Numerical analysis of vanadium redox flow batteries considering electrode deformation under various flow fields
The porous electrode of vanadium redox flow batteries (VRBs) is subject to deformation due to mechanical stress during stack assembling. The forces compress the electrode fiber into the flow channel and thus alter the electrode porosity ratio. Due to the complex mechanisms, the effects of resulting...
Saved in:
Published in | Journal of power sources Vol. 564; p. 232814 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
30.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The porous electrode of vanadium redox flow batteries (VRBs) is subject to deformation due to mechanical stress during stack assembling. The forces compress the electrode fiber into the flow channel and thus alter the electrode porosity ratio. Due to the complex mechanisms, the effects of resulting electrode morphological changes on VRB performance were usually ignored in existing studies. This paper proposes a three-dimensional VRB model considering the uneven electrode deformation to investigate the cell performance under different electrode compression ratios with three flow-field designs. Compression ratio (CR) and the intrusive part of the electrode are obtained under various mechanical stress by adjusting gasket thickness in the experiment. The proposed electrochemical model is established based on the comprehensive description of conservation laws and analyzed using the COMSOL platform. Three indices, namely the concentration overpotential, pressure drop, and distribution uniformity, are selected for the analysis under the three flow field designs and different CRs. The numerical study reveal that the pressure drop and the concentration overpotential are sensitive to the CR but less affected by the concentration uniformity. The minimum overpotential can be reached when the CR is around 40%–50%, depending on flow field designs, while a higher CR can cause a drastically increased pressure drop. It is also found that the interdigitated flow field with a CR of 45% is considered optimal. The insights from the proposed method demonstrate the significance of considering the effects of electrode deformation in the stack design under various flow fields.
•A 3D electrochemical model considering unevenly electrodes deformation is proposed.•A non-uniform partitioning method for unevenly deformed electrodes is proposed.•The compression ratios under various mechanical stress are measured.•The interdigitated flow channels under CR of 45% demonstrate maximum performance. |
---|---|
AbstractList | The porous electrode of vanadium redox flow batteries (VRBs) is subject to deformation due to mechanical stress during stack assembling. The forces compress the electrode fiber into the flow channel and thus alter the electrode porosity ratio. Due to the complex mechanisms, the effects of resulting electrode morphological changes on VRB performance were usually ignored in existing studies. This paper proposes a three-dimensional VRB model considering the uneven electrode deformation to investigate the cell performance under different electrode compression ratios with three flow-field designs. Compression ratio (CR) and the intrusive part of the electrode are obtained under various mechanical stress by adjusting gasket thickness in the experiment. The proposed electrochemical model is established based on the comprehensive description of conservation laws and analyzed using the COMSOL platform. Three indices, namely the concentration overpotential, pressure drop, and distribution uniformity, are selected for the analysis under the three flow field designs and different CRs. The numerical study reveal that the pressure drop and the concentration overpotential are sensitive to the CR but less affected by the concentration uniformity. The minimum overpotential can be reached when the CR is around 40%–50%, depending on flow field designs, while a higher CR can cause a drastically increased pressure drop. It is also found that the interdigitated flow field with a CR of 45% is considered optimal. The insights from the proposed method demonstrate the significance of considering the effects of electrode deformation in the stack design under various flow fields. The porous electrode of vanadium redox flow batteries (VRBs) is subject to deformation due to mechanical stress during stack assembling. The forces compress the electrode fiber into the flow channel and thus alter the electrode porosity ratio. Due to the complex mechanisms, the effects of resulting electrode morphological changes on VRB performance were usually ignored in existing studies. This paper proposes a three-dimensional VRB model considering the uneven electrode deformation to investigate the cell performance under different electrode compression ratios with three flow-field designs. Compression ratio (CR) and the intrusive part of the electrode are obtained under various mechanical stress by adjusting gasket thickness in the experiment. The proposed electrochemical model is established based on the comprehensive description of conservation laws and analyzed using the COMSOL platform. Three indices, namely the concentration overpotential, pressure drop, and distribution uniformity, are selected for the analysis under the three flow field designs and different CRs. The numerical study reveal that the pressure drop and the concentration overpotential are sensitive to the CR but less affected by the concentration uniformity. The minimum overpotential can be reached when the CR is around 40%–50%, depending on flow field designs, while a higher CR can cause a drastically increased pressure drop. It is also found that the interdigitated flow field with a CR of 45% is considered optimal. The insights from the proposed method demonstrate the significance of considering the effects of electrode deformation in the stack design under various flow fields. •A 3D electrochemical model considering unevenly electrodes deformation is proposed.•A non-uniform partitioning method for unevenly deformed electrodes is proposed.•The compression ratios under various mechanical stress are measured.•The interdigitated flow channels under CR of 45% demonstrate maximum performance. |
ArticleNumber | 232814 |
Author | Ding, Yuming Wang, Jinsong Fang, Jiakun Wei, Zhongbao Li, Yang Ai, Xiaomeng Zhao, Jiyun Xiong, Binyu |
Author_xml | – sequence: 1 givenname: Binyu orcidid: 0000-0002-4156-2187 surname: Xiong fullname: Xiong, Binyu email: bxiong2@whut.edu.cn organization: School of Automation, Wuhan University of Technology, Wuhan, 430070, China – sequence: 2 givenname: Yang orcidid: 0000-0002-9497-3051 surname: Li fullname: Li, Yang email: yangli@ieee.org organization: Department of Electrical Engineering, Chalmers University of Technology, Sweden – sequence: 3 givenname: Yuming surname: Ding fullname: Ding, Yuming organization: School of Automation, Wuhan University of Technology, Wuhan, 430070, China – sequence: 4 givenname: Jinsong orcidid: 0000-0002-1010-6699 surname: Wang fullname: Wang, Jinsong organization: Case School of Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA – sequence: 5 givenname: Zhongbao surname: Wei fullname: Wei, Zhongbao organization: Beijing Institute of Technology, National Engineering Laboratory for Electric Vehicles, 100081, Beijing, China – sequence: 6 givenname: Jiyun orcidid: 0000-0002-9425-6036 surname: Zhao fullname: Zhao, Jiyun email: jiyuzhao@cityu.edu.hk organization: Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong – sequence: 7 givenname: Xiaomeng surname: Ai fullname: Ai, Xiaomeng organization: State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China – sequence: 8 givenname: Jiakun orcidid: 0000-0002-8208-5938 surname: Fang fullname: Fang, Jiakun email: jfa@hust.edu.cn organization: State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China |
BackLink | https://research.chalmers.se/publication/534959$$DView record from Swedish Publication Index |
BookMark | eNqFkc9u3CAQh1GVSt2keYWKF_AWgzFE6qFV1H9S1B6anEdjGBpWXrMCO5u8fUjdXHLJCdDwfZqZ3yk7mdJEjH1oxbYVbf9xt90d0rGkJW-lkGorlbRt94ZtWmtUI43WJ2wjlLGNMVq9Y6el7IQQbWvEhqVfy55ydDhynHB8KLHwFPhdffi47Hkmn-55GNORDzjP9SsV7tJUoq_36S-nkdyckyfuKaS8xzmmiS9TLVdLjmkpKx4ijb68Z28DjoXO_59n7Obb1-vLH83V7-8_L79cNU5ZOzdqCJ5kj10IltB454Lq7QWGYAR1TiFa23vstNFCCe2HVgUtVaeEsb3renXG_qzecqTDMsAhxz3mB0gYIVMhzO4W3C2OdfoChcCiJpQqgJadgc6TgwvhJHil-4GE82Hw1fpptbqcSskUwMX538RzxjhCK-ApEtjBcyTwFAmskVS8f4E_t_Uq-HkFqa7sLlKG4iJNjnzMdf3gU3xN8QgB2rIK |
CitedBy_id | crossref_primary_10_1016_j_est_2023_110278 crossref_primary_10_1016_j_est_2024_111539 crossref_primary_10_1016_j_enconman_2024_118523 crossref_primary_10_1002_celc_202400024 crossref_primary_10_1016_j_est_2024_113501 crossref_primary_10_1149_1945_7111_ad5706 crossref_primary_10_1016_j_cej_2024_157008 crossref_primary_10_1016_j_jpowsour_2023_233751 crossref_primary_10_3390_batteries9070359 crossref_primary_10_1016_j_est_2023_107842 crossref_primary_10_1016_j_est_2023_109537 crossref_primary_10_1016_j_jclepro_2023_139468 crossref_primary_10_1016_j_jpowsour_2023_233769 |
Cites_doi | 10.1016/j.jpowsour.2017.03.083 10.1016/j.electacta.2019.04.055 10.1016/j.apenergy.2013.09.021 10.1016/j.electacta.2009.06.086 10.1016/j.jpowsour.2019.05.061 10.1016/j.est.2019.100844 10.1109/ACCESS.2019.2952212 10.1016/j.jpowsour.2020.227783 10.1016/j.apenergy.2018.06.148 10.1016/j.apenergy.2018.03.058 10.1016/j.ensm.2018.06.008 10.1016/j.electacta.2013.11.073 10.1016/j.jpowsour.2015.09.100 10.1016/j.electacta.2021.139657 10.1002/ente.201300114 10.1080/15435075.2021.2007390 10.1016/j.jpowsour.2017.11.058 10.1016/j.electacta.2020.137089 10.1016/j.electacta.2015.02.212 10.1016/j.electacta.2008.05.067 10.1016/j.pecs.2015.02.001 10.1016/j.jpowsour.2015.08.100 10.4028/www.scientific.net/AMR.236-238.604 10.1016/j.energy.2010.03.060 10.1016/j.apenergy.2017.07.049 10.1002/aic.15959 10.1039/C6CS00823B 10.1016/j.compchemeng.2020.106805 10.1016/j.est.2020.101781 10.1016/j.est.2016.10.003 10.1016/j.est.2020.101802 10.1149/2.017209jes 10.1016/j.electacta.2011.09.042 10.1109/TSTE.2017.2699288 10.1016/j.apenergy.2014.09.076 10.1016/j.ijhydene.2019.05.013 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION ADTPV AOWAS F1S |
DOI | 10.1016/j.jpowsour.2023.232814 |
DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Chalmers tekniska högskola |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2755 |
ExternalDocumentID | oai_research_chalmers_se_8a5ea23f_5247_4dec_90c2_d356be0cdfbd 10_1016_j_jpowsour_2023_232814 S0378775323001891 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- RIG SAC SCB SCE SSH T9H VH1 VOH WUQ ADTPV AOWAS EFKBS F1S |
ID | FETCH-LOGICAL-c388t-3bfde26a4ff8ea7dccf3689aff70e4c3aa886da45750305db13f523430786c463 |
IEDL.DBID | .~1 |
ISSN | 0378-7753 |
IngestDate | Thu Aug 21 06:24:01 EDT 2025 Tue Jul 01 01:40:54 EDT 2025 Thu Apr 24 23:01:42 EDT 2025 Fri Feb 23 02:37:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Uneven electrode deformation Vanadium redox flow battery Battery design Electrochemical model Flow channel Numerical study |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-3bfde26a4ff8ea7dccf3689aff70e4c3aa886da45750305db13f523430786c463 |
ORCID | 0000-0002-9497-3051 0000-0002-4156-2187 0000-0002-1010-6699 0000-0002-8208-5938 0000-0002-9425-6036 |
ParticipantIDs | swepub_primary_oai_research_chalmers_se_8a5ea23f_5247_4dec_90c2_d356be0cdfbd crossref_citationtrail_10_1016_j_jpowsour_2023_232814 crossref_primary_10_1016_j_jpowsour_2023_232814 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2023_232814 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-30 |
PublicationDateYYYYMMDD | 2023-04-30 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Journal of power sources |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Brown, Neville, Jervis, Mason, Shearing, Brett (bib24) 2016; 8 Zeng, Zhao, An, Zhou, Wei (bib30) 2015; 300 Wu, Liu, Long, Wan, Liang, Zhao (bib11) 2014; 136 Yue, Zheng, Xing, Zhang, Li, Ma (bib27) 2018; 64 Lee, Kim, Park (bib37) 2019; 44 Minke, Turek (bib3) 2018; 376 Oh, Won, Ju (bib23) 2015; 181 Vynnycky (bib31) 2011; 36 Chen, Wang, Lv (bib15) 2011; 236–238 Zhang, Zhang, Ding, Peng, Guo, Zhao, He, Yu (bib10) 2018; 15 Xu, Zhao (bib29) 2015; 49 Xiong, Xiong, Zhang, Shi, Su, Zhang (bib26) 2022 Xiong, Yang, Tang, Li, Wei, Su, Zhang (bib2) 2019; 7 Lei, Zhang, Bai, Zhao (bib34) 2015; 299 Zhang, Liu, Xi, Wu, Qiu (bib6) 2017; 204 Huang, Mu, Wu, Wang (bib14) 2021 Park, Shim, Yang, Jin, Lee, Lee, Shin, Jeon (bib20) 2014; 116 Lu, Deng, Yang, Ye, Jiao, Xu (bib17) 2020; 361 Bromberger, Kaunert, Smolinka (bib22) 2014; 2 Ali, Kwon, Kim, Park (bib13) 2020; 32 Shah, Watt-Smith, Walsh (bib32) 2008; 53 Xiong, Zhao, Su, Wei, Skyllas-Kazacos (bib9) 2017; 8 Leng, Ming, Yang, Zhang (bib5) 2020; 451 Ishitobi, Saito, Sugawara, Oba, Nakagawa (bib12) 2019; 313 Houser, Pezeshki, Clement, Aaron, Mench (bib19) 2017; 351 Messaggi, Canzi, Mereu, Baricci, Inzoli, Casalegno, Zago (bib18) 2018; 228 Xiong, Song, Wang, Li, Liu, Yan, Tang (bib7) 2019; 431 Li, Wei, Tan, Zeng, Yuan (bib36) 2020; 32 Ma, Zhang, Xing (bib35) 2011; 58 Lourenssen, Williams, Ahmadpour, Clemmer, Tasnim (bib1) 2019; 25 Jirabovornwisut, Kheawhom, Chen, Arpornwichanop (bib8) 2020; 136 Zheng, Zhang, Xing, Ma, Li, Ning (bib28) 2014; 113 Jiao, Lu, Yang, Tang, Ye, Xu (bib16) 2022; 403 Wang, Qu, Jiang, Yang (bib25) 2018; 220 Lu, Yuan, Zhao, Zhang, Zhang, Li (bib4) 2017; 46 You, Zhang, Chen (bib21) 2009; 54 Knehr, Agar, Dennison, Kalidindi, Kumbur (bib33) 2012; 159 Wang (10.1016/j.jpowsour.2023.232814_bib25) 2018; 220 Lee (10.1016/j.jpowsour.2023.232814_bib37) 2019; 44 Oh (10.1016/j.jpowsour.2023.232814_bib23) 2015; 181 Zheng (10.1016/j.jpowsour.2023.232814_bib28) 2014; 113 Bromberger (10.1016/j.jpowsour.2023.232814_bib22) 2014; 2 Xiong (10.1016/j.jpowsour.2023.232814_bib9) 2017; 8 Xu (10.1016/j.jpowsour.2023.232814_bib29) 2015; 49 Shah (10.1016/j.jpowsour.2023.232814_bib32) 2008; 53 Zeng (10.1016/j.jpowsour.2023.232814_bib30) 2015; 300 Knehr (10.1016/j.jpowsour.2023.232814_bib33) 2012; 159 Li (10.1016/j.jpowsour.2023.232814_bib36) 2020; 32 Xiong (10.1016/j.jpowsour.2023.232814_bib7) 2019; 431 Leng (10.1016/j.jpowsour.2023.232814_bib5) 2020; 451 Ali (10.1016/j.jpowsour.2023.232814_bib13) 2020; 32 Houser (10.1016/j.jpowsour.2023.232814_bib19) 2017; 351 Yue (10.1016/j.jpowsour.2023.232814_bib27) 2018; 64 Park (10.1016/j.jpowsour.2023.232814_bib20) 2014; 116 Ma (10.1016/j.jpowsour.2023.232814_bib35) 2011; 58 Zhang (10.1016/j.jpowsour.2023.232814_bib6) 2017; 204 Messaggi (10.1016/j.jpowsour.2023.232814_bib18) 2018; 228 Lourenssen (10.1016/j.jpowsour.2023.232814_bib1) 2019; 25 Jiao (10.1016/j.jpowsour.2023.232814_bib16) 2022; 403 You (10.1016/j.jpowsour.2023.232814_bib21) 2009; 54 Lu (10.1016/j.jpowsour.2023.232814_bib4) 2017; 46 Lu (10.1016/j.jpowsour.2023.232814_bib17) 2020; 361 Ishitobi (10.1016/j.jpowsour.2023.232814_bib12) 2019; 313 Zhang (10.1016/j.jpowsour.2023.232814_bib10) 2018; 15 Chen (10.1016/j.jpowsour.2023.232814_bib15) 2011; 236–238 Lei (10.1016/j.jpowsour.2023.232814_bib34) 2015; 299 Xiong (10.1016/j.jpowsour.2023.232814_bib2) 2019; 7 Brown (10.1016/j.jpowsour.2023.232814_bib24) 2016; 8 Vynnycky (10.1016/j.jpowsour.2023.232814_bib31) 2011; 36 Jirabovornwisut (10.1016/j.jpowsour.2023.232814_bib8) 2020; 136 Huang (10.1016/j.jpowsour.2023.232814_bib14) 2021 Minke (10.1016/j.jpowsour.2023.232814_bib3) 2018; 376 Wu (10.1016/j.jpowsour.2023.232814_bib11) 2014; 136 Xiong (10.1016/j.jpowsour.2023.232814_bib26) 2022 |
References_xml | – volume: 7 start-page: 162297 year: 2019 end-page: 162308 ident: bib2 article-title: An enhanced equivalent circuit model of vanadium redox flow battery energy storage systems considering thermal effects publication-title: IEEE Access – volume: 204 start-page: 373 year: 2017 end-page: 381 ident: bib6 article-title: The benefits and limitations of electrolyte mixing in vanadium flow batteries publication-title: Appl. Energy – volume: 53 start-page: 8087 year: 2008 end-page: 8100 ident: bib32 article-title: A dynamic performance model for redox-flow batteries involving soluble species publication-title: Electrochim. Acta – volume: 8 start-page: 1658 year: 2017 end-page: 1667 ident: bib9 article-title: State of charge estimation of vanadium redox flow battery based on sliding mode observer and dynamic model including capacity fading factor publication-title: IEEE Trans. Sustain. Energy – volume: 25 year: 2019 ident: bib1 article-title: Vanadium redox flow batteries: a comprehensive review publication-title: J. Energy Storage – volume: 36 start-page: 2242 year: 2011 end-page: 2256 ident: bib31 article-title: Analysis of a model for the operation of a vanadium redox battery publication-title: Energy – volume: 64 start-page: 782 year: 2018 end-page: 795 ident: bib27 article-title: Flow field design and optimization of high power density vanadium flow batteries: a novel trapezoid flow battery publication-title: AIChE J. – volume: 113 start-page: 1675 year: 2014 end-page: 1685 ident: bib28 article-title: A three-dimensional model for thermal analysis in a vanadium flow battery publication-title: Appl. Energy – volume: 2 start-page: 64 year: 2014 end-page: 76 ident: bib22 article-title: A model for all-vanadium redox flow batteries: introducing electrode-compression effects on voltage losses and hydraulics publication-title: Energy Technol. – volume: 32 year: 2020 ident: bib36 article-title: Numerical investigations of effects of the interdigitated channel spacing on overall performance of vanadium redox flow batteries publication-title: J. Energy Storage – volume: 376 start-page: 66 year: 2018 end-page: 81 ident: bib3 article-title: Materials, system designs and modelling approaches in techno-economic assessment of all-vanadium redox flow batteries – a review publication-title: J. Power Sources – volume: 136 start-page: 576 year: 2014 end-page: 581 ident: bib11 article-title: A novel high-energy-density positive electrolyte with multiple redox couples for redox flow batteries publication-title: Appl. Energy – volume: 431 start-page: 170 year: 2019 end-page: 181 ident: bib7 article-title: Evaluation of the influence of clamping force in electrochemical performance and reliability of vanadium redox flow battery publication-title: J. Power Sources – volume: 313 start-page: 513 year: 2019 end-page: 522 ident: bib12 article-title: Visualized cell characteristics by a two-dimensional model of vanadium redox flow battery with interdigitated channel and thin active electrode publication-title: Electrochim. Acta – volume: 54 start-page: 6827 year: 2009 end-page: 6836 ident: bib21 article-title: A simple model for the vanadium redox battery publication-title: Electrochim. Acta – volume: 236–238 start-page: 604 year: 2011 end-page: 607 ident: bib15 article-title: Numerical simulation and experiment on the electrolyte flow distribution for all vanadium redox flow battery publication-title: Adv. Mater. Res. – volume: 32 year: 2020 ident: bib13 article-title: Numerical study on serpentine design flow channel configurations for vanadium redox flow batteries publication-title: J. Energy Storage – volume: 159 start-page: A1446 year: 2012 end-page: A1459 ident: bib33 article-title: A transient vanadium flow battery model incorporating vanadium crossover and water transport through the membrane publication-title: J. Electrochem. Soc. – volume: 44 start-page: 29483 year: 2019 end-page: 29492 ident: bib37 article-title: Numerical simulation of the power-based efficiency in vanadium redox flow battery with different serpentine channel size publication-title: Int. J. Hydrogen Energy – volume: 8 start-page: 91 year: 2016 end-page: 98 ident: bib24 article-title: The effect of felt compression on the performance and pressure drop of all-vanadium redox flow batteries publication-title: J. Energy Storage – volume: 136 year: 2020 ident: bib8 article-title: Optimal operational strategy for a vanadium redox flow battery publication-title: Comput. Chem. Eng. – volume: 451 year: 2020 ident: bib5 article-title: Steel bipolar plates for proton exchange membrane fuel cells: materials, flow channel design and forming processes publication-title: J. Power Sources – volume: 46 start-page: 2199 year: 2017 end-page: 2236 ident: bib4 article-title: Porous membranes in secondary battery technologies publication-title: Chem. Soc. Rev. – volume: 351 start-page: 96 year: 2017 end-page: 105 ident: bib19 article-title: Architecture for improved mass transport and system performance in redox flow batteries publication-title: J. Power Sources – volume: 181 start-page: 13 year: 2015 end-page: 23 ident: bib23 article-title: Numerical study of the effects of carbon felt electrode compression in all-vanadium redox flow batteries publication-title: Electrochim. Acta – volume: 49 start-page: 40 year: 2015 end-page: 58 ident: bib29 article-title: Fundamental models for flow batteries publication-title: Prog. Energy Combust. Sci. – volume: 361 year: 2020 ident: bib17 article-title: A novel rotary serpentine flow field with improved electrolyte penetration and species distribution for vanadium redox flow battery publication-title: Electrochim. Acta – start-page: 1 year: 2022 end-page: 10 ident: bib26 article-title: Capacity fading model of vanadium redox flow battery considering water molecules migration publication-title: Int. J. Green Energy – volume: 403 year: 2022 ident: bib16 article-title: A 3D macro-segment network model for vanadium redox flow battery with serpentine flow field publication-title: Electrochim. Acta – volume: 58 start-page: 238 year: 2011 end-page: 246 ident: bib35 article-title: A three-dimensional model for negative half cell of the vanadium redox flow battery publication-title: Electrochim. Acta – volume: 220 start-page: 106 year: 2018 end-page: 116 ident: bib25 article-title: Numerical study on vanadium redox flow battery performance with non-uniformly compressed electrode and serpentine flow field publication-title: Appl. Energy – volume: 15 start-page: 324 year: 2018 end-page: 350 ident: bib10 article-title: Progress and prospects of next-generation redox flow batteries publication-title: Energy Storage Mater. – volume: 299 start-page: 202 year: 2015 end-page: 211 ident: bib34 article-title: A transient electrochemical model incorporating the Donnan effect for all-vanadium redox flow batteries publication-title: J. Power Sources – volume: 228 start-page: 1057 year: 2018 end-page: 1070 ident: bib18 article-title: Analysis of flow field design on vanadium redox flow battery performance: development of 3D computational fluid dynamic model and experimental validation publication-title: Appl. Energy – volume: 116 start-page: 447 year: 2014 end-page: 452 ident: bib20 article-title: The influence of compressed carbon felt electrodes on the performance of a vanadium redox flow battery publication-title: Electrochim. Acta – volume: 300 start-page: 438 year: 2015 end-page: 443 ident: bib30 article-title: A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage publication-title: J. Power Sources – year: 2021 ident: bib14 article-title: Vanadium redox flow batteries: flow field design and flow rate optimization publication-title: J. Energy Storage – volume: 351 start-page: 96 year: 2017 ident: 10.1016/j.jpowsour.2023.232814_bib19 article-title: Architecture for improved mass transport and system performance in redox flow batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.083 – volume: 313 start-page: 513 year: 2019 ident: 10.1016/j.jpowsour.2023.232814_bib12 article-title: Visualized cell characteristics by a two-dimensional model of vanadium redox flow battery with interdigitated channel and thin active electrode publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.04.055 – volume: 113 start-page: 1675 year: 2014 ident: 10.1016/j.jpowsour.2023.232814_bib28 article-title: A three-dimensional model for thermal analysis in a vanadium flow battery publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.09.021 – volume: 54 start-page: 6827 year: 2009 ident: 10.1016/j.jpowsour.2023.232814_bib21 article-title: A simple model for the vanadium redox battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.06.086 – volume: 431 start-page: 170 year: 2019 ident: 10.1016/j.jpowsour.2023.232814_bib7 article-title: Evaluation of the influence of clamping force in electrochemical performance and reliability of vanadium redox flow battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.05.061 – volume: 25 year: 2019 ident: 10.1016/j.jpowsour.2023.232814_bib1 article-title: Vanadium redox flow batteries: a comprehensive review publication-title: J. Energy Storage doi: 10.1016/j.est.2019.100844 – volume: 7 start-page: 162297 year: 2019 ident: 10.1016/j.jpowsour.2023.232814_bib2 article-title: An enhanced equivalent circuit model of vanadium redox flow battery energy storage systems considering thermal effects publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2952212 – volume: 451 year: 2020 ident: 10.1016/j.jpowsour.2023.232814_bib5 article-title: Steel bipolar plates for proton exchange membrane fuel cells: materials, flow channel design and forming processes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.227783 – year: 2021 ident: 10.1016/j.jpowsour.2023.232814_bib14 article-title: Vanadium redox flow batteries: flow field design and flow rate optimization publication-title: J. Energy Storage – volume: 228 start-page: 1057 year: 2018 ident: 10.1016/j.jpowsour.2023.232814_bib18 article-title: Analysis of flow field design on vanadium redox flow battery performance: development of 3D computational fluid dynamic model and experimental validation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.06.148 – volume: 220 start-page: 106 year: 2018 ident: 10.1016/j.jpowsour.2023.232814_bib25 article-title: Numerical study on vanadium redox flow battery performance with non-uniformly compressed electrode and serpentine flow field publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.03.058 – volume: 15 start-page: 324 year: 2018 ident: 10.1016/j.jpowsour.2023.232814_bib10 article-title: Progress and prospects of next-generation redox flow batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.06.008 – volume: 116 start-page: 447 year: 2014 ident: 10.1016/j.jpowsour.2023.232814_bib20 article-title: The influence of compressed carbon felt electrodes on the performance of a vanadium redox flow battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.11.073 – volume: 300 start-page: 438 year: 2015 ident: 10.1016/j.jpowsour.2023.232814_bib30 article-title: A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.09.100 – volume: 403 year: 2022 ident: 10.1016/j.jpowsour.2023.232814_bib16 article-title: A 3D macro-segment network model for vanadium redox flow battery with serpentine flow field publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.139657 – volume: 2 start-page: 64 year: 2014 ident: 10.1016/j.jpowsour.2023.232814_bib22 article-title: A model for all-vanadium redox flow batteries: introducing electrode-compression effects on voltage losses and hydraulics publication-title: Energy Technol. doi: 10.1002/ente.201300114 – start-page: 1 year: 2022 ident: 10.1016/j.jpowsour.2023.232814_bib26 article-title: Capacity fading model of vanadium redox flow battery considering water molecules migration publication-title: Int. J. Green Energy doi: 10.1080/15435075.2021.2007390 – volume: 376 start-page: 66 year: 2018 ident: 10.1016/j.jpowsour.2023.232814_bib3 article-title: Materials, system designs and modelling approaches in techno-economic assessment of all-vanadium redox flow batteries – a review publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.11.058 – volume: 361 year: 2020 ident: 10.1016/j.jpowsour.2023.232814_bib17 article-title: A novel rotary serpentine flow field with improved electrolyte penetration and species distribution for vanadium redox flow battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.137089 – volume: 181 start-page: 13 year: 2015 ident: 10.1016/j.jpowsour.2023.232814_bib23 article-title: Numerical study of the effects of carbon felt electrode compression in all-vanadium redox flow batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.02.212 – volume: 53 start-page: 8087 year: 2008 ident: 10.1016/j.jpowsour.2023.232814_bib32 article-title: A dynamic performance model for redox-flow batteries involving soluble species publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2008.05.067 – volume: 49 start-page: 40 year: 2015 ident: 10.1016/j.jpowsour.2023.232814_bib29 article-title: Fundamental models for flow batteries publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2015.02.001 – volume: 299 start-page: 202 year: 2015 ident: 10.1016/j.jpowsour.2023.232814_bib34 article-title: A transient electrochemical model incorporating the Donnan effect for all-vanadium redox flow batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.08.100 – volume: 236–238 start-page: 604 year: 2011 ident: 10.1016/j.jpowsour.2023.232814_bib15 article-title: Numerical simulation and experiment on the electrolyte flow distribution for all vanadium redox flow battery publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.236-238.604 – volume: 36 start-page: 2242 year: 2011 ident: 10.1016/j.jpowsour.2023.232814_bib31 article-title: Analysis of a model for the operation of a vanadium redox battery publication-title: Energy doi: 10.1016/j.energy.2010.03.060 – volume: 204 start-page: 373 year: 2017 ident: 10.1016/j.jpowsour.2023.232814_bib6 article-title: The benefits and limitations of electrolyte mixing in vanadium flow batteries publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.07.049 – volume: 64 start-page: 782 year: 2018 ident: 10.1016/j.jpowsour.2023.232814_bib27 article-title: Flow field design and optimization of high power density vanadium flow batteries: a novel trapezoid flow battery publication-title: AIChE J. doi: 10.1002/aic.15959 – volume: 46 start-page: 2199 year: 2017 ident: 10.1016/j.jpowsour.2023.232814_bib4 article-title: Porous membranes in secondary battery technologies publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00823B – volume: 136 year: 2020 ident: 10.1016/j.jpowsour.2023.232814_bib8 article-title: Optimal operational strategy for a vanadium redox flow battery publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106805 – volume: 32 year: 2020 ident: 10.1016/j.jpowsour.2023.232814_bib36 article-title: Numerical investigations of effects of the interdigitated channel spacing on overall performance of vanadium redox flow batteries publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101781 – volume: 8 start-page: 91 year: 2016 ident: 10.1016/j.jpowsour.2023.232814_bib24 article-title: The effect of felt compression on the performance and pressure drop of all-vanadium redox flow batteries publication-title: J. Energy Storage doi: 10.1016/j.est.2016.10.003 – volume: 32 year: 2020 ident: 10.1016/j.jpowsour.2023.232814_bib13 article-title: Numerical study on serpentine design flow channel configurations for vanadium redox flow batteries publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101802 – volume: 159 start-page: A1446 year: 2012 ident: 10.1016/j.jpowsour.2023.232814_bib33 article-title: A transient vanadium flow battery model incorporating vanadium crossover and water transport through the membrane publication-title: J. Electrochem. Soc. doi: 10.1149/2.017209jes – volume: 58 start-page: 238 year: 2011 ident: 10.1016/j.jpowsour.2023.232814_bib35 article-title: A three-dimensional model for negative half cell of the vanadium redox flow battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.09.042 – volume: 8 start-page: 1658 year: 2017 ident: 10.1016/j.jpowsour.2023.232814_bib9 article-title: State of charge estimation of vanadium redox flow battery based on sliding mode observer and dynamic model including capacity fading factor publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2017.2699288 – volume: 136 start-page: 576 year: 2014 ident: 10.1016/j.jpowsour.2023.232814_bib11 article-title: A novel high-energy-density positive electrolyte with multiple redox couples for redox flow batteries publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.09.076 – volume: 44 start-page: 29483 year: 2019 ident: 10.1016/j.jpowsour.2023.232814_bib37 article-title: Numerical simulation of the power-based efficiency in vanadium redox flow battery with different serpentine channel size publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.05.013 |
SSID | ssj0001170 |
Score | 2.5030875 |
Snippet | The porous electrode of vanadium redox flow batteries (VRBs) is subject to deformation due to mechanical stress during stack assembling. The forces compress... |
SourceID | swepub crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 232814 |
SubjectTerms | Battery design Electrochemical model Flow channel Numerical study Uneven electrode deformation Vanadium redox flow battery |
Title | Numerical analysis of vanadium redox flow batteries considering electrode deformation under various flow fields |
URI | https://dx.doi.org/10.1016/j.jpowsour.2023.232814 https://research.chalmers.se/publication/534959 |
Volume | 564 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQvdBD1ZZW5VHkQ6_ZdeJHnCNCoAXavQASN8uPsWC13az2AT31t9eOne32UHHgmCjjROPRzDgz830IfZPalY0O3s_U1BYhQtSFFswUBKRpiHcho4gV3R9jMbpjV_f8fged9bMwsa0y-_7k0ztvne8MszaH88fH4Q2hwdhCth2SaFLKNMHO6mjlg99_2zwis0pXSQinpfj01pTwZDCZt8_xJ_kgkogPQnIhS_bfALWNJNpFn4v36F1OG_Fp-rIPaAdmH9HbLTDBfdSO16n6MsU6I43g1uOnrqtr_RNHZNBf2E_bZ2w6UM1wRsY283WGFXBmxHGAHWxmGnEcMluEVRaxWTaJd11vy0_o7uL89mxUZDqFwlIpVwU13kElNPNegq6dtZ4K2WjvawLMUq2lFE4zHkubhDtTUh-OqSx4ASksE_Qz2p21M_iCsLYcKq8F-JCNlFBLBpz44CwACKtdc4B4r0NlM9Z4pLyYqr6pbKJ63auoe5V0f4CGG7l5Qtt4UaLpt0j9YzcqhIQXZb-nPd28K2JtZ5ClB2UfOgabpVqCkpqDrqhXvGK1Yg6saoitlKNcGCDWeeMOX_EpR2gvXqUy1THaXS3W8DVkOytz0pnzCXpzenk9Gv8BrK0E7w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbQcoAeqpYWFdqCD1yz68SPOEeEipay7AWQuFl-jAWrZbPaR-nPr504q-VQceCaaBxrPJoZZ2a-D6EzqV1e6eD9TEltFiJEmWnBTEZAmop4FzKKWNG9GYvhPfv9wB920EU3CxPbKpPvb316463Tk0HS5mD-9DS4JTQYW8i2QxJNchkn2HcjOhXvod3zq-vheOOQI7lKU0wIF6YosDUoPOlP5vVL_E_ejzzi_ZBfyJz9N0Ztg4k2AejyE_qYMkd83m7uM9qB2QH6sIUn-AXV43VbgJlincBGcO3xn6axa_2MIzjoX-yn9Qs2Da5muCZjmyg7wwo4keI4wA42Y404zpktwiqL2C_bijeNb8uv6P7y193FMEuMCpmlUq4yaryDQmjmvQRdOms9FbLS3pcEmKVaSymcZjxWNwl3Jqc-3FRZcARSWCboIerN6hl8Q1hbDoXXAnxISHIoJQNOfPAXAISVrjpCvNOhsgluPLJeTFXXVzZRne5V1L1qdX-EBhu5eQu48aZE1R2RemU6KkSFN2VH7ZluvhXhthPO0qOyjw2JzVItQUnNQRfUK16wUjEHVlXEFspRLgwQ67xxx-_YyinaG97djNToanz9He3HN23V6gfqrRZr-BmSn5U5Scb9D4dLB6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analysis+of+vanadium+redox+flow+batteries+considering+electrode+deformation+under+various+flow+fields&rft.jtitle=Journal+of+power+sources&rft.au=Xiong%2C+Binyu&rft.au=Li%2C+Yang&rft.au=Ding%2C+Yuming&rft.au=Wang%2C+Jinsong&rft.date=2023-04-30&rft.issn=0378-7753&rft.volume=564&rft_id=info:doi/10.1016%2Fj.jpowsour.2023.232814&rft.externalDocID=oai_research_chalmers_se_8a5ea23f_5247_4dec_90c2_d356be0cdfbd |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |