Numerical analysis of vanadium redox flow batteries considering electrode deformation under various flow fields

The porous electrode of vanadium redox flow batteries (VRBs) is subject to deformation due to mechanical stress during stack assembling. The forces compress the electrode fiber into the flow channel and thus alter the electrode porosity ratio. Due to the complex mechanisms, the effects of resulting...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 564; p. 232814
Main Authors Xiong, Binyu, Li, Yang, Ding, Yuming, Wang, Jinsong, Wei, Zhongbao, Zhao, Jiyun, Ai, Xiaomeng, Fang, Jiakun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 30.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The porous electrode of vanadium redox flow batteries (VRBs) is subject to deformation due to mechanical stress during stack assembling. The forces compress the electrode fiber into the flow channel and thus alter the electrode porosity ratio. Due to the complex mechanisms, the effects of resulting electrode morphological changes on VRB performance were usually ignored in existing studies. This paper proposes a three-dimensional VRB model considering the uneven electrode deformation to investigate the cell performance under different electrode compression ratios with three flow-field designs. Compression ratio (CR) and the intrusive part of the electrode are obtained under various mechanical stress by adjusting gasket thickness in the experiment. The proposed electrochemical model is established based on the comprehensive description of conservation laws and analyzed using the COMSOL platform. Three indices, namely the concentration overpotential, pressure drop, and distribution uniformity, are selected for the analysis under the three flow field designs and different CRs. The numerical study reveal that the pressure drop and the concentration overpotential are sensitive to the CR but less affected by the concentration uniformity. The minimum overpotential can be reached when the CR is around 40%–50%, depending on flow field designs, while a higher CR can cause a drastically increased pressure drop. It is also found that the interdigitated flow field with a CR of 45% is considered optimal. The insights from the proposed method demonstrate the significance of considering the effects of electrode deformation in the stack design under various flow fields. •A 3D electrochemical model considering unevenly electrodes deformation is proposed.•A non-uniform partitioning method for unevenly deformed electrodes is proposed.•The compression ratios under various mechanical stress are measured.•The interdigitated flow channels under CR of 45% demonstrate maximum performance.
AbstractList The porous electrode of vanadium redox flow batteries (VRBs) is subject to deformation due to mechanical stress during stack assembling. The forces compress the electrode fiber into the flow channel and thus alter the electrode porosity ratio. Due to the complex mechanisms, the effects of resulting electrode morphological changes on VRB performance were usually ignored in existing studies. This paper proposes a three-dimensional VRB model considering the uneven electrode deformation to investigate the cell performance under different electrode compression ratios with three flow-field designs. Compression ratio (CR) and the intrusive part of the electrode are obtained under various mechanical stress by adjusting gasket thickness in the experiment. The proposed electrochemical model is established based on the comprehensive description of conservation laws and analyzed using the COMSOL platform. Three indices, namely the concentration overpotential, pressure drop, and distribution uniformity, are selected for the analysis under the three flow field designs and different CRs. The numerical study reveal that the pressure drop and the concentration overpotential are sensitive to the CR but less affected by the concentration uniformity. The minimum overpotential can be reached when the CR is around 40%–50%, depending on flow field designs, while a higher CR can cause a drastically increased pressure drop. It is also found that the interdigitated flow field with a CR of 45% is considered optimal. The insights from the proposed method demonstrate the significance of considering the effects of electrode deformation in the stack design under various flow fields.
The porous electrode of vanadium redox flow batteries (VRBs) is subject to deformation due to mechanical stress during stack assembling. The forces compress the electrode fiber into the flow channel and thus alter the electrode porosity ratio. Due to the complex mechanisms, the effects of resulting electrode morphological changes on VRB performance were usually ignored in existing studies. This paper proposes a three-dimensional VRB model considering the uneven electrode deformation to investigate the cell performance under different electrode compression ratios with three flow-field designs. Compression ratio (CR) and the intrusive part of the electrode are obtained under various mechanical stress by adjusting gasket thickness in the experiment. The proposed electrochemical model is established based on the comprehensive description of conservation laws and analyzed using the COMSOL platform. Three indices, namely the concentration overpotential, pressure drop, and distribution uniformity, are selected for the analysis under the three flow field designs and different CRs. The numerical study reveal that the pressure drop and the concentration overpotential are sensitive to the CR but less affected by the concentration uniformity. The minimum overpotential can be reached when the CR is around 40%–50%, depending on flow field designs, while a higher CR can cause a drastically increased pressure drop. It is also found that the interdigitated flow field with a CR of 45% is considered optimal. The insights from the proposed method demonstrate the significance of considering the effects of electrode deformation in the stack design under various flow fields. •A 3D electrochemical model considering unevenly electrodes deformation is proposed.•A non-uniform partitioning method for unevenly deformed electrodes is proposed.•The compression ratios under various mechanical stress are measured.•The interdigitated flow channels under CR of 45% demonstrate maximum performance.
ArticleNumber 232814
Author Ding, Yuming
Wang, Jinsong
Fang, Jiakun
Wei, Zhongbao
Li, Yang
Ai, Xiaomeng
Zhao, Jiyun
Xiong, Binyu
Author_xml – sequence: 1
  givenname: Binyu
  orcidid: 0000-0002-4156-2187
  surname: Xiong
  fullname: Xiong, Binyu
  email: bxiong2@whut.edu.cn
  organization: School of Automation, Wuhan University of Technology, Wuhan, 430070, China
– sequence: 2
  givenname: Yang
  orcidid: 0000-0002-9497-3051
  surname: Li
  fullname: Li, Yang
  email: yangli@ieee.org
  organization: Department of Electrical Engineering, Chalmers University of Technology, Sweden
– sequence: 3
  givenname: Yuming
  surname: Ding
  fullname: Ding, Yuming
  organization: School of Automation, Wuhan University of Technology, Wuhan, 430070, China
– sequence: 4
  givenname: Jinsong
  orcidid: 0000-0002-1010-6699
  surname: Wang
  fullname: Wang, Jinsong
  organization: Case School of Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
– sequence: 5
  givenname: Zhongbao
  surname: Wei
  fullname: Wei, Zhongbao
  organization: Beijing Institute of Technology, National Engineering Laboratory for Electric Vehicles, 100081, Beijing, China
– sequence: 6
  givenname: Jiyun
  orcidid: 0000-0002-9425-6036
  surname: Zhao
  fullname: Zhao, Jiyun
  email: jiyuzhao@cityu.edu.hk
  organization: Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
– sequence: 7
  givenname: Xiaomeng
  surname: Ai
  fullname: Ai, Xiaomeng
  organization: State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
– sequence: 8
  givenname: Jiakun
  orcidid: 0000-0002-8208-5938
  surname: Fang
  fullname: Fang, Jiakun
  email: jfa@hust.edu.cn
  organization: State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
BackLink https://research.chalmers.se/publication/534959$$DView record from Swedish Publication Index
BookMark eNqFkc9u3CAQh1GVSt2keYWKF_AWgzFE6qFV1H9S1B6anEdjGBpWXrMCO5u8fUjdXHLJCdDwfZqZ3yk7mdJEjH1oxbYVbf9xt90d0rGkJW-lkGorlbRt94ZtWmtUI43WJ2wjlLGNMVq9Y6el7IQQbWvEhqVfy55ydDhynHB8KLHwFPhdffi47Hkmn-55GNORDzjP9SsV7tJUoq_36S-nkdyckyfuKaS8xzmmiS9TLVdLjmkpKx4ijb68Z28DjoXO_59n7Obb1-vLH83V7-8_L79cNU5ZOzdqCJ5kj10IltB454Lq7QWGYAR1TiFa23vstNFCCe2HVgUtVaeEsb3renXG_qzecqTDMsAhxz3mB0gYIVMhzO4W3C2OdfoChcCiJpQqgJadgc6TgwvhJHil-4GE82Hw1fpptbqcSskUwMX538RzxjhCK-ApEtjBcyTwFAmskVS8f4E_t_Uq-HkFqa7sLlKG4iJNjnzMdf3gU3xN8QgB2rIK
CitedBy_id crossref_primary_10_1016_j_est_2023_110278
crossref_primary_10_1016_j_est_2024_111539
crossref_primary_10_1016_j_enconman_2024_118523
crossref_primary_10_1002_celc_202400024
crossref_primary_10_1016_j_est_2024_113501
crossref_primary_10_1149_1945_7111_ad5706
crossref_primary_10_1016_j_cej_2024_157008
crossref_primary_10_1016_j_jpowsour_2023_233751
crossref_primary_10_3390_batteries9070359
crossref_primary_10_1016_j_est_2023_107842
crossref_primary_10_1016_j_est_2023_109537
crossref_primary_10_1016_j_jclepro_2023_139468
crossref_primary_10_1016_j_jpowsour_2023_233769
Cites_doi 10.1016/j.jpowsour.2017.03.083
10.1016/j.electacta.2019.04.055
10.1016/j.apenergy.2013.09.021
10.1016/j.electacta.2009.06.086
10.1016/j.jpowsour.2019.05.061
10.1016/j.est.2019.100844
10.1109/ACCESS.2019.2952212
10.1016/j.jpowsour.2020.227783
10.1016/j.apenergy.2018.06.148
10.1016/j.apenergy.2018.03.058
10.1016/j.ensm.2018.06.008
10.1016/j.electacta.2013.11.073
10.1016/j.jpowsour.2015.09.100
10.1016/j.electacta.2021.139657
10.1002/ente.201300114
10.1080/15435075.2021.2007390
10.1016/j.jpowsour.2017.11.058
10.1016/j.electacta.2020.137089
10.1016/j.electacta.2015.02.212
10.1016/j.electacta.2008.05.067
10.1016/j.pecs.2015.02.001
10.1016/j.jpowsour.2015.08.100
10.4028/www.scientific.net/AMR.236-238.604
10.1016/j.energy.2010.03.060
10.1016/j.apenergy.2017.07.049
10.1002/aic.15959
10.1039/C6CS00823B
10.1016/j.compchemeng.2020.106805
10.1016/j.est.2020.101781
10.1016/j.est.2016.10.003
10.1016/j.est.2020.101802
10.1149/2.017209jes
10.1016/j.electacta.2011.09.042
10.1109/TSTE.2017.2699288
10.1016/j.apenergy.2014.09.076
10.1016/j.ijhydene.2019.05.013
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
ADTPV
AOWAS
F1S
DOI 10.1016/j.jpowsour.2023.232814
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2755
ExternalDocumentID oai_research_chalmers_se_8a5ea23f_5247_4dec_90c2_d356be0cdfbd
10_1016_j_jpowsour_2023_232814
S0378775323001891
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
RIG
SAC
SCB
SCE
SSH
T9H
VH1
VOH
WUQ
ADTPV
AOWAS
EFKBS
F1S
ID FETCH-LOGICAL-c388t-3bfde26a4ff8ea7dccf3689aff70e4c3aa886da45750305db13f523430786c463
IEDL.DBID .~1
ISSN 0378-7753
IngestDate Thu Aug 21 06:24:01 EDT 2025
Tue Jul 01 01:40:54 EDT 2025
Thu Apr 24 23:01:42 EDT 2025
Fri Feb 23 02:37:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Uneven electrode deformation
Vanadium redox flow battery
Battery design
Electrochemical model
Flow channel
Numerical study
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-3bfde26a4ff8ea7dccf3689aff70e4c3aa886da45750305db13f523430786c463
ORCID 0000-0002-9497-3051
0000-0002-4156-2187
0000-0002-1010-6699
0000-0002-8208-5938
0000-0002-9425-6036
ParticipantIDs swepub_primary_oai_research_chalmers_se_8a5ea23f_5247_4dec_90c2_d356be0cdfbd
crossref_citationtrail_10_1016_j_jpowsour_2023_232814
crossref_primary_10_1016_j_jpowsour_2023_232814
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2023_232814
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-30
PublicationDateYYYYMMDD 2023-04-30
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-30
  day: 30
PublicationDecade 2020
PublicationTitle Journal of power sources
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Brown, Neville, Jervis, Mason, Shearing, Brett (bib24) 2016; 8
Zeng, Zhao, An, Zhou, Wei (bib30) 2015; 300
Wu, Liu, Long, Wan, Liang, Zhao (bib11) 2014; 136
Yue, Zheng, Xing, Zhang, Li, Ma (bib27) 2018; 64
Lee, Kim, Park (bib37) 2019; 44
Minke, Turek (bib3) 2018; 376
Oh, Won, Ju (bib23) 2015; 181
Vynnycky (bib31) 2011; 36
Chen, Wang, Lv (bib15) 2011; 236–238
Zhang, Zhang, Ding, Peng, Guo, Zhao, He, Yu (bib10) 2018; 15
Xu, Zhao (bib29) 2015; 49
Xiong, Xiong, Zhang, Shi, Su, Zhang (bib26) 2022
Xiong, Yang, Tang, Li, Wei, Su, Zhang (bib2) 2019; 7
Lei, Zhang, Bai, Zhao (bib34) 2015; 299
Zhang, Liu, Xi, Wu, Qiu (bib6) 2017; 204
Huang, Mu, Wu, Wang (bib14) 2021
Park, Shim, Yang, Jin, Lee, Lee, Shin, Jeon (bib20) 2014; 116
Lu, Deng, Yang, Ye, Jiao, Xu (bib17) 2020; 361
Bromberger, Kaunert, Smolinka (bib22) 2014; 2
Ali, Kwon, Kim, Park (bib13) 2020; 32
Shah, Watt-Smith, Walsh (bib32) 2008; 53
Xiong, Zhao, Su, Wei, Skyllas-Kazacos (bib9) 2017; 8
Leng, Ming, Yang, Zhang (bib5) 2020; 451
Ishitobi, Saito, Sugawara, Oba, Nakagawa (bib12) 2019; 313
Houser, Pezeshki, Clement, Aaron, Mench (bib19) 2017; 351
Messaggi, Canzi, Mereu, Baricci, Inzoli, Casalegno, Zago (bib18) 2018; 228
Xiong, Song, Wang, Li, Liu, Yan, Tang (bib7) 2019; 431
Li, Wei, Tan, Zeng, Yuan (bib36) 2020; 32
Ma, Zhang, Xing (bib35) 2011; 58
Lourenssen, Williams, Ahmadpour, Clemmer, Tasnim (bib1) 2019; 25
Jirabovornwisut, Kheawhom, Chen, Arpornwichanop (bib8) 2020; 136
Zheng, Zhang, Xing, Ma, Li, Ning (bib28) 2014; 113
Jiao, Lu, Yang, Tang, Ye, Xu (bib16) 2022; 403
Wang, Qu, Jiang, Yang (bib25) 2018; 220
Lu, Yuan, Zhao, Zhang, Zhang, Li (bib4) 2017; 46
You, Zhang, Chen (bib21) 2009; 54
Knehr, Agar, Dennison, Kalidindi, Kumbur (bib33) 2012; 159
Wang (10.1016/j.jpowsour.2023.232814_bib25) 2018; 220
Lee (10.1016/j.jpowsour.2023.232814_bib37) 2019; 44
Oh (10.1016/j.jpowsour.2023.232814_bib23) 2015; 181
Zheng (10.1016/j.jpowsour.2023.232814_bib28) 2014; 113
Bromberger (10.1016/j.jpowsour.2023.232814_bib22) 2014; 2
Xiong (10.1016/j.jpowsour.2023.232814_bib9) 2017; 8
Xu (10.1016/j.jpowsour.2023.232814_bib29) 2015; 49
Shah (10.1016/j.jpowsour.2023.232814_bib32) 2008; 53
Zeng (10.1016/j.jpowsour.2023.232814_bib30) 2015; 300
Knehr (10.1016/j.jpowsour.2023.232814_bib33) 2012; 159
Li (10.1016/j.jpowsour.2023.232814_bib36) 2020; 32
Xiong (10.1016/j.jpowsour.2023.232814_bib7) 2019; 431
Leng (10.1016/j.jpowsour.2023.232814_bib5) 2020; 451
Ali (10.1016/j.jpowsour.2023.232814_bib13) 2020; 32
Houser (10.1016/j.jpowsour.2023.232814_bib19) 2017; 351
Yue (10.1016/j.jpowsour.2023.232814_bib27) 2018; 64
Park (10.1016/j.jpowsour.2023.232814_bib20) 2014; 116
Ma (10.1016/j.jpowsour.2023.232814_bib35) 2011; 58
Zhang (10.1016/j.jpowsour.2023.232814_bib6) 2017; 204
Messaggi (10.1016/j.jpowsour.2023.232814_bib18) 2018; 228
Lourenssen (10.1016/j.jpowsour.2023.232814_bib1) 2019; 25
Jiao (10.1016/j.jpowsour.2023.232814_bib16) 2022; 403
You (10.1016/j.jpowsour.2023.232814_bib21) 2009; 54
Lu (10.1016/j.jpowsour.2023.232814_bib4) 2017; 46
Lu (10.1016/j.jpowsour.2023.232814_bib17) 2020; 361
Ishitobi (10.1016/j.jpowsour.2023.232814_bib12) 2019; 313
Zhang (10.1016/j.jpowsour.2023.232814_bib10) 2018; 15
Chen (10.1016/j.jpowsour.2023.232814_bib15) 2011; 236–238
Lei (10.1016/j.jpowsour.2023.232814_bib34) 2015; 299
Xiong (10.1016/j.jpowsour.2023.232814_bib2) 2019; 7
Brown (10.1016/j.jpowsour.2023.232814_bib24) 2016; 8
Vynnycky (10.1016/j.jpowsour.2023.232814_bib31) 2011; 36
Jirabovornwisut (10.1016/j.jpowsour.2023.232814_bib8) 2020; 136
Huang (10.1016/j.jpowsour.2023.232814_bib14) 2021
Minke (10.1016/j.jpowsour.2023.232814_bib3) 2018; 376
Wu (10.1016/j.jpowsour.2023.232814_bib11) 2014; 136
Xiong (10.1016/j.jpowsour.2023.232814_bib26) 2022
References_xml – volume: 7
  start-page: 162297
  year: 2019
  end-page: 162308
  ident: bib2
  article-title: An enhanced equivalent circuit model of vanadium redox flow battery energy storage systems considering thermal effects
  publication-title: IEEE Access
– volume: 204
  start-page: 373
  year: 2017
  end-page: 381
  ident: bib6
  article-title: The benefits and limitations of electrolyte mixing in vanadium flow batteries
  publication-title: Appl. Energy
– volume: 53
  start-page: 8087
  year: 2008
  end-page: 8100
  ident: bib32
  article-title: A dynamic performance model for redox-flow batteries involving soluble species
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 1658
  year: 2017
  end-page: 1667
  ident: bib9
  article-title: State of charge estimation of vanadium redox flow battery based on sliding mode observer and dynamic model including capacity fading factor
  publication-title: IEEE Trans. Sustain. Energy
– volume: 25
  year: 2019
  ident: bib1
  article-title: Vanadium redox flow batteries: a comprehensive review
  publication-title: J. Energy Storage
– volume: 36
  start-page: 2242
  year: 2011
  end-page: 2256
  ident: bib31
  article-title: Analysis of a model for the operation of a vanadium redox battery
  publication-title: Energy
– volume: 64
  start-page: 782
  year: 2018
  end-page: 795
  ident: bib27
  article-title: Flow field design and optimization of high power density vanadium flow batteries: a novel trapezoid flow battery
  publication-title: AIChE J.
– volume: 113
  start-page: 1675
  year: 2014
  end-page: 1685
  ident: bib28
  article-title: A three-dimensional model for thermal analysis in a vanadium flow battery
  publication-title: Appl. Energy
– volume: 2
  start-page: 64
  year: 2014
  end-page: 76
  ident: bib22
  article-title: A model for all-vanadium redox flow batteries: introducing electrode-compression effects on voltage losses and hydraulics
  publication-title: Energy Technol.
– volume: 32
  year: 2020
  ident: bib36
  article-title: Numerical investigations of effects of the interdigitated channel spacing on overall performance of vanadium redox flow batteries
  publication-title: J. Energy Storage
– volume: 376
  start-page: 66
  year: 2018
  end-page: 81
  ident: bib3
  article-title: Materials, system designs and modelling approaches in techno-economic assessment of all-vanadium redox flow batteries – a review
  publication-title: J. Power Sources
– volume: 136
  start-page: 576
  year: 2014
  end-page: 581
  ident: bib11
  article-title: A novel high-energy-density positive electrolyte with multiple redox couples for redox flow batteries
  publication-title: Appl. Energy
– volume: 431
  start-page: 170
  year: 2019
  end-page: 181
  ident: bib7
  article-title: Evaluation of the influence of clamping force in electrochemical performance and reliability of vanadium redox flow battery
  publication-title: J. Power Sources
– volume: 313
  start-page: 513
  year: 2019
  end-page: 522
  ident: bib12
  article-title: Visualized cell characteristics by a two-dimensional model of vanadium redox flow battery with interdigitated channel and thin active electrode
  publication-title: Electrochim. Acta
– volume: 54
  start-page: 6827
  year: 2009
  end-page: 6836
  ident: bib21
  article-title: A simple model for the vanadium redox battery
  publication-title: Electrochim. Acta
– volume: 236–238
  start-page: 604
  year: 2011
  end-page: 607
  ident: bib15
  article-title: Numerical simulation and experiment on the electrolyte flow distribution for all vanadium redox flow battery
  publication-title: Adv. Mater. Res.
– volume: 32
  year: 2020
  ident: bib13
  article-title: Numerical study on serpentine design flow channel configurations for vanadium redox flow batteries
  publication-title: J. Energy Storage
– volume: 159
  start-page: A1446
  year: 2012
  end-page: A1459
  ident: bib33
  article-title: A transient vanadium flow battery model incorporating vanadium crossover and water transport through the membrane
  publication-title: J. Electrochem. Soc.
– volume: 44
  start-page: 29483
  year: 2019
  end-page: 29492
  ident: bib37
  article-title: Numerical simulation of the power-based efficiency in vanadium redox flow battery with different serpentine channel size
  publication-title: Int. J. Hydrogen Energy
– volume: 8
  start-page: 91
  year: 2016
  end-page: 98
  ident: bib24
  article-title: The effect of felt compression on the performance and pressure drop of all-vanadium redox flow batteries
  publication-title: J. Energy Storage
– volume: 136
  year: 2020
  ident: bib8
  article-title: Optimal operational strategy for a vanadium redox flow battery
  publication-title: Comput. Chem. Eng.
– volume: 451
  year: 2020
  ident: bib5
  article-title: Steel bipolar plates for proton exchange membrane fuel cells: materials, flow channel design and forming processes
  publication-title: J. Power Sources
– volume: 46
  start-page: 2199
  year: 2017
  end-page: 2236
  ident: bib4
  article-title: Porous membranes in secondary battery technologies
  publication-title: Chem. Soc. Rev.
– volume: 351
  start-page: 96
  year: 2017
  end-page: 105
  ident: bib19
  article-title: Architecture for improved mass transport and system performance in redox flow batteries
  publication-title: J. Power Sources
– volume: 181
  start-page: 13
  year: 2015
  end-page: 23
  ident: bib23
  article-title: Numerical study of the effects of carbon felt electrode compression in all-vanadium redox flow batteries
  publication-title: Electrochim. Acta
– volume: 49
  start-page: 40
  year: 2015
  end-page: 58
  ident: bib29
  article-title: Fundamental models for flow batteries
  publication-title: Prog. Energy Combust. Sci.
– volume: 361
  year: 2020
  ident: bib17
  article-title: A novel rotary serpentine flow field with improved electrolyte penetration and species distribution for vanadium redox flow battery
  publication-title: Electrochim. Acta
– start-page: 1
  year: 2022
  end-page: 10
  ident: bib26
  article-title: Capacity fading model of vanadium redox flow battery considering water molecules migration
  publication-title: Int. J. Green Energy
– volume: 403
  year: 2022
  ident: bib16
  article-title: A 3D macro-segment network model for vanadium redox flow battery with serpentine flow field
  publication-title: Electrochim. Acta
– volume: 58
  start-page: 238
  year: 2011
  end-page: 246
  ident: bib35
  article-title: A three-dimensional model for negative half cell of the vanadium redox flow battery
  publication-title: Electrochim. Acta
– volume: 220
  start-page: 106
  year: 2018
  end-page: 116
  ident: bib25
  article-title: Numerical study on vanadium redox flow battery performance with non-uniformly compressed electrode and serpentine flow field
  publication-title: Appl. Energy
– volume: 15
  start-page: 324
  year: 2018
  end-page: 350
  ident: bib10
  article-title: Progress and prospects of next-generation redox flow batteries
  publication-title: Energy Storage Mater.
– volume: 299
  start-page: 202
  year: 2015
  end-page: 211
  ident: bib34
  article-title: A transient electrochemical model incorporating the Donnan effect for all-vanadium redox flow batteries
  publication-title: J. Power Sources
– volume: 228
  start-page: 1057
  year: 2018
  end-page: 1070
  ident: bib18
  article-title: Analysis of flow field design on vanadium redox flow battery performance: development of 3D computational fluid dynamic model and experimental validation
  publication-title: Appl. Energy
– volume: 116
  start-page: 447
  year: 2014
  end-page: 452
  ident: bib20
  article-title: The influence of compressed carbon felt electrodes on the performance of a vanadium redox flow battery
  publication-title: Electrochim. Acta
– volume: 300
  start-page: 438
  year: 2015
  end-page: 443
  ident: bib30
  article-title: A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage
  publication-title: J. Power Sources
– year: 2021
  ident: bib14
  article-title: Vanadium redox flow batteries: flow field design and flow rate optimization
  publication-title: J. Energy Storage
– volume: 351
  start-page: 96
  year: 2017
  ident: 10.1016/j.jpowsour.2023.232814_bib19
  article-title: Architecture for improved mass transport and system performance in redox flow batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.083
– volume: 313
  start-page: 513
  year: 2019
  ident: 10.1016/j.jpowsour.2023.232814_bib12
  article-title: Visualized cell characteristics by a two-dimensional model of vanadium redox flow battery with interdigitated channel and thin active electrode
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.04.055
– volume: 113
  start-page: 1675
  year: 2014
  ident: 10.1016/j.jpowsour.2023.232814_bib28
  article-title: A three-dimensional model for thermal analysis in a vanadium flow battery
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.09.021
– volume: 54
  start-page: 6827
  year: 2009
  ident: 10.1016/j.jpowsour.2023.232814_bib21
  article-title: A simple model for the vanadium redox battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.06.086
– volume: 431
  start-page: 170
  year: 2019
  ident: 10.1016/j.jpowsour.2023.232814_bib7
  article-title: Evaluation of the influence of clamping force in electrochemical performance and reliability of vanadium redox flow battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.05.061
– volume: 25
  year: 2019
  ident: 10.1016/j.jpowsour.2023.232814_bib1
  article-title: Vanadium redox flow batteries: a comprehensive review
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2019.100844
– volume: 7
  start-page: 162297
  year: 2019
  ident: 10.1016/j.jpowsour.2023.232814_bib2
  article-title: An enhanced equivalent circuit model of vanadium redox flow battery energy storage systems considering thermal effects
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2952212
– volume: 451
  year: 2020
  ident: 10.1016/j.jpowsour.2023.232814_bib5
  article-title: Steel bipolar plates for proton exchange membrane fuel cells: materials, flow channel design and forming processes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.227783
– year: 2021
  ident: 10.1016/j.jpowsour.2023.232814_bib14
  article-title: Vanadium redox flow batteries: flow field design and flow rate optimization
  publication-title: J. Energy Storage
– volume: 228
  start-page: 1057
  year: 2018
  ident: 10.1016/j.jpowsour.2023.232814_bib18
  article-title: Analysis of flow field design on vanadium redox flow battery performance: development of 3D computational fluid dynamic model and experimental validation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.06.148
– volume: 220
  start-page: 106
  year: 2018
  ident: 10.1016/j.jpowsour.2023.232814_bib25
  article-title: Numerical study on vanadium redox flow battery performance with non-uniformly compressed electrode and serpentine flow field
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.03.058
– volume: 15
  start-page: 324
  year: 2018
  ident: 10.1016/j.jpowsour.2023.232814_bib10
  article-title: Progress and prospects of next-generation redox flow batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.06.008
– volume: 116
  start-page: 447
  year: 2014
  ident: 10.1016/j.jpowsour.2023.232814_bib20
  article-title: The influence of compressed carbon felt electrodes on the performance of a vanadium redox flow battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.11.073
– volume: 300
  start-page: 438
  year: 2015
  ident: 10.1016/j.jpowsour.2023.232814_bib30
  article-title: A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.09.100
– volume: 403
  year: 2022
  ident: 10.1016/j.jpowsour.2023.232814_bib16
  article-title: A 3D macro-segment network model for vanadium redox flow battery with serpentine flow field
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.139657
– volume: 2
  start-page: 64
  year: 2014
  ident: 10.1016/j.jpowsour.2023.232814_bib22
  article-title: A model for all-vanadium redox flow batteries: introducing electrode-compression effects on voltage losses and hydraulics
  publication-title: Energy Technol.
  doi: 10.1002/ente.201300114
– start-page: 1
  year: 2022
  ident: 10.1016/j.jpowsour.2023.232814_bib26
  article-title: Capacity fading model of vanadium redox flow battery considering water molecules migration
  publication-title: Int. J. Green Energy
  doi: 10.1080/15435075.2021.2007390
– volume: 376
  start-page: 66
  year: 2018
  ident: 10.1016/j.jpowsour.2023.232814_bib3
  article-title: Materials, system designs and modelling approaches in techno-economic assessment of all-vanadium redox flow batteries – a review
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.11.058
– volume: 361
  year: 2020
  ident: 10.1016/j.jpowsour.2023.232814_bib17
  article-title: A novel rotary serpentine flow field with improved electrolyte penetration and species distribution for vanadium redox flow battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.137089
– volume: 181
  start-page: 13
  year: 2015
  ident: 10.1016/j.jpowsour.2023.232814_bib23
  article-title: Numerical study of the effects of carbon felt electrode compression in all-vanadium redox flow batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.02.212
– volume: 53
  start-page: 8087
  year: 2008
  ident: 10.1016/j.jpowsour.2023.232814_bib32
  article-title: A dynamic performance model for redox-flow batteries involving soluble species
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.05.067
– volume: 49
  start-page: 40
  year: 2015
  ident: 10.1016/j.jpowsour.2023.232814_bib29
  article-title: Fundamental models for flow batteries
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2015.02.001
– volume: 299
  start-page: 202
  year: 2015
  ident: 10.1016/j.jpowsour.2023.232814_bib34
  article-title: A transient electrochemical model incorporating the Donnan effect for all-vanadium redox flow batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.08.100
– volume: 236–238
  start-page: 604
  year: 2011
  ident: 10.1016/j.jpowsour.2023.232814_bib15
  article-title: Numerical simulation and experiment on the electrolyte flow distribution for all vanadium redox flow battery
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.236-238.604
– volume: 36
  start-page: 2242
  year: 2011
  ident: 10.1016/j.jpowsour.2023.232814_bib31
  article-title: Analysis of a model for the operation of a vanadium redox battery
  publication-title: Energy
  doi: 10.1016/j.energy.2010.03.060
– volume: 204
  start-page: 373
  year: 2017
  ident: 10.1016/j.jpowsour.2023.232814_bib6
  article-title: The benefits and limitations of electrolyte mixing in vanadium flow batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.07.049
– volume: 64
  start-page: 782
  year: 2018
  ident: 10.1016/j.jpowsour.2023.232814_bib27
  article-title: Flow field design and optimization of high power density vanadium flow batteries: a novel trapezoid flow battery
  publication-title: AIChE J.
  doi: 10.1002/aic.15959
– volume: 46
  start-page: 2199
  year: 2017
  ident: 10.1016/j.jpowsour.2023.232814_bib4
  article-title: Porous membranes in secondary battery technologies
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00823B
– volume: 136
  year: 2020
  ident: 10.1016/j.jpowsour.2023.232814_bib8
  article-title: Optimal operational strategy for a vanadium redox flow battery
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106805
– volume: 32
  year: 2020
  ident: 10.1016/j.jpowsour.2023.232814_bib36
  article-title: Numerical investigations of effects of the interdigitated channel spacing on overall performance of vanadium redox flow batteries
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101781
– volume: 8
  start-page: 91
  year: 2016
  ident: 10.1016/j.jpowsour.2023.232814_bib24
  article-title: The effect of felt compression on the performance and pressure drop of all-vanadium redox flow batteries
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2016.10.003
– volume: 32
  year: 2020
  ident: 10.1016/j.jpowsour.2023.232814_bib13
  article-title: Numerical study on serpentine design flow channel configurations for vanadium redox flow batteries
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101802
– volume: 159
  start-page: A1446
  year: 2012
  ident: 10.1016/j.jpowsour.2023.232814_bib33
  article-title: A transient vanadium flow battery model incorporating vanadium crossover and water transport through the membrane
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.017209jes
– volume: 58
  start-page: 238
  year: 2011
  ident: 10.1016/j.jpowsour.2023.232814_bib35
  article-title: A three-dimensional model for negative half cell of the vanadium redox flow battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.09.042
– volume: 8
  start-page: 1658
  year: 2017
  ident: 10.1016/j.jpowsour.2023.232814_bib9
  article-title: State of charge estimation of vanadium redox flow battery based on sliding mode observer and dynamic model including capacity fading factor
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2017.2699288
– volume: 136
  start-page: 576
  year: 2014
  ident: 10.1016/j.jpowsour.2023.232814_bib11
  article-title: A novel high-energy-density positive electrolyte with multiple redox couples for redox flow batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.09.076
– volume: 44
  start-page: 29483
  year: 2019
  ident: 10.1016/j.jpowsour.2023.232814_bib37
  article-title: Numerical simulation of the power-based efficiency in vanadium redox flow battery with different serpentine channel size
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.05.013
SSID ssj0001170
Score 2.5030875
Snippet The porous electrode of vanadium redox flow batteries (VRBs) is subject to deformation due to mechanical stress during stack assembling. The forces compress...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 232814
SubjectTerms Battery design
Electrochemical model
Flow channel
Numerical study
Uneven electrode deformation
Vanadium redox flow battery
Title Numerical analysis of vanadium redox flow batteries considering electrode deformation under various flow fields
URI https://dx.doi.org/10.1016/j.jpowsour.2023.232814
https://research.chalmers.se/publication/534959
Volume 564
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQvdBD1ZZW5VHkQ6_ZdeJHnCNCoAXavQASN8uPsWC13az2AT31t9eOne32UHHgmCjjROPRzDgz830IfZPalY0O3s_U1BYhQtSFFswUBKRpiHcho4gV3R9jMbpjV_f8fged9bMwsa0y-_7k0ztvne8MszaH88fH4Q2hwdhCth2SaFLKNMHO6mjlg99_2zwis0pXSQinpfj01pTwZDCZt8_xJ_kgkogPQnIhS_bfALWNJNpFn4v36F1OG_Fp-rIPaAdmH9HbLTDBfdSO16n6MsU6I43g1uOnrqtr_RNHZNBf2E_bZ2w6UM1wRsY283WGFXBmxHGAHWxmGnEcMluEVRaxWTaJd11vy0_o7uL89mxUZDqFwlIpVwU13kElNPNegq6dtZ4K2WjvawLMUq2lFE4zHkubhDtTUh-OqSx4ASksE_Qz2p21M_iCsLYcKq8F-JCNlFBLBpz44CwACKtdc4B4r0NlM9Z4pLyYqr6pbKJ63auoe5V0f4CGG7l5Qtt4UaLpt0j9YzcqhIQXZb-nPd28K2JtZ5ClB2UfOgabpVqCkpqDrqhXvGK1Yg6saoitlKNcGCDWeeMOX_EpR2gvXqUy1THaXS3W8DVkOytz0pnzCXpzenk9Gv8BrK0E7w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbQcoAeqpYWFdqCD1yz68SPOEeEipay7AWQuFl-jAWrZbPaR-nPr504q-VQceCaaBxrPJoZZ2a-D6EzqV1e6eD9TEltFiJEmWnBTEZAmop4FzKKWNG9GYvhPfv9wB920EU3CxPbKpPvb316463Tk0HS5mD-9DS4JTQYW8i2QxJNchkn2HcjOhXvod3zq-vheOOQI7lKU0wIF6YosDUoPOlP5vVL_E_ejzzi_ZBfyJz9N0Ztg4k2AejyE_qYMkd83m7uM9qB2QH6sIUn-AXV43VbgJlincBGcO3xn6axa_2MIzjoX-yn9Qs2Da5muCZjmyg7wwo4keI4wA42Y404zpktwiqL2C_bijeNb8uv6P7y193FMEuMCpmlUq4yaryDQmjmvQRdOms9FbLS3pcEmKVaSymcZjxWNwl3Jqc-3FRZcARSWCboIerN6hl8Q1hbDoXXAnxISHIoJQNOfPAXAISVrjpCvNOhsgluPLJeTFXXVzZRne5V1L1qdX-EBhu5eQu48aZE1R2RemU6KkSFN2VH7ZluvhXhthPO0qOyjw2JzVItQUnNQRfUK16wUjEHVlXEFspRLgwQ67xxx-_YyinaG97djNToanz9He3HN23V6gfqrRZr-BmSn5U5Scb9D4dLB6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analysis+of+vanadium+redox+flow+batteries+considering+electrode+deformation+under+various+flow+fields&rft.jtitle=Journal+of+power+sources&rft.au=Xiong%2C+Binyu&rft.au=Li%2C+Yang&rft.au=Ding%2C+Yuming&rft.au=Wang%2C+Jinsong&rft.date=2023-04-30&rft.issn=0378-7753&rft.volume=564&rft_id=info:doi/10.1016%2Fj.jpowsour.2023.232814&rft.externalDocID=oai_research_chalmers_se_8a5ea23f_5247_4dec_90c2_d356be0cdfbd
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon