Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption

This paper introduces a novel methodology for the global optimization of general constrained grey-box problems. A grey-box problem may contain a combination of black-box constraints and constraints with a known functional form. The novel features of this work include (i) the selection of initial sam...

Full description

Saved in:
Bibliographic Details
Published inJournal of global optimization Vol. 67; no. 1-2; pp. 3 - 42
Main Authors Boukouvala, Fani, Hasan, M. M. Faruque, Floudas, Christodoulos A.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2017
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0925-5001
1573-2916
DOI10.1007/s10898-015-0376-2

Cover

Loading…
Abstract This paper introduces a novel methodology for the global optimization of general constrained grey-box problems. A grey-box problem may contain a combination of black-box constraints and constraints with a known functional form. The novel features of this work include (i) the selection of initial samples through a subset selection optimization problem from a large number of faster low-fidelity model samples (when a low-fidelity model is available), (ii) the exploration of a diverse set of interpolating and non-interpolating functional forms for representing the objective function and each of the constraints, (iii) the global optimization of the parameter estimation of surrogate functions and the global optimization of the constrained grey-box formulation, and (iv) the updating of variable bounds based on a clustering technique. The performance of the algorithm is presented for a set of case studies representing an expensive non-linear algebraic partial differential equation simulation of a pressure swing adsorption system for CO 2 . We address three significant sources of variability and their effects on the consistency and reliability of the algorithm: (i) the initial sampling variability, (ii) the type of surrogate function, and (iii) global versus local optimization of the surrogate function parameter estimation and overall surrogate constrained grey-box problem. It is shown that globally optimizing the parameters in the parameter estimation model, and globally optimizing the constrained grey-box formulation has a significant impact on the performance. The effect of sampling variability is mitigated by a two-stage sampling approach which exploits information from reduced-order models. Finally, the proposed global optimization approach is compared to existing constrained derivative-free optimization algorithms.
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) This paper introduces a novel methodology for the global optimization of general constrained grey-box problems. A grey-box problem may contain a combination of black-box constraints and constraints with a known functional form. The novel features of this work include (i) the selection of initial samples through a subset selection optimization problem from a large number of faster low-fidelity model samples (when a low-fidelity model is available), (ii) the exploration of a diverse set of interpolating and non-interpolating functional forms for representing the objective function and each of the constraints, (iii) the global optimization of the parameter estimation of surrogate functions and the global optimization of the constrained grey-box formulation, and (iv) the updating of variable bounds based on a clustering technique. The performance of the algorithm is presented for a set of case studies representing an expensive non-linear algebraic partial differential equation simulation of a pressure swing adsorption system for ... We address three significant sources of variability and their effects on the consistency and reliability of the algorithm: (i) the initial sampling variability, (ii) the type of surrogate function, and (iii) global versus local optimization of the surrogate function parameter estimation and overall surrogate constrained grey-box problem. It is shown that globally optimizing the parameters in the parameter estimation model, and globally optimizing the constrained grey-box formulation has a significant impact on the performance. The effect of sampling variability is mitigated by a two-stage sampling approach which exploits information from reduced-order models. Finally, the proposed global optimization approach is compared to existing constrained derivative-free optimization algorithms.
This paper introduces a novel methodology for the global optimization of general constrained grey-box problems. A grey-box problem may contain a combination of black-box constraints and constraints with a known functional form. The novel features of this work include (i) the selection of initial samples through a subset selection optimization problem from a large number of faster low-fidelity model samples (when a low-fidelity model is available), (ii) the exploration of a diverse set of interpolating and non-interpolating functional forms for representing the objective function and each of the constraints, (iii) the global optimization of the parameter estimation of surrogate functions and the global optimization of the constrained grey-box formulation, and (iv) the updating of variable bounds based on a clustering technique. The performance of the algorithm is presented for a set of case studies representing an expensive non-linear algebraic partial differential equation simulation of a pressure swing adsorption system for CO 2 . We address three significant sources of variability and their effects on the consistency and reliability of the algorithm: (i) the initial sampling variability, (ii) the type of surrogate function, and (iii) global versus local optimization of the surrogate function parameter estimation and overall surrogate constrained grey-box problem. It is shown that globally optimizing the parameters in the parameter estimation model, and globally optimizing the constrained grey-box formulation has a significant impact on the performance. The effect of sampling variability is mitigated by a two-stage sampling approach which exploits information from reduced-order models. Finally, the proposed global optimization approach is compared to existing constrained derivative-free optimization algorithms.
This paper introduces a novel methodology for the global optimization of general constrained grey-box problems. A grey-box problem may contain a combination of black-box constraints and constraints with a known functional form. The novel features of this work include (i) the selection of initial samples through a subset selection optimization problem from a large number of faster low-fidelity model samples (when a low-fidelity model is available), (ii) the exploration of a diverse set of interpolating and non-interpolating functional forms for representing the objective function and each of the constraints, (iii) the global optimization of the parameter estimation of surrogate functions and the global optimization of the constrained grey-box formulation, and (iv) the updating of variable bounds based on a clustering technique. The performance of the algorithm is presented for a set of case studies representing an expensive non-linear algebraic partial differential equation simulation of a pressure swing adsorption system for [Formula omitted]. We address three significant sources of variability and their effects on the consistency and reliability of the algorithm: (i) the initial sampling variability, (ii) the type of surrogate function, and (iii) global versus local optimization of the surrogate function parameter estimation and overall surrogate constrained grey-box problem. It is shown that globally optimizing the parameters in the parameter estimation model, and globally optimizing the constrained grey-box formulation has a significant impact on the performance. The effect of sampling variability is mitigated by a two-stage sampling approach which exploits information from reduced-order models. Finally, the proposed global optimization approach is compared to existing constrained derivative-free optimization algorithms.
Audience Academic
Author Floudas, Christodoulos A.
Hasan, M. M. Faruque
Boukouvala, Fani
Author_xml – sequence: 1
  givenname: Fani
  surname: Boukouvala
  fullname: Boukouvala, Fani
  organization: Artie McFerrin Department of Chemical Engineering, Texas A&M University, Texas A&M Energy Institute, Texas A&M University
– sequence: 2
  givenname: M. M. Faruque
  surname: Hasan
  fullname: Hasan, M. M. Faruque
  organization: Artie McFerrin Department of Chemical Engineering, Texas A&M University, Texas A&M Energy Institute, Texas A&M University
– sequence: 3
  givenname: Christodoulos A.
  surname: Floudas
  fullname: Floudas, Christodoulos A.
  email: floudas@tamu.edu
  organization: Artie McFerrin Department of Chemical Engineering, Texas A&M University, Texas A&M Energy Institute, Texas A&M University
BookMark eNp9kcFu1jAQhC1UJP4WHoCbJS5cUnadOLa5VaUUpEpwgLPlJHZwldjBzq9SnoGHxiEcoBLIB0ur-cbemVNyEmKwhDxHOEcA8SojSCUrQF5BLdqKPSIH5KKumML2hBxAMV5xAHxCTnO-BQAlOTuQH9dT7MxE47L62X83q4-BRkdHG2wq8z6GvCbjgx3omOx91cVvdI6DnfJrGuwdne36JQ7UhIH6NVOzLJPvd5s1_oV_fHOVqYuJLsnmfEyW5jsfRmqGHNOyEU_JY2embJ_9vs_I57dXny7fVTcfrt9fXtxUfS3lWnFpsOkabFtnUQzMceOg5ig7Dh30UqFzCAJY33QoDLCaNQOaFoxQCErUZ-Tl7ruk-PVo86pnn3s7TSbYeMwapVBKSsXbIn3xQHobjymU3xUVLzJVN5vh-a4azWS1Dy6WpftyBjv7koF1vswvBMoGa4FNAXAH-hRzTtbpJfnZpHuNoLdC9V6oLoXqrVDNCiMeML1ffyW9JTz9l2Q7mcsrYbTpjyX-Cf0EosG3lg
CitedBy_id crossref_primary_10_1016_j_coche_2018_12_003
crossref_primary_10_1007_s10898_017_0574_1
crossref_primary_10_1021_acs_iecr_8b00207
crossref_primary_10_1016_j_compchemeng_2018_06_027
crossref_primary_10_1016_j_compchemeng_2021_107447
crossref_primary_10_1021_acs_iecr_7b01688
crossref_primary_10_1016_j_cej_2021_130248
crossref_primary_10_1016_j_cep_2018_07_014
crossref_primary_10_1016_j_compchemeng_2018_01_005
crossref_primary_10_1016_j_compchemeng_2021_107365
crossref_primary_10_1016_j_compchemeng_2019_106580
crossref_primary_10_1016_j_finel_2021_103572
crossref_primary_10_1021_acs_iecr_4c01014
crossref_primary_10_1016_j_compchemeng_2019_03_010
crossref_primary_10_1002_aic_16657
crossref_primary_10_1016_j_compchemeng_2018_02_017
crossref_primary_10_1016_j_compchemeng_2023_108210
crossref_primary_10_1007_s10898_018_0643_0
crossref_primary_10_1016_j_compchemeng_2018_02_014
crossref_primary_10_1002_aic_17189
crossref_primary_10_1021_acs_iecr_9b04173
crossref_primary_10_1021_acs_iecr_8b02543
crossref_primary_10_1002_aic_17624
crossref_primary_10_1016_j_compchemeng_2022_107925
crossref_primary_10_1515_cppm_2022_0081
crossref_primary_10_1016_j_cherd_2022_10_002
crossref_primary_10_1002_cite_201800086
crossref_primary_10_1016_j_compchemeng_2021_107311
crossref_primary_10_1007_s10596_016_9610_3
crossref_primary_10_1016_j_chaos_2023_114154
crossref_primary_10_1016_j_jiec_2024_08_025
crossref_primary_10_1016_j_compchemeng_2020_107051
crossref_primary_10_1016_j_compchemeng_2023_108174
crossref_primary_10_1016_j_compchemeng_2017_10_020
crossref_primary_10_1021_acs_iecr_0c02720
crossref_primary_10_1016_j_compchemeng_2019_106567
crossref_primary_10_1016_j_compchemeng_2024_108584
crossref_primary_10_3390_pr12122753
crossref_primary_10_1016_j_compchemeng_2024_108821
crossref_primary_10_1002_aic_16364
crossref_primary_10_1016_j_compchemeng_2020_106847
crossref_primary_10_1016_j_compchemeng_2018_10_007
crossref_primary_10_1007_s10013_020_00442_y
crossref_primary_10_1016_j_compchemeng_2020_106772
crossref_primary_10_1515_revce_2020_0054
crossref_primary_10_32604_cmc_2022_017820
crossref_primary_10_1002_cite_202100083
crossref_primary_10_1016_j_cattod_2019_09_009
crossref_primary_10_1016_j_inpa_2020_02_005
crossref_primary_10_2166_wpt_2024_001
crossref_primary_10_3390_en17092145
crossref_primary_10_1016_j_compchemeng_2019_106714
crossref_primary_10_1016_j_ifacol_2020_12_529
crossref_primary_10_1007_s10898_020_00890_3
crossref_primary_10_1016_j_compchemeng_2019_106519
crossref_primary_10_1002_aic_18338
crossref_primary_10_1016_j_ccst_2024_100319
crossref_primary_10_1016_j_compchemeng_2020_107118
crossref_primary_10_1016_j_cherd_2018_07_009
crossref_primary_10_1007_s00779_019_01270_9
crossref_primary_10_1007_s11590_019_01428_7
crossref_primary_10_1016_j_compchemeng_2021_107371
crossref_primary_10_1021_acs_iecr_9b02383
crossref_primary_10_1007_s40314_021_01562_y
crossref_primary_10_1007_s11590_016_1028_2
crossref_primary_10_1016_j_compchemeng_2018_07_016
crossref_primary_10_3390_pr11010197
crossref_primary_10_1016_j_compchemeng_2017_05_006
crossref_primary_10_1109_TSMC_2017_2678605
crossref_primary_10_1016_j_ces_2023_119553
crossref_primary_10_1016_j_compchemeng_2019_05_008
crossref_primary_10_1016_j_compchemeng_2023_108467
crossref_primary_10_1002_cite_202000025
crossref_primary_10_1134_S1064562420030059
crossref_primary_10_1007_s11081_020_09488_w
crossref_primary_10_1016_j_compchemeng_2021_107419
Cites_doi 10.1016/j.ejor.2009.05.002
10.1007/s10898-012-9940-1
10.1007/s11081-008-9048-0
10.1016/j.cor.2009.05.003
10.1007/s12247-013-9154-1
10.1007/s11081-007-9030-2
10.1002/wrcr.20326
10.1080/10556788.2011.623162
10.1137/S003614450242889
10.1287/ijoc.6.2.207
10.1016/j.advwatres.2008.01.010
10.2514/2.1570
10.1016/j.paerosci.2003.12.001
10.1021/ie301572n
10.1080/0740817X.2012.706377
10.1137/080716980
10.1287/ijoc.1060.0182
10.1016/j.compchemeng.2012.06.006
10.1016/j.enconman.2007.06.007
10.1007/s10898-006-9075-3
10.1021/ef000241s
10.1016/j.ejor.2007.10.013
10.1002/aic.14442
10.1016/j.compchemeng.2014.03.024
10.1007/s10898-012-9874-7
10.1016/j.cor.2010.09.013
10.1002/9780470770801
10.1016/j.compchemeng.2014.03.019
10.1007/s10898-006-9040-1
10.1137/S105262340138983X
10.1016/j.compchemeng.2013.12.014
10.1080/03052150211751
10.1016/j.cep.2007.02.031
10.1007/s10898-008-9332-8
10.1007/s11081-008-9037-3
10.1109/TEVC.2013.2262111
10.1002/aic.12341
10.1137/1.9780898718768
10.1080/0305215X.2013.765000
10.1137/070691814
10.1080/10556788.2013.777722
10.1002/aic.11228
10.1214/ss/1177012413
10.1145/1916461.1916468
10.1016/j.compchemeng.2005.02.018
10.1137/040603371
10.1007/s10898-012-9951-y
10.1023/A:1013729320435
10.1016/j.paerosci.2008.11.001
10.1021/ie301571d
10.1039/c3cp53627k
10.1007/BF01197708
10.1021/ie402931c
10.1137/070692662
10.1007/s10898-004-0570-0
10.1007/s10898-012-9892-5
10.1080/0305215X.2011.637556
10.1080/00401706.2000.10485979
10.1023/A:1011584207202
10.1007/BF01197554
10.1016/j.ejor.2006.08.040
10.1007/s10898-014-0166-2
10.1007/s11081-009-9087-1
10.1002/aic.11579
10.1023/A:1008306431147
10.1038/nmat3336
10.1016/j.compchemeng.2013.05.024
10.1023/A:1012771025575
10.1007/978-94-015-8330-5_4
10.1016/S0098-1354(02)00254-5
10.1007/s10898-014-0184-0
10.1002/aic.14441
10.1007/s10898-007-9234-1
10.1016/j.jcp.2010.03.005
10.1002/9781119115151
10.1007/3-540-50871-6
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
COPYRIGHT 2017 Springer
Journal of Global Optimization is a copyright of Springer, 2017.
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: COPYRIGHT 2017 Springer
– notice: Journal of Global Optimization is a copyright of Springer, 2017.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10898-015-0376-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 42
ExternalDocumentID 4300220611
A718413714
10_1007_s10898_015_0376_2
Genre Feature
GrantInformation_xml – fundername: Division of Chemical, Bioengineering, Environmental, and Transport Systems
  grantid: 1263165
  funderid: http://dx.doi.org/10.13039/100000146
– fundername: Division of Chemical, Bioengineering, Environmental, and Transport Systems
  grantid: 0827907
  funderid: http://dx.doi.org/10.13039/100000146
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L.0
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c388t-58a14b4166fe17d2f5af03518b50b0c891ff10702c4b17a02324d1a60a7910973
IEDL.DBID BENPR
ISSN 0925-5001
IngestDate Thu Jul 10 22:03:29 EDT 2025
Sat Aug 23 13:53:54 EDT 2025
Tue Jun 10 20:37:37 EDT 2025
Thu Apr 24 22:59:45 EDT 2025
Tue Jul 01 00:52:58 EDT 2025
Fri Feb 21 02:42:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Sampling reduction
Global optimization
Kriging
Quadratic
Derivative-free optimization
Constrained optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-58a14b4166fe17d2f5af03518b50b0c891ff10702c4b17a02324d1a60a7910973
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1857999347
PQPubID 29930
PageCount 40
ParticipantIDs proquest_miscellaneous_1879988956
proquest_journals_1857999347
gale_infotracacademiconefile_A718413714
crossref_primary_10_1007_s10898_015_0376_2
crossref_citationtrail_10_1007_s10898_015_0376_2
springer_journals_10_1007_s10898_015_0376_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170100
2017-1-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 1
  year: 2017
  text: 20170100
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2017
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Wan, Pekny, Reklaitis (CR12) 2005; 29
Sankaran, Audet, Marsden (CR53) 2010; 229
Hasan, First, Floudas (CR40) 2013; 15
Henao, Maravelias (CR10) 2011; 57
Quan, Yin, Ng, Lee (CR62) 2013; 45
Espinet, Shoemaker, Doughty (CR13) 2013; 49
Hemker, Fowler, Farthing, Stryk (CR9) 2008; 9
Wild, Regis, Shoemaker (CR52) 2008; 30
Conn, Le Digabel (CR26) 2013; 28
Li, Feng, Benner, Seidel-Morgenstern (CR17) 2014; 67
Regis, Shoemaker (CR59) 2007; 37
Lucia, Beran, Silva (CR72) 2004; 40
Drud (CR83) 1992; 6
Graciano, Roux (CR8) 2013; 59
Fowler, Reese, Kees, Dennis, Kelley, Miller, Audet, Booker, Couture, Darwin, Farthing, Finkel, Gablonsky, Gray, Kolda (CR7) 2008; 31
Le Digabel (CR54) 2011; 37
Powell, Gomez, Hennart (CR61) 1994
Audet, Dennis (CR42) 2006; 17
Powell (CR56) 2009
Lin, Berger, Martin, Kim, Swisher, Jariwala, Rycroft, Bhown, Deem, Haranczyk, Smit (CR80) 2012; 11
Kleijnen, van Beers, van Nieuwenhuyse (CR11) 2010; 202
Sacks, Welch, Toby, Wynn (CR76) 1989; 4
Forrester, Sóbester, Keane (CR18) 2008
Yao, Chen, Huang, van Tooren (CR33) 2014; 29
Kahrs, Marquardt (CR69) 2007; 46
Viana, Haftka, Watson (CR35) 2013; 56
CR86
CR85
Misener, Floudas (CR66) 2013; 57
Audet, Dennis (CR43) 2009; 20
Jakobsson, Patriksson, Rudholm, Wojciechowski (CR28) 2010; 11
Sobieszczanski-Sobieski, Haftka (CR70) 1997; 14
Hasan, Boukouvala, First, Floudas (CR16) 2014; 53
Forrester, Keane (CR27) 2009; 45
Rios, Sahinidis (CR21) 2013; 56
Regis (CR31) 2014; 46
Bjorkman, Holmstrom (CR23) 2000; 1
Abramson (CR41) 2002
Regis, Shoemaker (CR60) 2013; 56
Boukouvala, Ierapetritou (CR3) 2013; 8
Fahmi, Cremaschi (CR6) 2012; 46
Floudas (CR37) 1999
Abramson, Audet, Dennis, Digabel (CR49) 2009; 20
Audet, Bechard, Digabel (CR50) 2008; 41
Cressie (CR74) 1993
Boukouvala, Ierapetritou (CR25) 2014; 60
First, Hasan, Floudas (CR39) 2014; 60
Egea, Martí, Banga (CR84) 2010; 37
Davis, Ierapetritou (CR36) 2007; 53
Booker, Dennis, Frank, Serafini, Torczon, Trosset (CR24) 1999; 17
Parr, Keane, Forrester, Holden (CR46) 2012; 44
Gramacy, Lee (CR79) 2010
Zhang, Webley, Xiao (CR82) 2008; 49
Kleijnen (CR75) 2009; 192
CR55
Audet, Dennis (CR45) 2004; 14
Audet, Bechard, Chaouki (CR1) 2008; 9
Muller, Shoemaker (CR34) 2014; 60
Holmstrom, Quttineh, Edvall (CR44) 2008; 9
Caballero, Grossmann (CR4) 2008; 54
Kolda, Lewis, Torczon (CR51) 2003; 45
Conn, Scheinberg, Vicente (CR19) 2009
Hasan, Baliban, Elia, Floudas (CR14) 2013; 51
Floudas, Gounaris (CR38) 2009; 45
Misener, Floudas (CR65) 2012; 11
Bjork, Lindberg, Westerlund (CR78) 2003; 27
Mckay, Beckman, Conover (CR68) 2000; 42
Jones (CR29) 2001; 21
Regis, Shoemaker (CR58) 2007; 19
Kolda, Lewis, Torczon (CR22) 2003; 45
Regis (CR48) 2011; 38
Regis, Shoemaker (CR57) 2007; 182
Regis, Shoemaker (CR32) 2005; 31
Li, Floudas (CR73) 2014; 70
Sasena, Papalambros, Goovaerts (CR47) 2002; 34
Martelli, Amaldi (CR20) 2014; 63
Myers, Montgomery (CR77) 1995
Bartholomew-Biggs, Parkhurst, Wilson (CR2) 2002; 21
Siriwardane, Shen, Fisher, Poston (CR81) 2001; 15
CR63
Egea, Rodriguez-Fernandez, Banga, Marti (CR5) 2007; 37
Jones, Schonlau, Welch (CR30) 1998; 13
Hasan, Baliban, Elia, Floudas (CR15) 2013; 51
Willcox, Peraire (CR71) 2002; 40
Regis (CR64) 2014; 18
Misener, Floudas (CR67) 2014; 59
F Boukouvala (376_CR3) 2013; 8
R Misener (376_CR65) 2012; 11
S Li (376_CR17) 2014; 67
XT Wan (376_CR12) 2005; 29
AR Conn (376_CR26) 2013; 28
JA Egea (376_CR84) 2010; 37
A Espinet (376_CR13) 2013; 49
MMF Hasan (376_CR14) 2013; 51
RG Regis (376_CR48) 2011; 38
S Jakobsson (376_CR28) 2010; 11
AJ Booker (376_CR24) 1999; 17
CA Floudas (376_CR38) 2009; 45
J Muller (376_CR34) 2014; 60
AR Conn (376_CR19) 2009
M Abramson (376_CR49) 2009; 20
RG Regis (376_CR32) 2005; 31
RG Regis (376_CR64) 2014; 18
J Sobieszczanski-Sobieski (376_CR70) 1997; 14
O Kahrs (376_CR69) 2007; 46
RV Siriwardane (376_CR81) 2001; 15
T Hemker (376_CR9) 2008; 9
MJD Powell (376_CR56) 2009
EL First (376_CR39) 2014; 60
DJ Lucia (376_CR72) 2004; 40
AIJ Forrester (376_CR18) 2008
R Misener (376_CR67) 2014; 59
JA Egea (376_CR5) 2007; 37
C Audet (376_CR43) 2009; 20
376_CR86
J Sacks (376_CR76) 1989; 4
376_CR85
JA Caballero (376_CR4) 2008; 54
M Abramson (376_CR41) 2002
DR Jones (376_CR30) 1998; 13
C Audet (376_CR42) 2006; 17
AIJ Forrester (376_CR27) 2009; 45
RG Regis (376_CR57) 2007; 182
JPC Kleijnen (376_CR75) 2009; 192
JPC Kleijnen (376_CR11) 2010; 202
MJ Sasena (376_CR47) 2002; 34
RG Regis (376_CR58) 2007; 19
C Audet (376_CR50) 2008; 41
SM Wild (376_CR52) 2008; 30
Z Li (376_CR73) 2014; 70
RH Myers (376_CR77) 1995
CA Henao (376_CR10) 2011; 57
S Le Digabel (376_CR54) 2011; 37
KR Fowler (376_CR7) 2008; 31
LM Rios (376_CR21) 2013; 56
376_CR55
MMF Hasan (376_CR16) 2014; 53
N Quan (376_CR62) 2013; 45
W Yao (376_CR33) 2014; 29
RB Gramacy (376_CR79) 2010
MJD Powell (376_CR61) 1994
K Willcox (376_CR71) 2002; 40
K-M Bjork (376_CR78) 2003; 27
TG Kolda (376_CR51) 2003; 45
DR Jones (376_CR29) 2001; 21
FAC Viana (376_CR35) 2013; 56
L-C Lin (376_CR80) 2012; 11
C Audet (376_CR45) 2004; 14
MC Bartholomew-Biggs (376_CR2) 2002; 21
RG Regis (376_CR31) 2014; 46
K Holmstrom (376_CR44) 2008; 9
MD Mckay (376_CR68) 2000; 42
F Boukouvala (376_CR25) 2014; 60
MMF Hasan (376_CR40) 2013; 15
JM Parr (376_CR46) 2012; 44
RG Regis (376_CR60) 2013; 56
MMF Hasan (376_CR15) 2013; 51
E Martelli (376_CR20) 2014; 63
RG Regis (376_CR59) 2007; 37
C Audet (376_CR1) 2008; 9
TG Kolda (376_CR22) 2003; 45
376_CR63
M Bjorkman (376_CR23) 2000; 1
S Sankaran (376_CR53) 2010; 229
J Zhang (376_CR82) 2008; 49
R Misener (376_CR66) 2013; 57
A Drud (376_CR83) 1992; 6
E Davis (376_CR36) 2007; 53
I Fahmi (376_CR6) 2012; 46
N Cressie (376_CR74) 1993
JEA Graciano (376_CR8) 2013; 59
CA Floudas (376_CR37) 1999
References_xml – volume: 202
  start-page: 164
  issue: 1
  year: 2010
  end-page: 174
  ident: CR11
  article-title: Constrained optimization in expensive simulation: Novel approach
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2009.05.002
– volume: 56
  start-page: 1719
  issue: 4
  year: 2013
  end-page: 1753
  ident: CR60
  article-title: A quasi-multistart framework for global optimization of expensive functions using response surface models
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-9940-1
– volume: 9
  start-page: 341
  issue: 4
  year: 2008
  end-page: 360
  ident: CR9
  article-title: A mixed-integer simulation-based optimization approach with surrogate functions in water resources management
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-008-9048-0
– volume: 37
  start-page: 315
  issue: 2
  year: 2010
  end-page: 324
  ident: CR84
  article-title: An evolutionary method for complex-process optimization
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2009.05.003
– volume: 8
  start-page: 131
  issue: 2
  year: 2013
  end-page: 145
  ident: CR3
  article-title: Surrogate-based optimization of expensive flowsheet modeling for continuous pharmaceutical manufacturing
  publication-title: J. Pharm. Innov.
  doi: 10.1007/s12247-013-9154-1
– volume: 9
  start-page: 143
  issue: 2
  year: 2008
  end-page: 160
  ident: CR1
  article-title: Spent potliner treatment process optimization using a MADS algorithm
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-007-9030-2
– volume: 49
  start-page: 4442
  issue: 7
  year: 2013
  end-page: 4464
  ident: CR13
  article-title: Estimation of plume distribution for carbon sequestration using parameter estimation with limited monitoring data
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20326
– volume: 28
  start-page: 139
  issue: 1
  year: 2013
  end-page: 158
  ident: CR26
  article-title: Use of quadratic models with mesh-adaptive direct search for constrained black box optimization
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2011.623162
– volume: 45
  start-page: 385
  issue: 3
  year: 2003
  end-page: 482
  ident: CR22
  article-title: Optimization by direct search: new perspectives on some classical and modern methods
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450242889
– volume: 6
  start-page: 207
  year: 1992
  end-page: 216
  ident: CR83
  article-title: CONOPT—a large-scale GRG code
  publication-title: ORSA J. Comput.
  doi: 10.1287/ijoc.6.2.207
– volume: 31
  start-page: 743
  issue: 5
  year: 2008
  end-page: 757
  ident: CR7
  article-title: Comparison of derivative-free optimization methods for groundwater supply and hydraulic capture community problems
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2008.01.010
– volume: 40
  start-page: 2323
  issue: 11
  year: 2002
  end-page: 2330
  ident: CR71
  article-title: Balanced model reduction via the proper orthogonal decomposition
  publication-title: AIAA J.
  doi: 10.2514/2.1570
– volume: 40
  start-page: 51
  issue: 1–2
  year: 2004
  end-page: 117
  ident: CR72
  article-title: Reduced-order modeling: new approaches for computational physics
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2003.12.001
– volume: 51
  start-page: 15665
  issue: 48
  year: 2013
  end-page: 15682
  ident: CR14
  article-title: Modeling, simulation, and pptimization of postcombustion capture for variable feed concentration and flow rate. 2. Pressure swing adsorption and vacuum swing adsorption processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie301572n
– volume: 45
  start-page: 763
  issue: 7
  year: 2013
  end-page: 780
  ident: CR62
  article-title: Simulation optimization via kriging: a sequential search using expected improvement with computing budget constraints
  publication-title: IIE Trans.
  doi: 10.1080/0740817X.2012.706377
– volume: 20
  start-page: 948
  issue: 2
  year: 2009
  end-page: 966
  ident: CR49
  article-title: OrthoMADS: a deterministic MADS instance with orthogonal directions
  publication-title: SIAM J. Optim.
  doi: 10.1137/080716980
– volume: 19
  start-page: 497
  issue: 4
  year: 2007
  end-page: 509
  ident: CR58
  article-title: A stochastic radial basis function method for the global optimization of expensive functions
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1060.0182
– volume: 46
  start-page: 105
  year: 2012
  end-page: 123
  ident: CR6
  article-title: Process synthesis of biodiesel production plant using artificial neural networks as the surrogate models
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2012.06.006
– volume: 49
  start-page: 346
  issue: 2
  year: 2008
  end-page: 356
  ident: CR82
  article-title: Effect of process parameters on power requirements of vacuum swing adsorption technology for capture from flue gas
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2007.06.007
– volume: 37
  start-page: 481
  issue: 3
  year: 2007
  end-page: 503
  ident: CR5
  article-title: Scatter search for chemical and bio-process optimization
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-006-9075-3
– volume: 15
  start-page: 279
  issue: 2
  year: 2001
  end-page: 284
  ident: CR81
  article-title: Adsorption of on molecular sieves and activated carbon
  publication-title: Energy Fuels
  doi: 10.1021/ef000241s
– volume: 192
  start-page: 707
  issue: 3
  year: 2009
  end-page: 716
  ident: CR75
  article-title: Kriging metamodeling in simulation: a review
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2007.10.013
– volume: 60
  start-page: 2462
  issue: 7
  year: 2014
  end-page: 2474
  ident: CR25
  article-title: Derivative-free optimization for expensive constrained problems using a novel expected improvement objective function
  publication-title: AIChE J.
  doi: 10.1002/aic.14442
– volume: 11
  start-page: 317
  year: 2012
  end-page: 336
  ident: CR65
  article-title: Global optimization of mixed-integer models with quadratic and signomial functions: a review
  publication-title: Appl. Comput. Math.
– volume: 67
  start-page: 121
  year: 2014
  end-page: 132
  ident: CR17
  article-title: Using surrogate models for efficient optimization of simulated moving bed chromatography
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2014.03.024
– volume: 57
  start-page: 3
  issue: 1
  year: 2013
  end-page: 50
  ident: CR66
  article-title: GloMIQO: global mixed-integer quadratic optimizer
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-9874-7
– volume: 38
  start-page: 837
  issue: 5
  year: 2011
  end-page: 853
  ident: CR48
  article-title: Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2010.09.013
– year: 2008
  ident: CR18
  publication-title: Engineering Design Via Surrogate Modelling—A Practical Guide
  doi: 10.1002/9780470770801
– volume: 70
  start-page: 50
  year: 2014
  end-page: 65
  ident: CR73
  article-title: Optimal scenario reduction framework based on distance of uncertainty distribution and output performance: I. Single reduction via mixed integer linear optimization
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2014.03.019
– volume: 37
  start-page: 113
  issue: 1
  year: 2007
  end-page: 135
  ident: CR59
  article-title: Improved strategies for radial basis function methods for global optimization
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-006-9040-1
– volume: 14
  start-page: 980
  issue: 4
  year: 2004
  end-page: 1010
  ident: CR45
  article-title: A pattern search filter method for nonlinear programming without derivatives
  publication-title: SIAM J. Optim.
  doi: 10.1137/S105262340138983X
– ident: CR85
– volume: 63
  start-page: 108
  year: 2014
  end-page: 139
  ident: CR20
  article-title: PGS-COM: a hybrid method for constrained non-smooth black-box optimization problems: brief review, novel algorithm and comparative evaluation
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2013.12.014
– volume: 34
  start-page: 263
  issue: 3
  year: 2002
  end-page: 278
  ident: CR47
  article-title: Exploration of metamodeling sampling criteria for constrained global optimization
  publication-title: Eng. Optim.
  doi: 10.1080/03052150211751
– year: 2002
  ident: CR41
  publication-title: Pattern Search Algorithms for Mixed Variable General Constrained Optimization Problems
– volume: 46
  start-page: 1054
  issue: 11
  year: 2007
  end-page: 1066
  ident: CR69
  article-title: The validity domain of hybrid models and its application in process optimization
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2007.02.031
– year: 1995
  ident: CR77
  publication-title: Response Surface Methodology: Process and Product in Optimization Using Designed Experiments
– volume: 45
  start-page: 3
  issue: 1
  year: 2009
  end-page: 38
  ident: CR38
  article-title: A review of recent advances in global optimization
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-008-9332-8
– volume: 9
  start-page: 311
  issue: 4
  year: 2008
  end-page: 339
  ident: CR44
  article-title: An adaptive radial basis algorithm (ARBF) for expensive black-box mixed-integer constrained global optimization
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-008-9037-3
– volume: 18
  start-page: 326
  issue: 3
  year: 2014
  end-page: 347
  ident: CR64
  article-title: Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2262111
– volume: 57
  start-page: 1216
  issue: 5
  year: 2011
  end-page: 1232
  ident: CR10
  article-title: Surrogate-based superstructure optimization framework
  publication-title: AIChE J.
  doi: 10.1002/aic.12341
– year: 2009
  ident: CR19
  publication-title: Introduction to Derivative-Free Optimization. MPS-SIAM Series on Optimization
  doi: 10.1137/1.9780898718768
– volume: 46
  start-page: 218
  issue: 2
  year: 2014
  end-page: 243
  ident: CR31
  article-title: Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2013.765000
– volume: 45
  start-page: 385
  issue: 3
  year: 2003
  end-page: 482
  ident: CR51
  article-title: Optimization by direct search: new perspectives on some classical and modern methods
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450242889
– volume: 30
  start-page: 3197
  issue: 6
  year: 2008
  end-page: 3219
  ident: CR52
  article-title: Orbit: optimization by radial basis function interpolation in trust-regions
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/070691814
– volume: 29
  start-page: 406
  issue: 2
  year: 2014
  end-page: 429
  ident: CR33
  article-title: A surrogate-based optimization method with RBF neural network enhanced by linear interpolation and hybrid infill strategy
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2013.777722
– year: 2010
  ident: CR79
  publication-title: Optimization Under Unknown Constraints
– volume: 53
  start-page: 2001
  issue: 8
  year: 2007
  end-page: 2012
  ident: CR36
  article-title: A kriging method for the solution of nonlinear programs with black-box functions
  publication-title: AIChE J.
  doi: 10.1002/aic.11228
– volume: 4
  start-page: 409
  issue: 4
  year: 1989
  end-page: 423
  ident: CR76
  article-title: Design and analysis of computer experiments
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1177012413
– volume: 37
  start-page: 1
  issue: 4
  year: 2011
  end-page: 15
  ident: CR54
  article-title: Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm
  publication-title: ACM Trans. Math. Softw. (TOMS)
  doi: 10.1145/1916461.1916468
– ident: CR86
– volume: 29
  start-page: 1317
  issue: 6
  year: 2005
  end-page: 1328
  ident: CR12
  article-title: Simulation-based optimization with surrogate models—application to supply chain management
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2005.02.018
– year: 2009
  ident: CR56
  publication-title: The BOBYQA Algorithm for Bound Constrained Optimization Without Derivatives
– year: 1999
  ident: CR37
  publication-title: Deterministic Global Optimization
– volume: 17
  start-page: 188
  issue: 1
  year: 2006
  end-page: 217
  ident: CR42
  article-title: Mesh adaptive direct search algorithms for constrained optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/040603371
– ident: CR63
– volume: 56
  start-page: 1247
  issue: 3
  year: 2013
  end-page: 1293
  ident: CR21
  article-title: Derivative-free optimization: a review of algorithms and comparison of software implementations
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-9951-y
– volume: 21
  start-page: 311
  issue: 3
  year: 2002
  end-page: 323
  ident: CR2
  article-title: Using DIRECT to solve an aircraft routing problem
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1013729320435
– volume: 45
  start-page: 50
  issue: 1
  year: 2009
  end-page: 79
  ident: CR27
  article-title: Recent advances in surrogate-based optimization
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2008.11.001
– volume: 51
  start-page: 15642
  issue: 48
  year: 2013
  end-page: 15664
  ident: CR15
  article-title: Modeling, simulation, and optimization of postcombustion capture for variable feed concentration and flow rate. 1. Chemical absorption and membrane processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie301571d
– volume: 15
  start-page: 17601
  issue: 40
  year: 2013
  end-page: 17618
  ident: CR40
  article-title: Cost-effective capture based on in silico screening of zeolites and process optimization
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp53627k
– volume: 17
  start-page: 1
  issue: 1
  year: 1999
  end-page: 13
  ident: CR24
  article-title: A rigorous framework for optimization of expensive functions by surrogates
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/BF01197708
– volume: 53
  start-page: 7489
  issue: 18
  year: 2014
  end-page: 7506
  ident: CR16
  article-title: Nationwide, regional, and statewide capture, utilization, and sequestration supply chain network optimization
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie402931c
– volume: 20
  start-page: 445
  issue: 1
  year: 2009
  end-page: 472
  ident: CR43
  article-title: A progressive barrier for derivative-free nonlinear programming
  publication-title: SIAM J. Optim.
  doi: 10.1137/070692662
– volume: 31
  start-page: 153
  issue: 1
  year: 2005
  end-page: 171
  ident: CR32
  article-title: Constrained global optimization of expensive black box functions using radial basis functions
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-004-0570-0
– volume: 56
  start-page: 669
  issue: 2
  year: 2013
  end-page: 689
  ident: CR35
  article-title: Efficient global optimization algorithm assisted by multiple surrogate techniques
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-9892-5
– volume: 44
  start-page: 1147
  issue: 10
  year: 2012
  end-page: 1166
  ident: CR46
  article-title: Infill sampling criteria for surrogate-based optimization with constraint handling
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2011.637556
– volume: 42
  start-page: 55
  issue: 1
  year: 2000
  end-page: 61
  ident: CR68
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
  doi: 10.1080/00401706.2000.10485979
– volume: 1
  start-page: 373
  issue: 4
  year: 2000
  end-page: 397
  ident: CR23
  article-title: Global optimization of costly nonconvex functions using radial basis functions
  publication-title: Optim. Eng.
  doi: 10.1023/A:1011584207202
– volume: 14
  start-page: 1
  issue: 1
  year: 1997
  end-page: 23
  ident: CR70
  article-title: Multidisciplinary aerospace design optimization: survey of recent developments
  publication-title: Struct. Optim.
  doi: 10.1007/BF01197554
– volume: 182
  start-page: 514
  issue: 2
  year: 2007
  end-page: 535
  ident: CR57
  article-title: Parallel radial basis function methods for the global optimization of expensive functions
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.08.040
– volume: 59
  start-page: 503
  issue: 2–3
  year: 2014
  end-page: 526
  ident: CR67
  article-title: ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-014-0166-2
– volume: 11
  start-page: 501
  issue: 4
  year: 2010
  end-page: 532
  ident: CR28
  article-title: A method for simulation based optimization using radial basis functions
  publication-title: Optim. Engi.
  doi: 10.1007/s11081-009-9087-1
– ident: CR55
– volume: 54
  start-page: 2633
  issue: 10
  year: 2008
  end-page: 2650
  ident: CR4
  article-title: An algorithm for the use of surrogate models in modular flowsheet optimization
  publication-title: AIChE J.
  doi: 10.1002/aic.11579
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  end-page: 492
  ident: CR30
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008306431147
– volume: 11
  start-page: 633
  issue: 7
  year: 2012
  end-page: 641
  ident: CR80
  article-title: In silico screening of carbon-capture materials
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3336
– volume: 59
  start-page: 197
  year: 2013
  end-page: 210
  ident: CR8
  article-title: Improvements in surrogate models for process synthesis. Application to water network system design
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2013.05.024
– volume: 21
  start-page: 345
  issue: 4
  year: 2001
  end-page: 383
  ident: CR29
  article-title: A taxonomy of global optimization methods based on response surfaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1012771025575
– start-page: 51
  year: 1994
  end-page: 67
  ident: CR61
  article-title: A direct search optimization method that models the objective and constraint functions by linear interpolation
  publication-title: Advances in Optimization and Numerical Analysis: Mathematics and its Applications, vol. 275. Mathematics and Its Applications
  doi: 10.1007/978-94-015-8330-5_4
– volume: 27
  start-page: 669
  issue: 5
  year: 2003
  end-page: 679
  ident: CR78
  article-title: Some convexifications in global optimization of problems containing signomial terms
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(02)00254-5
– volume: 60
  start-page: 123
  issue: 2
  year: 2014
  end-page: 144
  ident: CR34
  article-title: Influence ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization methods
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-014-0184-0
– volume: 60
  start-page: 1767
  issue: 5
  year: 2014
  end-page: 1785
  ident: CR39
  article-title: Discovery of novel zeolites for natural gas purification through combined material screening and process optimization
  publication-title: AICHE J.
  doi: 10.1002/aic.14441
– volume: 41
  start-page: 299
  issue: 2
  year: 2008
  end-page: 318
  ident: CR50
  article-title: Nonsmooth optimization through mesh adaptive direct search and variable neighborhood search
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-007-9234-1
– volume: 229
  start-page: 4664
  issue: 12
  year: 2010
  end-page: 4682
  ident: CR53
  article-title: A method for stochastic constrained optimization using derivative-free surrogate pattern search and collocation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.03.005
– year: 1993
  ident: CR74
  publication-title: Statistics for Spatial Data. Wiley Series in Probability and Statistics
– volume: 56
  start-page: 669
  issue: 2
  year: 2013
  ident: 376_CR35
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-9892-5
– volume: 8
  start-page: 131
  issue: 2
  year: 2013
  ident: 376_CR3
  publication-title: J. Pharm. Innov.
  doi: 10.1007/s12247-013-9154-1
– volume: 45
  start-page: 763
  issue: 7
  year: 2013
  ident: 376_CR62
  publication-title: IIE Trans.
  doi: 10.1080/0740817X.2012.706377
– volume: 20
  start-page: 445
  issue: 1
  year: 2009
  ident: 376_CR43
  publication-title: SIAM J. Optim.
  doi: 10.1137/070692662
– volume: 182
  start-page: 514
  issue: 2
  year: 2007
  ident: 376_CR57
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.08.040
– volume: 57
  start-page: 1216
  issue: 5
  year: 2011
  ident: 376_CR10
  publication-title: AIChE J.
  doi: 10.1002/aic.12341
– volume: 41
  start-page: 299
  issue: 2
  year: 2008
  ident: 376_CR50
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-007-9234-1
– volume: 60
  start-page: 1767
  issue: 5
  year: 2014
  ident: 376_CR39
  publication-title: AICHE J.
  doi: 10.1002/aic.14441
– volume: 60
  start-page: 2462
  issue: 7
  year: 2014
  ident: 376_CR25
  publication-title: AIChE J.
  doi: 10.1002/aic.14442
– volume: 46
  start-page: 105
  year: 2012
  ident: 376_CR6
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2012.06.006
– volume: 15
  start-page: 17601
  issue: 40
  year: 2013
  ident: 376_CR40
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp53627k
– volume: 49
  start-page: 346
  issue: 2
  year: 2008
  ident: 376_CR82
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2007.06.007
– volume: 54
  start-page: 2633
  issue: 10
  year: 2008
  ident: 376_CR4
  publication-title: AIChE J.
  doi: 10.1002/aic.11579
– ident: 376_CR86
– volume: 42
  start-page: 55
  issue: 1
  year: 2000
  ident: 376_CR68
  publication-title: Technometrics
  doi: 10.1080/00401706.2000.10485979
– volume: 59
  start-page: 197
  year: 2013
  ident: 376_CR8
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2013.05.024
– volume-title: The BOBYQA Algorithm for Bound Constrained Optimization Without Derivatives
  year: 2009
  ident: 376_CR56
– start-page: 51
  volume-title: Advances in Optimization and Numerical Analysis: Mathematics and its Applications, vol. 275. Mathematics and Its Applications
  year: 1994
  ident: 376_CR61
  doi: 10.1007/978-94-015-8330-5_4
– volume: 34
  start-page: 263
  issue: 3
  year: 2002
  ident: 376_CR47
  publication-title: Eng. Optim.
  doi: 10.1080/03052150211751
– volume: 11
  start-page: 501
  issue: 4
  year: 2010
  ident: 376_CR28
  publication-title: Optim. Engi.
  doi: 10.1007/s11081-009-9087-1
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: 376_CR30
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008306431147
– volume: 59
  start-page: 503
  issue: 2–3
  year: 2014
  ident: 376_CR67
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-014-0166-2
– volume: 53
  start-page: 7489
  issue: 18
  year: 2014
  ident: 376_CR16
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie402931c
– volume: 20
  start-page: 948
  issue: 2
  year: 2009
  ident: 376_CR49
  publication-title: SIAM J. Optim.
  doi: 10.1137/080716980
– volume: 21
  start-page: 345
  issue: 4
  year: 2001
  ident: 376_CR29
  publication-title: J. Global Optim.
  doi: 10.1023/A:1012771025575
– volume: 53
  start-page: 2001
  issue: 8
  year: 2007
  ident: 376_CR36
  publication-title: AIChE J.
  doi: 10.1002/aic.11228
– volume: 30
  start-page: 3197
  issue: 6
  year: 2008
  ident: 376_CR52
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/070691814
– volume: 192
  start-page: 707
  issue: 3
  year: 2009
  ident: 376_CR75
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2007.10.013
– volume-title: Response Surface Methodology: Process and Product in Optimization Using Designed Experiments
  year: 1995
  ident: 376_CR77
– volume: 1
  start-page: 373
  issue: 4
  year: 2000
  ident: 376_CR23
  publication-title: Optim. Eng.
  doi: 10.1023/A:1011584207202
– volume: 60
  start-page: 123
  issue: 2
  year: 2014
  ident: 376_CR34
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-014-0184-0
– volume: 18
  start-page: 326
  issue: 3
  year: 2014
  ident: 376_CR64
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2262111
– volume: 46
  start-page: 218
  issue: 2
  year: 2014
  ident: 376_CR31
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2013.765000
– volume: 21
  start-page: 311
  issue: 3
  year: 2002
  ident: 376_CR2
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1013729320435
– volume: 9
  start-page: 143
  issue: 2
  year: 2008
  ident: 376_CR1
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-007-9030-2
– volume: 45
  start-page: 385
  issue: 3
  year: 2003
  ident: 376_CR51
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450242889
– volume: 46
  start-page: 1054
  issue: 11
  year: 2007
  ident: 376_CR69
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2007.02.031
– volume: 202
  start-page: 164
  issue: 1
  year: 2010
  ident: 376_CR11
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2009.05.002
– volume: 37
  start-page: 1
  issue: 4
  year: 2011
  ident: 376_CR54
  publication-title: ACM Trans. Math. Softw. (TOMS)
  doi: 10.1145/1916461.1916468
– volume: 40
  start-page: 51
  issue: 1–2
  year: 2004
  ident: 376_CR72
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2003.12.001
– volume: 15
  start-page: 279
  issue: 2
  year: 2001
  ident: 376_CR81
  publication-title: Energy Fuels
  doi: 10.1021/ef000241s
– volume: 51
  start-page: 15665
  issue: 48
  year: 2013
  ident: 376_CR14
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie301572n
– volume: 6
  start-page: 207
  year: 1992
  ident: 376_CR83
  publication-title: ORSA J. Comput.
  doi: 10.1287/ijoc.6.2.207
– volume-title: Deterministic Global Optimization
  year: 1999
  ident: 376_CR37
– volume: 57
  start-page: 3
  issue: 1
  year: 2013
  ident: 376_CR66
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-9874-7
– volume: 17
  start-page: 188
  issue: 1
  year: 2006
  ident: 376_CR42
  publication-title: SIAM J. Optim.
  doi: 10.1137/040603371
– ident: 376_CR55
– volume: 14
  start-page: 1
  issue: 1
  year: 1997
  ident: 376_CR70
  publication-title: Struct. Optim.
  doi: 10.1007/BF01197554
– volume-title: Statistics for Spatial Data. Wiley Series in Probability and Statistics
  year: 1993
  ident: 376_CR74
  doi: 10.1002/9781119115151
– volume-title: Pattern Search Algorithms for Mixed Variable General Constrained Optimization Problems
  year: 2002
  ident: 376_CR41
– volume: 37
  start-page: 315
  issue: 2
  year: 2010
  ident: 376_CR84
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2009.05.003
– volume: 45
  start-page: 385
  issue: 3
  year: 2003
  ident: 376_CR22
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450242889
– volume: 63
  start-page: 108
  year: 2014
  ident: 376_CR20
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2013.12.014
– volume: 28
  start-page: 139
  issue: 1
  year: 2013
  ident: 376_CR26
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2011.623162
– volume: 17
  start-page: 1
  issue: 1
  year: 1999
  ident: 376_CR24
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/BF01197708
– volume: 229
  start-page: 4664
  issue: 12
  year: 2010
  ident: 376_CR53
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.03.005
– volume: 4
  start-page: 409
  issue: 4
  year: 1989
  ident: 376_CR76
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1177012413
– volume: 27
  start-page: 669
  issue: 5
  year: 2003
  ident: 376_CR78
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(02)00254-5
– volume-title: Engineering Design Via Surrogate Modelling—A Practical Guide
  year: 2008
  ident: 376_CR18
  doi: 10.1002/9780470770801
– volume: 31
  start-page: 743
  issue: 5
  year: 2008
  ident: 376_CR7
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2008.01.010
– volume: 37
  start-page: 481
  issue: 3
  year: 2007
  ident: 376_CR5
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-006-9075-3
– ident: 376_CR63
  doi: 10.1007/3-540-50871-6
– volume-title: Optimization Under Unknown Constraints
  year: 2010
  ident: 376_CR79
– volume: 29
  start-page: 1317
  issue: 6
  year: 2005
  ident: 376_CR12
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2005.02.018
– volume: 45
  start-page: 50
  issue: 1
  year: 2009
  ident: 376_CR27
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2008.11.001
– volume: 51
  start-page: 15642
  issue: 48
  year: 2013
  ident: 376_CR15
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie301571d
– volume: 11
  start-page: 317
  year: 2012
  ident: 376_CR65
  publication-title: Appl. Comput. Math.
– volume: 31
  start-page: 153
  issue: 1
  year: 2005
  ident: 376_CR32
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-004-0570-0
– volume: 44
  start-page: 1147
  issue: 10
  year: 2012
  ident: 376_CR46
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2011.637556
– volume: 67
  start-page: 121
  year: 2014
  ident: 376_CR17
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2014.03.024
– volume: 19
  start-page: 497
  issue: 4
  year: 2007
  ident: 376_CR58
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1060.0182
– ident: 376_CR85
– volume: 56
  start-page: 1247
  issue: 3
  year: 2013
  ident: 376_CR21
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-9951-y
– volume: 56
  start-page: 1719
  issue: 4
  year: 2013
  ident: 376_CR60
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-9940-1
– volume-title: Introduction to Derivative-Free Optimization. MPS-SIAM Series on Optimization
  year: 2009
  ident: 376_CR19
  doi: 10.1137/1.9780898718768
– volume: 11
  start-page: 633
  issue: 7
  year: 2012
  ident: 376_CR80
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3336
– volume: 38
  start-page: 837
  issue: 5
  year: 2011
  ident: 376_CR48
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2010.09.013
– volume: 40
  start-page: 2323
  issue: 11
  year: 2002
  ident: 376_CR71
  publication-title: AIAA J.
  doi: 10.2514/2.1570
– volume: 9
  start-page: 341
  issue: 4
  year: 2008
  ident: 376_CR9
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-008-9048-0
– volume: 70
  start-page: 50
  year: 2014
  ident: 376_CR73
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2014.03.019
– volume: 29
  start-page: 406
  issue: 2
  year: 2014
  ident: 376_CR33
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2013.777722
– volume: 49
  start-page: 4442
  issue: 7
  year: 2013
  ident: 376_CR13
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20326
– volume: 45
  start-page: 3
  issue: 1
  year: 2009
  ident: 376_CR38
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-008-9332-8
– volume: 14
  start-page: 980
  issue: 4
  year: 2004
  ident: 376_CR45
  publication-title: SIAM J. Optim.
  doi: 10.1137/S105262340138983X
– volume: 9
  start-page: 311
  issue: 4
  year: 2008
  ident: 376_CR44
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-008-9037-3
– volume: 37
  start-page: 113
  issue: 1
  year: 2007
  ident: 376_CR59
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-006-9040-1
SSID ssj0009852
Score 2.4501626
Snippet This paper introduces a novel methodology for the global optimization of general constrained grey-box problems. A grey-box problem may contain a combination of...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) This paper introduces a novel methodology for the global optimization of general...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).This paper introduces a novel methodology for the global optimization of general...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3
SubjectTerms Adsorption
Algorithms
Case studies
Computer Science
Constraints
Design of experiments
Differential equations
Literature reviews
Mathematical models
Mathematical optimization
Mathematics
Mathematics and Statistics
Methods
Operations Research/Decision Theory
Optimization
Parameter estimation
Partial differential equations
Pressure swing adsorption
Quadratic programming
Real Functions
Sampling
Simulation
Studies
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9UwEA6yvuiDukfFursyguCNQJJekvp2WHdZBMUHD-xbSJNUBG3ltAf1P-yPdpKmZ896Ax9LpyEwmZlvOplvCHlSukpWltXUCaPiCDNqvBS0cjLQkwvJbbxt8a46WxVvzsvz1Mc9zLfd55Jk9NQ7zW4qtIPxkjK0Cop-93oZUnc8xCuxvGTaVXHMDqtFSUt0wnMp809LXAlGv7rk32qjMeSc3iG3ElaE5aTcfXLNdwtye57DAMksF-TmDqkgPr3dMrEOC7KfpAZ4lhimn98lFxPTP_ToL76kRkzoW_g4SYANoDHMjvAOMB__QZv-O8SZOcMrQBwO09xpMJ2DT-MAO1VwGPsrn79_fTIAAmOIF243aw_DN9wmGDf06-iu7pHV6cmH4zOaxjJQmys10lIZXjQI5KrWc-lEW5o21CNVU7KGWVXztsWkkglbNFwaFjCb46ZiRtah3p3fJ3td3_kHBOraGe5M7qvCFUI0Stk898zKvOKNr3hG2KwfbRNnedj_Z33JthxUqlGlOqhUi4y82H7ydSLs-Jfw06B0HYwZ17Um9STg7gItll5i5MYoL3mRkcP5XOhk5YMOPFoIsPNCZuTx9jXaZyi6mM73myCDIkphGpqRl_N52lnib1t7-F_SB-SGCHgj_hs6JHvjeuOPEC2NzaNoHT8BMvQKpw
  priority: 102
  providerName: Springer Nature
Title Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption
URI https://link.springer.com/article/10.1007/s10898-015-0376-2
https://www.proquest.com/docview/1857999347
https://www.proquest.com/docview/1879988956
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfY-gIPiA0QgVEZCYkvWdjOhx1eUAvtJpCqCVFpPEWO7SAkSEaTCvgf-KO5S9y1A7GnPNhOrJzv7mef73eEPE5dpjLLc-ak0X0JM2a8kixzCunJpRK2v22xyE6Wybuz9CwcuLXhWuXGJvaG2jUWz8hfImcRgJk4Ua_PvzOsGoXR1VBCY4-MwARr2HyNprPF6Yct7a7ua-7wXKYsBYu8iWsOyXMa08tEyjhoGZOXPNPf9vmfQGnvf-a3yM0AHOlkkPQBuebrQ3Jjh07wkBwERW3p08Am_ew2-T2w-tMGbMO3kHRJm4p-HnpQiwAR60R4R2Hv_YuVzU_a18dpX1HA3HSoMU1N7eiXrqU7EW_aNZeGn76dtRRAMO0v165XnrY_YGLUuLZZ9abpDlnOZx_fnLBQgoHZWOuOpdqIpATQllVeKCer1FQYe9RlyktudS6qCjaQXNqkFMpwxGdOmIwblWNsO75L9uum9vcIzXNnhDOxzxKXSFlqbePYc6viTJQ-ExHhm99f2MBPjvP_WmyZlVFiBUisQIkVMiLPL4acD-QcV3V-gjItUHHhvdaE_AOYHVJgFRPw0uDRlUgicrQRexE0ui226y8ijy6aQRcxwGJq36yxD3TRGracEXmxWS47r_jf1O5f_cEH5LpEMNEf_ByR_W619g8BCnXlmOzp-fGYjCbz6XSBz-NP72fjoAXQupSTPyoDCac
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwEB2V8gB9QLSACBQwEoibLGLnYgcJoYp22dJS8dBKfQuO7VRIsCmbrEr_gW_hG5nJpbsF0bc-x3GszHh87PGcA_AkcalKbZhxJ41uJcy48Ury1CmiJ5dK2Pa2xV46Pog_HiaHS_B7qIWha5VDTGwDtassnZG_Js4iBDNRrN4d_-CkGkXZ1UFCo3OLHX96glu2-u32Jtr3qZSjrf33Y96rCnAbad3wRBsRF4hD0tIL5WSZmJLSabpIwiK0OhNliXuiUNq4EMqEBDmcMGloVEbp2gj7vQJX4yjKaEbp0Yc5ya9uFX7CTCY8wfg_ZFG7Uj1NxWwi4SHOaS7PrYN_rwb_pGXb1W50E270MJVtdH61Ckt-sgYrC-SFa7Dah4WaPe-5q1_cgl-dhgCrMBJ970s8WVWyo64FswRHSZXCO4Y7_VNeVD9Zq8ZTv2GI8FmnaM3MxLGvTc0W8uusqc69_nlzq2YIuVl7lXc29aw-wYEx4-pq2gbC23BwKaa5A8uTauLvAssyZ4QzkU9jF0tZaG2jyIdWRakofCoCCIffn9ueDZ3G_y2f8ziTxXK0WE4Wy2UAL89eOe6oQC5q_IxsmlOYwH6t6asdcHREuJVvICZA_KBEHMD6YPa8jx91Pvf2AB6fPcaZT-kcM_HVjNpgE61xgxvAq8FdFrr439DuXfzBR3BtvP9pN9_d3tu5D9clwZj2yGkdlpvpzD9AENYUD1vPZ_DlsqfaH8SbPfQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1taxQxEB7qFUQ_iK2Kq1UjKL6U0CT7kqwgUr07WivHIRb6bc0mWRF0t97eUfsf_EX-Oif70rsq9ls_XzYbbiaTZ3YyzwPwJLaJTAxLqRVaNRJmVDspaGKlpycXkpvmtsUk2TuM3h_FR2vwu--F8dcq-5jYBGpbGf-NfMdzFiGYCSO5U3TXIqbD8ZvjH9QrSPlKay-n0brIgTs9wfStfr0_RFs_FWI8-vRuj3YKA9SESs1prDSPcsQkSeG4tKKIdeFLayqPWc6MSnlRYH7EhIlyLjXz8MNynTAtU1-6DXHeK7AuMStiA1h_O5pMPy4pf1Wj98NSEdMYT4O-pto27inf2sZjynCHU3HuVPz7bPinSNucfeObcKMDrWS39bINWHPlJlxfoTLchI0uSNTkecdk_eIW_GoVBUiFcel71_BJqoJ8aUcQ48Gp16hwlmDef0rz6idptHnqVwTxPmn1rYkuLfk6r8lKtZ3Mq3OPT4ejmiAAJ83F3sXMkfoEF0a0ratZExZvw-GlGOcODMqqdHeBpKnV3OrQJZGNhMiVMmHomJFhwnOX8ABY__dnpuNG9-v_li1Znb3FMrRY5i2WiQBenj1y3BKDXDT4mbdp5oMGzmt01_uAq_P0W9kuIgREE5JHAWz1Zs-6aFJnS98P4PHZzxgHfHFHl65a-DE4RClMdwPY7t1lZYr_Le3exS98BFdxm2Uf9icH9-Ga8Jim-f60BYP5bOEeICKb5w871yfw-bJ32x8sg0OG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+optimization+of+general+constrained+grey-box+models%3A+new+method+and+its+application+to+constrained+PDEs+for+pressure+swing+adsorption&rft.jtitle=Journal+of+global+optimization&rft.au=Boukouvala%2C+Fani&rft.au=Hasan%2C+M+M%3B+Faruque&rft.au=Floudas%2C+Christodoulos+A&rft.date=2017-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=67&rft.issue=1-2&rft.spage=3&rft_id=info:doi/10.1007%2Fs10898-015-0376-2&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4300220611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon