The nonlinear motion of cells subject to external forces
To develop a minimal model for a cell moving in a crowded environment such as in tissue, we investigate the response of a liquid drop of active matter moving on a flat rigid substrate to forces applied at its boundaries. We consider two different self-propulsion mechanisms, active stresses and tread...
Saved in:
Published in | Soft matter Vol. 18; no. 47; pp. 98 - 916 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
07.12.2022
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
ISSN | 1744-683X 1744-6848 1744-6848 |
DOI | 10.1039/d2sm00934j |
Cover
Loading…
Abstract | To develop a minimal model for a cell moving in a crowded environment such as in tissue, we investigate the response of a liquid drop of active matter moving on a flat rigid substrate to forces applied at its boundaries. We consider two different self-propulsion mechanisms, active stresses and treadmilling polymerisation, and we investigate how the active drop motion is altered by these surface forces. We find a highly non-linear response to forces that we characterise using drop velocity, drop shape, and the traction between the drop and the substrate. Each self-propulsion mechanism gives rise to two main modes of motion: a long thin drop with zero traction in the bulk, mostly occurring under strong stretching forces, and a parabolic drop with finite traction in the bulk, mostly occurring under strong squeezing forces. In each case there is a sharp transition between parabolic, and long thin drops as a function of the applied forces and indications of drop break-up where large forces stretch the drop.
To develop a minimal model for a cell moving in a crowded environment such as in tissue, we investigate the response of a liquid drop of active matter moving on a flat rigid substrate to forces applied at its boundaries. |
---|---|
AbstractList | To develop a minimal model for a cell moving in a crowded environment such as in tissue, we investigate the response of a liquid drop of active matter moving on a flat rigid substrate to forces applied at its boundaries. We consider two different self-propulsion mechanisms, active stresses and treadmilling polymerisation, and we investigate how the active drop motion is altered by these surface forces. We find a highly non-linear response to forces that we characterise using drop velocity, drop shape, and the traction between the drop and the substrate. Each self-propulsion mechanism gives rise to two main modes of motion: a long thin drop with zero traction in the bulk, mostly occurring under strong stretching forces, and a parabolic drop with finite traction in the bulk, mostly occurring under strong squeezing forces. In each case there is a sharp transition between parabolic, and long thin drops as a function of the applied forces and indications of drop break-up where large forces stretch the drop.To develop a minimal model for a cell moving in a crowded environment such as in tissue, we investigate the response of a liquid drop of active matter moving on a flat rigid substrate to forces applied at its boundaries. We consider two different self-propulsion mechanisms, active stresses and treadmilling polymerisation, and we investigate how the active drop motion is altered by these surface forces. We find a highly non-linear response to forces that we characterise using drop velocity, drop shape, and the traction between the drop and the substrate. Each self-propulsion mechanism gives rise to two main modes of motion: a long thin drop with zero traction in the bulk, mostly occurring under strong stretching forces, and a parabolic drop with finite traction in the bulk, mostly occurring under strong squeezing forces. In each case there is a sharp transition between parabolic, and long thin drops as a function of the applied forces and indications of drop break-up where large forces stretch the drop. To develop a minimal model for a cell moving in a crowded environment such as in tissue, we investigate the response of a liquid drop of active matter moving on a flat rigid substrate to forces applied at its boundaries. We consider two different self-propulsion mechanisms, active stresses and treadmilling polymerisation, and we investigate how the active drop motion is altered by these surface forces. We find a highly non-linear response to forces that we characterise using drop velocity, drop shape, and the traction between the drop and the substrate. Each self-propulsion mechanism gives rise to two main modes of motion: a long thin drop with zero traction in the bulk, mostly occurring under strong stretching forces, and a parabolic drop with finite traction in the bulk, mostly occurring under strong squeezing forces. In each case there is a sharp transition between parabolic, and long thin drops as a function of the applied forces and indications of drop break-up where large forces stretch the drop. To develop a minimal model for a cell moving in a crowded environment such as in tissue, we investigate the response of a liquid drop of active matter moving on a flat rigid substrate to forces applied at its boundaries. We consider two different self-propulsion mechanisms, active stresses and treadmilling polymerisation, and we investigate how the active drop motion is altered by these surface forces. We find a highly non-linear response to forces that we characterise using drop velocity, drop shape, and the traction between the drop and the substrate. Each self-propulsion mechanism gives rise to two main modes of motion: a long thin drop with zero traction in the bulk, mostly occurring under strong stretching forces, and a parabolic drop with finite traction in the bulk, mostly occurring under strong squeezing forces. In each case there is a sharp transition between parabolic, and long thin drops as a function of the applied forces and indications of drop break-up where large forces stretch the drop. To develop a minimal model for a cell moving in a crowded environment such as in tissue, we investigate the response of a liquid drop of active matter moving on a flat rigid substrate to forces applied at its boundaries. |
Author | Loisy, Aurore Ioratim-Uba, Aondoyima Henkes, Silke Liverpool, Tanniemola B |
AuthorAffiliation | Lorentz Institute for Theoretical Physics Leiden University School of Mathematics University of Bristol |
AuthorAffiliation_xml | – name: Leiden University – name: School of Mathematics – name: Lorentz Institute for Theoretical Physics – name: University of Bristol |
Author_xml | – sequence: 1 givenname: Aondoyima surname: Ioratim-Uba fullname: Ioratim-Uba, Aondoyima – sequence: 2 givenname: Aurore surname: Loisy fullname: Loisy, Aurore – sequence: 3 givenname: Silke surname: Henkes fullname: Henkes, Silke – sequence: 4 givenname: Tanniemola B surname: Liverpool fullname: Liverpool, Tanniemola B |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36399136$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0UtLxDAUBeAgiu-Ne6XgRoTRpDfTJisR36K4cAR3IU1utEPbaNKK_ns7zjg-Vgnk43BvzhpZbHyDhGwxesAoyEObxppSCXy8QFZZzvkgE1wszu_wuELWYhxTCoKzbJmsQAZSMshWiRg9Y9LnVWWDOiS1b0vfJN4lBqsqJrErxmjapPUJvrcYGl0lzgeDcYMsOV1F3Jyd6-Th_Gx0cjm4ubu4Ojm-GRgQoh1wXQxz4VKORmZW26E0GjNuhwV1RluUVMvCMFE4xy0wsMAdpAhUcFsYI2CdHE1zX7qiRmuwaYOu1Esoax0-lNel-vvSlM_qyb8pRhlnwzzvE_ZmCcG_dhhbVZdxsp5u0HdRpTkIJjlNZU93_9Gx7yZLTxTPU5ZRBr3a-T3SfJbvX-3B_hSY4GMM6OaEUTWpTJ2m97dflV33eHuKQzRz91MpfAKvO5M_ |
Cites_doi | 10.1073/pnas.1312076111 10.1016/j.ceb.2009.05.003 10.1016/S0092-8674(00)81281-7 10.1103/RevModPhys.85.1143 10.1016/j.physrep.2007.02.018 10.1103/PhysRevLett.110.078102 10.1103/PhysRevLett.112.147802 10.1038/s41567-020-0875-z 10.1016/j.bpj.2011.06.032 10.1038/nature06952 10.1088/1361-6633/aab6bb 10.1103/PhysRevLett.123.248006 10.1038/ncomms6420 10.1103/PhysRevLett.92.118101 10.1103/PhysRevE.95.012401 10.1038/nrm4012 10.1089/ten.tea.2019.0046 10.1016/S0006-3495(87)83244-7 10.1016/j.cell.2015.01.007 10.1016/j.ydbio.2017.09.021 10.7554/eLife.03282 10.1038/nphys1269 10.1073/pnas.0702259104 10.1073/pnas.1200843109 10.1016/0955-0674(91)90159-V 10.7554/eLife.26161 10.1115/1.1451234 10.1103/PhysRevLett.100.258106 10.1146/annurev-cellbio-111315-125341 10.1103/PhysRevLett.107.258103 10.1083/jcb.200706012 10.1371/journal.pbio.1001059 10.1016/j.bpj.2011.07.038 10.1103/PhysRevE.101.022404 10.1146/annurev.biophys.093008.131207 10.1091/mbc.e16-10-0694 10.1038/nature11591 10.1016/S0960-9822(99)80042-6 10.1038/nrm2222 10.1038/nmat3025 10.1103/PhysRevLett.97.268101 10.1016/j.tcb.2012.07.005 10.1039/D0SM00070A 10.1088/1367-2630/ab05fd 10.1103/PhysRevE.92.062311 10.1201/9781315735368 10.1103/RevModPhys.85.1327 10.1016/S0065-2423(08)60333-9 10.1126/science.1203543 10.1073/pnas.1117814109 10.1016/j.ceb.2017.06.006 10.1103/RevModPhys.69.931 10.1038/nature08908 10.1103/PhysRevE.87.022720 10.1103/PhysRevE.97.012410 10.1103/PhysRevLett.102.058103 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 – notice: This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1039/d2sm00934j |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Chemistry |
EISSN | 1744-6848 |
EndPage | 916 |
ExternalDocumentID | PMC10141577 36399136 10_1039_D2SM00934J d2sm00934j |
Genre | Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/L01386X/1 – fundername: ; grantid: BB/L01386X/1; BB/N009150/2 – fundername: ; grantid: RPG-2016-147 |
GroupedDBID | -JG 0-7 0R~ 123 1TJ 4.4 705 70~ 7~J AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABFLS ABGFH ABRYZ ACGFO ACGFS ACIWK ACLDK ACPRK ADMRA ADSRN AENEX AFOGI AFRAH AFVBQ AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AZFZN BLAPV BSQNT C6K CS3 EBS ECGLT EE0 EF- F5P GNO HZ~ H~N J3I KZ1 N9A O9- OK1 P2P R7B RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SLH VH6 AAJAE AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFRZK AGEGJ AHGCF AKMSF APEMP CITATION GGIMP H13 L-8 NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-c388t-4ab578f24ec96dad59cae64d5b0fcade90a9bc18bff4d313d34f32e3084dbcc83 |
ISSN | 1744-683X 1744-6848 |
IngestDate | Thu Aug 21 18:37:51 EDT 2025 Fri Jul 11 16:08:37 EDT 2025 Mon Jun 30 12:07:08 EDT 2025 Sat May 31 02:10:50 EDT 2025 Tue Jul 01 03:13:37 EDT 2025 Wed Dec 07 09:01:14 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c388t-4ab578f24ec96dad59cae64d5b0fcade90a9bc18bff4d313d34f32e3084dbcc83 |
Notes | https://doi.org/10.1039/d2sm00934j Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8089-8636 0000-0002-6688-7367 0000-0003-4376-5604 0000-0001-7496-5831 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10141577 |
PMID | 36399136 |
PQID | 2747216013 |
PQPubID | 2047495 |
PageCount | 9 |
ParticipantIDs | pubmed_primary_36399136 proquest_miscellaneous_2738194029 proquest_journals_2747216013 crossref_primary_10_1039_D2SM00934J rsc_primary_d2sm00934j pubmedcentral_primary_oai_pubmedcentral_nih_gov_10141577 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-07 |
PublicationDateYYYYMMDD | 2022-12-07 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Soft matter |
PublicationTitleAlternate | Soft Matter |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Saez (D2SM00934J/cit44/1) 2007; 104 Marchetti (D2SM00934J/cit46/1) 2013; 85 Jain (D2SM00934J/cit8/1) 2020; 16 Tjhung (D2SM00934J/cit29/1) 2015; 6 Sanchez (D2SM00934J/cit38/1) 2012; 491 Recho (D2SM00934J/cit25/1) 2013; 87 Lennarz (D2SM00934J/cit57/1) 2013 Camley (D2SM00934J/cit30/1) 2017; 95 Murrell (D2SM00934J/cit22/1) 2015; 16 Lämmermann (D2SM00934J/cit3/1) 2009; 21 Janmey (D2SM00934J/cit54/1) 1991; 3 Juelicher (D2SM00934J/cit14/1) 2007; 449 Wolgemuth (D2SM00934J/cit21/1) 2011; 101 Putelat (D2SM00934J/cit27/1) 2018; 97 Schwarz (D2SM00934J/cit42/1) 2013; 85 Yam (D2SM00934J/cit18/1) 2007; 178 Anon (D2SM00934J/cit20/1) 2012; 109 Loisy (D2SM00934J/cit39/1) 2020; 16 Gauthier (D2SM00934J/cit52/1) 2012; 22 Oron (D2SM00934J/cit51/1) 1997; 69 Leal-Egaña (D2SM00934J/cit11/1) 2017; 28 Recho (D2SM00934J/cit28/1) 2019; 21 Ricca (D2SM00934J/cit45/1) 2018; 7 Mitchison (D2SM00934J/cit12/1) 1996; 84 Chiou (D2SM00934J/cit4/1) 2018; 433 Howard (D2SM00934J/cit53/1) 2002; 55 Liu (D2SM00934J/cit41/1) 2015; 160 Tjhung (D2SM00934J/cit34/1) 2012; 109 Ng (D2SM00934J/cit10/1) 2014; 3 Hatwalne (D2SM00934J/cit48/1) 2004; 92 Giomi (D2SM00934J/cit36/1) 2014; 112 Marchetti (D2SM00934J/cit15/1) 2013; 85 Barnhart (D2SM00934J/cit16/1) 2011; 9 Keren (D2SM00934J/cit19/1) 2008; 453 Blanch-Mercader (D2SM00934J/cit26/1) 2013; 110 Verkhovsky (D2SM00934J/cit17/1) 1999; 9 Li (D2SM00934J/cit43/1) 2019; 25 Callan-Jones (D2SM00934J/cit24/1) 2008; 100 Carlsson (D2SM00934J/cit59/1) 2010; 39 Alberts (D2SM00934J/cit1/1) 2017 Lecuit (D2SM00934J/cit5/1) 2007; 8 Pandya (D2SM00934J/cit23/1) 2017; 48 Paluch (D2SM00934J/cit2/1) 2016; 32 Tambe (D2SM00934J/cit9/1) 2011; 10 Liverpool (D2SM00934J/cit49/1) 2006; 97 Hawkins (D2SM00934J/cit33/1) 2009; 102 Jülicher (D2SM00934J/cit47/1) 2018; 81 Mair (D2SM00934J/cit55/1) 1994; 31 Hawkins (D2SM00934J/cit37/1) 2011; 101 Trepat (D2SM00934J/cit7/1) 2009; 5 Lavi (D2SM00934J/cit32/1) 2020; 101 Chaffer (D2SM00934J/cit6/1) 2011; 331 Fletcher (D2SM00934J/cit13/1) 2010; 463 Loisy (D2SM00934J/cit40/1) 2019; 123 Hannezo (D2SM00934J/cit56/1) 2014; 111 Doubrovinski (D2SM00934J/cit31/1) 2011; 107 Khoromskaia (D2SM00934J/cit35/1) 2015; 92 Valberg (D2SM00934J/cit58/1) 1987; 52 |
References_xml | – issn: 2013 publication-title: Encyclopedia of biological chemistry doi: Lennarz Lane – issn: 2017 publication-title: Molecular Biology of the Cell doi: Alberts – volume: 111 start-page: 27 year: 2014 ident: D2SM00934J/cit56/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1312076111 – volume: 21 start-page: 636 year: 2009 ident: D2SM00934J/cit3/1 publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2009.05.003 – volume: 84 start-page: 371 year: 1996 ident: D2SM00934J/cit12/1 publication-title: Cell doi: 10.1016/S0092-8674(00)81281-7 – volume: 85 start-page: 1143 year: 2013 ident: D2SM00934J/cit15/1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.1143 – volume: 449 start-page: 3 year: 2007 ident: D2SM00934J/cit14/1 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2007.02.018 – volume: 110 start-page: 078102 year: 2013 ident: D2SM00934J/cit26/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.078102 – volume: 112 start-page: 147802 year: 2014 ident: D2SM00934J/cit36/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.147802 – volume: 16 start-page: 802 year: 2020 ident: D2SM00934J/cit8/1 publication-title: Nat. Phys. doi: 10.1038/s41567-020-0875-z – volume: 101 start-page: 545 year: 2011 ident: D2SM00934J/cit21/1 publication-title: Biophys. J. doi: 10.1016/j.bpj.2011.06.032 – volume: 453 start-page: 475 year: 2008 ident: D2SM00934J/cit19/1 publication-title: Nature doi: 10.1038/nature06952 – volume: 81 start-page: 076601 year: 2018 ident: D2SM00934J/cit47/1 publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/aab6bb – volume: 123 start-page: 248006 year: 2019 ident: D2SM00934J/cit40/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.248006 – volume: 6 start-page: 1 year: 2015 ident: D2SM00934J/cit29/1 publication-title: Nat. Commun. doi: 10.1038/ncomms6420 – volume: 92 start-page: 118101 year: 2004 ident: D2SM00934J/cit48/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.118101 – volume: 95 start-page: 012401 year: 2017 ident: D2SM00934J/cit30/1 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.95.012401 – volume: 16 start-page: 486 year: 2015 ident: D2SM00934J/cit22/1 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm4012 – volume: 25 start-page: 1614 year: 2019 ident: D2SM00934J/cit43/1 publication-title: Tissue Eng., Part A doi: 10.1089/ten.tea.2019.0046 – volume: 52 start-page: 551 year: 1987 ident: D2SM00934J/cit58/1 publication-title: Biophys. J. doi: 10.1016/S0006-3495(87)83244-7 – volume: 160 start-page: 659 year: 2015 ident: D2SM00934J/cit41/1 publication-title: Cell doi: 10.1016/j.cell.2015.01.007 – volume: 433 start-page: 155 year: 2018 ident: D2SM00934J/cit4/1 publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2017.09.021 – volume-title: Encyclopedia of biological chemistry year: 2013 ident: D2SM00934J/cit57/1 – volume: 3 start-page: e03282 year: 2014 ident: D2SM00934J/cit10/1 publication-title: eLife doi: 10.7554/eLife.03282 – volume: 5 start-page: 426 year: 2009 ident: D2SM00934J/cit7/1 publication-title: Nat. Phys. doi: 10.1038/nphys1269 – volume: 85 start-page: 1143 year: 2013 ident: D2SM00934J/cit46/1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.1143 – volume: 104 start-page: 8281 year: 2007 ident: D2SM00934J/cit44/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0702259104 – volume: 109 start-page: 12381 year: 2012 ident: D2SM00934J/cit34/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1200843109 – volume: 3 start-page: 4 year: 1991 ident: D2SM00934J/cit54/1 publication-title: Curr. Opin. Cell Biol. doi: 10.1016/0955-0674(91)90159-V – volume: 7 start-page: e26161 year: 2018 ident: D2SM00934J/cit45/1 publication-title: eLife doi: 10.7554/eLife.26161 – volume: 55 start-page: B39 year: 2002 ident: D2SM00934J/cit53/1 publication-title: Appl. Mech. Rev. doi: 10.1115/1.1451234 – volume: 100 start-page: 258106 year: 2008 ident: D2SM00934J/cit24/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.258106 – volume: 32 start-page: 469 year: 2016 ident: D2SM00934J/cit2/1 publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-111315-125341 – volume: 107 start-page: 258103 year: 2011 ident: D2SM00934J/cit31/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.258103 – volume: 178 start-page: 1207 year: 2007 ident: D2SM00934J/cit18/1 publication-title: J. Cell Biol. doi: 10.1083/jcb.200706012 – volume: 9 start-page: e1001059 year: 2011 ident: D2SM00934J/cit16/1 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001059 – volume: 101 start-page: 1041 year: 2011 ident: D2SM00934J/cit37/1 publication-title: Biophys. J. doi: 10.1016/j.bpj.2011.07.038 – volume: 101 start-page: 022404 year: 2020 ident: D2SM00934J/cit32/1 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.101.022404 – volume: 39 start-page: 91 year: 2010 ident: D2SM00934J/cit59/1 publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev.biophys.093008.131207 – volume: 28 start-page: 1612 year: 2017 ident: D2SM00934J/cit11/1 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e16-10-0694 – volume: 491 start-page: 431 year: 2012 ident: D2SM00934J/cit38/1 publication-title: Nature doi: 10.1038/nature11591 – volume: 9 start-page: 11 year: 1999 ident: D2SM00934J/cit17/1 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(99)80042-6 – volume: 8 start-page: 633 year: 2007 ident: D2SM00934J/cit5/1 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2222 – volume: 10 start-page: 469 year: 2011 ident: D2SM00934J/cit9/1 publication-title: Nat. Mater. doi: 10.1038/nmat3025 – volume: 97 start-page: 268101 year: 2006 ident: D2SM00934J/cit49/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.268101 – volume: 22 start-page: 527 year: 2012 ident: D2SM00934J/cit52/1 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2012.07.005 – volume: 16 start-page: 3106 year: 2020 ident: D2SM00934J/cit39/1 publication-title: Soft Matter doi: 10.1039/D0SM00070A – volume: 21 start-page: 033015 year: 2019 ident: D2SM00934J/cit28/1 publication-title: New J. Phys. doi: 10.1088/1367-2630/ab05fd – volume: 92 start-page: 062311 year: 2015 ident: D2SM00934J/cit35/1 publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.92.062311 – volume-title: Molecular Biology of the Cell year: 2017 ident: D2SM00934J/cit1/1 doi: 10.1201/9781315735368 – volume: 85 start-page: 1327 year: 2013 ident: D2SM00934J/cit42/1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.1327 – volume: 31 start-page: 63 year: 1994 ident: D2SM00934J/cit55/1 publication-title: Adv. Clin. Chem. doi: 10.1016/S0065-2423(08)60333-9 – volume: 331 start-page: 1559 year: 2011 ident: D2SM00934J/cit6/1 publication-title: Science doi: 10.1126/science.1203543 – volume: 109 start-page: 10891 year: 2012 ident: D2SM00934J/cit20/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1117814109 – volume: 48 start-page: 87 year: 2017 ident: D2SM00934J/cit23/1 publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2017.06.006 – volume: 69 start-page: 931 year: 1997 ident: D2SM00934J/cit51/1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.69.931 – volume: 463 start-page: 485 year: 2010 ident: D2SM00934J/cit13/1 publication-title: Nature doi: 10.1038/nature08908 – volume: 87 start-page: 022720 year: 2013 ident: D2SM00934J/cit25/1 publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.87.022720 – volume: 97 start-page: 012410 year: 2018 ident: D2SM00934J/cit27/1 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.97.012410 – volume: 102 start-page: 058103 year: 2009 ident: D2SM00934J/cit33/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.058103 |
SSID | ssj0038416 |
Score | 2.3843942 |
Snippet | To develop a minimal model for a cell moving in a crowded environment such as in tissue, we investigate the response of a liquid drop of active matter moving... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 98 |
SubjectTerms | Chemistry Drops (liquids) Nonlinear response Substrates Traction |
Title | The nonlinear motion of cells subject to external forces |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36399136 https://www.proquest.com/docview/2747216013 https://www.proquest.com/docview/2738194029 https://pubmed.ncbi.nlm.nih.gov/PMC10141577 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5swELfWVpP2Mu2rG103MW1vER1gY-Ax2zqlVbaXJtLekG2MljaBKcBD99fvbGMgSx-6vSBkMGDfcXc-_-4OoQ9hyBmRUeRFjFKP5DnxOGWxFwsGCp3IADMNkP1OZ0ty-SMabbTr6JKGn4nfd8aV_A9VoQ3oqqJk_4Gy_UOhAc6BvnAECsPx3jQuTa4Ltp2YgjwaJy7X63pSt1w5WZR1aXM9K1Ch6FCD1zY-t2gmG9aMYLoXmi023pIbp6uq-HG7GgT4vFrVmjbTdlsN4NmZLG-M0LlarW_65rlCfthKXgtVIkluYD09-XQ29jiEuviJKU3bCcmYEI8muo4v6JBxm8mauS9ZW5tYs5OTqe8nI50LRgm9U577WKVD_RJefVOuF3I5aC27U_-XMushhnpzHafZ0PcAHYWwlgDpfTQ9X1zMrcLGaufVxM2aYdkstjj9OPTetVv2FiP7mNqDrS0ho02VxRP0uFtjuFPDME_RA1k-Qw811lfUz1ECbOP2bOMatnGrwtVs43Zs4zaVa8fqGrZ5gZZfzxefZ15XQMMTOEkajzAOArkIiRQpzVkepYJJSvKI-4WKvkh9lnIRJLwoSI4DnGNS4FBiPyE5FyLBx-gQPke-Qi7JGVgyMlIGJsEy4kGhojMFozFYWZg46L2dnuyXyZOS7ZPAQad25rLuP6oz5RcJAwprEQe96y-DlFOjZqWsWnWP8iwQP0wd9NJMdP8arIzsAFMHJTsk6G9QGdR3r5SrnzqTuipUHURx7KBjoFbfIQ_rjf7g65N7Des1ejT8J6fosNm28g3Yqg1_2_HaH_sIlPA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+nonlinear+motion+of+cells+subject+to+external+forces&rft.jtitle=Soft+matter&rft.au=Ioratim-Uba%2C+Aondoyima&rft.au=Loisy%2C+Aurore&rft.au=Henkes%2C+Silke&rft.au=Liverpool%2C+Tanniemola+B.&rft.date=2022-12-07&rft.issn=1744-683X&rft.eissn=1744-6848&rft.volume=18&rft.issue=47&rft.spage=9008&rft.epage=9016&rft_id=info:doi/10.1039%2FD2SM00934J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2SM00934J |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon |