Performance of a Machine Learning Algorithm to Predict Hypotension in Spontaneously Breathing Non-Ventilated Post-Anesthesia and ICU Patients
: Hypotension is common in the post-anesthesia care unit (PACU) and intensive care unit (ICU), and is associated with adverse patient outcomes. The Hypotension Prediction Index (HPI) algorithm has been shown to accurately predict hypotension in mechanically ventilated patients in the OR and ICU and...
Saved in:
Published in | Journal of personalized medicine Vol. 14; no. 2; p. 210 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | : Hypotension is common in the post-anesthesia care unit (PACU) and intensive care unit (ICU), and is associated with adverse patient outcomes. The Hypotension Prediction Index (HPI) algorithm has been shown to accurately predict hypotension in mechanically ventilated patients in the OR and ICU and to reduce intraoperative hypotension (IOH). Since positive pressure ventilation significantly affects patient hemodynamics, we performed this validation study to examine the performance of the HPI algorithm in a non-ventilated PACU and ICU population.
The performance of the HPI algorithm was assessed using prospectively collected blood pressure (BP) and HPI data from a PACU and a mixed ICU population. Recordings with sufficient time (≥3 h) spent without mechanical ventilation were selected using data from the electronic medical record. All HPI values were evaluated for sensitivity, specificity, predictive value, and time-to-event, and a receiver operating characteristic (ROC) curve was constructed.
BP and HPI data from 282 patients were eligible for analysis, of which 242 (86%) were ICU patients. The mean age (standard deviation) was 63 (13.5) years, and 186 (66%) of the patients were male. Overall, the HPI predicted hypotension accurately, with an area under the ROC curve of 0.94. The most used HPI threshold cutoff in research and clinical use, 85, showed a sensitivity of 1.00, specificity of 0.79, median time-to-event of 160 s [60-380], PPV of 0.85, and NPV of 1.00.
: The absence of positive pressure ventilation and the influence thereof on patient hemodynamics does not negatively affect the performance of the HPI algorithm in predicting hypotension in the PACU and ICU. Future research should evaluate the feasibility and influence on hypotension and outcomes following HPI implementation in non-ventilated patients at risk of hypotension. |
---|---|
AbstractList | : Hypotension is common in the post-anesthesia care unit (PACU) and intensive care unit (ICU), and is associated with adverse patient outcomes. The Hypotension Prediction Index (HPI) algorithm has been shown to accurately predict hypotension in mechanically ventilated patients in the OR and ICU and to reduce intraoperative hypotension (IOH). Since positive pressure ventilation significantly affects patient hemodynamics, we performed this validation study to examine the performance of the HPI algorithm in a non-ventilated PACU and ICU population.
The performance of the HPI algorithm was assessed using prospectively collected blood pressure (BP) and HPI data from a PACU and a mixed ICU population. Recordings with sufficient time (≥3 h) spent without mechanical ventilation were selected using data from the electronic medical record. All HPI values were evaluated for sensitivity, specificity, predictive value, and time-to-event, and a receiver operating characteristic (ROC) curve was constructed.
BP and HPI data from 282 patients were eligible for analysis, of which 242 (86%) were ICU patients. The mean age (standard deviation) was 63 (13.5) years, and 186 (66%) of the patients were male. Overall, the HPI predicted hypotension accurately, with an area under the ROC curve of 0.94. The most used HPI threshold cutoff in research and clinical use, 85, showed a sensitivity of 1.00, specificity of 0.79, median time-to-event of 160 s [60-380], PPV of 0.85, and NPV of 1.00.
: The absence of positive pressure ventilation and the influence thereof on patient hemodynamics does not negatively affect the performance of the HPI algorithm in predicting hypotension in the PACU and ICU. Future research should evaluate the feasibility and influence on hypotension and outcomes following HPI implementation in non-ventilated patients at risk of hypotension. Background: Hypotension is common in the post-anesthesia care unit (PACU) and intensive care unit (ICU), and is associated with adverse patient outcomes. The Hypotension Prediction Index (HPI) algorithm has been shown to accurately predict hypotension in mechanically ventilated patients in the OR and ICU and to reduce intraoperative hypotension (IOH). Since positive pressure ventilation significantly affects patient hemodynamics, we performed this validation study to examine the performance of the HPI algorithm in a non-ventilated PACU and ICU population. Materials & Methods: The performance of the HPI algorithm was assessed using prospectively collected blood pressure (BP) and HPI data from a PACU and a mixed ICU population. Recordings with sufficient time (≥3 h) spent without mechanical ventilation were selected using data from the electronic medical record. All HPI values were evaluated for sensitivity, specificity, predictive value, and time-to-event, and a receiver operating characteristic (ROC) curve was constructed. Results: BP and HPI data from 282 patients were eligible for analysis, of which 242 (86%) were ICU patients. The mean age (standard deviation) was 63 (13.5) years, and 186 (66%) of the patients were male. Overall, the HPI predicted hypotension accurately, with an area under the ROC curve of 0.94. The most used HPI threshold cutoff in research and clinical use, 85, showed a sensitivity of 1.00, specificity of 0.79, median time-to-event of 160 s [60–380], PPV of 0.85, and NPV of 1.00. Conclusion: The absence of positive pressure ventilation and the influence thereof on patient hemodynamics does not negatively affect the performance of the HPI algorithm in predicting hypotension in the PACU and ICU. Future research should evaluate the feasibility and influence on hypotension and outcomes following HPI implementation in non-ventilated patients at risk of hypotension. |
Audience | Academic |
Author | Vlaar, Alexander P J Veelo, Denise P Terwindt, Lotte E Wijnberge, Marije Tol, Johan T M Schenk, Jimmy van der Ster, Björn J P Kho, Eline Rellum, Santino R Hollmann, Markus W |
Author_xml | – sequence: 1 givenname: Johan T M surname: Tol fullname: Tol, Johan T M organization: Department of Anesthesiology, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands – sequence: 2 givenname: Lotte E orcidid: 0000-0002-8150-9348 surname: Terwindt fullname: Terwindt, Lotte E organization: Department of Anesthesiology, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands – sequence: 3 givenname: Santino R orcidid: 0000-0002-9971-7946 surname: Rellum fullname: Rellum, Santino R organization: Department of Intensive Care Medicine, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands – sequence: 4 givenname: Marije surname: Wijnberge fullname: Wijnberge, Marije organization: Department of Anesthesiology, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands – sequence: 5 givenname: Björn J P surname: van der Ster fullname: van der Ster, Björn J P organization: Department of Anesthesiology, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands – sequence: 6 givenname: Eline surname: Kho fullname: Kho, Eline organization: Department of Intensive Care Medicine, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands – sequence: 7 givenname: Markus W orcidid: 0000-0001-8248-0244 surname: Hollmann fullname: Hollmann, Markus W organization: Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center Location, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands – sequence: 8 givenname: Alexander P J orcidid: 0000-0002-3453-7186 surname: Vlaar fullname: Vlaar, Alexander P J organization: Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center Location, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands – sequence: 9 givenname: Denise P surname: Veelo fullname: Veelo, Denise P organization: Department of Anesthesiology, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands – sequence: 10 givenname: Jimmy orcidid: 0000-0003-0570-0017 surname: Schenk fullname: Schenk, Jimmy organization: Department of Epidemiology and Data Science, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38392643$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU9v3CAQxVGUKv9PvVdIPVZOMWBsH7erpom0bVdq0qs1i4ddVja4wB72Q-Q7l1WSNpU6F0aj3-MNvHNy7LxDQt6W7FqIln3cTmMpGWe8ZEfkjLO6KqTk6vhVf0quYtyyXE3FuWIn5FQ0ouVKijPyuMRgfBjBaaTeUKBfQW-sQ7pACM66NZ0Nax9s2ow0eboM2Fud6O1-8gldtN5R6-iPybsEDv0uDnv6KSCkzUH7zbviJ7pkB0jY06WPqZg5jGmD0QIF19O7-QNdQrKZipfkjYEh4tXzeUEebj7fz2-Lxfcvd_PZotCiaVIhjUFRa2xZY3iPLD9F1ggV160SrdBlvcrzUphGgdGoqmoFTCmuQEMvRC8uyPune6fgf-3yOt3W74LLlh1vBWur_KHyL7WGATvrjE8B9Gij7mZ1I5kslWoydf0f6uCEo9U5LWPz_B_BhyeBDj7GgKabgh0h7LuSdYdQu1ehZvrd86q71Yj9H_YlQvEbV5Seiw |
CitedBy_id | crossref_primary_10_3390_jcm13102786 |
Cites_doi | 10.1001/jama.2020.0592 10.1016/j.bja.2022.03.002 10.1016/j.jcrc.2021.05.023 10.1097/ALN.0000000000001985 10.1007/s001340050364 10.1186/cc13109 10.1097/EJA.0000000000001521 10.1016/j.bja.2021.05.033 10.1093/bjsopen/zraa018 10.1097/ALN.0000000000002300 10.1097/MCC.0000000000000884 10.1002/9781118548387 10.1213/ANE.0000000000005754 10.1053/j.jvca.2020.12.025 10.1007/s00134-023-07304-4 10.3390/jcm11226832 10.1007/s10877-023-01017-1 10.1097/ALN.0000000000001404 10.1097/ALN.0000000000002626 10.1186/s12871-023-02069-1 10.1097/01.anes.0000270724.40897.8e 10.1016/j.bpa.2019.04.001 10.1097/00000542-200508000-00026 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | NPM AAYXX CITATION 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PIMPY PQEST PQQKQ PQUKI |
DOI | 10.3390/jpm14020210 |
DatabaseName | PubMed CrossRef ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) Biological Sciences Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest One Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2075-4426 |
ExternalDocumentID | A784041668 10_3390_jpm14020210 38392643 |
Genre | Journal Article |
GeographicLocations | Netherlands United States--US |
GeographicLocations_xml | – name: Netherlands – name: United States--US |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU DIK EMOBN GROUPED_DOAJ GX1 HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E NPM OK1 PGMZT PIMPY PROAC RIG RPM AAYXX CITATION AFPKN ABUWG AZQEC DWQXO GNUQQ PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c388t-4ffe37ce908f2de026447ea52c96393c17bf2d13f86afce655ba06626acad33d3 |
IEDL.DBID | M48 |
ISSN | 2075-4426 |
IngestDate | Sat Oct 26 15:30:13 EDT 2024 Wed Feb 28 18:08:43 EST 2024 Tue Mar 05 06:07:16 EST 2024 Thu Sep 26 19:45:48 EDT 2024 Sat Nov 02 12:01:48 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | hypotension prediction ICU machine learning critical illness PACU |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-4ffe37ce908f2de026447ea52c96393c17bf2d13f86afce655ba06626acad33d3 |
ORCID | 0000-0002-8150-9348 0000-0002-3453-7186 0000-0003-0570-0017 0000-0002-9971-7946 0000-0001-8248-0244 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/jpm14020210 |
PMID | 38392643 |
PQID | 2930952024 |
PQPubID | 2032376 |
ParticipantIDs | proquest_journals_2930952024 gale_infotracmisc_A784041668 gale_infotracacademiconefile_A784041668 crossref_primary_10_3390_jpm14020210 pubmed_primary_38392643 |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Journal of personalized medicine |
PublicationTitleAlternate | J Pers Med |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wijnberge (ref_5) 2021; 5 Frassanito (ref_14) 2022; 134 Pinsky (ref_15) 1997; 23 Sessler (ref_6) 2018; 128 Saugel (ref_13) 2019; 33 Wijnberge (ref_18) 2020; 323 Michard (ref_16) 2005; 103 Frassanito (ref_10) 2023; 37 Schenk (ref_17) 2021; 127 ref_20 Roshanov (ref_3) 2017; 126 ref_19 Bijker (ref_2) 2007; 107 Terwindt (ref_12) 2021; 36 Sondergaard (ref_21) 2013; 17 Schenk (ref_1) 2021; 65 Briesenick (ref_4) 2021; 27 ref_9 Turan (ref_23) 2019; 130 Wijnberge (ref_8) 2021; 38 Shin (ref_22) 2021; 35 Lankadeva (ref_24) 2022; 128 ref_7 Hatib (ref_11) 2018; 129 |
References_xml | – volume: 323 start-page: 1052 year: 2020 ident: ref_18 article-title: Effect of a Machine Learning–Derived Early Warning System for Intraoperative Hypotension vs Standard Care on Depth and Duration of Intraoperative Hypotension During Elective Noncardiac Surgery: The HYPE Randomized Clinical Trial publication-title: JAMA doi: 10.1001/jama.2020.0592 contributor: fullname: Wijnberge – volume: 128 start-page: 931 year: 2022 ident: ref_24 article-title: Role of perioperative hypotension in postoperative acute kidney injury: A narrative review publication-title: Br. J. Anaesth. doi: 10.1016/j.bja.2022.03.002 contributor: fullname: Lankadeva – volume: 65 start-page: 142 year: 2021 ident: ref_1 article-title: Definition and incidence of hypotension in intensive care unit patients, an international survey of the European Society of Intensive Care Medicine publication-title: J. Crit. Care doi: 10.1016/j.jcrc.2021.05.023 contributor: fullname: Schenk – volume: 128 start-page: 317 year: 2018 ident: ref_6 article-title: Period-dependent Associations between Hypotension during and for Four Days after Noncardiac Surgery and a Composite of Myocardial Infarction and Death: A Substudy of the POISE-2 Trial publication-title: Anesthesiology doi: 10.1097/ALN.0000000000001985 contributor: fullname: Sessler – volume: 23 start-page: 493 year: 1997 ident: ref_15 article-title: The hemodynamic consequences of mechanical ventilation: An evolving story publication-title: Intensive Care Med. doi: 10.1007/s001340050364 contributor: fullname: Pinsky – volume: 17 start-page: 327 year: 2013 ident: ref_21 article-title: Pavane for a pulse pressure variation defunct publication-title: Crit. Care doi: 10.1186/cc13109 contributor: fullname: Sondergaard – volume: 38 start-page: 609 year: 2021 ident: ref_8 article-title: Clinical performance of a machine-learning algorithm to predict intra-operative hypotension with noninvasive arterial pressure waveforms: A cohort study publication-title: Eur. J. Anaesthesiol. EJA doi: 10.1097/EJA.0000000000001521 contributor: fullname: Wijnberge – volume: 127 start-page: 681 year: 2021 ident: ref_17 article-title: Effect of Hypotension Prediction Index-guided intraoperative haemodynamic care on depth and duration of postoperative hypotension: A sub-study of the Hypotension Prediction trial publication-title: Br. J. Anaesth. doi: 10.1016/j.bja.2021.05.033 contributor: fullname: Schenk – volume: 5 start-page: zraa018 year: 2021 ident: ref_5 article-title: Association of intraoperative hypotension with postoperative morbidity and mortality: Systematic review and meta-analysis publication-title: BJS Open doi: 10.1093/bjsopen/zraa018 contributor: fullname: Wijnberge – volume: 129 start-page: 663 year: 2018 ident: ref_11 article-title: Machine-learning Algorithm to Predict Hypotension Based on High-fidelity Arterial Pressure Waveform Analysis publication-title: Anesthesiology doi: 10.1097/ALN.0000000000002300 contributor: fullname: Hatib – volume: 27 start-page: 694 year: 2021 ident: ref_4 article-title: Postoperative blood pressure management in patients treated in the ICU after noncardiac surgery publication-title: Curr. Opin. Crit. Care doi: 10.1097/MCC.0000000000000884 contributor: fullname: Briesenick – ident: ref_20 doi: 10.1002/9781118548387 – volume: 134 start-page: 633 year: 2022 ident: ref_14 article-title: Performance of the Hypotension Prediction Index With Noninvasive Arterial Pressure Waveforms in Awake Cesarean Delivery Patients Under Spinal Anesthesia publication-title: Anesth. Analg. doi: 10.1213/ANE.0000000000005754 contributor: fullname: Frassanito – volume: 35 start-page: 1769 year: 2021 ident: ref_22 article-title: Use of the Hypotension Prediction Index During Cardiac Surgery publication-title: J. Cardiothorac. Vasc. Anesth. doi: 10.1053/j.jvca.2020.12.025 contributor: fullname: Shin – ident: ref_7 doi: 10.1007/s00134-023-07304-4 – ident: ref_19 doi: 10.3390/jcm11226832 – volume: 37 start-page: 1081 year: 2023 ident: ref_10 article-title: Hypotension Prediction Index guided Goal Directed therapy and the amount of Hypotension during Major Gynaecologic Oncologic Surgery: A Randomized Controlled clinical Trial publication-title: J. Clin. Monit. Comput. doi: 10.1007/s10877-023-01017-1 contributor: fullname: Frassanito – volume: 36 start-page: 1397 year: 2021 ident: ref_12 article-title: Performance of a machine-learning algorithm to predict hypotension in mechanically ventilated patients with COVID-19 admitted to the intensive care unit: A cohort study publication-title: J. Clin. Monit. Comput. contributor: fullname: Terwindt – volume: 126 start-page: 16 year: 2017 ident: ref_3 article-title: Withholding versus Continuing Angiotensin-converting Enzyme Inhibitors or Angiotensin II Receptor Blockers before Noncardiac Surgery: An Analysis of the Vascular events In noncardiac Surgery patIents cOhort evaluatioN Prospective Cohort publication-title: Anesthesiology doi: 10.1097/ALN.0000000000001404 contributor: fullname: Roshanov – volume: 130 start-page: 550 year: 2019 ident: ref_23 article-title: Incidence, Severity, and Detection of Blood Pressure Perturbations after Abdominal Surgery: A Prospective Blinded Observational Study publication-title: Anesthesiology doi: 10.1097/ALN.0000000000002626 contributor: fullname: Turan – ident: ref_9 doi: 10.1186/s12871-023-02069-1 – volume: 107 start-page: 213 year: 2007 ident: ref_2 article-title: Incidence of intraoperative hypotension as a function of the chosen definition: Literature definitions applied to a retrospective cohort using automated data collection publication-title: Anesthesiology doi: 10.1097/01.anes.0000270724.40897.8e contributor: fullname: Bijker – volume: 33 start-page: 189 year: 2019 ident: ref_13 article-title: Predicting hypotension in perioperative and intensive care medicine publication-title: Best Pract. Res. Clin. Anaesthesiol. doi: 10.1016/j.bpa.2019.04.001 contributor: fullname: Saugel – volume: 103 start-page: 419 year: 2005 ident: ref_16 article-title: Changes in arterial pressure during mechanical ventilation publication-title: J. Am. Soc. Anesthesiol. doi: 10.1097/00000542-200508000-00026 contributor: fullname: Michard |
SSID | ssj0000852260 |
Score | 2.2998075 |
Snippet | : Hypotension is common in the post-anesthesia care unit (PACU) and intensive care unit (ICU), and is associated with adverse patient outcomes. The Hypotension... Background: Hypotension is common in the post-anesthesia care unit (PACU) and intensive care unit (ICU), and is associated with adverse patient outcomes. The... |
SourceID | proquest gale crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 210 |
SubjectTerms | Algorithms Anesthesia Blood pressure Consent Data mining Data processing Electronic medical records General anesthesia Hemodynamics Hospital patients Hypotension Machine learning Mechanical ventilation Medical records Medical research Medicine, Experimental Patients Performance evaluation Pressure transducers Sensitivity analysis Statistical analysis Ventilators |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEF7RIFW9IKAPUqCaA1JPK2Kvvd6cqoBAKVKiiDYVN8v7olTBdhP3wI_gPzNjb3gderJkezVez87sN4-dYewoUkOZRDbiWjvNUeEprnRqeUIRX-98JtoI_mQqx_Pk4iq9Cg63VUirXOvEVlHbypCP_Bi3JUQDaKon3-q_nLpGUXQ1tNB4wzZjshR6bPPkbDq7fPSyIKBAfDHoDuYJpHv8p76NyGaK6czss63otUJ-BTPb7eZ8m20FnAijjrE7bMOVu-ztJETC37P72VPGP1QeCpi0aZEOQsXUaxgtrnECze9baCqYLWloA-O7umqT1qsSbkr4UVclwkOH9v_iDk4IQZJLCqZVyX9RItECsagFaunLR6gVES6ubgooSgvfT-cw66qyrj6w-fnZz9MxD60VuBFKNTzx3onMuOFA-di6AcGizBVpbFAgh8JEmcb7kfBKFt44maa6oFrxsjCFFcKKj6xXVqXbY-ASLaXPUu9in2SxVV44snqQgIuNln12tP7Led1V0MjR8iBm5M-Y0WdfiQM5yVWzRDLheAASoQpV-ShDUxTRo1R9dvDiTZQH8_Lxmod5kMdV_rR6-uxTx9fHjxGEERGYff7_wH32ji5dxvYB6zXLf-4QAUmjv4RV9wDjQuG3 priority: 102 providerName: ProQuest |
Title | Performance of a Machine Learning Algorithm to Predict Hypotension in Spontaneously Breathing Non-Ventilated Post-Anesthesia and ICU Patients |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38392643 https://www.proquest.com/docview/2930952024 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3db9MwED-NTZr2gvimMCo_TOLJsMSO4z4g1E0bBalVBRT1LYoTe-vUxSXNJPpH8D9zlw-gFbzGuVzkO_t-Z98HwEmgB0oGecCNsYbjhqe5NlHOJd34OutiUd_gjydqNJOf5tF8D7pmnO0Erv_p2lE_qVm5fPPj--Y9Lvh35HHip97erG4DcoNCSrU6CCkHiGL4Wpx_0wRjIcyg85YQTSSXaJaaXL1d-iM4FAQZlBRbhmp3u94BobUxunwA91sUyYaN2B_Cni0eweG4vSd_DD-nf_IBmHcsZeM6aNKytp7qFRsur3y5qK5vWeXZtCTSio02K1-HtPuCLQr2ZeULBI_W362XG3ZG-JIOrNjEF_wbhRktEanmjBr-8iHumQgm14uUpUXOPp7P2LSp2bp-ArPLi6_nI942XuCZ0Lri0jkr4swOTrULc3tKoCm2aRRmuFwHIgtig88D4bRKXWZVFJmUKsmrNEtzIXLxFPYLX9jnwKw0Srk4cjZ0Mg5z7YQlnwgZ2DAzqgcn3Swnq6a-RoJ-Cckl-UsuPXhNEkhID6oS2bTJA8iE6lclwxgdVcSWSvfgeOtNXC3Z9nAnw6RTtgQhDyJNZCR78KyR6--f6dThxX9HXsIRkTah3MewX5V39hUilcr04eDsYjL93Id7H-ZBv9bJX8Jg5tg |
link.rule.ids | 315,783,787,2228,21401,24331,27937,27938,33757,43818,74637 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB5BKgEXVF4l0JY9VOK0auy115sTSqtWKTRRBA3qzfK-SlFqm8Qc-iP4z8zYm74Ova69GntnZ_abx84A7EVqKJPIRlxrpzkqPMWVTi1PKOLrnc9EG8GfTOV4nnw9T8-Dw20V0irXOrFV1LYy5CPfx2MJ0QCa6smX-g-nrlEUXQ0tNJ7CBpWqUj3YODiazr7feFkQUCC-GHQX8wTS3f9dX0VkM8V0Z_bOUfRQIT-Ame1xc7wJLwNOZKOOsa_giStfw7NJiIS_gX-z24x_VnlWsEmbFulYqJh6wUaLC_yB5tcVayo2W9LUho2v66pNWq9KdlmyH3VVIjx0aP8vrtkBIUhySbFpVfKflEi0QCxqGbX05SPUiggXV5cFK0rLTg7nbNZVZV29hfnx0dnhmIfWCtwIpRqeeO9EZtxwoHxs3YBgUeaKNDYokENhokzjeCS8koU3TqapLqhWvCxMYYWw4h30yqp074G5REvps9S72CdZbJUXjqweJOBio2Uf9tarnNddBY0cLQ9iRn6HGX34TBzISa6aJZIJ1wOQCFWoykcZmqKIHqXqw_a9N1EezP3Hax7mQR5X-e3u6cNWx9ebjxGEERGYfXh84id4Pj6bnOanJ9NvH-EFDXXZ29vQa5Z_3Q6Ck0bvhh34H8DI5LE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaglSouiPLqQik-VOJk7SZOHO8JbUtXW2BXEbCotyh-laJtHDbpoT-C_8xM4u3rwNWJZSfjGX_j-TxDyGEkxyKJTMSUsoqBwZNMqtSwBCO-zrqMdxH8-ULMlsnns_Qs8J-aQKvc2MTOUBuv8Yx8CNsSoAFw1ZOhC7SI_NP0Y_2HYQUpjLSGchqPyXaWCA6O2PbRySL_dnPiAuACsMaov6THYQ7D3_VlhP5TjPdn72xLD43zA8jZbT3TZ-RpwIx00gt5lzyy1XOyMw9R8Rfkb37L_qfe0ZLOO4qkpSF76jmdrM7hA9pfl7T1NF9j15bOrmvfEdh9RS8q-r32FUBF66-a1TU9QjSJx1N04Sv2E0lFK8ClhmJ5XzYBCwnQsbkoaVkZenq8pHmfobV5SZbTkx_HMxbKLDDNpWxZ4pzlmbbjkXSxsSOESJkt01iDco65jjIF7RF3UpROW5GmqsS88aLUpeHc8Fdkq_KV3SPUJkoIl6XOxi7JYiMdt-gBwQA21koMyOHmLxd1n02jAC8EhVHcEcaAfEAJFKhj7RqGCVcFYBDMVlVMMnBLAUkKOSD7994E3dD3H29kWATdbIrblTQgr3u53kyGI14EkPbm_x3fkx1YfMXX08WXt-QJtvRE7n2y1a6v7DvAKa06CAvwH0f26OU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+a+Machine+Learning+Algorithm+to+Predict+Hypotension+in+Spontaneously+Breathing+Non-Ventilated+Post-Anesthesia+and+ICU+Patients&rft.jtitle=Journal+of+personalized+medicine&rft.au=Tol%2C+Johan+T+M&rft.au=Terwindt%2C+Lotte+E&rft.au=Rellum%2C+Santino+R&rft.au=Wijnberge%2C+Marije&rft.date=2024-02-01&rft.issn=2075-4426&rft.eissn=2075-4426&rft.volume=14&rft.issue=2&rft_id=info:doi/10.3390%2Fjpm14020210&rft_id=info%3Apmid%2F38392643&rft.externalDocID=38392643 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4426&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4426&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4426&client=summon |