Experimental study of aerodynamic damping in arrays of vibrating cantilevers
Cantilever structures vibrating in a fluid are encountered in numerous engineering applications. The aerodynamic loading from a fluid can have a large effect on both the resonance frequency and damping, and has been the subject of numerous studies. The aerodynamic loading on a single beam is altered...
Saved in:
Published in | Journal of fluids and structures Vol. 25; no. 8; pp. 1334 - 1347 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.11.2009
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0889-9746 1095-8622 |
DOI | 10.1016/j.jfluidstructs.2009.07.003 |
Cover
Abstract | Cantilever structures vibrating in a fluid are encountered in numerous engineering applications. The aerodynamic loading from a fluid can have a large effect on both the resonance frequency and damping, and has been the subject of numerous studies. The aerodynamic loading on a single beam is altered when multiple beams are configured in an array. In such situations, neighboring beams interact through the fluid and their dynamic behavior is modified. In this work, aerodynamic interactions between neighboring cantilever beams operating near their first resonance mode and vibrating at amplitudes comparable to their widths are experimentally explored. The degree to which two beams become coupled through the fluid is found to be sensitive to vibration amplitude and proximity of neighboring components in the array. The cantilever beams considered are slender piezoelectric fans (approximately 6
cm in length), and are caused to vibrate in-phase and out-of-phase at frequencies near their fundamental resonance values. Aerodynamic damping is expressed in terms of the quality factor for two different array configurations and estimated for both in-phase and out-of-phase conditions. The two array configurations considered are for neighboring fans placed face-to-face and edge-to-edge. It is found that the damping is greatly influenced by proximity of neighboring fans and phase difference. For the face-to-face configuration, a reduction in damping is observed for in-phase vibration, while it is greatly increased for out-of-phase vibration; the opposite effect is seen for the edge-to-edge configuration. The resonance frequencies also show a dependence on the phase difference, but these changes are small compared to those observed for damping. Correlations are developed based on the experimental data which can be used to predict the aerodynamic damping in arrays of vibrating cantilevers. The distance at which the beams no longer interact is quantified for both array configurations. Understanding the fluid interactions between neighboring vibrating beams is essential for predicting the dynamic behavior of such arrays and designing them for practical applications. |
---|---|
AbstractList | Cantilever structures vibrating in a fluid are encountered in numerous engineering applications. The aerodynamic loading from a fluid can have a large effect on both the resonance frequency and damping, and has been the subject of numerous studies. The aerodynamic loading on a single beam is altered when multiple beams are configured in an array. In such situations, neighboring beams interact through the fluid and their dynamic behavior is modified. In this work, aerodynamic interactions between neighboring cantilever beams operating near their first resonance mode and vibrating at amplitudes comparable to their widths are experimentally explored. The degree to which two beams become coupled through the fluid is found to be sensitive to vibration amplitude and proximity of neighboring components in the array. The cantilever beams considered are slender piezoelectric fans (approximately 6
cm in length), and are caused to vibrate in-phase and out-of-phase at frequencies near their fundamental resonance values. Aerodynamic damping is expressed in terms of the quality factor for two different array configurations and estimated for both in-phase and out-of-phase conditions. The two array configurations considered are for neighboring fans placed face-to-face and edge-to-edge. It is found that the damping is greatly influenced by proximity of neighboring fans and phase difference. For the face-to-face configuration, a reduction in damping is observed for in-phase vibration, while it is greatly increased for out-of-phase vibration; the opposite effect is seen for the edge-to-edge configuration. The resonance frequencies also show a dependence on the phase difference, but these changes are small compared to those observed for damping. Correlations are developed based on the experimental data which can be used to predict the aerodynamic damping in arrays of vibrating cantilevers. The distance at which the beams no longer interact is quantified for both array configurations. Understanding the fluid interactions between neighboring vibrating beams is essential for predicting the dynamic behavior of such arrays and designing them for practical applications. Cantilever structures vibrating in a fluid are encountered in numerous engineering applications. The aerodynamic loading from a fluid can have a large effect on both the resonance frequency and damping, and has been the subject of numerous studies. The aerodynamic loading on a single beam is altered when multiple beams are configured in an array. In such situations, neighboring beams interact through the fluid and their dynamic behavior is modified. In this work, aerodynamic interactions between neighboring cantilever beams operating near their first resonance mode and vibrating at amplitudes comparable to their widths are experimentally explored. The degree to which two beams become coupled through the fluid is found to be sensitive to vibration amplitude and proximity of neighboring components in the array. The cantilever beams considered are slender piezoelectric fans (approximately 6 cm in length), and are caused to vibrate in-phase and out-of-phase at frequencies near their fundamental resonance values. Aerodynamic damping is expressed in terms of the quality factor for two different array configurations and estimated for both in-phase and out-of-phase conditions. The two array configurations considered are for neighboring fans placed face-to-face and edge-to-edge. It is found that the damping is greatly influenced by proximity of neighboring fans and phase difference. For the face-to-face configuration, a reduction in damping is observed for in-phase vibration, while it is greatly increased for out-of-phase vibration; the opposite effect is seen for the edge-to-edge configuration. The resonance frequencies also show a dependence on the phase difference, but these changes are small compared to those observed for damping. Correlations are developed based on the experimental data which can be used to predict the aerodynamic damping in arrays of vibrating cantilevers. The distance at which the beams no longer interact is quantified for both array configurations. Understanding the fluid interactions between neighboring vibrating beams is essential for predicting the dynamic behavior of such arrays and designing them for practical applications. |
Author | Kimber, M. Lonergan, R. Garimella, S.V. |
Author_xml | – sequence: 1 givenname: M. surname: Kimber fullname: Kimber, M. email: mlk53@pitt.edu – sequence: 2 givenname: R. surname: Lonergan fullname: Lonergan, R. – sequence: 3 givenname: S.V. surname: Garimella fullname: Garimella, S.V. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22224217$$DView record in Pascal Francis |
BookMark | eNqNkMFqGzEQhkVJoE6ad1go7W23I8mrlegpBLcpGHppz0IZzRaZtdaVtKZ--8o4FJpT5jIwfP8P892wqzhHYuw9h44DV5923W6cluBzSQuW3AkA08HQAcg3bMXB9K1WQlyxFWhtWjOs1Vt2k_MOKriWfMW2mz8HSmFPsbipyWXxp2YeG0dp9qfo9gEb7_aHEH81ITYuJXfKZ-AYnpIr5zO6WMJER0r5Hbse3ZTp7nnfsp9fNj8eHtvt96_fHu63LUqtSyu1kiP1NI6gsEdvaK2M0VI_eY4KUSninNTghcHBoTCGg0cSoMfeG-jlLft46T2k-fdCudh9yEjT5CLNS7ZSSeiFgQp-eAZdRjeNyUUM2R7qwy6drKizFnyo3OcLh2nOOdH4D-Fgz6btzv5n2p5NWxhsNV3T9y_SGEqVM8eSXJhe2bG5dFD1dgyUbMZAEcmHRFisn8Orev4C2tWpeg |
CODEN | JFSTEF |
CitedBy_id | crossref_primary_10_1016_j_euromechflu_2013_08_006 crossref_primary_10_1016_j_jfluidstructs_2015_09_010 crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_086 crossref_primary_10_1063_5_0055382 crossref_primary_10_1007_s11431_017_9084_2 crossref_primary_10_7242_1999_6691_2022_15_4_33 crossref_primary_10_1016_j_jsv_2018_02_006 crossref_primary_10_1016_j_icheatmasstransfer_2015_05_008 crossref_primary_10_1063_1_5136256 crossref_primary_10_3390_act11010020 crossref_primary_10_1103_PhysRevFluids_3_074801 crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_004 crossref_primary_10_1016_j_ijmecsci_2017_09_034 crossref_primary_10_1063_5_0056363 crossref_primary_10_1016_j_jsv_2011_12_007 crossref_primary_10_1016_j_icheatmasstransfer_2013_11_013 crossref_primary_10_1016_j_nanoen_2021_106745 crossref_primary_10_1007_s11029_014_9413_3 crossref_primary_10_1134_S1995080220070094 crossref_primary_10_1051_matecconf_201821111004 crossref_primary_10_1016_j_microrel_2016_11_011 crossref_primary_10_3390_s21216961 crossref_primary_10_1063_1_5046545 crossref_primary_10_1016_j_ijheatmasstransfer_2012_02_017 crossref_primary_10_1016_j_engfailanal_2017_02_021 crossref_primary_10_1016_j_jfluidstructs_2014_10_004 crossref_primary_10_1016_j_jfluidstructs_2011_02_003 crossref_primary_10_1109_TCPMT_2013_2251759 crossref_primary_10_1016_j_ijheatmasstransfer_2012_05_024 crossref_primary_10_1016_j_jfluidstructs_2011_12_010 crossref_primary_10_1016_j_jfluidstructs_2013_01_008 crossref_primary_10_1088_1742_6596_1296_1_012002 crossref_primary_10_1080_19942060_2021_2005683 crossref_primary_10_1063_1_3405720 crossref_primary_10_1088_0964_1726_23_4_045015 crossref_primary_10_1007_s00231_017_2019_2 crossref_primary_10_1016_j_icheatmasstransfer_2021_105651 crossref_primary_10_1016_j_jfluidstructs_2014_07_016 crossref_primary_10_1016_j_jfluidstructs_2017_06_010 crossref_primary_10_1016_j_apenergy_2018_02_014 crossref_primary_10_1016_j_icheatmasstransfer_2022_106602 crossref_primary_10_1115_1_4065151 crossref_primary_10_1063_1_4730383 crossref_primary_10_1016_j_ijheatmasstransfer_2014_07_023 crossref_primary_10_1016_j_icheatmasstransfer_2013_02_013 crossref_primary_10_1016_j_ijthermalsci_2016_06_030 crossref_primary_10_1016_j_jfluidstructs_2020_103203 crossref_primary_10_1088_1742_6596_2108_1_012010 crossref_primary_10_1016_j_cpc_2018_07_017 |
Cites_doi | 10.1063/1.2423254 10.1063/1.368002 10.1115/1.1421054 10.1115/1.3153579 10.1103/PhysRevLett.56.930 10.1063/1.2202232 10.1242/jeb.01744 10.1122/1.1475978 10.1109/TNANO.2002.1005425 10.1017/S0022112009007228 10.1116/1.1421572 10.1016/S0022-460X(03)00383-3 10.1115/1.2740655 10.1016/0022-460X(87)90366-X 10.1016/S0376-0421(98)00016-5 10.1016/S0889-9746(94)90060-4 10.1080/01457630490248223 10.1073/pnas.0602022103 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2009 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.jfluidstructs.2009.07.003 |
DatabaseName | CrossRef Pascal-Francis Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1095-8622 |
EndPage | 1347 |
ExternalDocumentID | 22224217 10_1016_j_jfluidstructs_2009_07_003 S088997460900098X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LG5 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SST SSZ T5K TN5 VH1 WUQ XPP ZMT ~A~ ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7TB 8FD FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c388t-3863fe5eff06c5cd9e4699838bd1c6cc66e11e67d29c7ac29910dce208f5d9053 |
IEDL.DBID | .~1 |
ISSN | 0889-9746 |
IngestDate | Fri Sep 05 14:27:24 EDT 2025 Mon Jul 21 09:17:10 EDT 2025 Tue Jul 01 00:47:11 EDT 2025 Thu Apr 24 23:00:44 EDT 2025 Fri Feb 23 02:35:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Fluid coupling Aerodynamic damping Fluid–structure interaction Piezoelectric fans Vibrating cantilevers Vibration Fluid dynamics Q factor Phase shift Aerodynamics Experimental study Fluid-structure interaction Cantilever beam Natural frequency Fan Resonance frequency Piezoelectricity Slender beam Resonance Electromechanical properties |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-3863fe5eff06c5cd9e4699838bd1c6cc66e11e67d29c7ac29910dce208f5d9053 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 36305290 |
PQPubID | 23500 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_36305290 pascalfrancis_primary_22224217 crossref_primary_10_1016_j_jfluidstructs_2009_07_003 crossref_citationtrail_10_1016_j_jfluidstructs_2009_07_003 elsevier_sciencedirect_doi_10_1016_j_jfluidstructs_2009_07_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-11-01 |
PublicationDateYYYYMMDD | 2009-11-01 |
PublicationDate_xml | – month: 11 year: 2009 text: 2009-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Journal of fluids and structures |
PublicationYear | 2009 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Jeong, Yoo, Lee (bib15) 2004; 272 Vettiger, Cross, Despont, Drechsler, Durig, Gotsmann, Haberle, Lantz, Rothuizen, Stutz, Binnig (bib22) 2002; 1 Boskovic, Chon, Mulvaney, Sader (bib7) 2002; 46 Ihara, Watanabe (bib13) 1994; 8 Basak, Raman (bib2) 2007; 19 Fu, Price (bib10) 1987; 118 Paidoussis, M.P., 2004. Fluid–Structure Interactions: Slender Structures and Axial Flow, vol. 2. Elsevier Academic Press, London, England. Ewins (bib8) 2000 Açıkalın, Wait, Garimella, Raman (bib1) 2004; 25 Binnig, Quate, Gerber (bib5) 1986; 56 Basak, Raman, Garimella (bib3) 2006; 99 . Bidkar, Kimber, Raman, Bajaj, Garimella (bib4) 2009; 634 Hosaka, Itao (bib12) 2002; 124 Lehmann, Sane, Dickinson (bib18) 2005; 208 Figliola, Beasley (bib9) 2006 Blevins (bib6) 1990 Ilic, Czaplewski, Zalalutdinov, Craighead, Neuzil, Campagnolo, Batt (bib14) 2001; 19 Kimber, Garimella, Raman (bib16) 2007; 129 Kimber, M., Garimella, S.V., 2009. Cooling performance of arrays of vibrating cantilevers. ASME Journal of Heat Transfer 131, 111401 Gupta, Nair, Akin, Ladisch, Broyles, Alam, Bashir (bib11) 2006; 103 Sader (bib20) 1998; 84 Shyy, Berg, Ljungqvist (bib21) 1999; 35 Binnig (10.1016/j.jfluidstructs.2009.07.003_bib5) 1986; 56 Fu (10.1016/j.jfluidstructs.2009.07.003_bib10) 1987; 118 Vettiger (10.1016/j.jfluidstructs.2009.07.003_bib22) 2002; 1 Boskovic (10.1016/j.jfluidstructs.2009.07.003_bib7) 2002; 46 10.1016/j.jfluidstructs.2009.07.003_bib19 Gupta (10.1016/j.jfluidstructs.2009.07.003_bib11) 2006; 103 10.1016/j.jfluidstructs.2009.07.003_bib17 Ihara (10.1016/j.jfluidstructs.2009.07.003_bib13) 1994; 8 Shyy (10.1016/j.jfluidstructs.2009.07.003_bib21) 1999; 35 Açıkalın (10.1016/j.jfluidstructs.2009.07.003_bib1) 2004; 25 Basak (10.1016/j.jfluidstructs.2009.07.003_bib2) 2007; 19 Figliola (10.1016/j.jfluidstructs.2009.07.003_bib9) 2006 Bidkar (10.1016/j.jfluidstructs.2009.07.003_bib4) 2009; 634 Sader (10.1016/j.jfluidstructs.2009.07.003_bib20) 1998; 84 Ilic (10.1016/j.jfluidstructs.2009.07.003_bib14) 2001; 19 Ewins (10.1016/j.jfluidstructs.2009.07.003_bib8) 2000 Kimber (10.1016/j.jfluidstructs.2009.07.003_bib16) 2007; 129 Hosaka (10.1016/j.jfluidstructs.2009.07.003_bib12) 2002; 124 Jeong (10.1016/j.jfluidstructs.2009.07.003_bib15) 2004; 272 Lehmann (10.1016/j.jfluidstructs.2009.07.003_bib18) 2005; 208 Blevins (10.1016/j.jfluidstructs.2009.07.003_bib6) 1990 Basak (10.1016/j.jfluidstructs.2009.07.003_bib3) 2006; 99 |
References_xml | – volume: 272 start-page: 539 year: 2004 end-page: 555 ident: bib15 article-title: Hydroelastic vibration of two identical rectangular plates publication-title: Journal of Sound and Vibration – reference: Kimber, M., Garimella, S.V., 2009. Cooling performance of arrays of vibrating cantilevers. ASME Journal of Heat Transfer 131, 111401, – volume: 634 start-page: 269 year: 2009 end-page: 289 ident: bib4 article-title: Nonlinear aerodynamic damping of sharp-edged beams at low Keulegan–Carpenter numbers publication-title: Journal of Fluid Mechanics – year: 2000 ident: bib8 article-title: Modal Testing: Theory, Practice and Application – volume: 129 start-page: 1168 year: 2007 end-page: 1176 ident: bib16 article-title: Local heat transfer coefficients induced by piezoelectrically actuated vibrating cantilevers publication-title: ASME Journal of Heat Transfer – year: 2006 ident: bib9 article-title: Theory and Design for Mechanical Measurements – volume: 103 start-page: 13362 year: 2006 end-page: 13367 ident: bib11 article-title: Anomalous resonance in a nanomechanical biosensor publication-title: Proceedings of the National Academy of Sciences of the United States of America – reference: Paidoussis, M.P., 2004. Fluid–Structure Interactions: Slender Structures and Axial Flow, vol. 2. Elsevier Academic Press, London, England. – volume: 56 start-page: 930 year: 1986 end-page: 933 ident: bib5 article-title: Atomic force microscope publication-title: Physical Review Letters – volume: 1 start-page: 39 year: 2002 end-page: 55 ident: bib22 article-title: The “Millipede”-nanotechnology entering data storage publication-title: IEEE Transactions on Nanotechnology – volume: 46 start-page: 891 year: 2002 end-page: 899 ident: bib7 article-title: Rheological measurements using microcantilevers publication-title: Journal of Rheology – volume: 25 start-page: 4 year: 2004 end-page: 14 ident: bib1 article-title: Experimental investigation of the thermal performance of piezoelectric fans publication-title: Heat Transfer Engineering – volume: 118 start-page: 495 year: 1987 end-page: 513 ident: bib10 article-title: Interactions between a partially or totally immersed vibrating cantilever plate and the surrounding fluid publication-title: Journal of Sound and Vibration – volume: 208 start-page: 3075 year: 2005 end-page: 3092 ident: bib18 article-title: The aerodynamic effects of wing-wing interaction in flapping insect wings publication-title: Journal of Experimental Biology – year: 1990 ident: bib6 article-title: Flow-Induced Vibration – volume: 35 start-page: 455 year: 1999 end-page: 505 ident: bib21 article-title: Flapping and flexible wings for biological and micro air vehicles publication-title: Progress in Aerospace Sciences – volume: 19 start-page: 017105 year: 2007 ident: bib2 article-title: Hydrodynamic coupling between micromechanical beams oscillating in viscous fluids publication-title: Physics of Fluids – volume: 99 start-page: 114906 year: 2006 ident: bib3 article-title: Hydrodynamic loading of microcantilevers vibrating in viscous fluids publication-title: Journal of Applied Physics – volume: 124 start-page: 26 year: 2002 end-page: 32 ident: bib12 article-title: Coupled vibration of microcantilever array induced by airflow force publication-title: ASME Journal of Vibration and Acoustics – volume: 8 start-page: 601 year: 1994 end-page: 619 ident: bib13 article-title: On the flow around flexible plates, oscillating with large amplitude publication-title: Journal of Fluids and Structures – reference: . – volume: 84 start-page: 64 year: 1998 end-page: 76 ident: bib20 article-title: Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope publication-title: Journal of Applied Physics – volume: 19 start-page: 2825 year: 2001 end-page: 2828 ident: bib14 article-title: Single cell detection with micromechanical oscillators. publication-title: Journal of Vacuum Science and Technology B – volume: 19 start-page: 017105 year: 2007 ident: 10.1016/j.jfluidstructs.2009.07.003_bib2 article-title: Hydrodynamic coupling between micromechanical beams oscillating in viscous fluids publication-title: Physics of Fluids doi: 10.1063/1.2423254 – volume: 84 start-page: 64 year: 1998 ident: 10.1016/j.jfluidstructs.2009.07.003_bib20 article-title: Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope publication-title: Journal of Applied Physics doi: 10.1063/1.368002 – volume: 124 start-page: 26 year: 2002 ident: 10.1016/j.jfluidstructs.2009.07.003_bib12 article-title: Coupled vibration of microcantilever array induced by airflow force publication-title: ASME Journal of Vibration and Acoustics doi: 10.1115/1.1421054 – ident: 10.1016/j.jfluidstructs.2009.07.003_bib17 doi: 10.1115/1.3153579 – volume: 56 start-page: 930 year: 1986 ident: 10.1016/j.jfluidstructs.2009.07.003_bib5 article-title: Atomic force microscope publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.56.930 – year: 2006 ident: 10.1016/j.jfluidstructs.2009.07.003_bib9 – year: 2000 ident: 10.1016/j.jfluidstructs.2009.07.003_bib8 – volume: 99 start-page: 114906 year: 2006 ident: 10.1016/j.jfluidstructs.2009.07.003_bib3 article-title: Hydrodynamic loading of microcantilevers vibrating in viscous fluids publication-title: Journal of Applied Physics doi: 10.1063/1.2202232 – volume: 208 start-page: 3075 year: 2005 ident: 10.1016/j.jfluidstructs.2009.07.003_bib18 article-title: The aerodynamic effects of wing-wing interaction in flapping insect wings publication-title: Journal of Experimental Biology doi: 10.1242/jeb.01744 – volume: 46 start-page: 891 year: 2002 ident: 10.1016/j.jfluidstructs.2009.07.003_bib7 article-title: Rheological measurements using microcantilevers publication-title: Journal of Rheology doi: 10.1122/1.1475978 – volume: 1 start-page: 39 year: 2002 ident: 10.1016/j.jfluidstructs.2009.07.003_bib22 article-title: The “Millipede”-nanotechnology entering data storage publication-title: IEEE Transactions on Nanotechnology doi: 10.1109/TNANO.2002.1005425 – volume: 634 start-page: 269 year: 2009 ident: 10.1016/j.jfluidstructs.2009.07.003_bib4 article-title: Nonlinear aerodynamic damping of sharp-edged beams at low Keulegan–Carpenter numbers publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112009007228 – volume: 19 start-page: 2825 year: 2001 ident: 10.1016/j.jfluidstructs.2009.07.003_bib14 article-title: Single cell detection with micromechanical oscillators. publication-title: Journal of Vacuum Science and Technology B doi: 10.1116/1.1421572 – volume: 272 start-page: 539 year: 2004 ident: 10.1016/j.jfluidstructs.2009.07.003_bib15 article-title: Hydroelastic vibration of two identical rectangular plates publication-title: Journal of Sound and Vibration doi: 10.1016/S0022-460X(03)00383-3 – volume: 129 start-page: 1168 year: 2007 ident: 10.1016/j.jfluidstructs.2009.07.003_bib16 article-title: Local heat transfer coefficients induced by piezoelectrically actuated vibrating cantilevers publication-title: ASME Journal of Heat Transfer doi: 10.1115/1.2740655 – ident: 10.1016/j.jfluidstructs.2009.07.003_bib19 – volume: 118 start-page: 495 year: 1987 ident: 10.1016/j.jfluidstructs.2009.07.003_bib10 article-title: Interactions between a partially or totally immersed vibrating cantilever plate and the surrounding fluid publication-title: Journal of Sound and Vibration doi: 10.1016/0022-460X(87)90366-X – year: 1990 ident: 10.1016/j.jfluidstructs.2009.07.003_bib6 – volume: 35 start-page: 455 year: 1999 ident: 10.1016/j.jfluidstructs.2009.07.003_bib21 article-title: Flapping and flexible wings for biological and micro air vehicles publication-title: Progress in Aerospace Sciences doi: 10.1016/S0376-0421(98)00016-5 – volume: 8 start-page: 601 year: 1994 ident: 10.1016/j.jfluidstructs.2009.07.003_bib13 article-title: On the flow around flexible plates, oscillating with large amplitude publication-title: Journal of Fluids and Structures doi: 10.1016/S0889-9746(94)90060-4 – volume: 25 start-page: 4 year: 2004 ident: 10.1016/j.jfluidstructs.2009.07.003_bib1 article-title: Experimental investigation of the thermal performance of piezoelectric fans publication-title: Heat Transfer Engineering doi: 10.1080/01457630490248223 – volume: 103 start-page: 13362 year: 2006 ident: 10.1016/j.jfluidstructs.2009.07.003_bib11 article-title: Anomalous resonance in a nanomechanical biosensor publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0602022103 |
SSID | ssj0009431 |
Score | 2.1767223 |
Snippet | Cantilever structures vibrating in a fluid are encountered in numerous engineering applications. The aerodynamic loading from a fluid can have a large effect... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1334 |
SubjectTerms | Aerodynamic damping Exact sciences and technology Fluid coupling Fluid dynamics Fluid–structure interaction Fundamental areas of phenomenology (including applications) General theory Physics Piezoelectric fans Solid mechanics Structural and continuum mechanics Vibrating cantilevers Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
Title | Experimental study of aerodynamic damping in arrays of vibrating cantilevers |
URI | https://dx.doi.org/10.1016/j.jfluidstructs.2009.07.003 https://www.proquest.com/docview/36305290 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEC5EQVZE1F1xVh0Deu2dnk46nXgQRJTxgRcV5tak84AR7RkcXdjL_nar-qEOIghemyQdqpKqCvXVVwD7LkkCFeVGWiZFRBRaeOe0i4QzwobCCB0qlO-VHNyK82E6nIPjthaGYJWN7a9temWtmy-9Rpq9yWjUuyaADkbDMqa-l1oNqYJdZHTW__x_g3loUfckJDQPjV6EvTeM1124fx65mql12pBXEqUh_8xLLU_MFGUX6qYXH-x35ZROV2GliSbZUb3hNZjz5TosveMY_AmXJ-84_FnFJsvGgRmPlrPuRs-ceaCqKTYqmXl8NP-mNOAvvaMJE81I-Gg7CL_xC25PT26OB1HTQiGyXKmniCvJg099CLG0qXXa43NYK64K17fSWil9v-9l5hJtM2PRN_VjZ30Sq5A6jRd0A-bLcek3gfmAb0klHC7FRSgyo2KbSo86sBk6uLQDB63Ictvwi1Obi_u8BZLd5TPypg6YOo8p_807IF4nT2qaja9NO2x1k8-cmhwdwtcW6M5o9PXnGDZRsjzrwG6r4hwvHmVTTOnHz9OcS05Z0vj3d_ewBT-qFFVV4LgN8zjC72Ck81R0q6PchYWjs4vB1Quj7wM2 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB-sgq0U0X7Qs1UD9nV7e5tsNvGhUEQ529MXFe4tZPMBJ3bv8LTQl_7tzuyHehRB8HVJsmEmmZkwv_kNwFefZZGKchMtszIhCi28c9onwlvhYmmFjjXK91QOL8TPcT5egoOuFoZgla3tb2x6ba3bL_1Wmv3ZZNI_I4AORsMypb6XWo1fwYrIeUG4vm__HnAeWjRNCQnOQ8NXYe8B5HUZr24nvqFqnbfslcRpyJ9yU29ndo7Ci03Xi_8MeO2VjjZgvQ0n2Y9mx5uwFKp3sPaIZPA9jA4fkfizmk6WTSOzAU1n046eefubyqbYpGL2-tr-ndOAP_SQJlA0I-mj8SAAxwe4ODo8PxgmbQ-FxHGlbhKuJI8hDzGm0uXO64DvYa24Kv3ASeekDINBkIXPtCusQ-c0SL0LWapi7jXe0I-wXE2r8AlYiPiYVMLjUlzEsrAqdbkMqARXoIfLe7Dficy4lmCc-lxcmQ5JdmkW5E0tMLVJKQHOeyDuJ88ano3nTfve6cYsHBuDHuF5C-wsaPT-5xg3Uba86MFup2KDN4_SKbYK09u54ZJTmjTdeukeduH18PxkZEbHp78-w5s6X1VXO36BZRwdtjHsuSl36mN9B4gTBMk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+study+of+aerodynamic+damping+in+arrays+of+vibrating+cantilevers&rft.jtitle=Journal+of+fluids+and+structures&rft.au=KIMBER%2C+M&rft.au=LONERGAN%2C+R&rft.au=GARIMELLA%2C+S.+V&rft.date=2009-11-01&rft.pub=Elsevier&rft.issn=0889-9746&rft.volume=25&rft.issue=8&rft.spage=1334&rft.epage=1347&rft_id=info:doi/10.1016%2Fj.jfluidstructs.2009.07.003&rft.externalDBID=n%2Fa&rft.externalDocID=22224217 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0889-9746&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0889-9746&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0889-9746&client=summon |