Experimental study of aerodynamic damping in arrays of vibrating cantilevers

Cantilever structures vibrating in a fluid are encountered in numerous engineering applications. The aerodynamic loading from a fluid can have a large effect on both the resonance frequency and damping, and has been the subject of numerous studies. The aerodynamic loading on a single beam is altered...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluids and structures Vol. 25; no. 8; pp. 1334 - 1347
Main Authors Kimber, M., Lonergan, R., Garimella, S.V.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.11.2009
Elsevier
Subjects
Online AccessGet full text
ISSN0889-9746
1095-8622
DOI10.1016/j.jfluidstructs.2009.07.003

Cover

Abstract Cantilever structures vibrating in a fluid are encountered in numerous engineering applications. The aerodynamic loading from a fluid can have a large effect on both the resonance frequency and damping, and has been the subject of numerous studies. The aerodynamic loading on a single beam is altered when multiple beams are configured in an array. In such situations, neighboring beams interact through the fluid and their dynamic behavior is modified. In this work, aerodynamic interactions between neighboring cantilever beams operating near their first resonance mode and vibrating at amplitudes comparable to their widths are experimentally explored. The degree to which two beams become coupled through the fluid is found to be sensitive to vibration amplitude and proximity of neighboring components in the array. The cantilever beams considered are slender piezoelectric fans (approximately 6 cm in length), and are caused to vibrate in-phase and out-of-phase at frequencies near their fundamental resonance values. Aerodynamic damping is expressed in terms of the quality factor for two different array configurations and estimated for both in-phase and out-of-phase conditions. The two array configurations considered are for neighboring fans placed face-to-face and edge-to-edge. It is found that the damping is greatly influenced by proximity of neighboring fans and phase difference. For the face-to-face configuration, a reduction in damping is observed for in-phase vibration, while it is greatly increased for out-of-phase vibration; the opposite effect is seen for the edge-to-edge configuration. The resonance frequencies also show a dependence on the phase difference, but these changes are small compared to those observed for damping. Correlations are developed based on the experimental data which can be used to predict the aerodynamic damping in arrays of vibrating cantilevers. The distance at which the beams no longer interact is quantified for both array configurations. Understanding the fluid interactions between neighboring vibrating beams is essential for predicting the dynamic behavior of such arrays and designing them for practical applications.
AbstractList Cantilever structures vibrating in a fluid are encountered in numerous engineering applications. The aerodynamic loading from a fluid can have a large effect on both the resonance frequency and damping, and has been the subject of numerous studies. The aerodynamic loading on a single beam is altered when multiple beams are configured in an array. In such situations, neighboring beams interact through the fluid and their dynamic behavior is modified. In this work, aerodynamic interactions between neighboring cantilever beams operating near their first resonance mode and vibrating at amplitudes comparable to their widths are experimentally explored. The degree to which two beams become coupled through the fluid is found to be sensitive to vibration amplitude and proximity of neighboring components in the array. The cantilever beams considered are slender piezoelectric fans (approximately 6 cm in length), and are caused to vibrate in-phase and out-of-phase at frequencies near their fundamental resonance values. Aerodynamic damping is expressed in terms of the quality factor for two different array configurations and estimated for both in-phase and out-of-phase conditions. The two array configurations considered are for neighboring fans placed face-to-face and edge-to-edge. It is found that the damping is greatly influenced by proximity of neighboring fans and phase difference. For the face-to-face configuration, a reduction in damping is observed for in-phase vibration, while it is greatly increased for out-of-phase vibration; the opposite effect is seen for the edge-to-edge configuration. The resonance frequencies also show a dependence on the phase difference, but these changes are small compared to those observed for damping. Correlations are developed based on the experimental data which can be used to predict the aerodynamic damping in arrays of vibrating cantilevers. The distance at which the beams no longer interact is quantified for both array configurations. Understanding the fluid interactions between neighboring vibrating beams is essential for predicting the dynamic behavior of such arrays and designing them for practical applications.
Cantilever structures vibrating in a fluid are encountered in numerous engineering applications. The aerodynamic loading from a fluid can have a large effect on both the resonance frequency and damping, and has been the subject of numerous studies. The aerodynamic loading on a single beam is altered when multiple beams are configured in an array. In such situations, neighboring beams interact through the fluid and their dynamic behavior is modified. In this work, aerodynamic interactions between neighboring cantilever beams operating near their first resonance mode and vibrating at amplitudes comparable to their widths are experimentally explored. The degree to which two beams become coupled through the fluid is found to be sensitive to vibration amplitude and proximity of neighboring components in the array. The cantilever beams considered are slender piezoelectric fans (approximately 6 cm in length), and are caused to vibrate in-phase and out-of-phase at frequencies near their fundamental resonance values. Aerodynamic damping is expressed in terms of the quality factor for two different array configurations and estimated for both in-phase and out-of-phase conditions. The two array configurations considered are for neighboring fans placed face-to-face and edge-to-edge. It is found that the damping is greatly influenced by proximity of neighboring fans and phase difference. For the face-to-face configuration, a reduction in damping is observed for in-phase vibration, while it is greatly increased for out-of-phase vibration; the opposite effect is seen for the edge-to-edge configuration. The resonance frequencies also show a dependence on the phase difference, but these changes are small compared to those observed for damping. Correlations are developed based on the experimental data which can be used to predict the aerodynamic damping in arrays of vibrating cantilevers. The distance at which the beams no longer interact is quantified for both array configurations. Understanding the fluid interactions between neighboring vibrating beams is essential for predicting the dynamic behavior of such arrays and designing them for practical applications.
Author Kimber, M.
Lonergan, R.
Garimella, S.V.
Author_xml – sequence: 1
  givenname: M.
  surname: Kimber
  fullname: Kimber, M.
  email: mlk53@pitt.edu
– sequence: 2
  givenname: R.
  surname: Lonergan
  fullname: Lonergan, R.
– sequence: 3
  givenname: S.V.
  surname: Garimella
  fullname: Garimella, S.V.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22224217$$DView record in Pascal Francis
BookMark eNqNkMFqGzEQhkVJoE6ad1go7W23I8mrlegpBLcpGHppz0IZzRaZtdaVtKZ--8o4FJpT5jIwfP8P892wqzhHYuw9h44DV5923W6cluBzSQuW3AkA08HQAcg3bMXB9K1WQlyxFWhtWjOs1Vt2k_MOKriWfMW2mz8HSmFPsbipyWXxp2YeG0dp9qfo9gEb7_aHEH81ITYuJXfKZ-AYnpIr5zO6WMJER0r5Hbse3ZTp7nnfsp9fNj8eHtvt96_fHu63LUqtSyu1kiP1NI6gsEdvaK2M0VI_eY4KUSninNTghcHBoTCGg0cSoMfeG-jlLft46T2k-fdCudh9yEjT5CLNS7ZSSeiFgQp-eAZdRjeNyUUM2R7qwy6drKizFnyo3OcLh2nOOdH4D-Fgz6btzv5n2p5NWxhsNV3T9y_SGEqVM8eSXJhe2bG5dFD1dgyUbMZAEcmHRFisn8Orev4C2tWpeg
CODEN JFSTEF
CitedBy_id crossref_primary_10_1016_j_euromechflu_2013_08_006
crossref_primary_10_1016_j_jfluidstructs_2015_09_010
crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_086
crossref_primary_10_1063_5_0055382
crossref_primary_10_1007_s11431_017_9084_2
crossref_primary_10_7242_1999_6691_2022_15_4_33
crossref_primary_10_1016_j_jsv_2018_02_006
crossref_primary_10_1016_j_icheatmasstransfer_2015_05_008
crossref_primary_10_1063_1_5136256
crossref_primary_10_3390_act11010020
crossref_primary_10_1103_PhysRevFluids_3_074801
crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_004
crossref_primary_10_1016_j_ijmecsci_2017_09_034
crossref_primary_10_1063_5_0056363
crossref_primary_10_1016_j_jsv_2011_12_007
crossref_primary_10_1016_j_icheatmasstransfer_2013_11_013
crossref_primary_10_1016_j_nanoen_2021_106745
crossref_primary_10_1007_s11029_014_9413_3
crossref_primary_10_1134_S1995080220070094
crossref_primary_10_1051_matecconf_201821111004
crossref_primary_10_1016_j_microrel_2016_11_011
crossref_primary_10_3390_s21216961
crossref_primary_10_1063_1_5046545
crossref_primary_10_1016_j_ijheatmasstransfer_2012_02_017
crossref_primary_10_1016_j_engfailanal_2017_02_021
crossref_primary_10_1016_j_jfluidstructs_2014_10_004
crossref_primary_10_1016_j_jfluidstructs_2011_02_003
crossref_primary_10_1109_TCPMT_2013_2251759
crossref_primary_10_1016_j_ijheatmasstransfer_2012_05_024
crossref_primary_10_1016_j_jfluidstructs_2011_12_010
crossref_primary_10_1016_j_jfluidstructs_2013_01_008
crossref_primary_10_1088_1742_6596_1296_1_012002
crossref_primary_10_1080_19942060_2021_2005683
crossref_primary_10_1063_1_3405720
crossref_primary_10_1088_0964_1726_23_4_045015
crossref_primary_10_1007_s00231_017_2019_2
crossref_primary_10_1016_j_icheatmasstransfer_2021_105651
crossref_primary_10_1016_j_jfluidstructs_2014_07_016
crossref_primary_10_1016_j_jfluidstructs_2017_06_010
crossref_primary_10_1016_j_apenergy_2018_02_014
crossref_primary_10_1016_j_icheatmasstransfer_2022_106602
crossref_primary_10_1115_1_4065151
crossref_primary_10_1063_1_4730383
crossref_primary_10_1016_j_ijheatmasstransfer_2014_07_023
crossref_primary_10_1016_j_icheatmasstransfer_2013_02_013
crossref_primary_10_1016_j_ijthermalsci_2016_06_030
crossref_primary_10_1016_j_jfluidstructs_2020_103203
crossref_primary_10_1088_1742_6596_2108_1_012010
crossref_primary_10_1016_j_cpc_2018_07_017
Cites_doi 10.1063/1.2423254
10.1063/1.368002
10.1115/1.1421054
10.1115/1.3153579
10.1103/PhysRevLett.56.930
10.1063/1.2202232
10.1242/jeb.01744
10.1122/1.1475978
10.1109/TNANO.2002.1005425
10.1017/S0022112009007228
10.1116/1.1421572
10.1016/S0022-460X(03)00383-3
10.1115/1.2740655
10.1016/0022-460X(87)90366-X
10.1016/S0376-0421(98)00016-5
10.1016/S0889-9746(94)90060-4
10.1080/01457630490248223
10.1073/pnas.0602022103
ContentType Journal Article
Copyright 2009 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.jfluidstructs.2009.07.003
DatabaseName CrossRef
Pascal-Francis
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1095-8622
EndPage 1347
ExternalDocumentID 22224217
10_1016_j_jfluidstructs_2009_07_003
S088997460900098X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~A~
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c388t-3863fe5eff06c5cd9e4699838bd1c6cc66e11e67d29c7ac29910dce208f5d9053
IEDL.DBID .~1
ISSN 0889-9746
IngestDate Fri Sep 05 14:27:24 EDT 2025
Mon Jul 21 09:17:10 EDT 2025
Tue Jul 01 00:47:11 EDT 2025
Thu Apr 24 23:00:44 EDT 2025
Fri Feb 23 02:35:25 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Fluid coupling
Aerodynamic damping
Fluid–structure interaction
Piezoelectric fans
Vibrating cantilevers
Vibration
Fluid dynamics
Q factor
Phase shift
Aerodynamics
Experimental study
Fluid-structure interaction
Cantilever beam
Natural frequency
Fan
Resonance frequency
Piezoelectricity
Slender beam
Resonance
Electromechanical properties
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-3863fe5eff06c5cd9e4699838bd1c6cc66e11e67d29c7ac29910dce208f5d9053
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 36305290
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_36305290
pascalfrancis_primary_22224217
crossref_primary_10_1016_j_jfluidstructs_2009_07_003
crossref_citationtrail_10_1016_j_jfluidstructs_2009_07_003
elsevier_sciencedirect_doi_10_1016_j_jfluidstructs_2009_07_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-11-01
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Journal of fluids and structures
PublicationYear 2009
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Jeong, Yoo, Lee (bib15) 2004; 272
Vettiger, Cross, Despont, Drechsler, Durig, Gotsmann, Haberle, Lantz, Rothuizen, Stutz, Binnig (bib22) 2002; 1
Boskovic, Chon, Mulvaney, Sader (bib7) 2002; 46
Ihara, Watanabe (bib13) 1994; 8
Basak, Raman (bib2) 2007; 19
Fu, Price (bib10) 1987; 118
Paidoussis, M.P., 2004. Fluid–Structure Interactions: Slender Structures and Axial Flow, vol. 2. Elsevier Academic Press, London, England.
Ewins (bib8) 2000
Açıkalın, Wait, Garimella, Raman (bib1) 2004; 25
Binnig, Quate, Gerber (bib5) 1986; 56
Basak, Raman, Garimella (bib3) 2006; 99
.
Bidkar, Kimber, Raman, Bajaj, Garimella (bib4) 2009; 634
Hosaka, Itao (bib12) 2002; 124
Lehmann, Sane, Dickinson (bib18) 2005; 208
Figliola, Beasley (bib9) 2006
Blevins (bib6) 1990
Ilic, Czaplewski, Zalalutdinov, Craighead, Neuzil, Campagnolo, Batt (bib14) 2001; 19
Kimber, Garimella, Raman (bib16) 2007; 129
Kimber, M., Garimella, S.V., 2009. Cooling performance of arrays of vibrating cantilevers. ASME Journal of Heat Transfer 131, 111401
Gupta, Nair, Akin, Ladisch, Broyles, Alam, Bashir (bib11) 2006; 103
Sader (bib20) 1998; 84
Shyy, Berg, Ljungqvist (bib21) 1999; 35
Binnig (10.1016/j.jfluidstructs.2009.07.003_bib5) 1986; 56
Fu (10.1016/j.jfluidstructs.2009.07.003_bib10) 1987; 118
Vettiger (10.1016/j.jfluidstructs.2009.07.003_bib22) 2002; 1
Boskovic (10.1016/j.jfluidstructs.2009.07.003_bib7) 2002; 46
10.1016/j.jfluidstructs.2009.07.003_bib19
Gupta (10.1016/j.jfluidstructs.2009.07.003_bib11) 2006; 103
10.1016/j.jfluidstructs.2009.07.003_bib17
Ihara (10.1016/j.jfluidstructs.2009.07.003_bib13) 1994; 8
Shyy (10.1016/j.jfluidstructs.2009.07.003_bib21) 1999; 35
Açıkalın (10.1016/j.jfluidstructs.2009.07.003_bib1) 2004; 25
Basak (10.1016/j.jfluidstructs.2009.07.003_bib2) 2007; 19
Figliola (10.1016/j.jfluidstructs.2009.07.003_bib9) 2006
Bidkar (10.1016/j.jfluidstructs.2009.07.003_bib4) 2009; 634
Sader (10.1016/j.jfluidstructs.2009.07.003_bib20) 1998; 84
Ilic (10.1016/j.jfluidstructs.2009.07.003_bib14) 2001; 19
Ewins (10.1016/j.jfluidstructs.2009.07.003_bib8) 2000
Kimber (10.1016/j.jfluidstructs.2009.07.003_bib16) 2007; 129
Hosaka (10.1016/j.jfluidstructs.2009.07.003_bib12) 2002; 124
Jeong (10.1016/j.jfluidstructs.2009.07.003_bib15) 2004; 272
Lehmann (10.1016/j.jfluidstructs.2009.07.003_bib18) 2005; 208
Blevins (10.1016/j.jfluidstructs.2009.07.003_bib6) 1990
Basak (10.1016/j.jfluidstructs.2009.07.003_bib3) 2006; 99
References_xml – volume: 272
  start-page: 539
  year: 2004
  end-page: 555
  ident: bib15
  article-title: Hydroelastic vibration of two identical rectangular plates
  publication-title: Journal of Sound and Vibration
– reference: Kimber, M., Garimella, S.V., 2009. Cooling performance of arrays of vibrating cantilevers. ASME Journal of Heat Transfer 131, 111401,
– volume: 634
  start-page: 269
  year: 2009
  end-page: 289
  ident: bib4
  article-title: Nonlinear aerodynamic damping of sharp-edged beams at low Keulegan–Carpenter numbers
  publication-title: Journal of Fluid Mechanics
– year: 2000
  ident: bib8
  article-title: Modal Testing: Theory, Practice and Application
– volume: 129
  start-page: 1168
  year: 2007
  end-page: 1176
  ident: bib16
  article-title: Local heat transfer coefficients induced by piezoelectrically actuated vibrating cantilevers
  publication-title: ASME Journal of Heat Transfer
– year: 2006
  ident: bib9
  article-title: Theory and Design for Mechanical Measurements
– volume: 103
  start-page: 13362
  year: 2006
  end-page: 13367
  ident: bib11
  article-title: Anomalous resonance in a nanomechanical biosensor
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– reference: Paidoussis, M.P., 2004. Fluid–Structure Interactions: Slender Structures and Axial Flow, vol. 2. Elsevier Academic Press, London, England.
– volume: 56
  start-page: 930
  year: 1986
  end-page: 933
  ident: bib5
  article-title: Atomic force microscope
  publication-title: Physical Review Letters
– volume: 1
  start-page: 39
  year: 2002
  end-page: 55
  ident: bib22
  article-title: The “Millipede”-nanotechnology entering data storage
  publication-title: IEEE Transactions on Nanotechnology
– volume: 46
  start-page: 891
  year: 2002
  end-page: 899
  ident: bib7
  article-title: Rheological measurements using microcantilevers
  publication-title: Journal of Rheology
– volume: 25
  start-page: 4
  year: 2004
  end-page: 14
  ident: bib1
  article-title: Experimental investigation of the thermal performance of piezoelectric fans
  publication-title: Heat Transfer Engineering
– volume: 118
  start-page: 495
  year: 1987
  end-page: 513
  ident: bib10
  article-title: Interactions between a partially or totally immersed vibrating cantilever plate and the surrounding fluid
  publication-title: Journal of Sound and Vibration
– volume: 208
  start-page: 3075
  year: 2005
  end-page: 3092
  ident: bib18
  article-title: The aerodynamic effects of wing-wing interaction in flapping insect wings
  publication-title: Journal of Experimental Biology
– year: 1990
  ident: bib6
  article-title: Flow-Induced Vibration
– volume: 35
  start-page: 455
  year: 1999
  end-page: 505
  ident: bib21
  article-title: Flapping and flexible wings for biological and micro air vehicles
  publication-title: Progress in Aerospace Sciences
– volume: 19
  start-page: 017105
  year: 2007
  ident: bib2
  article-title: Hydrodynamic coupling between micromechanical beams oscillating in viscous fluids
  publication-title: Physics of Fluids
– volume: 99
  start-page: 114906
  year: 2006
  ident: bib3
  article-title: Hydrodynamic loading of microcantilevers vibrating in viscous fluids
  publication-title: Journal of Applied Physics
– volume: 124
  start-page: 26
  year: 2002
  end-page: 32
  ident: bib12
  article-title: Coupled vibration of microcantilever array induced by airflow force
  publication-title: ASME Journal of Vibration and Acoustics
– volume: 8
  start-page: 601
  year: 1994
  end-page: 619
  ident: bib13
  article-title: On the flow around flexible plates, oscillating with large amplitude
  publication-title: Journal of Fluids and Structures
– reference: .
– volume: 84
  start-page: 64
  year: 1998
  end-page: 76
  ident: bib20
  article-title: Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope
  publication-title: Journal of Applied Physics
– volume: 19
  start-page: 2825
  year: 2001
  end-page: 2828
  ident: bib14
  article-title: Single cell detection with micromechanical oscillators.
  publication-title: Journal of Vacuum Science and Technology B
– volume: 19
  start-page: 017105
  year: 2007
  ident: 10.1016/j.jfluidstructs.2009.07.003_bib2
  article-title: Hydrodynamic coupling between micromechanical beams oscillating in viscous fluids
  publication-title: Physics of Fluids
  doi: 10.1063/1.2423254
– volume: 84
  start-page: 64
  year: 1998
  ident: 10.1016/j.jfluidstructs.2009.07.003_bib20
  article-title: Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope
  publication-title: Journal of Applied Physics
  doi: 10.1063/1.368002
– volume: 124
  start-page: 26
  year: 2002
  ident: 10.1016/j.jfluidstructs.2009.07.003_bib12
  article-title: Coupled vibration of microcantilever array induced by airflow force
  publication-title: ASME Journal of Vibration and Acoustics
  doi: 10.1115/1.1421054
– ident: 10.1016/j.jfluidstructs.2009.07.003_bib17
  doi: 10.1115/1.3153579
– volume: 56
  start-page: 930
  year: 1986
  ident: 10.1016/j.jfluidstructs.2009.07.003_bib5
  article-title: Atomic force microscope
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.56.930
– year: 2006
  ident: 10.1016/j.jfluidstructs.2009.07.003_bib9
– year: 2000
  ident: 10.1016/j.jfluidstructs.2009.07.003_bib8
– volume: 99
  start-page: 114906
  year: 2006
  ident: 10.1016/j.jfluidstructs.2009.07.003_bib3
  article-title: Hydrodynamic loading of microcantilevers vibrating in viscous fluids
  publication-title: Journal of Applied Physics
  doi: 10.1063/1.2202232
– volume: 208
  start-page: 3075
  year: 2005
  ident: 10.1016/j.jfluidstructs.2009.07.003_bib18
  article-title: The aerodynamic effects of wing-wing interaction in flapping insect wings
  publication-title: Journal of Experimental Biology
  doi: 10.1242/jeb.01744
– volume: 46
  start-page: 891
  year: 2002
  ident: 10.1016/j.jfluidstructs.2009.07.003_bib7
  article-title: Rheological measurements using microcantilevers
  publication-title: Journal of Rheology
  doi: 10.1122/1.1475978
– volume: 1
  start-page: 39
  year: 2002
  ident: 10.1016/j.jfluidstructs.2009.07.003_bib22
  article-title: The “Millipede”-nanotechnology entering data storage
  publication-title: IEEE Transactions on Nanotechnology
  doi: 10.1109/TNANO.2002.1005425
– volume: 634
  start-page: 269
  year: 2009
  ident: 10.1016/j.jfluidstructs.2009.07.003_bib4
  article-title: Nonlinear aerodynamic damping of sharp-edged beams at low Keulegan–Carpenter numbers
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112009007228
– volume: 19
  start-page: 2825
  year: 2001
  ident: 10.1016/j.jfluidstructs.2009.07.003_bib14
  article-title: Single cell detection with micromechanical oscillators.
  publication-title: Journal of Vacuum Science and Technology B
  doi: 10.1116/1.1421572
– volume: 272
  start-page: 539
  year: 2004
  ident: 10.1016/j.jfluidstructs.2009.07.003_bib15
  article-title: Hydroelastic vibration of two identical rectangular plates
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/S0022-460X(03)00383-3
– volume: 129
  start-page: 1168
  year: 2007
  ident: 10.1016/j.jfluidstructs.2009.07.003_bib16
  article-title: Local heat transfer coefficients induced by piezoelectrically actuated vibrating cantilevers
  publication-title: ASME Journal of Heat Transfer
  doi: 10.1115/1.2740655
– ident: 10.1016/j.jfluidstructs.2009.07.003_bib19
– volume: 118
  start-page: 495
  year: 1987
  ident: 10.1016/j.jfluidstructs.2009.07.003_bib10
  article-title: Interactions between a partially or totally immersed vibrating cantilever plate and the surrounding fluid
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/0022-460X(87)90366-X
– year: 1990
  ident: 10.1016/j.jfluidstructs.2009.07.003_bib6
– volume: 35
  start-page: 455
  year: 1999
  ident: 10.1016/j.jfluidstructs.2009.07.003_bib21
  article-title: Flapping and flexible wings for biological and micro air vehicles
  publication-title: Progress in Aerospace Sciences
  doi: 10.1016/S0376-0421(98)00016-5
– volume: 8
  start-page: 601
  year: 1994
  ident: 10.1016/j.jfluidstructs.2009.07.003_bib13
  article-title: On the flow around flexible plates, oscillating with large amplitude
  publication-title: Journal of Fluids and Structures
  doi: 10.1016/S0889-9746(94)90060-4
– volume: 25
  start-page: 4
  year: 2004
  ident: 10.1016/j.jfluidstructs.2009.07.003_bib1
  article-title: Experimental investigation of the thermal performance of piezoelectric fans
  publication-title: Heat Transfer Engineering
  doi: 10.1080/01457630490248223
– volume: 103
  start-page: 13362
  year: 2006
  ident: 10.1016/j.jfluidstructs.2009.07.003_bib11
  article-title: Anomalous resonance in a nanomechanical biosensor
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0602022103
SSID ssj0009431
Score 2.1767223
Snippet Cantilever structures vibrating in a fluid are encountered in numerous engineering applications. The aerodynamic loading from a fluid can have a large effect...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1334
SubjectTerms Aerodynamic damping
Exact sciences and technology
Fluid coupling
Fluid dynamics
Fluid–structure interaction
Fundamental areas of phenomenology (including applications)
General theory
Physics
Piezoelectric fans
Solid mechanics
Structural and continuum mechanics
Vibrating cantilevers
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Title Experimental study of aerodynamic damping in arrays of vibrating cantilevers
URI https://dx.doi.org/10.1016/j.jfluidstructs.2009.07.003
https://www.proquest.com/docview/36305290
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEC5EQVZE1F1xVh0Deu2dnk46nXgQRJTxgRcV5tak84AR7RkcXdjL_nar-qEOIghemyQdqpKqCvXVVwD7LkkCFeVGWiZFRBRaeOe0i4QzwobCCB0qlO-VHNyK82E6nIPjthaGYJWN7a9temWtmy-9Rpq9yWjUuyaADkbDMqa-l1oNqYJdZHTW__x_g3loUfckJDQPjV6EvTeM1124fx65mql12pBXEqUh_8xLLU_MFGUX6qYXH-x35ZROV2GliSbZUb3hNZjz5TosveMY_AmXJ-84_FnFJsvGgRmPlrPuRs-ceaCqKTYqmXl8NP-mNOAvvaMJE81I-Gg7CL_xC25PT26OB1HTQiGyXKmniCvJg099CLG0qXXa43NYK64K17fSWil9v-9l5hJtM2PRN_VjZ30Sq5A6jRd0A-bLcek3gfmAb0klHC7FRSgyo2KbSo86sBk6uLQDB63Ictvwi1Obi_u8BZLd5TPypg6YOo8p_807IF4nT2qaja9NO2x1k8-cmhwdwtcW6M5o9PXnGDZRsjzrwG6r4hwvHmVTTOnHz9OcS05Z0vj3d_ewBT-qFFVV4LgN8zjC72Ck81R0q6PchYWjs4vB1Quj7wM2
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB-sgq0U0X7Qs1UD9nV7e5tsNvGhUEQ529MXFe4tZPMBJ3bv8LTQl_7tzuyHehRB8HVJsmEmmZkwv_kNwFefZZGKchMtszIhCi28c9onwlvhYmmFjjXK91QOL8TPcT5egoOuFoZgla3tb2x6ba3bL_1Wmv3ZZNI_I4AORsMypb6XWo1fwYrIeUG4vm__HnAeWjRNCQnOQ8NXYe8B5HUZr24nvqFqnbfslcRpyJ9yU29ndo7Ci03Xi_8MeO2VjjZgvQ0n2Y9mx5uwFKp3sPaIZPA9jA4fkfizmk6WTSOzAU1n046eefubyqbYpGL2-tr-ndOAP_SQJlA0I-mj8SAAxwe4ODo8PxgmbQ-FxHGlbhKuJI8hDzGm0uXO64DvYa24Kv3ASeekDINBkIXPtCusQ-c0SL0LWapi7jXe0I-wXE2r8AlYiPiYVMLjUlzEsrAqdbkMqARXoIfLe7Dficy4lmCc-lxcmQ5JdmkW5E0tMLVJKQHOeyDuJ88ano3nTfve6cYsHBuDHuF5C-wsaPT-5xg3Uba86MFup2KDN4_SKbYK09u54ZJTmjTdeukeduH18PxkZEbHp78-w5s6X1VXO36BZRwdtjHsuSl36mN9B4gTBMk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+study+of+aerodynamic+damping+in+arrays+of+vibrating+cantilevers&rft.jtitle=Journal+of+fluids+and+structures&rft.au=KIMBER%2C+M&rft.au=LONERGAN%2C+R&rft.au=GARIMELLA%2C+S.+V&rft.date=2009-11-01&rft.pub=Elsevier&rft.issn=0889-9746&rft.volume=25&rft.issue=8&rft.spage=1334&rft.epage=1347&rft_id=info:doi/10.1016%2Fj.jfluidstructs.2009.07.003&rft.externalDBID=n%2Fa&rft.externalDocID=22224217
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0889-9746&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0889-9746&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0889-9746&client=summon