Design and off-design performance comparison of supercritical carbon dioxide Brayton cycles for particle-based high temperature concentrating solar power plants

•Harmonized performance analysis of six S-CO2 Brayton cycles for novel CSP plants.•Effects of hot particles and ambient temperatures on cycle off-design performance.•The more complex cycles tend to present higher off-design performance degradation.•The best performing cycle varies depending on the a...

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 232; p. 113870
Main Authors Chen, Rui, Romero, Manuel, González-Aguilar, Jose, Rovense, Francesco, Rao, Zhenghua, Liao, Shengming
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.03.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Harmonized performance analysis of six S-CO2 Brayton cycles for novel CSP plants.•Effects of hot particles and ambient temperatures on cycle off-design performance.•The more complex cycles tend to present higher off-design performance degradation.•The best performing cycle varies depending on the ambient temperature range.•Simple regeneration and recompression cycles are more suitable in sunny hot regions. Concentrated solar power (CSP) plants using dense particle suspension as heat transfer fluid and particles as the storage medium are considered as a promising solution to provide the high temperature required for the supercritical carbon dioxide (S-CO2) Brayton cycle. During plant operation, variations in the heat transfer fluid temperature and ambient temperature would significantly affect system performance. Determining the suitable S-CO2 Brayton cycle configuration for this particle-based CSP plant requires accurate prediction and comprehensive comparison on the system performance both at design and off-design conditions. This study presents a common methodology to homogeneously assess the plant performance for six 10 MW S-CO2 Brayton cycles (i.e. simple regeneration, recompression, precompression, intercooling, partial cooling and split expansion) integrated with a hot particles thermal energy storage and a dry cooling system. This methodology includes both design and off-design detailed models based on the characteristic curves of all components. The optimal design for each thermodynamic cycle has been determined under the same boundary design constrains by a genetic algorithm. Then, their off-design performances have been quantitatively compared under varying particle inlet temperature and ambient temperature, in terms of cycle efficiency, net power output and specific work. Results show that the variation in ambient temperature contributes to a greater influence on the cycle off-design performance than typical variations of the heat transfer fluid temperature. Cycles with higher complexity have larger performance deterioration when the ambient temperature increases, though they could present higher peak efficiency and specific work at design-point. In particular, the cycle with maximum efficiency or specific work presents significant changes in different ranges of ambient temperature. This means that for the selection of the best configuration, the typical off-design operation conditions should be considered as well. For integrating with high-temperature CSP plants and dry cooling systems, the simple regeneration and the recompression cycles are the most suitable S-CO2 Brayton cycle configurations due to their fewer performance degradations at ambient temperatures above 30 °C, which is a frequent environmental condition in sunny areas of the world.
AbstractList Concentrated solar power (CSP) plants using dense particle suspension as heat transfer fluid and particles as the storage medium are considered as a promising solution to provide the high temperature required for the supercritical carbon dioxide (S-CO2) Brayton cycle. During plant operation, variations in the heat transfer fluid temperature and ambient temperature would significantly affect system performance. Determining the suitable S-CO2 Brayton cycle configuration for this particle-based CSP plant requires accurate prediction and comprehensive comparison on the system performance both at design and off-design conditions. This study presents a common methodology to homogeneously assess the plant performance for six 10 MW S-CO2 Brayton cycles (i.e. simple regeneration, recompression, precompression, intercooling, partial cooling and split expansion) integrated with a hot particles thermal energy storage and a dry cooling system. This methodology includes both design and off-design detailed models based on the characteristic curves of all components. The optimal design for each thermodynamic cycle has been determined under the same boundary design constrains by a genetic algorithm. Then, their off-design performances have been quantitatively compared under varying particle inlet temperature and ambient temperature, in terms of cycle efficiency, net power output and specific work. Results show that the variation in ambient temperature contributes to a greater influence on the cycle off-design performance than typical variations of the heat transfer fluid temperature. Cycles with higher complexity have larger performance deterioration when the ambient temperature increases, though they could present higher peak efficiency and specific work at design-point. In particular, the cycle with maximum efficiency or specific work presents significant changes in different ranges of ambient temperature. This means that for the selection of the best configuration, the typical off-design operation conditions should be considered as well. For integrating with high-temperature CSP plants and dry cooling systems, the simple regeneration and the recompression cycles are the most suitable S-CO2 Brayton cycle configurations due to their fewer performance degradations at ambient temperatures above 30 °C, which is a frequent environmental condition in sunny areas of the world.
•Harmonized performance analysis of six S-CO2 Brayton cycles for novel CSP plants.•Effects of hot particles and ambient temperatures on cycle off-design performance.•The more complex cycles tend to present higher off-design performance degradation.•The best performing cycle varies depending on the ambient temperature range.•Simple regeneration and recompression cycles are more suitable in sunny hot regions. Concentrated solar power (CSP) plants using dense particle suspension as heat transfer fluid and particles as the storage medium are considered as a promising solution to provide the high temperature required for the supercritical carbon dioxide (S-CO2) Brayton cycle. During plant operation, variations in the heat transfer fluid temperature and ambient temperature would significantly affect system performance. Determining the suitable S-CO2 Brayton cycle configuration for this particle-based CSP plant requires accurate prediction and comprehensive comparison on the system performance both at design and off-design conditions. This study presents a common methodology to homogeneously assess the plant performance for six 10 MW S-CO2 Brayton cycles (i.e. simple regeneration, recompression, precompression, intercooling, partial cooling and split expansion) integrated with a hot particles thermal energy storage and a dry cooling system. This methodology includes both design and off-design detailed models based on the characteristic curves of all components. The optimal design for each thermodynamic cycle has been determined under the same boundary design constrains by a genetic algorithm. Then, their off-design performances have been quantitatively compared under varying particle inlet temperature and ambient temperature, in terms of cycle efficiency, net power output and specific work. Results show that the variation in ambient temperature contributes to a greater influence on the cycle off-design performance than typical variations of the heat transfer fluid temperature. Cycles with higher complexity have larger performance deterioration when the ambient temperature increases, though they could present higher peak efficiency and specific work at design-point. In particular, the cycle with maximum efficiency or specific work presents significant changes in different ranges of ambient temperature. This means that for the selection of the best configuration, the typical off-design operation conditions should be considered as well. For integrating with high-temperature CSP plants and dry cooling systems, the simple regeneration and the recompression cycles are the most suitable S-CO2 Brayton cycle configurations due to their fewer performance degradations at ambient temperatures above 30 °C, which is a frequent environmental condition in sunny areas of the world.
ArticleNumber 113870
Author Rao, Zhenghua
Liao, Shengming
González-Aguilar, Jose
Romero, Manuel
Chen, Rui
Rovense, Francesco
Author_xml – sequence: 1
  givenname: Rui
  surname: Chen
  fullname: Chen, Rui
  organization: School of Energy and Engineering, Central South University, 410083 Changsha, Hunan, China
– sequence: 2
  givenname: Manuel
  surname: Romero
  fullname: Romero, Manuel
  email: manuel.romero@imdea.org
  organization: High Temperature Processes Unit, IMDEA Energy, Avda Ramón de La Sagra, 3, 28935 Móstoles, Madrid, Spain
– sequence: 3
  givenname: Jose
  surname: González-Aguilar
  fullname: González-Aguilar, Jose
  organization: High Temperature Processes Unit, IMDEA Energy, Avda Ramón de La Sagra, 3, 28935 Móstoles, Madrid, Spain
– sequence: 4
  givenname: Francesco
  surname: Rovense
  fullname: Rovense, Francesco
  organization: High Temperature Processes Unit, IMDEA Energy, Avda Ramón de La Sagra, 3, 28935 Móstoles, Madrid, Spain
– sequence: 5
  givenname: Zhenghua
  surname: Rao
  fullname: Rao, Zhenghua
  organization: School of Energy and Engineering, Central South University, 410083 Changsha, Hunan, China
– sequence: 6
  givenname: Shengming
  surname: Liao
  fullname: Liao, Shengming
  email: smliao@csu.edu.cn
  organization: School of Energy and Engineering, Central South University, 410083 Changsha, Hunan, China
BookMark eNqFkc1uWyEQhVGUSHWSvkKF1PV1hvvL3aVN8ydFyqZZIwyDg3UNLuC2fps8ase66TobYOCcbzScc3YaYkDGvghYChD91WaJwcSw1WFZQy2WQjRygBO2EHIYq7quh1O2ADH2lRyh_cTOc94AQNNBv2BvPzD7deA6WB6dq-xc7jC5mAhpkJu43enkcwyk4HlPbyb54o2euNFpRffWx7_eIv-e9KFQbQ5mwswJwclK0gmrlc5o-atfv_KCW4Losk9HOvUIhSof1jzHSZMn_kFaJx1KvmRnTk8ZP7_vF-zl7vbnzUP19Hz_ePPtqTKNlKVqG21GOoKTgMZZOTR6GAS6tu1Ha-1gRDO2aJtu7HuxArcSCN0AznaCvgWbC_Z15u5S_LXHXNQm7lOglqruoJViFLImVT-rTIo5J3Rql_xWp4MSoI5pqI36n4Y6pqHmNMh4PRuRZvjtMalsPCnR-oSmKBv9R4h_flKc6g
CitedBy_id crossref_primary_10_1016_j_energy_2023_129581
crossref_primary_10_1360_SST_2022_0266
crossref_primary_10_1051_matecconf_202134500005
crossref_primary_10_1016_j_cej_2024_151305
crossref_primary_10_1016_j_enconman_2022_116110
crossref_primary_10_1016_j_csite_2022_102053
crossref_primary_10_1016_j_enconman_2023_118013
crossref_primary_10_1016_j_energy_2024_130415
crossref_primary_10_1016_j_energy_2022_124691
crossref_primary_10_1016_j_enconman_2022_115618
crossref_primary_10_3390_met11091377
crossref_primary_10_1016_j_enconman_2023_116756
crossref_primary_10_1016_j_applthermaleng_2022_119486
crossref_primary_10_1016_j_est_2024_110495
crossref_primary_10_1016_j_solener_2021_11_014
crossref_primary_10_1016_j_rser_2021_111933
crossref_primary_10_1002_gch2_202300191
crossref_primary_10_1016_j_tsep_2023_101679
crossref_primary_10_1016_j_energy_2024_132360
crossref_primary_10_1002_wene_420
crossref_primary_10_1016_j_applthermaleng_2022_119759
crossref_primary_10_1016_j_applthermaleng_2022_118661
crossref_primary_10_1016_j_enconman_2023_116989
crossref_primary_10_1016_j_egyr_2022_11_102
crossref_primary_10_1002_er_7503
crossref_primary_10_1016_j_tsep_2022_101423
crossref_primary_10_3390_app11073215
crossref_primary_10_1016_j_applthermaleng_2023_121295
crossref_primary_10_3390_en16093871
crossref_primary_10_3390_en16145316
crossref_primary_10_1007_s13369_023_08410_7
crossref_primary_10_3390_en15228579
crossref_primary_10_1016_j_enconman_2022_116210
crossref_primary_10_1016_j_enconman_2023_117068
crossref_primary_10_1016_j_energy_2023_129445
crossref_primary_10_1016_j_rser_2023_113775
crossref_primary_10_2139_ssrn_3919711
crossref_primary_10_1016_j_energy_2022_123378
crossref_primary_10_1016_j_seta_2022_101965
crossref_primary_10_1016_j_seta_2022_102813
crossref_primary_10_3389_fenrg_2023_1286376
crossref_primary_10_1007_s40430_022_03463_5
crossref_primary_10_1016_j_enconman_2021_115040
crossref_primary_10_1016_j_energy_2023_126928
crossref_primary_10_3390_ma17071480
crossref_primary_10_1016_j_renene_2022_02_059
crossref_primary_10_1016_j_rser_2022_112071
crossref_primary_10_1016_j_applthermaleng_2022_119178
crossref_primary_10_1016_j_energy_2021_122798
crossref_primary_10_1016_j_energy_2022_123348
crossref_primary_10_1016_j_jclepro_2022_133410
crossref_primary_10_1016_j_renene_2021_08_047
crossref_primary_10_3390_e23101289
Cites_doi 10.1016/j.energy.2019.115992
10.2172/984129
10.1016/j.rser.2013.11.010
10.1016/j.renene.2018.08.023
10.1016/j.expthermflusci.2007.06.006
10.2172/1011299
10.1016/j.apenergy.2017.12.031
10.1016/j.enconman.2019.111865
10.1115/GT2012-68932
10.2172/1338899
10.1115/GT2013-95824
10.1016/j.enconman.2018.04.072
10.1016/j.apenergy.2017.03.099
10.1016/j.pnucene.2007.11.078
10.1016/j.applthermaleng.2020.116054
10.1016/j.enconman.2019.111807
10.1016/j.egypro.2014.03.128
10.1016/j.solener.2020.10.041
10.1016/j.energy.2017.08.067
10.1016/j.apenergy.2019.03.155
10.1016/j.enconman.2020.112832
10.1016/j.apenergy.2013.06.020
10.1016/j.enconman.2019.112094
10.1016/0020-7403(94)90007-8
10.1016/j.energy.2018.04.019
10.1115/ES2012-91179
10.1016/j.energy.2016.06.013
10.1016/j.enconman.2020.112978
10.1016/j.nucengdes.2013.03.024
10.1016/j.renene.2018.06.109
10.1016/j.enconman.2020.112980
10.1016/j.solener.2019.01.078
10.1016/j.energy.2012.11.029
10.1016/j.enconman.2019.05.110
10.1016/j.apenergy.2019.114359
10.1016/j.apenergy.2017.02.048
10.1016/0013-7480(68)90105-8
10.1016/j.energy.2020.117676
10.1016/j.enconman.2020.112713
10.1016/j.energy.2014.12.070
ContentType Journal Article
Copyright 2021 The Authors
Copyright Elsevier Science Ltd. Mar 15, 2021
Copyright_xml – notice: 2021 The Authors
– notice: Copyright Elsevier Science Ltd. Mar 15, 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
DOI 10.1016/j.enconman.2021.113870
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2227
ExternalDocumentID 10_1016_j_enconman_2021_113870
S0196890421000479
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
A6W
AAHBH
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFFNX
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
G8K
HVGLF
HZ~
H~9
R2-
RIG
SAC
SEW
WUQ
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
ID FETCH-LOGICAL-c388t-43ac9c380f80ecfd873a771ef4469ddd7c1394ed359661b0fb1e0570fd51890e3
IEDL.DBID AIKHN
ISSN 0196-8904
IngestDate Wed Sep 25 00:32:34 EDT 2024
Thu Sep 26 16:54:42 EDT 2024
Fri Feb 23 02:45:38 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Solar particle receiver
Supercritical carbon dioxide
Brayton cycle
Concentrating solar power
Off-design performance
Dry cooling
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-43ac9c380f80ecfd873a771ef4469ddd7c1394ed359661b0fb1e0570fd51890e3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0196890421000479
PQID 2504819182
PQPubID 2047472
ParticipantIDs proquest_journals_2504819182
crossref_primary_10_1016_j_enconman_2021_113870
elsevier_sciencedirect_doi_10_1016_j_enconman_2021_113870
PublicationCentury 2000
PublicationDate 2021-03-15
PublicationDateYYYYMMDD 2021-03-15
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-15
  day: 15
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Liu, Liu, Guo, Xin, Yang (b0055) 2019; 198
Neises (b0160) 2020; 212
Ruiz-Casanova, Rubio-Maya, Pacheco-Ibarra, Ambriz-Díaz, Romero, Wang (b0045) 2020; 216
Wright SA, Radel RF, Vernon ME, Rochau GE, Pickard PS. Operation and Analysis of a Supercritical CO 2 Brayton Cycle 2010.
Mehos M, Turchi C, Vidal J, Wagner M, Ma Z, Ho C, et al. Concentrating Solar Power Gen3 Demonstration Roadmap. Nrel/Tp-5500-67464 2017:1–140. https://doi.org/10.2172/1338899.
Dostal, Driscoll, Hejzlar (b0030) 2004
Turchi CS, Ma Z, Dyreby J. Supercritical carbon dioxide power cycle configurations for use in concentrating solar power systems. Turbo Expo Power Land, Sea, Air, vol. 44717, American Society of Mechanical Engineers; 2012, p. 967–73.
Dyreby, Klein, Nellis, Reindl (b0200) 2013; 8
Crespi, Gavagnin, Sánchez, Martínez (b0060) 2017; 195
Ishiyama, Muto, Kato, Nishio, Hayashi, Nomoto (b0230) 2008; 50
Wang, He, Zhu (b0085) 2017; 195
Romero, González-Aguilar (b0010) 2014; 3
Rao, Bao, Liu, Taylor, Liao (b0265) 2021; 184
Wright, Radel, Vernon, Rochau, Pickard (b0205) 2010
Yang, Yang, Duan (b0145) 2020; 201
Al-Sulaiman, Atif (b0070) 2015; 82
Dyreby JJ, Klein SA, Nellis GF, Reindl DT. Modeling off-design and part-load performance of supercritical carbon dioxide power cycles. Turbo Expo Power Land, Sea, Air, vol. 55294, American Society of Mechanical Engineers; 2013, p. V008T34A014.
Feher (b0035) 1968; 8
Wang, Li, Li, Liu, Liu (b0140) 2020; 261
Monjurul Ehsan, Guan, Gurgenci, Klimenko (b0250) 2020; 216
Crespi, Sánchez, Rodríguez, Gavagnin (b0065) 2020; 147
Dyreby (b0210) 2014
Solar Power and Chemical Energy Systems. CSP Projects Around the World 2020. https://www.solarpaces.org/csp-technologies/csp-projects-around-the-world/ (accessed October 1, 2020).
Reyes-Belmonte, Sebastián, Romero, González-Aguilar (b0110) 2016; 112
Dyreby, Klein, Nellis, Reindl (b0270) 2014;136.
Mathworks (b0170) 2014
Rao, Xue, Huang, Liao (b0190) 2019; 201
Sienicki JJ, Moisseytsev A, Fuller RL, Wright SA, Pickard PS. Scale dependencies of supercritical carbon dioxide Brayton cycle technologies and the optimal size for a next-step supercritical CO2 cycle demonstration. SCO2 power cycle Symp., 2011.
Iverson, Conboy, Pasch, Kruizenga (b0080) 2013; 111
Ma, Morozyuk, Liu, Yan, Liu (b0095) 2019; 242
de la Calle, Bayon, Soo Too (b0125) 2018; 153
Neises, Turchi (b0100) 2019; 181
Whitley (b0235) 2002
Lemmon, Huber, McLinden (b0175) 2018
Guo, Li, Xu, Yan, Ma (b0050) 2020; 211
Chen, Baines (b0220) 1994; 36
Zhu, Wang, He (b0075) 2017; 140
Brun, Friedman, Dennis (b0025) 2017
Reyes-Belmonte, Sebastián, Spelling, Romero, González-Aguilar (b0115) 2019; 130
Saeed, Khatoon, Kim (b0155) 2019; 196
Monjurul Ehsan, Guan, Klimenko, Wang (b0240) 2018; 168
Neises, Turchi (b0255) 2014; 49
Wang, Li, Guo, Li, Liu (b0090) 2018; 212
Floyd, Alpy, Moisseytsev, Haubensack, Rodriguez, Sienicki (b0215) 2013; 260
Duniam, Veeraragavan (b0130) 2019; 187
Turchi CS, Ma Z, Neises T, Wagner M. Thermodynamic study of advanced supercritical carbon dioxide power cycles for high performance concentrating solar power systems. ASME 2012 6th Int. Conf. Energy Sustain. ES 2012, Collocated with ASME 2012 10th Int. Conf. Fuel Cell Sci. Eng. Technol., vol. July 23-26, 2012, p. 375–83. https://doi.org/10.1115/ES2012-91179.
Ngo, Kato, Nikitin, Ishizuka (b0185) 2007; 32
Dunham, Iverson (b0040) 2014; 30
Ehsan, Duniam, Guan, Gurgenci, Klimenko (b0245) 2019; 197
Singh, Miller, Rowlands, Jacobs (b0135) 2013; 50
National Renewable Energy Laboratory (NREL). Weather Data - System Advisor Model (SAM). SAM 2020. https://sam.nrel.gov/weather-data (accessed December 15, 2020).
Yang, Yang, Duan (b0150) 2020; 214
Singh (10.1016/j.enconman.2021.113870_b0135) 2013; 50
Liu (10.1016/j.enconman.2021.113870_b0055) 2019; 198
Neises (10.1016/j.enconman.2021.113870_b0255) 2014; 49
Floyd (10.1016/j.enconman.2021.113870_b0215) 2013; 260
Romero (10.1016/j.enconman.2021.113870_b0010) 2014; 3
10.1016/j.enconman.2021.113870_b0015
Crespi (10.1016/j.enconman.2021.113870_b0060) 2017; 195
Iverson (10.1016/j.enconman.2021.113870_b0080) 2013; 111
Saeed (10.1016/j.enconman.2021.113870_b0155) 2019; 196
Reyes-Belmonte (10.1016/j.enconman.2021.113870_b0110) 2016; 112
Whitley (10.1016/j.enconman.2021.113870_b0235) 2002
Reyes-Belmonte (10.1016/j.enconman.2021.113870_b0115) 2019; 130
Ishiyama (10.1016/j.enconman.2021.113870_b0230) 2008; 50
Lemmon (10.1016/j.enconman.2021.113870_b0175) 2018
Wang (10.1016/j.enconman.2021.113870_b0140) 2020; 261
Dyreby (10.1016/j.enconman.2021.113870_b0200) 2013; 8
Monjurul Ehsan (10.1016/j.enconman.2021.113870_b0250) 2020; 216
Wang (10.1016/j.enconman.2021.113870_b0090) 2018; 212
Wright (10.1016/j.enconman.2021.113870_b0205) 2010
Ma (10.1016/j.enconman.2021.113870_b0095) 2019; 242
10.1016/j.enconman.2021.113870_b0120
Chen (10.1016/j.enconman.2021.113870_b0220) 1994; 36
Ehsan (10.1016/j.enconman.2021.113870_b0245) 2019; 197
Yang (10.1016/j.enconman.2021.113870_b0145) 2020; 201
10.1016/j.enconman.2021.113870_b0165
10.1016/j.enconman.2021.113870_b0005
Mathworks (10.1016/j.enconman.2021.113870_b0170) 2014
Rao (10.1016/j.enconman.2021.113870_b0265) 2021; 184
Neises (10.1016/j.enconman.2021.113870_b0100) 2019; 181
Duniam (10.1016/j.enconman.2021.113870_b0130) 2019; 187
Ruiz-Casanova (10.1016/j.enconman.2021.113870_b0045) 2020; 216
Feher (10.1016/j.enconman.2021.113870_b0035) 1968; 8
Al-Sulaiman (10.1016/j.enconman.2021.113870_b0070) 2015; 82
10.1016/j.enconman.2021.113870_b0195
Monjurul Ehsan (10.1016/j.enconman.2021.113870_b0240) 2018; 168
Wang (10.1016/j.enconman.2021.113870_b0085) 2017; 195
Rao (10.1016/j.enconman.2021.113870_b0190) 2019; 201
Dostal (10.1016/j.enconman.2021.113870_b0030) 2004
Dunham (10.1016/j.enconman.2021.113870_b0040) 2014; 30
Ngo (10.1016/j.enconman.2021.113870_b0185) 2007; 32
10.1016/j.enconman.2021.113870_b0020
10.1016/j.enconman.2021.113870_b0260
Yang (10.1016/j.enconman.2021.113870_b0150) 2020; 214
Dyreby (10.1016/j.enconman.2021.113870_b0210) 2014
Zhu (10.1016/j.enconman.2021.113870_b0075) 2017; 140
10.1016/j.enconman.2021.113870_b0225
Dyreby (10.1016/j.enconman.2021.113870_b0270) 2014136
Crespi (10.1016/j.enconman.2021.113870_b0065) 2020; 147
Guo (10.1016/j.enconman.2021.113870_b0050) 2020; 211
de la Calle (10.1016/j.enconman.2021.113870_b0125) 2018; 153
Brun (10.1016/j.enconman.2021.113870_b0025) 2017
Neises (10.1016/j.enconman.2021.113870_b0160) 2020; 212
References_xml – volume: 181
  start-page: 27
  year: 2019
  end-page: 36
  ident: b0100
  article-title: Supercritical carbon dioxide power cycle design and configuration optimization to minimize levelized cost of energy of molten salt power towers operating at 650 °C
  publication-title: Sol Energy
  contributor:
    fullname: Turchi
– volume: 195
  start-page: 819
  year: 2017
  end-page: 836
  ident: b0085
  article-title: Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts
  publication-title: Appl Energy
  contributor:
    fullname: Zhu
– volume: 216
  start-page: 112978
  year: 2020
  ident: b0045
  article-title: Thermodynamic analysis and optimization of supercritical carbon dioxide Brayton cycles for use with low-grade geothermal heat sources
  publication-title: Energy Convers Manag
  contributor:
    fullname: Wang
– volume: 201
  start-page: 117676
  year: 2020
  ident: b0145
  article-title: Off-design performance of a supercritical CO2 Brayton cycle integrated with a solar power tower system
  publication-title: Energy
  contributor:
    fullname: Duan
– volume: 147
  start-page: 2905
  year: 2020
  end-page: 2912
  ident: b0065
  article-title: A thermo-economic methodology to select sCO2 power cycles for CSP applications
  publication-title: Renew Energy
  contributor:
    fullname: Gavagnin
– volume: 216
  start-page: 112980
  year: 2020
  ident: b0250
  article-title: Novel design measures for optimizing the yearlong performance of a concentrating solar thermal power plant using thermal storage and a dry-cooled supercritical CO2 power block
  publication-title: Energy Convers Manag
  contributor:
    fullname: Klimenko
– year: 2014;136.
  ident: b0270
  article-title: Design considerations for supercritical carbon dioxide brayton cycles with recompression
  publication-title: J Eng Gas Turbines Power
  contributor:
    fullname: Reindl
– volume: 130
  start-page: 786
  year: 2019
  end-page: 795
  ident: b0115
  article-title: Annual performance of subcritical Rankine cycle coupled to an innovative particle receiver solar power plant
  publication-title: Renew Energy
  contributor:
    fullname: González-Aguilar
– volume: 211
  year: 2020
  ident: b0050
  article-title: Energy, exergy and economic (3E) evaluation and conceptual design of the 1000 MW coal-fired power plants integrated with S-CO2 Brayton cycles
  publication-title: Energy Convers Manag
  contributor:
    fullname: Ma
– volume: 261
  start-page: 114359
  year: 2020
  ident: b0140
  article-title: Performance of a solar thermal power plant with direct air-cooled supercritical carbon dioxide Brayton cycle under off-design conditions
  publication-title: Appl Energy
  contributor:
    fullname: Liu
– volume: 50
  start-page: 325
  year: 2008
  end-page: 332
  ident: b0230
  article-title: Study of steam, helium and supercritical CO2 turbine power generations in prototype fusion power reactor
  publication-title: Prog Nucl Energy
  contributor:
    fullname: Nomoto
– volume: 32
  start-page: 560
  year: 2007
  end-page: 570
  ident: b0185
  article-title: Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles
  publication-title: Exp Therm Fluid Sci
  contributor:
    fullname: Ishizuka
– volume: 242
  start-page: 1134
  year: 2019
  end-page: 1154
  ident: b0095
  article-title: Optimal integration of recompression supercritical CO2 Brayton cycle with main compression intercooling in solar power tower system based on exergoeconomic approach
  publication-title: Appl Energy
  contributor:
    fullname: Liu
– volume: 260
  start-page: 78
  year: 2013
  end-page: 92
  ident: b0215
  article-title: A numerical investigation of the sCO2 recompression cycle off-design behaviour, coupled to a sodium cooled fast reactor, for seasonal variation in the heat sink temperature
  publication-title: Nucl Eng Des
  contributor:
    fullname: Sienicki
– volume: 195
  start-page: 152
  year: 2017
  end-page: 183
  ident: b0060
  article-title: Supercritical carbon dioxide cycles for power generation: A review
  publication-title: Appl Energy
  contributor:
    fullname: Martínez
– volume: 214
  start-page: 112832
  year: 2020
  ident: b0150
  article-title: Part-load performance analysis and comparison of supercritical CO2 Brayton cycles
  publication-title: Energy Convers Manag
  contributor:
    fullname: Duan
– volume: 197
  start-page: 111865
  year: 2019
  ident: b0245
  article-title: Seasonal variation on the performance of the dry cooled supercritical CO2 recompression cycle
  publication-title: Energy Convers Manag
  contributor:
    fullname: Klimenko
– volume: 50
  start-page: 194
  year: 2013
  end-page: 204
  ident: b0135
  article-title: Dynamic characteristics of a direct-heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant
  publication-title: Energy
  contributor:
    fullname: Jacobs
– volume: 196
  start-page: 242
  year: 2019
  end-page: 260
  ident: b0155
  article-title: Design optimization and performance analysis of a supercritical carbon dioxide recompression Brayton cycle based on the detailed models of the cycle components
  publication-title: Energy Convers Manag
  contributor:
    fullname: Kim
– volume: 184
  start-page: 116054
  year: 2021
  ident: b0265
  article-title: Estimating allowable energy flux density for the supercritical carbon dioxide solar receiver: A service life approach
  publication-title: Appl Therm Eng
  contributor:
    fullname: Liao
– volume: 212
  start-page: 19
  year: 2020
  end-page: 33
  ident: b0160
  article-title: Steady-state off-design modeling of the supercritical carbon dioxide recompression cycle for concentrating solar power applications with two-tank sensible-heat storage
  publication-title: To Appear Sol Energy
  contributor:
    fullname: Neises
– year: 2014
  ident: b0210
  article-title: Modeling the supercritical Carbon dioxide Brayton cycle with recompression
  contributor:
    fullname: Dyreby
– year: 2017
  ident: b0025
  article-title: Fundamentals and applications of supercritical carbon dioxide (SCO2)
  publication-title: Based Power Cycles
  contributor:
    fullname: Dennis
– volume: 153
  start-page: 1016
  year: 2018
  end-page: 1027
  ident: b0125
  article-title: Impact of ambient temperature on supercritical CO2 recompression Brayton cycle in arid locations: Finding the optimal design conditions
  publication-title: Energy
  contributor:
    fullname: Soo Too
– start-page: 1
  year: 2004
  end-page: 317
  ident: b0030
  article-title: A supercritical carbon dioxide cycle for next generation nuclear reactors
  publication-title: Tech Rep MIT-ANP-TR-100
  contributor:
    fullname: Hejzlar
– year: 2002
  ident: b0235
  article-title: Genetic algorithms and evolutionary computing
  publication-title: Van Nostrand’s Sci Encycl
  contributor:
    fullname: Whitley
– volume: 36
  start-page: 63
  year: 1994
  end-page: 79
  ident: b0220
  article-title: The aerodynamic loading of radial and mixed-flow turbines
  publication-title: Int J Mech Sci
  contributor:
    fullname: Baines
– volume: 140
  start-page: 144
  year: 2017
  end-page: 157
  ident: b0075
  article-title: Thermodynamic analysis and comparison for different direct-heated supercritical CO2 Brayton cycles integrated into a solar thermal power tower system
  publication-title: Energy
  contributor:
    fullname: He
– volume: 201
  start-page: 112094
  year: 2019
  ident: b0190
  article-title: Multi-objective optimization of supercritical carbon dioxide recompression Brayton cycle considering printed circuit recuperator design
  publication-title: Energy Convers Manag
  contributor:
    fullname: Liao
– volume: 8
  start-page: 85
  year: 1968
  end-page: 90
  ident: b0035
  article-title: The supercritical thermodynamic power cycle
  publication-title: Energy Convers
  contributor:
    fullname: Feher
– start-page: 1
  year: 2010
  end-page: 101
  ident: b0205
  article-title: Operation and analysis of a supercritical CO2 Brayton cycle
  publication-title: Sandia Rep SAND2010-0171
  contributor:
    fullname: Pickard
– volume: 198
  start-page: 111807
  year: 2019
  ident: b0055
  article-title: Conventional and advanced exergy analysis of a novel transcritical compressed carbon dioxide energy storage system
  publication-title: Energy Convers Manag
  contributor:
    fullname: Yang
– volume: 168
  start-page: 611
  year: 2018
  end-page: 628
  ident: b0240
  article-title: Design and comparison of direct and indirect cooling system for 25 MW solar power plant operated with supercritical CO2 cycle
  publication-title: Energy Convers Manag
  contributor:
    fullname: Wang
– volume: 111
  start-page: 957
  year: 2013
  end-page: 970
  ident: b0080
  article-title: Supercritical CO2 Brayton cycles for solar-thermal energy
  publication-title: Appl Energy
  contributor:
    fullname: Kruizenga
– volume: 3
  start-page: 42
  year: 2014
  end-page: 59
  ident: b0010
  article-title: Solar thermal CSP technology
  publication-title: Wiley Interdiscip Rev Energy Environ
  contributor:
    fullname: González-Aguilar
– volume: 8
  start-page: 1
  year: 2013
  end-page: 7
  ident: b0200
  article-title: Modeling off-design and part-load performance of supercritical carbon dioxide power cycles
  publication-title: Proc. ASME Turbo Expo
  contributor:
    fullname: Reindl
– volume: 82
  start-page: 61
  year: 2015
  end-page: 71
  ident: b0070
  article-title: Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower
  publication-title: Energy
  contributor:
    fullname: Atif
– volume: 187
  start-page: 115992
  year: 2019
  ident: b0130
  article-title: Off-design performance of the supercritical carbon dioxide recompression Brayton cycle with NDDCT cooling for concentrating solar power
  publication-title: Energy
  contributor:
    fullname: Veeraragavan
– volume: 30
  start-page: 758
  year: 2014
  end-page: 770
  ident: b0040
  article-title: High-efficiency thermodynamic power cycles for concentrated solar power systems
  publication-title: Renew Sustain Energy Rev
  contributor:
    fullname: Iverson
– volume: 212
  start-page: 109
  year: 2018
  end-page: 121
  ident: b0090
  article-title: A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants
  publication-title: Appl Energy
  contributor:
    fullname: Liu
– volume: 112
  start-page: 17
  year: 2016
  end-page: 27
  ident: b0110
  article-title: Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant
  publication-title: Energy
  contributor:
    fullname: González-Aguilar
– year: 2018
  ident: b0175
  article-title: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0. National Institute of Standards and Technology
  publication-title: Standard Reference Data Program. Stand Ref Data Program, Gaithersbg
  contributor:
    fullname: McLinden
– year: 2014
  ident: b0170
  article-title: MATLAB: R2014a
  contributor:
    fullname: Mathworks
– volume: 49
  start-page: 1187
  year: 2014
  end-page: 1196
  ident: b0255
  article-title: A comparison of supercritical carbon dioxide power cycle configurations with an emphasis on CSP applications
  publication-title: Energy Procedia
  contributor:
    fullname: Turchi
– year: 2017
  ident: 10.1016/j.enconman.2021.113870_b0025
  article-title: Fundamentals and applications of supercritical carbon dioxide (SCO2)
  publication-title: Based Power Cycles
  contributor:
    fullname: Brun
– volume: 187
  start-page: 115992
  year: 2019
  ident: 10.1016/j.enconman.2021.113870_b0130
  article-title: Off-design performance of the supercritical carbon dioxide recompression Brayton cycle with NDDCT cooling for concentrating solar power
  publication-title: Energy
  doi: 10.1016/j.energy.2019.115992
  contributor:
    fullname: Duniam
– ident: 10.1016/j.enconman.2021.113870_b0225
  doi: 10.2172/984129
– volume: 30
  start-page: 758
  year: 2014
  ident: 10.1016/j.enconman.2021.113870_b0040
  article-title: High-efficiency thermodynamic power cycles for concentrated solar power systems
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.11.010
  contributor:
    fullname: Dunham
– volume: 147
  start-page: 2905
  year: 2020
  ident: 10.1016/j.enconman.2021.113870_b0065
  article-title: A thermo-economic methodology to select sCO2 power cycles for CSP applications
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.08.023
  contributor:
    fullname: Crespi
– volume: 32
  start-page: 560
  issue: 2
  year: 2007
  ident: 10.1016/j.enconman.2021.113870_b0185
  article-title: Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2007.06.006
  contributor:
    fullname: Ngo
– ident: 10.1016/j.enconman.2021.113870_b0195
  doi: 10.2172/1011299
– ident: 10.1016/j.enconman.2021.113870_b0005
– volume: 212
  start-page: 109
  year: 2018
  ident: 10.1016/j.enconman.2021.113870_b0090
  article-title: A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.12.031
  contributor:
    fullname: Wang
– volume: 197
  start-page: 111865
  year: 2019
  ident: 10.1016/j.enconman.2021.113870_b0245
  article-title: Seasonal variation on the performance of the dry cooled supercritical CO2 recompression cycle
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.111865
  contributor:
    fullname: Ehsan
– ident: 10.1016/j.enconman.2021.113870_b0165
  doi: 10.1115/GT2012-68932
– ident: 10.1016/j.enconman.2021.113870_b0015
  doi: 10.2172/1338899
– ident: 10.1016/j.enconman.2021.113870_b0120
  doi: 10.1115/GT2013-95824
– volume: 168
  start-page: 611
  year: 2018
  ident: 10.1016/j.enconman.2021.113870_b0240
  article-title: Design and comparison of direct and indirect cooling system for 25 MW solar power plant operated with supercritical CO2 cycle
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.04.072
  contributor:
    fullname: Monjurul Ehsan
– volume: 195
  start-page: 819
  year: 2017
  ident: 10.1016/j.enconman.2021.113870_b0085
  article-title: Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.03.099
  contributor:
    fullname: Wang
– year: 2014
  ident: 10.1016/j.enconman.2021.113870_b0210
  contributor:
    fullname: Dyreby
– volume: 50
  start-page: 325
  issue: 2-6
  year: 2008
  ident: 10.1016/j.enconman.2021.113870_b0230
  article-title: Study of steam, helium and supercritical CO2 turbine power generations in prototype fusion power reactor
  publication-title: Prog Nucl Energy
  doi: 10.1016/j.pnucene.2007.11.078
  contributor:
    fullname: Ishiyama
– volume: 184
  start-page: 116054
  year: 2021
  ident: 10.1016/j.enconman.2021.113870_b0265
  article-title: Estimating allowable energy flux density for the supercritical carbon dioxide solar receiver: A service life approach
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2020.116054
  contributor:
    fullname: Rao
– volume: 198
  start-page: 111807
  year: 2019
  ident: 10.1016/j.enconman.2021.113870_b0055
  article-title: Conventional and advanced exergy analysis of a novel transcritical compressed carbon dioxide energy storage system
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.111807
  contributor:
    fullname: Liu
– start-page: 1
  year: 2010
  ident: 10.1016/j.enconman.2021.113870_b0205
  article-title: Operation and analysis of a supercritical CO2 Brayton cycle
  publication-title: Sandia Rep SAND2010-0171
  contributor:
    fullname: Wright
– volume: 49
  start-page: 1187
  year: 2014
  ident: 10.1016/j.enconman.2021.113870_b0255
  article-title: A comparison of supercritical carbon dioxide power cycle configurations with an emphasis on CSP applications
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.03.128
  contributor:
    fullname: Neises
– start-page: 1
  year: 2004
  ident: 10.1016/j.enconman.2021.113870_b0030
  article-title: A supercritical carbon dioxide cycle for next generation nuclear reactors
  publication-title: Tech Rep MIT-ANP-TR-100
  contributor:
    fullname: Dostal
– volume: 212
  start-page: 19
  year: 2020
  ident: 10.1016/j.enconman.2021.113870_b0160
  article-title: Steady-state off-design modeling of the supercritical carbon dioxide recompression cycle for concentrating solar power applications with two-tank sensible-heat storage
  publication-title: To Appear Sol Energy
  doi: 10.1016/j.solener.2020.10.041
  contributor:
    fullname: Neises
– year: 2014136
  ident: 10.1016/j.enconman.2021.113870_b0270
  article-title: Design considerations for supercritical carbon dioxide brayton cycles with recompression
  publication-title: J Eng Gas Turbines Power
  contributor:
    fullname: Dyreby
– volume: 140
  start-page: 144
  year: 2017
  ident: 10.1016/j.enconman.2021.113870_b0075
  article-title: Thermodynamic analysis and comparison for different direct-heated supercritical CO2 Brayton cycles integrated into a solar thermal power tower system
  publication-title: Energy
  doi: 10.1016/j.energy.2017.08.067
  contributor:
    fullname: Zhu
– volume: 242
  start-page: 1134
  year: 2019
  ident: 10.1016/j.enconman.2021.113870_b0095
  article-title: Optimal integration of recompression supercritical CO2 Brayton cycle with main compression intercooling in solar power tower system based on exergoeconomic approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.03.155
  contributor:
    fullname: Ma
– volume: 214
  start-page: 112832
  year: 2020
  ident: 10.1016/j.enconman.2021.113870_b0150
  article-title: Part-load performance analysis and comparison of supercritical CO2 Brayton cycles
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.112832
  contributor:
    fullname: Yang
– volume: 111
  start-page: 957
  year: 2013
  ident: 10.1016/j.enconman.2021.113870_b0080
  article-title: Supercritical CO2 Brayton cycles for solar-thermal energy
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.06.020
  contributor:
    fullname: Iverson
– volume: 201
  start-page: 112094
  year: 2019
  ident: 10.1016/j.enconman.2021.113870_b0190
  article-title: Multi-objective optimization of supercritical carbon dioxide recompression Brayton cycle considering printed circuit recuperator design
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.112094
  contributor:
    fullname: Rao
– volume: 36
  start-page: 63
  issue: 1
  year: 1994
  ident: 10.1016/j.enconman.2021.113870_b0220
  article-title: The aerodynamic loading of radial and mixed-flow turbines
  publication-title: Int J Mech Sci
  doi: 10.1016/0020-7403(94)90007-8
  contributor:
    fullname: Chen
– volume: 8
  start-page: 1
  year: 2013
  ident: 10.1016/j.enconman.2021.113870_b0200
  article-title: Modeling off-design and part-load performance of supercritical carbon dioxide power cycles
  publication-title: Proc. ASME Turbo Expo
  contributor:
    fullname: Dyreby
– volume: 153
  start-page: 1016
  year: 2018
  ident: 10.1016/j.enconman.2021.113870_b0125
  article-title: Impact of ambient temperature on supercritical CO2 recompression Brayton cycle in arid locations: Finding the optimal design conditions
  publication-title: Energy
  doi: 10.1016/j.energy.2018.04.019
  contributor:
    fullname: de la Calle
– year: 2002
  ident: 10.1016/j.enconman.2021.113870_b0235
  article-title: Genetic algorithms and evolutionary computing
  publication-title: Van Nostrand’s Sci Encycl
  contributor:
    fullname: Whitley
– year: 2014
  ident: 10.1016/j.enconman.2021.113870_b0170
  contributor:
    fullname: Mathworks
– ident: 10.1016/j.enconman.2021.113870_b0020
  doi: 10.1115/ES2012-91179
– volume: 112
  start-page: 17
  year: 2016
  ident: 10.1016/j.enconman.2021.113870_b0110
  article-title: Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant
  publication-title: Energy
  doi: 10.1016/j.energy.2016.06.013
  contributor:
    fullname: Reyes-Belmonte
– volume: 216
  start-page: 112978
  year: 2020
  ident: 10.1016/j.enconman.2021.113870_b0045
  article-title: Thermodynamic analysis and optimization of supercritical carbon dioxide Brayton cycles for use with low-grade geothermal heat sources
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.112978
  contributor:
    fullname: Ruiz-Casanova
– volume: 260
  start-page: 78
  year: 2013
  ident: 10.1016/j.enconman.2021.113870_b0215
  article-title: A numerical investigation of the sCO2 recompression cycle off-design behaviour, coupled to a sodium cooled fast reactor, for seasonal variation in the heat sink temperature
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2013.03.024
  contributor:
    fullname: Floyd
– volume: 130
  start-page: 786
  year: 2019
  ident: 10.1016/j.enconman.2021.113870_b0115
  article-title: Annual performance of subcritical Rankine cycle coupled to an innovative particle receiver solar power plant
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.06.109
  contributor:
    fullname: Reyes-Belmonte
– ident: 10.1016/j.enconman.2021.113870_b0260
– volume: 216
  start-page: 112980
  year: 2020
  ident: 10.1016/j.enconman.2021.113870_b0250
  article-title: Novel design measures for optimizing the yearlong performance of a concentrating solar thermal power plant using thermal storage and a dry-cooled supercritical CO2 power block
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.112980
  contributor:
    fullname: Monjurul Ehsan
– volume: 3
  start-page: 42
  issue: 1
  year: 2014
  ident: 10.1016/j.enconman.2021.113870_b0010
  article-title: Solar thermal CSP technology
  publication-title: Wiley Interdiscip Rev Energy Environ
  contributor:
    fullname: Romero
– volume: 181
  start-page: 27
  year: 2019
  ident: 10.1016/j.enconman.2021.113870_b0100
  article-title: Supercritical carbon dioxide power cycle design and configuration optimization to minimize levelized cost of energy of molten salt power towers operating at 650 °C
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2019.01.078
  contributor:
    fullname: Neises
– volume: 50
  start-page: 194
  year: 2013
  ident: 10.1016/j.enconman.2021.113870_b0135
  article-title: Dynamic characteristics of a direct-heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant
  publication-title: Energy
  doi: 10.1016/j.energy.2012.11.029
  contributor:
    fullname: Singh
– volume: 196
  start-page: 242
  year: 2019
  ident: 10.1016/j.enconman.2021.113870_b0155
  article-title: Design optimization and performance analysis of a supercritical carbon dioxide recompression Brayton cycle based on the detailed models of the cycle components
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.05.110
  contributor:
    fullname: Saeed
– volume: 261
  start-page: 114359
  year: 2020
  ident: 10.1016/j.enconman.2021.113870_b0140
  article-title: Performance of a solar thermal power plant with direct air-cooled supercritical carbon dioxide Brayton cycle under off-design conditions
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114359
  contributor:
    fullname: Wang
– volume: 195
  start-page: 152
  year: 2017
  ident: 10.1016/j.enconman.2021.113870_b0060
  article-title: Supercritical carbon dioxide cycles for power generation: A review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.02.048
  contributor:
    fullname: Crespi
– volume: 8
  start-page: 85
  issue: 2
  year: 1968
  ident: 10.1016/j.enconman.2021.113870_b0035
  article-title: The supercritical thermodynamic power cycle
  publication-title: Energy Convers
  doi: 10.1016/0013-7480(68)90105-8
  contributor:
    fullname: Feher
– volume: 201
  start-page: 117676
  year: 2020
  ident: 10.1016/j.enconman.2021.113870_b0145
  article-title: Off-design performance of a supercritical CO2 Brayton cycle integrated with a solar power tower system
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117676
  contributor:
    fullname: Yang
– volume: 211
  year: 2020
  ident: 10.1016/j.enconman.2021.113870_b0050
  article-title: Energy, exergy and economic (3E) evaluation and conceptual design of the 1000 MW coal-fired power plants integrated with S-CO2 Brayton cycles
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.112713
  contributor:
    fullname: Guo
– volume: 82
  start-page: 61
  year: 2015
  ident: 10.1016/j.enconman.2021.113870_b0070
  article-title: Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower
  publication-title: Energy
  doi: 10.1016/j.energy.2014.12.070
  contributor:
    fullname: Al-Sulaiman
– year: 2018
  ident: 10.1016/j.enconman.2021.113870_b0175
  article-title: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0. National Institute of Standards and Technology
  publication-title: Standard Reference Data Program. Stand Ref Data Program, Gaithersbg
  contributor:
    fullname: Lemmon
SSID ssj0003506
Score 2.5887024
Snippet •Harmonized performance analysis of six S-CO2 Brayton cycles for novel CSP plants.•Effects of hot particles and ambient temperatures on cycle off-design...
Concentrated solar power (CSP) plants using dense particle suspension as heat transfer fluid and particles as the storage medium are considered as a promising...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 113870
SubjectTerms Ambient temperature
Brayton cycle
Carbon cycle
Carbon dioxide
Compressing
Concentrating solar power
Configuration management
Cooling
Cooling systems
Design
Dry cooling
Efficiency
Energy storage
Environmental conditions
Genetic algorithms
Heat transfer
High temperature
Inlet temperature
Off-design performance
Performance degradation
Power plants
Regeneration
Solar energy
Solar particle receiver
Solar power
Supercritical carbon dioxide
Temperature requirements
Thermal energy
Title Design and off-design performance comparison of supercritical carbon dioxide Brayton cycles for particle-based high temperature concentrating solar power plants
URI https://dx.doi.org/10.1016/j.enconman.2021.113870
https://www.proquest.com/docview/2504819182/abstract/
Volume 232
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB612wscEOUhCqXygau7ceLEzrEUqi2IXqBSb5af0laQjXa3Unvht_BTmdk4pVSVOHCLE9uKZpx5RN98A_BOaKULXzhuY1NwaTFhtU0ZeFPXTqgipjJQNfKXs2Z2Lj9d1BdbcDzWwhCsMtv-waZvrHW-M83SnPbz-fQrMbvoFg8d_aKWqt2GHXRHUk5g5-j08-zs1iBX9abFJs3ntOBOofDlIdFFdj8sUaGWgjqcaOpb_LCPumetNy7o5Ck8ybEjOxpebxe2YvcMHt9hFHwOvz5sEBnMdoEtUuJhGPZ_ygOYv-08iDPY6gqf-dzvgHm7dHg_zBfX8xDZ-6W9wdiQ-RvCzjHcgvVZOJzcX2DEdsyI3ipzM-Pu3YD3JDg1W1HizHrqxMb67wS5eQHnJx-_Hc94bsLAfaX1msvK-hYvi6SL6FPQqrJKiZgwj2xDCMpjDCljqGpMnIQrkhMRY8AihVqgsGP1EibdoouvgAXnpESnbBWtqK0rVQi6canR0cvK7cF0FLvpB64NM4LQLs2oKEOKMoOi9qAdtWP-OjUGHcI_1-6P6jT5u10ZInSjFFaXr_9j6zfwiEYEVRP1PkzWy6v4FmOXtTuA7cOf4iCf0N-PsPPI
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTuQwELVYDsABDZvYZvCBq-nsdo7ADOphuwASN8ur1C1IR92NBBe-ZT51qhKHTUgcuCXxoqjKqSV69YqQ_VhwEZlIM-WKiGUKElZVJJYVea5jHjmfWKxGvrgs-jfZ6W1-O0OOu1oYhFUG29_a9MZahye9IM1ePRj0rpDZRZRw6PAXdcbLWTKP4Tz2bzh4fsV5pHnTYBNnM5z-pkx4eIBkkdW9QiLUJMb-JgK7Fn_uoT7Y6sYBnfwgyyFypIfty62QGVetkqU3fIJr5N_vBo9BVWXpyHtm29v6tTiAmpe-gzCDTh5gzIRuB9SosYbndjB6HFhHj8bqCSJDap4QOUdhC1oH0TB0fpYi1zFFcqvAzAy7Vy3aE8HUdIJpM62xDxut7xBws05uTv5cH_dZaMHATCrElGWpMiVcRl5EzngreKo4j52HLLK01nIDEWTmbJpD2hTryOvYQQQYeZvHIGyXbpC5alS5TUKt1lkGLllxXJErnXBrRaF9IZzJUr1Fep3YZd0ybcgOgjaUnaIkKkq2itoiZacd-e7MSHAHX67d7dQpw1c7kUjnhgmsSLa_sfUeWehfX5zL87-XZztkEUcQtBbnu2RuOn5wPyGKmepfzSn9D7G29JY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+off-design+performance+comparison+of+supercritical+carbon+dioxide+Brayton+cycles+for+particle-based+high+temperature+concentrating+solar+power+plants&rft.jtitle=Energy+conversion+and+management&rft.au=Chen%2C+Rui&rft.au=Romero%2C+Manuel&rft.au=Gonz%C3%A1lez-Aguilar%2C+Jose&rft.au=Rovense%2C+Francesco&rft.date=2021-03-15&rft.pub=Elsevier+Science+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=232&rft.spage=1&rft_id=info:doi/10.1016%2Fj.enconman.2021.113870&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon