Performance of a Machine Learning Algorithm to Predict Hypotension in Spontaneously Breathing Non-Ventilated Post-Anesthesia and ICU Patients

: Hypotension is common in the post-anesthesia care unit (PACU) and intensive care unit (ICU), and is associated with adverse patient outcomes. The Hypotension Prediction Index (HPI) algorithm has been shown to accurately predict hypotension in mechanically ventilated patients in the OR and ICU and...

Full description

Saved in:
Bibliographic Details
Published inJournal of personalized medicine Vol. 14; no. 2; p. 210
Main Authors Tol, Johan T M, Terwindt, Lotte E, Rellum, Santino R, Wijnberge, Marije, van der Ster, Björn J P, Kho, Eline, Hollmann, Markus W, Vlaar, Alexander P J, Veelo, Denise P, Schenk, Jimmy
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract : Hypotension is common in the post-anesthesia care unit (PACU) and intensive care unit (ICU), and is associated with adverse patient outcomes. The Hypotension Prediction Index (HPI) algorithm has been shown to accurately predict hypotension in mechanically ventilated patients in the OR and ICU and to reduce intraoperative hypotension (IOH). Since positive pressure ventilation significantly affects patient hemodynamics, we performed this validation study to examine the performance of the HPI algorithm in a non-ventilated PACU and ICU population. The performance of the HPI algorithm was assessed using prospectively collected blood pressure (BP) and HPI data from a PACU and a mixed ICU population. Recordings with sufficient time (≥3 h) spent without mechanical ventilation were selected using data from the electronic medical record. All HPI values were evaluated for sensitivity, specificity, predictive value, and time-to-event, and a receiver operating characteristic (ROC) curve was constructed. BP and HPI data from 282 patients were eligible for analysis, of which 242 (86%) were ICU patients. The mean age (standard deviation) was 63 (13.5) years, and 186 (66%) of the patients were male. Overall, the HPI predicted hypotension accurately, with an area under the ROC curve of 0.94. The most used HPI threshold cutoff in research and clinical use, 85, showed a sensitivity of 1.00, specificity of 0.79, median time-to-event of 160 s [60-380], PPV of 0.85, and NPV of 1.00. : The absence of positive pressure ventilation and the influence thereof on patient hemodynamics does not negatively affect the performance of the HPI algorithm in predicting hypotension in the PACU and ICU. Future research should evaluate the feasibility and influence on hypotension and outcomes following HPI implementation in non-ventilated patients at risk of hypotension.
AbstractList : Hypotension is common in the post-anesthesia care unit (PACU) and intensive care unit (ICU), and is associated with adverse patient outcomes. The Hypotension Prediction Index (HPI) algorithm has been shown to accurately predict hypotension in mechanically ventilated patients in the OR and ICU and to reduce intraoperative hypotension (IOH). Since positive pressure ventilation significantly affects patient hemodynamics, we performed this validation study to examine the performance of the HPI algorithm in a non-ventilated PACU and ICU population. The performance of the HPI algorithm was assessed using prospectively collected blood pressure (BP) and HPI data from a PACU and a mixed ICU population. Recordings with sufficient time (≥3 h) spent without mechanical ventilation were selected using data from the electronic medical record. All HPI values were evaluated for sensitivity, specificity, predictive value, and time-to-event, and a receiver operating characteristic (ROC) curve was constructed. BP and HPI data from 282 patients were eligible for analysis, of which 242 (86%) were ICU patients. The mean age (standard deviation) was 63 (13.5) years, and 186 (66%) of the patients were male. Overall, the HPI predicted hypotension accurately, with an area under the ROC curve of 0.94. The most used HPI threshold cutoff in research and clinical use, 85, showed a sensitivity of 1.00, specificity of 0.79, median time-to-event of 160 s [60-380], PPV of 0.85, and NPV of 1.00. : The absence of positive pressure ventilation and the influence thereof on patient hemodynamics does not negatively affect the performance of the HPI algorithm in predicting hypotension in the PACU and ICU. Future research should evaluate the feasibility and influence on hypotension and outcomes following HPI implementation in non-ventilated patients at risk of hypotension.
Background: Hypotension is common in the post-anesthesia care unit (PACU) and intensive care unit (ICU), and is associated with adverse patient outcomes. The Hypotension Prediction Index (HPI) algorithm has been shown to accurately predict hypotension in mechanically ventilated patients in the OR and ICU and to reduce intraoperative hypotension (IOH). Since positive pressure ventilation significantly affects patient hemodynamics, we performed this validation study to examine the performance of the HPI algorithm in a non-ventilated PACU and ICU population. Materials & Methods: The performance of the HPI algorithm was assessed using prospectively collected blood pressure (BP) and HPI data from a PACU and a mixed ICU population. Recordings with sufficient time (≥3 h) spent without mechanical ventilation were selected using data from the electronic medical record. All HPI values were evaluated for sensitivity, specificity, predictive value, and time-to-event, and a receiver operating characteristic (ROC) curve was constructed. Results: BP and HPI data from 282 patients were eligible for analysis, of which 242 (86%) were ICU patients. The mean age (standard deviation) was 63 (13.5) years, and 186 (66%) of the patients were male. Overall, the HPI predicted hypotension accurately, with an area under the ROC curve of 0.94. The most used HPI threshold cutoff in research and clinical use, 85, showed a sensitivity of 1.00, specificity of 0.79, median time-to-event of 160 s [60–380], PPV of 0.85, and NPV of 1.00. Conclusion: The absence of positive pressure ventilation and the influence thereof on patient hemodynamics does not negatively affect the performance of the HPI algorithm in predicting hypotension in the PACU and ICU. Future research should evaluate the feasibility and influence on hypotension and outcomes following HPI implementation in non-ventilated patients at risk of hypotension.
Audience Academic
Author Vlaar, Alexander P J
Veelo, Denise P
Terwindt, Lotte E
Wijnberge, Marije
Tol, Johan T M
Schenk, Jimmy
van der Ster, Björn J P
Kho, Eline
Rellum, Santino R
Hollmann, Markus W
Author_xml – sequence: 1
  givenname: Johan T M
  surname: Tol
  fullname: Tol, Johan T M
  organization: Department of Anesthesiology, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
– sequence: 2
  givenname: Lotte E
  orcidid: 0000-0002-8150-9348
  surname: Terwindt
  fullname: Terwindt, Lotte E
  organization: Department of Anesthesiology, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
– sequence: 3
  givenname: Santino R
  orcidid: 0000-0002-9971-7946
  surname: Rellum
  fullname: Rellum, Santino R
  organization: Department of Intensive Care Medicine, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
– sequence: 4
  givenname: Marije
  surname: Wijnberge
  fullname: Wijnberge, Marije
  organization: Department of Anesthesiology, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
– sequence: 5
  givenname: Björn J P
  surname: van der Ster
  fullname: van der Ster, Björn J P
  organization: Department of Anesthesiology, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
– sequence: 6
  givenname: Eline
  surname: Kho
  fullname: Kho, Eline
  organization: Department of Intensive Care Medicine, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
– sequence: 7
  givenname: Markus W
  orcidid: 0000-0001-8248-0244
  surname: Hollmann
  fullname: Hollmann, Markus W
  organization: Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center Location, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
– sequence: 8
  givenname: Alexander P J
  orcidid: 0000-0002-3453-7186
  surname: Vlaar
  fullname: Vlaar, Alexander P J
  organization: Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center Location, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
– sequence: 9
  givenname: Denise P
  surname: Veelo
  fullname: Veelo, Denise P
  organization: Department of Anesthesiology, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
– sequence: 10
  givenname: Jimmy
  orcidid: 0000-0003-0570-0017
  surname: Schenk
  fullname: Schenk, Jimmy
  organization: Department of Epidemiology and Data Science, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38392643$$D View this record in MEDLINE/PubMed
BookMark eNptkU9v3CAQxVGUKv9PvVdIPVZOMWBsH7erpom0bVdq0qs1i4ddVja4wB72Q-Q7l1WSNpU6F0aj3-MNvHNy7LxDQt6W7FqIln3cTmMpGWe8ZEfkjLO6KqTk6vhVf0quYtyyXE3FuWIn5FQ0ouVKijPyuMRgfBjBaaTeUKBfQW-sQ7pACM66NZ0Nax9s2ow0eboM2Fud6O1-8gldtN5R6-iPybsEDv0uDnv6KSCkzUH7zbviJ7pkB0jY06WPqZg5jGmD0QIF19O7-QNdQrKZipfkjYEh4tXzeUEebj7fz2-Lxfcvd_PZotCiaVIhjUFRa2xZY3iPLD9F1ggV160SrdBlvcrzUphGgdGoqmoFTCmuQEMvRC8uyPune6fgf-3yOt3W74LLlh1vBWur_KHyL7WGATvrjE8B9Gij7mZ1I5kslWoydf0f6uCEo9U5LWPz_B_BhyeBDj7GgKabgh0h7LuSdYdQu1ehZvrd86q71Yj9H_YlQvEbV5Seiw
CitedBy_id crossref_primary_10_3390_jcm13102786
Cites_doi 10.1001/jama.2020.0592
10.1016/j.bja.2022.03.002
10.1016/j.jcrc.2021.05.023
10.1097/ALN.0000000000001985
10.1007/s001340050364
10.1186/cc13109
10.1097/EJA.0000000000001521
10.1016/j.bja.2021.05.033
10.1093/bjsopen/zraa018
10.1097/ALN.0000000000002300
10.1097/MCC.0000000000000884
10.1002/9781118548387
10.1213/ANE.0000000000005754
10.1053/j.jvca.2020.12.025
10.1007/s00134-023-07304-4
10.3390/jcm11226832
10.1007/s10877-023-01017-1
10.1097/ALN.0000000000001404
10.1097/ALN.0000000000002626
10.1186/s12871-023-02069-1
10.1097/01.anes.0000270724.40897.8e
10.1016/j.bpa.2019.04.001
10.1097/00000542-200508000-00026
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID NPM
AAYXX
CITATION
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PIMPY
PQEST
PQQKQ
PQUKI
DOI 10.3390/jpm14020210
DatabaseName PubMed
CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Biological Sciences
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest One Academic
DatabaseTitleList PubMed

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4426
ExternalDocumentID A784041668
10_3390_jpm14020210
38392643
Genre Journal Article
GeographicLocations Netherlands
United States--US
GeographicLocations_xml – name: Netherlands
– name: United States--US
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
DIK
EMOBN
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
NPM
OK1
PGMZT
PIMPY
PROAC
RIG
RPM
AAYXX
CITATION
AFPKN
ABUWG
AZQEC
DWQXO
GNUQQ
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c388t-4ffe37ce908f2de026447ea52c96393c17bf2d13f86afce655ba06626acad33d3
IEDL.DBID M48
ISSN 2075-4426
IngestDate Sat Oct 26 15:30:13 EDT 2024
Wed Feb 28 18:08:43 EST 2024
Tue Mar 05 06:07:16 EST 2024
Thu Sep 26 19:45:48 EDT 2024
Sat Nov 02 12:01:48 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords hypotension
prediction
ICU
machine learning
critical illness
PACU
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-4ffe37ce908f2de026447ea52c96393c17bf2d13f86afce655ba06626acad33d3
ORCID 0000-0002-8150-9348
0000-0002-3453-7186
0000-0003-0570-0017
0000-0002-9971-7946
0000-0001-8248-0244
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/jpm14020210
PMID 38392643
PQID 2930952024
PQPubID 2032376
ParticipantIDs proquest_journals_2930952024
gale_infotracmisc_A784041668
gale_infotracacademiconefile_A784041668
crossref_primary_10_3390_jpm14020210
pubmed_primary_38392643
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of personalized medicine
PublicationTitleAlternate J Pers Med
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wijnberge (ref_5) 2021; 5
Frassanito (ref_14) 2022; 134
Pinsky (ref_15) 1997; 23
Sessler (ref_6) 2018; 128
Saugel (ref_13) 2019; 33
Wijnberge (ref_18) 2020; 323
Michard (ref_16) 2005; 103
Frassanito (ref_10) 2023; 37
Schenk (ref_17) 2021; 127
ref_20
Roshanov (ref_3) 2017; 126
ref_19
Bijker (ref_2) 2007; 107
Terwindt (ref_12) 2021; 36
Sondergaard (ref_21) 2013; 17
Schenk (ref_1) 2021; 65
Briesenick (ref_4) 2021; 27
ref_9
Turan (ref_23) 2019; 130
Wijnberge (ref_8) 2021; 38
Shin (ref_22) 2021; 35
Lankadeva (ref_24) 2022; 128
ref_7
Hatib (ref_11) 2018; 129
References_xml – volume: 323
  start-page: 1052
  year: 2020
  ident: ref_18
  article-title: Effect of a Machine Learning–Derived Early Warning System for Intraoperative Hypotension vs Standard Care on Depth and Duration of Intraoperative Hypotension During Elective Noncardiac Surgery: The HYPE Randomized Clinical Trial
  publication-title: JAMA
  doi: 10.1001/jama.2020.0592
  contributor:
    fullname: Wijnberge
– volume: 128
  start-page: 931
  year: 2022
  ident: ref_24
  article-title: Role of perioperative hypotension in postoperative acute kidney injury: A narrative review
  publication-title: Br. J. Anaesth.
  doi: 10.1016/j.bja.2022.03.002
  contributor:
    fullname: Lankadeva
– volume: 65
  start-page: 142
  year: 2021
  ident: ref_1
  article-title: Definition and incidence of hypotension in intensive care unit patients, an international survey of the European Society of Intensive Care Medicine
  publication-title: J. Crit. Care
  doi: 10.1016/j.jcrc.2021.05.023
  contributor:
    fullname: Schenk
– volume: 128
  start-page: 317
  year: 2018
  ident: ref_6
  article-title: Period-dependent Associations between Hypotension during and for Four Days after Noncardiac Surgery and a Composite of Myocardial Infarction and Death: A Substudy of the POISE-2 Trial
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000001985
  contributor:
    fullname: Sessler
– volume: 23
  start-page: 493
  year: 1997
  ident: ref_15
  article-title: The hemodynamic consequences of mechanical ventilation: An evolving story
  publication-title: Intensive Care Med.
  doi: 10.1007/s001340050364
  contributor:
    fullname: Pinsky
– volume: 17
  start-page: 327
  year: 2013
  ident: ref_21
  article-title: Pavane for a pulse pressure variation defunct
  publication-title: Crit. Care
  doi: 10.1186/cc13109
  contributor:
    fullname: Sondergaard
– volume: 38
  start-page: 609
  year: 2021
  ident: ref_8
  article-title: Clinical performance of a machine-learning algorithm to predict intra-operative hypotension with noninvasive arterial pressure waveforms: A cohort study
  publication-title: Eur. J. Anaesthesiol. EJA
  doi: 10.1097/EJA.0000000000001521
  contributor:
    fullname: Wijnberge
– volume: 127
  start-page: 681
  year: 2021
  ident: ref_17
  article-title: Effect of Hypotension Prediction Index-guided intraoperative haemodynamic care on depth and duration of postoperative hypotension: A sub-study of the Hypotension Prediction trial
  publication-title: Br. J. Anaesth.
  doi: 10.1016/j.bja.2021.05.033
  contributor:
    fullname: Schenk
– volume: 5
  start-page: zraa018
  year: 2021
  ident: ref_5
  article-title: Association of intraoperative hypotension with postoperative morbidity and mortality: Systematic review and meta-analysis
  publication-title: BJS Open
  doi: 10.1093/bjsopen/zraa018
  contributor:
    fullname: Wijnberge
– volume: 129
  start-page: 663
  year: 2018
  ident: ref_11
  article-title: Machine-learning Algorithm to Predict Hypotension Based on High-fidelity Arterial Pressure Waveform Analysis
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000002300
  contributor:
    fullname: Hatib
– volume: 27
  start-page: 694
  year: 2021
  ident: ref_4
  article-title: Postoperative blood pressure management in patients treated in the ICU after noncardiac surgery
  publication-title: Curr. Opin. Crit. Care
  doi: 10.1097/MCC.0000000000000884
  contributor:
    fullname: Briesenick
– ident: ref_20
  doi: 10.1002/9781118548387
– volume: 134
  start-page: 633
  year: 2022
  ident: ref_14
  article-title: Performance of the Hypotension Prediction Index With Noninvasive Arterial Pressure Waveforms in Awake Cesarean Delivery Patients Under Spinal Anesthesia
  publication-title: Anesth. Analg.
  doi: 10.1213/ANE.0000000000005754
  contributor:
    fullname: Frassanito
– volume: 35
  start-page: 1769
  year: 2021
  ident: ref_22
  article-title: Use of the Hypotension Prediction Index During Cardiac Surgery
  publication-title: J. Cardiothorac. Vasc. Anesth.
  doi: 10.1053/j.jvca.2020.12.025
  contributor:
    fullname: Shin
– ident: ref_7
  doi: 10.1007/s00134-023-07304-4
– ident: ref_19
  doi: 10.3390/jcm11226832
– volume: 37
  start-page: 1081
  year: 2023
  ident: ref_10
  article-title: Hypotension Prediction Index guided Goal Directed therapy and the amount of Hypotension during Major Gynaecologic Oncologic Surgery: A Randomized Controlled clinical Trial
  publication-title: J. Clin. Monit. Comput.
  doi: 10.1007/s10877-023-01017-1
  contributor:
    fullname: Frassanito
– volume: 36
  start-page: 1397
  year: 2021
  ident: ref_12
  article-title: Performance of a machine-learning algorithm to predict hypotension in mechanically ventilated patients with COVID-19 admitted to the intensive care unit: A cohort study
  publication-title: J. Clin. Monit. Comput.
  contributor:
    fullname: Terwindt
– volume: 126
  start-page: 16
  year: 2017
  ident: ref_3
  article-title: Withholding versus Continuing Angiotensin-converting Enzyme Inhibitors or Angiotensin II Receptor Blockers before Noncardiac Surgery: An Analysis of the Vascular events In noncardiac Surgery patIents cOhort evaluatioN Prospective Cohort
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000001404
  contributor:
    fullname: Roshanov
– volume: 130
  start-page: 550
  year: 2019
  ident: ref_23
  article-title: Incidence, Severity, and Detection of Blood Pressure Perturbations after Abdominal Surgery: A Prospective Blinded Observational Study
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000002626
  contributor:
    fullname: Turan
– ident: ref_9
  doi: 10.1186/s12871-023-02069-1
– volume: 107
  start-page: 213
  year: 2007
  ident: ref_2
  article-title: Incidence of intraoperative hypotension as a function of the chosen definition: Literature definitions applied to a retrospective cohort using automated data collection
  publication-title: Anesthesiology
  doi: 10.1097/01.anes.0000270724.40897.8e
  contributor:
    fullname: Bijker
– volume: 33
  start-page: 189
  year: 2019
  ident: ref_13
  article-title: Predicting hypotension in perioperative and intensive care medicine
  publication-title: Best Pract. Res. Clin. Anaesthesiol.
  doi: 10.1016/j.bpa.2019.04.001
  contributor:
    fullname: Saugel
– volume: 103
  start-page: 419
  year: 2005
  ident: ref_16
  article-title: Changes in arterial pressure during mechanical ventilation
  publication-title: J. Am. Soc. Anesthesiol.
  doi: 10.1097/00000542-200508000-00026
  contributor:
    fullname: Michard
SSID ssj0000852260
Score 2.2998075
Snippet : Hypotension is common in the post-anesthesia care unit (PACU) and intensive care unit (ICU), and is associated with adverse patient outcomes. The Hypotension...
Background: Hypotension is common in the post-anesthesia care unit (PACU) and intensive care unit (ICU), and is associated with adverse patient outcomes. The...
SourceID proquest
gale
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 210
SubjectTerms Algorithms
Anesthesia
Blood pressure
Consent
Data mining
Data processing
Electronic medical records
General anesthesia
Hemodynamics
Hospital patients
Hypotension
Machine learning
Mechanical ventilation
Medical records
Medical research
Medicine, Experimental
Patients
Performance evaluation
Pressure transducers
Sensitivity analysis
Statistical analysis
Ventilators
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEF7RIFW9IKAPUqCaA1JPK2Kvvd6cqoBAKVKiiDYVN8v7olTBdhP3wI_gPzNjb3gderJkezVez87sN4-dYewoUkOZRDbiWjvNUeEprnRqeUIRX-98JtoI_mQqx_Pk4iq9Cg63VUirXOvEVlHbypCP_Bi3JUQDaKon3-q_nLpGUXQ1tNB4wzZjshR6bPPkbDq7fPSyIKBAfDHoDuYJpHv8p76NyGaK6czss63otUJ-BTPb7eZ8m20FnAijjrE7bMOVu-ztJETC37P72VPGP1QeCpi0aZEOQsXUaxgtrnECze9baCqYLWloA-O7umqT1qsSbkr4UVclwkOH9v_iDk4IQZJLCqZVyX9RItECsagFaunLR6gVES6ubgooSgvfT-cw66qyrj6w-fnZz9MxD60VuBFKNTzx3onMuOFA-di6AcGizBVpbFAgh8JEmcb7kfBKFt44maa6oFrxsjCFFcKKj6xXVqXbY-ASLaXPUu9in2SxVV44snqQgIuNln12tP7Led1V0MjR8iBm5M-Y0WdfiQM5yVWzRDLheAASoQpV-ShDUxTRo1R9dvDiTZQH8_Lxmod5kMdV_rR6-uxTx9fHjxGEERGYff7_wH32ji5dxvYB6zXLf-4QAUmjv4RV9wDjQuG3
  priority: 102
  providerName: ProQuest
Title Performance of a Machine Learning Algorithm to Predict Hypotension in Spontaneously Breathing Non-Ventilated Post-Anesthesia and ICU Patients
URI https://www.ncbi.nlm.nih.gov/pubmed/38392643
https://www.proquest.com/docview/2930952024
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3db9MwED-NTZr2gvimMCo_TOLJsMSO4z4g1E0bBalVBRT1LYoTe-vUxSXNJPpH8D9zlw-gFbzGuVzkO_t-Z98HwEmgB0oGecCNsYbjhqe5NlHOJd34OutiUd_gjydqNJOf5tF8D7pmnO0Erv_p2lE_qVm5fPPj--Y9Lvh35HHip97erG4DcoNCSrU6CCkHiGL4Wpx_0wRjIcyg85YQTSSXaJaaXL1d-iM4FAQZlBRbhmp3u94BobUxunwA91sUyYaN2B_Cni0eweG4vSd_DD-nf_IBmHcsZeM6aNKytp7qFRsur3y5qK5vWeXZtCTSio02K1-HtPuCLQr2ZeULBI_W362XG3ZG-JIOrNjEF_wbhRktEanmjBr-8iHumQgm14uUpUXOPp7P2LSp2bp-ArPLi6_nI942XuCZ0Lri0jkr4swOTrULc3tKoCm2aRRmuFwHIgtig88D4bRKXWZVFJmUKsmrNEtzIXLxFPYLX9jnwKw0Srk4cjZ0Mg5z7YQlnwgZ2DAzqgcn3Swnq6a-RoJ-Cckl-UsuPXhNEkhID6oS2bTJA8iE6lclwxgdVcSWSvfgeOtNXC3Z9nAnw6RTtgQhDyJNZCR78KyR6--f6dThxX9HXsIRkTah3MewX5V39hUilcr04eDsYjL93Id7H-ZBv9bJX8Jg5tg
link.rule.ids 315,783,787,2228,21401,24331,27937,27938,33757,43818,74637
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB5BKgEXVF4l0JY9VOK0auy115sTSqtWKTRRBA3qzfK-SlFqm8Qc-iP4z8zYm74Ova69GntnZ_abx84A7EVqKJPIRlxrpzkqPMWVTi1PKOLrnc9EG8GfTOV4nnw9T8-Dw20V0irXOrFV1LYy5CPfx2MJ0QCa6smX-g-nrlEUXQ0tNJ7CBpWqUj3YODiazr7feFkQUCC-GHQX8wTS3f9dX0VkM8V0Z_bOUfRQIT-Ame1xc7wJLwNOZKOOsa_giStfw7NJiIS_gX-z24x_VnlWsEmbFulYqJh6wUaLC_yB5tcVayo2W9LUho2v66pNWq9KdlmyH3VVIjx0aP8vrtkBIUhySbFpVfKflEi0QCxqGbX05SPUiggXV5cFK0rLTg7nbNZVZV29hfnx0dnhmIfWCtwIpRqeeO9EZtxwoHxs3YBgUeaKNDYokENhokzjeCS8koU3TqapLqhWvCxMYYWw4h30yqp074G5REvps9S72CdZbJUXjqweJOBio2Uf9tarnNddBY0cLQ9iRn6HGX34TBzISa6aJZIJ1wOQCFWoykcZmqKIHqXqw_a9N1EezP3Hax7mQR5X-e3u6cNWx9ebjxGEERGYfXh84id4Pj6bnOanJ9NvH-EFDXXZ29vQa5Z_3Q6Ck0bvhh34H8DI5LE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaglSouiPLqQik-VOJk7SZOHO8JbUtXW2BXEbCotyh-laJtHDbpoT-C_8xM4u3rwNWJZSfjGX_j-TxDyGEkxyKJTMSUsoqBwZNMqtSwBCO-zrqMdxH8-ULMlsnns_Qs8J-aQKvc2MTOUBuv8Yx8CNsSoAFw1ZOhC7SI_NP0Y_2HYQUpjLSGchqPyXaWCA6O2PbRySL_dnPiAuACsMaov6THYQ7D3_VlhP5TjPdn72xLD43zA8jZbT3TZ-RpwIx00gt5lzyy1XOyMw9R8Rfkb37L_qfe0ZLOO4qkpSF76jmdrM7hA9pfl7T1NF9j15bOrmvfEdh9RS8q-r32FUBF66-a1TU9QjSJx1N04Sv2E0lFK8ClhmJ5XzYBCwnQsbkoaVkZenq8pHmfobV5SZbTkx_HMxbKLDDNpWxZ4pzlmbbjkXSxsSOESJkt01iDco65jjIF7RF3UpROW5GmqsS88aLUpeHc8Fdkq_KV3SPUJkoIl6XOxi7JYiMdt-gBwQA21koMyOHmLxd1n02jAC8EhVHcEcaAfEAJFKhj7RqGCVcFYBDMVlVMMnBLAUkKOSD7994E3dD3H29kWATdbIrblTQgr3u53kyGI14EkPbm_x3fkx1YfMXX08WXt-QJtvRE7n2y1a6v7DvAKa06CAvwH0f26OU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+a+Machine+Learning+Algorithm+to+Predict+Hypotension+in+Spontaneously+Breathing+Non-Ventilated+Post-Anesthesia+and+ICU+Patients&rft.jtitle=Journal+of+personalized+medicine&rft.au=Tol%2C+Johan+T+M&rft.au=Terwindt%2C+Lotte+E&rft.au=Rellum%2C+Santino+R&rft.au=Wijnberge%2C+Marije&rft.date=2024-02-01&rft.issn=2075-4426&rft.eissn=2075-4426&rft.volume=14&rft.issue=2&rft_id=info:doi/10.3390%2Fjpm14020210&rft_id=info%3Apmid%2F38392643&rft.externalDocID=38392643
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4426&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4426&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4426&client=summon