. doi: 10.1137/070692662 – volume: 31 start-page: 153 issue: 1 year: 2005 end-page: 171 ident: CR32 article-title: Constrained global optimization of expensive black box functions using radial basis functions publication-title: J. Glob. Optim. doi: 10.1007/s10898-004-0570-0 – volume: 56 start-page: 669 issue: 2 year: 2013 end-page: 689 ident: CR35 article-title: Efficient global optimization algorithm assisted by multiple surrogate techniques publication-title: J. Glob. Optim. doi: 10.1007/s10898-012-9892-5 – volume: 44 start-page: 1147 issue: 10 year: 2012 end-page: 1166 ident: CR46 article-title: Infill sampling criteria for surrogate-based optimization with constraint handling publication-title: Eng. Optim. doi: 10.1080/0305215X.2011.637556 – volume: 42 start-page: 55 issue: 1 year: 2000 end-page: 61 ident: CR68 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics doi: 10.1080/00401706.2000.10485979 – volume: 1 start-page: 373 issue: 4 year: 2000 end-page: 397 ident: CR23 article-title: Global optimization of costly nonconvex functions using radial basis functions publication-title: Optim. Eng. doi: 10.1023/A:1011584207202 – volume: 14 start-page: 1 issue: 1 year: 1997 end-page: 23 ident: CR70 article-title: Multidisciplinary aerospace design optimization: survey of recent developments publication-title: Struct. Optim. doi: 10.1007/BF01197554 – volume: 182 start-page: 514 issue: 2 year: 2007 end-page: 535 ident: CR57 article-title: Parallel radial basis function methods for the global optimization of expensive functions publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2006.08.040 – volume: 59 start-page: 503 issue: 2–3 year: 2014 end-page: 526 ident: CR67 article-title: ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations publication-title: J. Glob. Optim. doi: 10.1007/s10898-014-0166-2 – volume: 11 start-page: 501 issue: 4 year: 2010 end-page: 532 ident: CR28 article-title: A method for simulation based optimization using radial basis functions publication-title: Optim. Engi. doi: 10.1007/s11081-009-9087-1 – ident: CR55 – volume: 54 start-page: 2633 issue: 10 year: 2008 end-page: 2650 ident: CR4 article-title: An algorithm for the use of surrogate models in modular flowsheet optimization publication-title: AIChE J. doi: 10.1002/aic.11579 – volume: 13 start-page: 455 issue: 4 year: 1998 end-page: 492 ident: CR30 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Global Optim. doi: 10.1023/A:1008306431147 – volume: 11 start-page: 633 issue: 7 year: 2012 end-page: 641 ident: CR80 article-title: In silico screening of carbon-capture materials publication-title: Nat. Mater. doi: 10.1038/nmat3336 – volume: 59 start-page: 197 year: 2013 end-page: 210 ident: CR8 article-title: Improvements in surrogate models for process synthesis. Application to water network system design publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2013.05.024 – volume: 21 start-page: 345 issue: 4 year: 2001 end-page: 383 ident: CR29 article-title: A taxonomy of global optimization methods based on response surfaces publication-title: J. Global Optim. doi: 10.1023/A:1012771025575 – start-page: 51 year: 1994 end-page: 67 ident: CR61 article-title: A direct search optimization method that models the objective and constraint functions by linear interpolation publication-title: Advances in Optimization and Numerical Analysis: Mathematics and its Applications, vol. 275. Mathematics and Its Applications doi: 10.1007/978-94-015-8330-5_4 – volume: 27 start-page: 669 issue: 5 year: 2003 end-page: 679 ident: CR78 article-title: Some convexifications in global optimization of problems containing signomial terms publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(02)00254-5 – volume: 60 start-page: 123 issue: 2 year: 2014 end-page: 144 ident: CR34 article-title: Influence ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization methods publication-title: J. Glob. Optim. doi: 10.1007/s10898-014-0184-0 – volume: 60 start-page: 1767 issue: 5 year: 2014 end-page: 1785 ident: CR39 article-title: Discovery of novel zeolites for natural gas purification through combined material screening and process optimization publication-title: AICHE J. doi: 10.1002/aic.14441 – volume: 41 start-page: 299 issue: 2 year: 2008 end-page: 318 ident: CR50 article-title: Nonsmooth optimization through mesh adaptive direct search and variable neighborhood search publication-title: J. Glob. Optim. doi: 10.1007/s10898-007-9234-1 – volume: 229 start-page: 4664 issue: 12 year: 2010 end-page: 4682 ident: CR53 article-title: A method for stochastic constrained optimization using derivative-free surrogate pattern search and collocation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.03.005 – year: 1993 ident: CR74 publication-title: Statistics for Spatial Data. Wiley Series in Probability and Statistics – volume: 56 start-page: 669 issue: 2 year: 2013 ident: 376_CR35 publication-title: J. Glob. Optim. doi: 10.1007/s10898-012-9892-5 – volume: 8 start-page: 131 issue: 2 year: 2013 ident: 376_CR3 publication-title: J. Pharm. Innov. doi: 10.1007/s12247-013-9154-1 – volume: 45 start-page: 763 issue: 7 year: 2013 ident: 376_CR62 publication-title: IIE Trans. doi: 10.1080/0740817X.2012.706377 – volume: 20 start-page: 445 issue: 1 year: 2009 ident: 376_CR43 publication-title: SIAM J. Optim. doi: 10.1137/070692662 – volume: 182 start-page: 514 issue: 2 year: 2007 ident: 376_CR57 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2006.08.040 – volume: 57 start-page: 1216 issue: 5 year: 2011 ident: 376_CR10 publication-title: AIChE J. doi: 10.1002/aic.12341 – volume: 41 start-page: 299 issue: 2 year: 2008 ident: 376_CR50 publication-title: J. Glob. Optim. doi: 10.1007/s10898-007-9234-1 – volume: 60 start-page: 1767 issue: 5 year: 2014 ident: 376_CR39 publication-title: AICHE J. doi: 10.1002/aic.14441 – volume: 60 start-page: 2462 issue: 7 year: 2014 ident: 376_CR25 publication-title: AIChE J. doi: 10.1002/aic.14442 – volume: 46 start-page: 105 year: 2012 ident: 376_CR6 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2012.06.006 – volume: 15 start-page: 17601 issue: 40 year: 2013 ident: 376_CR40 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp53627k – volume: 49 start-page: 346 issue: 2 year: 2008 ident: 376_CR82 publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2007.06.007 – volume: 54 start-page: 2633 issue: 10 year: 2008 ident: 376_CR4 publication-title: AIChE J. doi: 10.1002/aic.11579 – ident: 376_CR86 – volume: 42 start-page: 55 issue: 1 year: 2000 ident: 376_CR68 publication-title: Technometrics doi: 10.1080/00401706.2000.10485979 – volume: 59 start-page: 197 year: 2013 ident: 376_CR8 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2013.05.024 – volume-title: The BOBYQA Algorithm for Bound Constrained Optimization Without Derivatives year: 2009 ident: 376_CR56 – start-page: 51 volume-title: Advances in Optimization and Numerical Analysis: Mathematics and its Applications, vol. 275. Mathematics and Its Applications year: 1994 ident: 376_CR61 doi: 10.1007/978-94-015-8330-5_4 – volume: 34 start-page: 263 issue: 3 year: 2002 ident: 376_CR47 publication-title: Eng. Optim. doi: 10.1080/03052150211751 – volume: 11 start-page: 501 issue: 4 year: 2010 ident: 376_CR28 publication-title: Optim. Engi. doi: 10.1007/s11081-009-9087-1 – volume: 13 start-page: 455 issue: 4 year: 1998 ident: 376_CR30 publication-title: J. Global Optim. doi: 10.1023/A:1008306431147 – volume: 59 start-page: 503 issue: 2–3 year: 2014 ident: 376_CR67 publication-title: J. Glob. Optim. doi: 10.1007/s10898-014-0166-2 – volume: 53 start-page: 7489 issue: 18 year: 2014 ident: 376_CR16 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie402931c – volume: 20 start-page: 948 issue: 2 year: 2009 ident: 376_CR49 publication-title: SIAM J. Optim. doi: 10.1137/080716980 – volume: 21 start-page: 345 issue: 4 year: 2001 ident: 376_CR29 publication-title: J. Global Optim. doi: 10.1023/A:1012771025575 – volume: 53 start-page: 2001 issue: 8 year: 2007 ident: 376_CR36 publication-title: AIChE J. doi: 10.1002/aic.11228 – volume: 30 start-page: 3197 issue: 6 year: 2008 ident: 376_CR52 publication-title: SIAM J. Sci. Comput. doi: 10.1137/070691814 – volume: 192 start-page: 707 issue: 3 year: 2009 ident: 376_CR75 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2007.10.013 – volume-title: Response Surface Methodology: Process and Product in Optimization Using Designed Experiments year: 1995 ident: 376_CR77 – volume: 1 start-page: 373 issue: 4 year: 2000 ident: 376_CR23 publication-title: Optim. Eng. doi: 10.1023/A:1011584207202 – volume: 60 start-page: 123 issue: 2 year: 2014 ident: 376_CR34 publication-title: J. Glob. Optim. doi: 10.1007/s10898-014-0184-0 – volume: 18 start-page: 326 issue: 3 year: 2014 ident: 376_CR64 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2262111 – volume: 46 start-page: 218 issue: 2 year: 2014 ident: 376_CR31 publication-title: Eng. Optim. doi: 10.1080/0305215X.2013.765000 – volume: 21 start-page: 311 issue: 3 year: 2002 ident: 376_CR2 publication-title: Comput. Optim. Appl. doi: 10.1023/A:1013729320435 – volume: 9 start-page: 143 issue: 2 year: 2008 ident: 376_CR1 publication-title: Optim. Eng. doi: 10.1007/s11081-007-9030-2 – volume: 45 start-page: 385 issue: 3 year: 2003 ident: 376_CR51 publication-title: SIAM Rev. doi: 10.1137/S003614450242889 – volume: 46 start-page: 1054 issue: 11 year: 2007 ident: 376_CR69 publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2007.02.031 – volume: 202 start-page: 164 issue: 1 year: 2010 ident: 376_CR11 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2009.05.002 – volume: 37 start-page: 1 issue: 4 year: 2011 ident: 376_CR54 publication-title: ACM Trans. Math. Softw. (TOMS) doi: 10.1145/1916461.1916468 – volume: 40 start-page: 51 issue: 1–2 year: 2004 ident: 376_CR72 publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2003.12.001 – volume: 15 start-page: 279 issue: 2 year: 2001 ident: 376_CR81 publication-title: Energy Fuels doi: 10.1021/ef000241s – volume: 51 start-page: 15665 issue: 48 year: 2013 ident: 376_CR14 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie301572n – volume: 6 start-page: 207 year: 1992 ident: 376_CR83 publication-title: ORSA J. Comput. doi: 10.1287/ijoc.6.2.207 – volume-title: Deterministic Global Optimization year: 1999 ident: 376_CR37 – volume: 57 start-page: 3 issue: 1 year: 2013 ident: 376_CR66 publication-title: J. Glob. Optim. doi: 10.1007/s10898-012-9874-7 – volume: 17 start-page: 188 issue: 1 year: 2006 ident: 376_CR42 publication-title: SIAM J. Optim. doi: 10.1137/040603371 – ident: 376_CR55 – volume: 14 start-page: 1 issue: 1 year: 1997 ident: 376_CR70 publication-title: Struct. Optim. doi: 10.1007/BF01197554 – volume-title: Statistics for Spatial Data. Wiley Series in Probability and Statistics year: 1993 ident: 376_CR74 doi: 10.1002/9781119115151 – volume-title: Pattern Search Algorithms for Mixed Variable General Constrained Optimization Problems year: 2002 ident: 376_CR41 – volume: 37 start-page: 315 issue: 2 year: 2010 ident: 376_CR84 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2009.05.003 – volume: 45 start-page: 385 issue: 3 year: 2003 ident: 376_CR22 publication-title: SIAM Rev. doi: 10.1137/S003614450242889 – volume: 63 start-page: 108 year: 2014 ident: 376_CR20 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2013.12.014 – volume: 28 start-page: 139 issue: 1 year: 2013 ident: 376_CR26 publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2011.623162 – volume: 17 start-page: 1 issue: 1 year: 1999 ident: 376_CR24 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/BF01197708 – volume: 229 start-page: 4664 issue: 12 year: 2010 ident: 376_CR53 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.03.005 – volume: 4 start-page: 409 issue: 4 year: 1989 ident: 376_CR76 publication-title: Stat. Sci. doi: 10.1214/ss/1177012413 – volume: 27 start-page: 669 issue: 5 year: 2003 ident: 376_CR78 publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(02)00254-5 – volume-title: Engineering Design Via Surrogate Modelling—A Practical Guide year: 2008 ident: 376_CR18 doi: 10.1002/9780470770801 – volume: 31 start-page: 743 issue: 5 year: 2008 ident: 376_CR7 publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2008.01.010 – volume: 37 start-page: 481 issue: 3 year: 2007 ident: 376_CR5 publication-title: J. Glob. Optim. doi: 10.1007/s10898-006-9075-3 – ident: 376_CR63 doi: 10.1007/3-540-50871-6 – volume-title: Optimization Under Unknown Constraints year: 2010 ident: 376_CR79 – volume: 29 start-page: 1317 issue: 6 year: 2005 ident: 376_CR12 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2005.02.018 – volume: 45 start-page: 50 issue: 1 year: 2009 ident: 376_CR27 publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2008.11.001 – volume: 51 start-page: 15642 issue: 48 year: 2013 ident: 376_CR15 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie301571d – volume: 11 start-page: 317 year: 2012 ident: 376_CR65 publication-title: Appl. Comput. Math. – volume: 31 start-page: 153 issue: 1 year: 2005 ident: 376_CR32 publication-title: J. Glob. Optim. doi: 10.1007/s10898-004-0570-0 – volume: 44 start-page: 1147 issue: 10 year: 2012 ident: 376_CR46 publication-title: Eng. Optim. doi: 10.1080/0305215X.2011.637556 – volume: 67 start-page: 121 year: 2014 ident: 376_CR17 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2014.03.024 – volume: 19 start-page: 497 issue: 4 year: 2007 ident: 376_CR58 publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.1060.0182 – ident: 376_CR85 – volume: 56 start-page: 1247 issue: 3 year: 2013 ident: 376_CR21 publication-title: J. Glob. Optim. doi: 10.1007/s10898-012-9951-y – volume: 56 start-page: 1719 issue: 4 year: 2013 ident: 376_CR60 publication-title: J. Glob. Optim. doi: 10.1007/s10898-012-9940-1 – volume-title: Introduction to Derivative-Free Optimization. MPS-SIAM Series on Optimization year: 2009 ident: 376_CR19 doi: 10.1137/1.9780898718768 – volume: 11 start-page: 633 issue: 7 year: 2012 ident: 376_CR80 publication-title: Nat. Mater. doi: 10.1038/nmat3336 – volume: 38 start-page: 837 issue: 5 year: 2011 ident: 376_CR48 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2010.09.013 – volume: 40 start-page: 2323 issue: 11 year: 2002 ident: 376_CR71 publication-title: AIAA J. doi: 10.2514/2.1570 – volume: 9 start-page: 341 issue: 4 year: 2008 ident: 376_CR9 publication-title: Optim. Eng. doi: 10.1007/s11081-008-9048-0 – volume: 70 start-page: 50 year: 2014 ident: 376_CR73 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2014.03.019 – volume: 29 start-page: 406 issue: 2 year: 2014 ident: 376_CR33 publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2013.777722 – volume: 49 start-page: 4442 issue: 7 year: 2013 ident: 376_CR13 publication-title: Water Resour. Res. doi: 10.1002/wrcr.20326 – volume: 45 start-page: 3 issue: 1 year: 2009 ident: 376_CR38 publication-title: J. Glob. Optim. doi: 10.1007/s10898-008-9332-8 – volume: 14 start-page: 980 issue: 4 year: 2004 ident: 376_CR45 publication-title: SIAM J. Optim. doi: 10.1137/S105262340138983X – volume: 9 start-page: 311 issue: 4 year: 2008 ident: 376_CR44 publication-title: Optim. Eng. doi: 10.1007/s11081-008-9037-3 – volume: 37 start-page: 113 issue: 1 year: 2007 ident: 376_CR59 publication-title: J. Glob. Optim. doi: 10.1007/s10898-006-9040-1 |
SSID | ssj0009852 |
Score | 2.4501626 |
Snippet | This paper introduces a novel methodology for the global optimization of general constrained grey-box problems. A grey-box problem may contain a combination of... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) This paper introduces a novel methodology for the global optimization of general... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).This paper introduces a novel methodology for the global optimization of general... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3 |
SubjectTerms | Adsorption Algorithms Case studies Computer Science Constraints Design of experiments Differential equations Literature reviews Mathematical models Mathematical optimization Mathematics Mathematics and Statistics Methods Operations Research/Decision Theory Optimization Parameter estimation Partial differential equations Pressure swing adsorption Quadratic programming Real Functions Sampling Simulation Studies |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9UwEA6yvuiDukfFursyguCNQJJekvp2WHdZBMUHD-xbSJNUBG3ltAf1P-yPdpKmZ896Ax9LpyEwmZlvOplvCHlSukpWltXUCaPiCDNqvBS0cjLQkwvJbbxt8a46WxVvzsvz1Mc9zLfd55Jk9NQ7zW4qtIPxkjK0Cop-93oZUnc8xCuxvGTaVXHMDqtFSUt0wnMp809LXAlGv7rk32qjMeSc3iG3ElaE5aTcfXLNdwtye57DAMksF-TmDqkgPr3dMrEOC7KfpAZ4lhimn98lFxPTP_ToL76kRkzoW_g4SYANoDHMjvAOMB__QZv-O8SZOcMrQBwO09xpMJ2DT-MAO1VwGPsrn79_fTIAAmOIF243aw_DN9wmGDf06-iu7pHV6cmH4zOaxjJQmys10lIZXjQI5KrWc-lEW5o21CNVU7KGWVXztsWkkglbNFwaFjCb46ZiRtah3p3fJ3td3_kHBOraGe5M7qvCFUI0Stk898zKvOKNr3hG2KwfbRNnedj_Z33JthxUqlGlOqhUi4y82H7ydSLs-Jfw06B0HYwZ17Um9STg7gItll5i5MYoL3mRkcP5XOhk5YMOPFoIsPNCZuTx9jXaZyi6mM73myCDIkphGpqRl_N52lnib1t7-F_SB-SGCHgj_hs6JHvjeuOPEC2NzaNoHT8BMvQKpw priority: 102 providerName: Springer Nature |
Title | Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption |
URI | https://link.springer.com/article/10.1007/s10898-015-0376-2 https://www.proquest.com/docview/1857999347 https://www.proquest.com/docview/1879988956 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfY-gIPiA0QgVEZCYkvWdjOhx1eUAvtJpCqCVFpPEWO7SAkSEaTCvgf-KO5S9y1A7GnPNhOrJzv7mef73eEPE5dpjLLc-ak0X0JM2a8kixzCunJpRK2v22xyE6Wybuz9CwcuLXhWuXGJvaG2jUWz8hfImcRgJk4Ua_PvzOsGoXR1VBCY4-MwARr2HyNprPF6Yct7a7ua-7wXKYsBYu8iWsOyXMa08tEyjhoGZOXPNPf9vmfQGnvf-a3yM0AHOlkkPQBuebrQ3Jjh07wkBwERW3p08Am_ew2-T2w-tMGbMO3kHRJm4p-HnpQiwAR60R4R2Hv_YuVzU_a18dpX1HA3HSoMU1N7eiXrqU7EW_aNZeGn76dtRRAMO0v165XnrY_YGLUuLZZ9abpDlnOZx_fnLBQgoHZWOuOpdqIpATQllVeKCer1FQYe9RlyktudS6qCjaQXNqkFMpwxGdOmIwblWNsO75L9uum9vcIzXNnhDOxzxKXSFlqbePYc6viTJQ-ExHhm99f2MBPjvP_WmyZlVFiBUisQIkVMiLPL4acD-QcV3V-gjItUHHhvdaE_AOYHVJgFRPw0uDRlUgicrQRexE0ui226y8ijy6aQRcxwGJq36yxD3TRGracEXmxWS47r_jf1O5f_cEH5LpEMNEf_ByR_W619g8BCnXlmOzp-fGYjCbz6XSBz-NP72fjoAXQupSTPyoDCac |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwEB2V8gB9QLSACBQwEoibLGLnYgcJoYp22dJS8dBKfQuO7VRIsCmbrEr_gW_hG5nJpbsF0bc-x3GszHh87PGcA_AkcalKbZhxJ41uJcy48Ury1CmiJ5dK2Pa2xV46Pog_HiaHS_B7qIWha5VDTGwDtassnZG_Js4iBDNRrN4d_-CkGkXZ1UFCo3OLHX96glu2-u32Jtr3qZSjrf33Y96rCnAbad3wRBsRF4hD0tIL5WSZmJLSabpIwiK0OhNliXuiUNq4EMqEBDmcMGloVEbp2gj7vQJX4yjKaEbp0Yc5ya9uFX7CTCY8wfg_ZFG7Uj1NxWwi4SHOaS7PrYN_rwb_pGXb1W50E270MJVtdH61Ckt-sgYrC-SFa7Dah4WaPe-5q1_cgl-dhgCrMBJ970s8WVWyo64FswRHSZXCO4Y7_VNeVD9Zq8ZTv2GI8FmnaM3MxLGvTc0W8uusqc69_nlzq2YIuVl7lXc29aw-wYEx4-pq2gbC23BwKaa5A8uTauLvAssyZ4QzkU9jF0tZaG2jyIdWRakofCoCCIffn9ueDZ3G_y2f8ziTxXK0WE4Wy2UAL89eOe6oQC5q_IxsmlOYwH6t6asdcHREuJVvICZA_KBEHMD6YPa8jx91Pvf2AB6fPcaZT-kcM_HVjNpgE61xgxvAq8FdFrr439DuXfzBR3BtvP9pN9_d3tu5D9clwZj2yGkdlpvpzD9AENYUD1vPZ_DlsqfaH8SbPfQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1taxQxEB7qFUQ_iK2Kq1UjKL6U0CT7kqwgUr07WivHIRb6bc0mWRF0t97eUfsf_EX-Oif70rsq9ls_XzYbbiaTZ3YyzwPwJLaJTAxLqRVaNRJmVDspaGKlpycXkpvmtsUk2TuM3h_FR2vwu--F8dcq-5jYBGpbGf-NfMdzFiGYCSO5U3TXIqbD8ZvjH9QrSPlKay-n0brIgTs9wfStfr0_RFs_FWI8-vRuj3YKA9SESs1prDSPcsQkSeG4tKKIdeFLayqPWc6MSnlRYH7EhIlyLjXz8MNynTAtU1-6DXHeK7AuMStiA1h_O5pMPy4pf1Wj98NSEdMYT4O-pto27inf2sZjynCHU3HuVPz7bPinSNucfeObcKMDrWS39bINWHPlJlxfoTLchI0uSNTkecdk_eIW_GoVBUiFcel71_BJqoJ8aUcQ48Gp16hwlmDef0rz6idptHnqVwTxPmn1rYkuLfk6r8lKtZ3Mq3OPT4ejmiAAJ83F3sXMkfoEF0a0ratZExZvw-GlGOcODMqqdHeBpKnV3OrQJZGNhMiVMmHomJFhwnOX8ABY__dnpuNG9-v_li1Znb3FMrRY5i2WiQBenj1y3BKDXDT4mbdp5oMGzmt01_uAq_P0W9kuIgREE5JHAWz1Zs-6aFJnS98P4PHZzxgHfHFHl65a-DE4RClMdwPY7t1lZYr_Le3exS98BFdxm2Uf9icH9-Ga8Jim-f60BYP5bOEeICKb5w871yfw-bJ32x8sg0OG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+optimization+of+general+constrained+grey-box+models%3A+new+method+and+its+application+to+constrained+PDEs+for+pressure+swing+adsorption&rft.jtitle=Journal+of+global+optimization&rft.au=Boukouvala%2C+Fani&rft.au=Hasan%2C+M+M%3B+Faruque&rft.au=Floudas%2C+Christodoulos+A&rft.date=2017-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=67&rft.issue=1-2&rft.spage=3&rft_id=info:doi/10.1007%2Fs10898-015-0376-2&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4300220611 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon |