Production of Lactic Acid from Seaweed Hydrolysates via Lactic Acid Bacteria Fermentation

Biodegradable polylactic acid material is manufactured from lactic acid, mainly produced by microbial fermentation. The high production cost of lactic acid still remains the major limitation for its application, indicating that the cost of carbon sources for the production of lactic acid has to be m...

Full description

Saved in:
Bibliographic Details
Published inFermentation (Basel) Vol. 6; no. 1; p. 37
Main Authors Lin, Hong-Ting Victor, Huang, Mei-Ying, Kao, Te-Yu, Lu, Wen-Jung, Lin, Hsuan-Ju, Pan, Chorng-Liang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 24.03.2020
Subjects
Online AccessGet full text
ISSN2311-5637
2311-5637
DOI10.3390/fermentation6010037

Cover

Loading…
Abstract Biodegradable polylactic acid material is manufactured from lactic acid, mainly produced by microbial fermentation. The high production cost of lactic acid still remains the major limitation for its application, indicating that the cost of carbon sources for the production of lactic acid has to be minimized. In addition, a lack of source availability of food crop and lignocellulosic biomass has encouraged researchers and industries to explore new feedstocks for microbial lactic acid fermentation. Seaweeds have attracted considerable attention as a carbon source for microbial fermentation owing to their non-terrestrial origin, fast growth, and photoautotrophic nature. The proximate compositions study of red, brown, and green seaweeds indicated that Gracilaria sp. has the highest carbohydrate content. The conditions were optimized for the saccharification of the seaweeds, and the results indicated that Gracilaria sp. yielded the highest reducing sugar content. Optimal lactic acid fermentation parameters, such as cell inoculum, agitation, and temperature, were determined to be 6% (v/v), 0 rpm, and 30 °C, respectively. Gracilaria sp. hydrolysates fermented by lactic acid bacteria at optimal conditions yielded a final lactic acid concentration of 19.32 g/L.
AbstractList Biodegradable polylactic acid material is manufactured from lactic acid, mainly produced by microbial fermentation. The high production cost of lactic acid still remains the major limitation for its application, indicating that the cost of carbon sources for the production of lactic acid has to be minimized. In addition, a lack of source availability of food crop and lignocellulosic biomass has encouraged researchers and industries to explore new feedstocks for microbial lactic acid fermentation. Seaweeds have attracted considerable attention as a carbon source for microbial fermentation owing to their non-terrestrial origin, fast growth, and photoautotrophic nature. The proximate compositions study of red, brown, and green seaweeds indicated that Gracilaria sp. has the highest carbohydrate content. The conditions were optimized for the saccharification of the seaweeds, and the results indicated that Gracilaria sp. yielded the highest reducing sugar content. Optimal lactic acid fermentation parameters, such as cell inoculum, agitation, and temperature, were determined to be 6% (v/v), 0 rpm, and 30 °C, respectively. Gracilaria sp. hydrolysates fermented by lactic acid bacteria at optimal conditions yielded a final lactic acid concentration of 19.32 g/L.
Author Lu, Wen-Jung
Lin, Hsuan-Ju
Huang, Mei-Ying
Kao, Te-Yu
Pan, Chorng-Liang
Lin, Hong-Ting Victor
Author_xml – sequence: 1
  givenname: Hong-Ting Victor
  orcidid: 0000-0002-8737-208X
  surname: Lin
  fullname: Lin, Hong-Ting Victor
– sequence: 2
  givenname: Mei-Ying
  surname: Huang
  fullname: Huang, Mei-Ying
– sequence: 3
  givenname: Te-Yu
  surname: Kao
  fullname: Kao, Te-Yu
– sequence: 4
  givenname: Wen-Jung
  surname: Lu
  fullname: Lu, Wen-Jung
– sequence: 5
  givenname: Hsuan-Ju
  surname: Lin
  fullname: Lin, Hsuan-Ju
– sequence: 6
  givenname: Chorng-Liang
  surname: Pan
  fullname: Pan, Chorng-Liang
BookMark eNp9kUFLw0AQhRepYK39BV4CnqO7mWw3OdZibaGgoB48LZPdiaS02bpJlf57t0akiniax_C9Nw_mlPVqVxNj54JfAuT8qiS_prrFtnL1iAvOQR2xfgJCxHIEqnegT9iwaZac8yRJAwp99nzvnd2avTdyZbTAIE00NpWNSu_W0QPhO5GNZjvr3WrXYEtN9FbhD_I6aPJhOT2ocsaOS1w1NPyaA_Y0vXmczOLF3e18Ml7EBrKsjUFJslwVVhlKSyywAJQms2gFSkikMBllIgOblok1uVGJssqWikAoKoyAAZt3udbhUm98tUa_0w4r_blw_kWjD1VXpIFLsJCTDddSTDAzEpSSSozQGAQIWRdd1sa71y01rV66ra9DfZ1ABnkgJQ8UdJTxrmk8ld9XBdf7l-g_XhJc-S-XqTqi9Vit_vV-AOqNmNg
CitedBy_id crossref_primary_10_1016_j_biteb_2021_100890
crossref_primary_10_1016_j_envres_2023_117465
crossref_primary_10_1016_j_eurpolymj_2024_113557
crossref_primary_10_1515_chem_2021_0073
crossref_primary_10_1080_21622515_2023_2283097
crossref_primary_10_1016_j_algal_2021_102489
crossref_primary_10_1002_cssc_202001223
crossref_primary_10_1016_j_biortech_2022_127437
crossref_primary_10_1016_j_bej_2022_108668
crossref_primary_10_1088_1755_1315_1017_1_012013
crossref_primary_10_1111_ijfs_17297
crossref_primary_10_1080_21655979_2023_2236842
crossref_primary_10_3390_foods11040571
crossref_primary_10_1002_bbb_2508
crossref_primary_10_11598_btb_2024_31_2_1868
crossref_primary_10_3390_pr11061715
crossref_primary_10_1016_j_fuel_2021_122612
crossref_primary_10_1088_1755_1315_1201_1_012096
crossref_primary_10_1016_j_nbt_2023_03_001
crossref_primary_10_1016_j_isci_2023_106404
crossref_primary_10_3390_jof10030207
crossref_primary_10_5004_dwt_2022_28324
crossref_primary_10_1016_j_mseb_2023_116678
crossref_primary_10_1016_j_biortech_2021_126166
crossref_primary_10_1016_j_eti_2020_101138
crossref_primary_10_1007_s10311_020_01083_w
crossref_primary_10_1016_j_algal_2024_103845
crossref_primary_10_3389_fchem_2022_823005
crossref_primary_10_3390_fermentation7010028
crossref_primary_10_1016_j_biortech_2024_131082
crossref_primary_10_3390_fermentation9020177
crossref_primary_10_3390_pr9111953
crossref_primary_10_3390_ijerph18073772
crossref_primary_10_3390_su14127400
crossref_primary_10_3390_su151914562
crossref_primary_10_3390_pr9040678
crossref_primary_10_1016_j_biortech_2024_130631
crossref_primary_10_1016_j_chemosphere_2022_136694
crossref_primary_10_1016_j_clcb_2025_100140
crossref_primary_10_1016_j_fbio_2024_104374
crossref_primary_10_1016_j_tifs_2021_08_018
crossref_primary_10_3390_foods11182811
crossref_primary_10_1007_s41207_023_00448_1
crossref_primary_10_3390_foods12122311
crossref_primary_10_1016_j_psep_2024_08_009
crossref_primary_10_1080_17597269_2023_2238381
crossref_primary_10_3390_fermentation7010032
crossref_primary_10_1051_matecconf_202337701019
crossref_primary_10_3390_fermentation9040319
crossref_primary_10_1016_j_btre_2023_e00827
Cites_doi 10.1016/j.biortech.2012.01.079
10.1016/j.biortech.2011.12.065
10.1007/s00253-008-1361-1
10.1016/j.procbio.2005.04.006
10.1007/s00253-006-0379-5
10.1007/s12257-011-0278-1
10.1016/S0168-1605(00)00461-X
10.1186/s12934-015-0249-x
10.3390/fermentation5020036
10.1007/BF00334642
10.6090/jarq.47.53
10.1021/ac60147a030
10.1016/j.biortech.2012.10.025
10.1016/j.biombioe.2008.04.009
10.1186/s12934-014-0107-2
10.3390/fermentation6010023
10.1007/BF01575599
10.1002/9783527679577
10.3136/fstr.17.155
10.1016/j.biortech.2014.04.038
10.1021/es802162x
10.1016/j.tifs.2012.11.007
10.1016/j.biortech.2012.09.063
10.1023/B:BILE.0000009464.23026.e0
10.1016/j.foodchem.2012.03.011
10.1007/s00449-011-0609-9
10.1007/s00449-011-0611-2
10.1016/j.biortech.2014.09.094
10.1111/j.1574-6976.1995.tb00168.x
10.4014/jmb.1402.02038
10.1002/mabi.200400080
10.1002/9781118655252
10.1007/s10295-008-0318-9
10.3390/fermentation5020034
10.1023/A:1008022129661
10.1128/AEM.01514-08
10.3844/ajbbsp.2008.250.254
10.1016/j.foodchem.2005.07.027
10.1021/bp049564n
10.1016/j.jbiosc.2014.10.027
10.1016/j.biotechadv.2013.04.002
10.1128/AEM.01311-06
10.1016/S0032-9592(99)00080-1
10.1016/j.biotechadv.2008.10.004
10.4014/jmb.1405.05025
10.1016/j.biortech.2006.12.018
10.1039/B605839F
10.1128/AEM.71.4.1964-1970.2005
10.1039/C5RA24983J
10.1007/s10529-015-1821-5
10.1016/S0922-338X(97)82063-6
10.1002/btpr.1744
10.1016/j.bej.2005.01.009
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.3390/fermentation6010037
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Acceso a contenido Full Text - Doaj
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ - The Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2311-5637
ExternalDocumentID oai_doaj_org_article_3053d39edbd74a2a8c53775716acca33
10_3390_fermentation6010037
GroupedDBID 8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
LK8
M7P
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c388t-375ed07bd7ce4fabab3a5c8dad1a53251c8e8183d4f2dc9c727d7df7e317ebc13
IEDL.DBID DOA
ISSN 2311-5637
IngestDate Wed Aug 27 01:16:16 EDT 2025
Fri Jul 25 11:38:12 EDT 2025
Tue Jul 01 04:27:33 EDT 2025
Thu Apr 24 22:53:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-375ed07bd7ce4fabab3a5c8dad1a53251c8e8183d4f2dc9c727d7df7e317ebc13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8737-208X
OpenAccessLink https://doaj.org/article/3053d39edbd74a2a8c53775716acca33
PQID 2383971650
PQPubID 2055414
ParticipantIDs doaj_primary_oai_doaj_org_article_3053d39edbd74a2a8c53775716acca33
proquest_journals_2383971650
crossref_primary_10_3390_fermentation6010037
crossref_citationtrail_10_3390_fermentation6010037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-24
PublicationDateYYYYMMDD 2020-03-24
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-24
  day: 24
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Fermentation (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ishida (ref_15) 2005; 71
Liaud (ref_4) 2015; 14
ref_14
ref_56
ref_55
Powers (ref_31) 2009; 43
ref_51
Park (ref_40) 2012; 108
John (ref_1) 2009; 27
Qureshi (ref_47) 2008; 32
Meinita (ref_45) 2012; 35
Enriquez (ref_34) 1996; 108
Maas (ref_7) 2008; 35
Wang (ref_43) 2015; 25
Wee (ref_30) 2004; 26
Zhao (ref_26) 2013; 135
Gardner (ref_60) 2001; 64
ref_25
Sun (ref_10) 2015; 37
Huang (ref_23) 2005; 23
Salleh (ref_35) 2008; 4
Wakai (ref_16) 2014; 173
Yamane (ref_8) 2013; 29
Nguyen (ref_54) 2012; 110
Koivuranta (ref_17) 2014; 13
Zhang (ref_11) 2015; 119
Wardani (ref_52) 2017; 24
Hwang (ref_38) 2011; 16
Wee (ref_2) 2006; 44
Jung (ref_33) 2013; 135
Nancib (ref_48) 2017; 4
ref_36
Adsul (ref_18) 2007; 9
Mojovic (ref_50) 2012; 134
Cheng (ref_20) 1991; 7
Coelho (ref_13) 2010; 48
Wu (ref_39) 2014; 24
Yin (ref_21) 1997; 84
Anuradha (ref_24) 1999; 35
Saha (ref_46) 2005; 21
Uchida (ref_37) 2013; 47
Datta (ref_5) 1995; 16
Jang (ref_59) 2011; 17
Tashiro (ref_12) 2013; 31
Quemener (ref_53) 1998; 10
Okano (ref_19) 2009; 75
Martinez (ref_61) 2013; 30
Maas (ref_29) 2008; 78
Fukushima (ref_22) 2004; 4
Zhang (ref_28) 2014; 163
Ilmen (ref_9) 2007; 73
Ortiz (ref_41) 2006; 99
Maas (ref_6) 2006; 72
Saha (ref_44) 2005; 40
Jang (ref_42) 2012; 35
Trontel (ref_57) 2011; 49
ref_3
Sebayang (ref_32) 2016; 6
Gullon (ref_27) 2008; 99
ref_49
Miller (ref_58) 1959; 31
References_xml – volume: 110
  start-page: 552
  year: 2012
  ident: ref_54
  article-title: Production of l-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.01.079
– ident: ref_55
– volume: 108
  start-page: 83
  year: 2012
  ident: ref_40
  article-title: Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.12.065
– ident: ref_51
– volume: 4
  start-page: 502
  year: 2017
  ident: ref_48
  article-title: Statistical optimization of dilute acid hydrolysis of wood sawdust for lactic acid production
  publication-title: J. Appl. Biotech. Bioeng.
– volume: 78
  start-page: 751
  year: 2008
  ident: ref_29
  article-title: Lactic acid production from lime-treated wheat straw by Bacillus coagulans: Neutralization of acid by fed-batch addition of alkaline substrate
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-008-1361-1
– volume: 40
  start-page: 3693
  year: 2005
  ident: ref_44
  article-title: Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2005.04.006
– volume: 72
  start-page: 861
  year: 2006
  ident: ref_6
  article-title: Lactic acid production from xylose by the fungus Rhizopus oryzae
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-006-0379-5
– volume: 16
  start-page: 1231
  year: 2011
  ident: ref_38
  article-title: Fermentation of seaweed sugars by Lactobacillus species and the potential of seaweed as a biomass feedstock
  publication-title: Biotechnol. Bioprocess Eng.
  doi: 10.1007/s12257-011-0278-1
– volume: 64
  start-page: 261
  year: 2001
  ident: ref_60
  article-title: Selection and characterization of mixed starter cultures for lactic acid fermentation of carrot, cabbage, beet and onion vegetable mixtures
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/S0168-1605(00)00461-X
– volume: 14
  start-page: 1
  year: 2015
  ident: ref_4
  article-title: L-lactic acid production by Aspergillus brasiliensis overexpressing the heterologous ldha gene from Rhizopus oryzae
  publication-title: Microb. Cell. Fact.
  doi: 10.1186/s12934-015-0249-x
– ident: ref_25
  doi: 10.3390/fermentation5020036
– volume: 108
  start-page: 197
  year: 1996
  ident: ref_34
  article-title: Broad-scale comparison of photosynthetic rates across phototrophic organisms
  publication-title: Oecologia
  doi: 10.1007/BF00334642
– volume: 47
  start-page: 53
  year: 2013
  ident: ref_37
  article-title: Algal fermentation-the seed for a new fermentation industry of foods and related products
  publication-title: JARQ Jpn. Agric. Res. Q.
  doi: 10.6090/jarq.47.53
– volume: 31
  start-page: 426
  year: 1959
  ident: ref_58
  article-title: Use of dinitrosalicylic acid reagent for reagent for determination of reducing sugars
  publication-title: Anal. Chem.
  doi: 10.1021/ac60147a030
– volume: 135
  start-page: 182
  year: 2013
  ident: ref_33
  article-title: Potentials of macroalgae as feedstocks for biorefinery
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.10.025
– volume: 32
  start-page: 1353
  year: 2008
  ident: ref_47
  article-title: Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: Production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors
  publication-title: Biomass Bioenerg.
  doi: 10.1016/j.biombioe.2008.04.009
– volume: 44
  start-page: 163
  year: 2006
  ident: ref_2
  article-title: Biotechnological production of lactic acid and its recent applications
  publication-title: Food Technol. Biotechnol.
– volume: 13
  start-page: 107
  year: 2014
  ident: ref_17
  article-title: L-lactic acid production from D-xylose with Candida sonorensis expressing a heterologous lactate dehydrogenase encoding gene
  publication-title: Microb. Cell. Fact.
  doi: 10.1186/s12934-014-0107-2
– ident: ref_3
  doi: 10.3390/fermentation6010023
– ident: ref_56
– volume: 7
  start-page: 27
  year: 1991
  ident: ref_20
  article-title: Lactic acid production from enzyme-thinned corn starch using Lactobacillus amylovorus
  publication-title: J. Ind. Microbiol.
  doi: 10.1007/BF01575599
– ident: ref_36
  doi: 10.1002/9783527679577
– volume: 17
  start-page: 155
  year: 2011
  ident: ref_59
  article-title: Production of L(+)-lactic acid from mixed acid and alkali hydrolysate of brown seaweed
  publication-title: Food Sci. Technol. Res.
  doi: 10.3136/fstr.17.155
– volume: 163
  start-page: 160
  year: 2014
  ident: ref_28
  article-title: Improving lactic acid productivity from wheat straw hydrolysates by membrane integrated repeated batch fermentation under non-sterilized conditions
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.04.038
– volume: 43
  start-page: 3005
  year: 2009
  ident: ref_31
  article-title: The water footprint of biofuels: A drink or drive issue?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es802162x
– volume: 30
  start-page: 70
  year: 2013
  ident: ref_61
  article-title: Lactic acid properties, applications and production: A review
  publication-title: Trends Food Sci. Tech.
  doi: 10.1016/j.tifs.2012.11.007
– volume: 135
  start-page: 481
  year: 2013
  ident: ref_26
  article-title: Simultaneous saccharification and high titer lactic acid fermentation of corn stover using a newly isolated lactic acid bacterium Pediococcus acidilactici DQ2
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.09.063
– volume: 26
  start-page: 71
  year: 2004
  ident: ref_30
  article-title: Biotechnological production of L(+)-lactic acid from wood hydrolyzate by batch fermentation of Enterococcus faecalis
  publication-title: Biotechnol. Lett.
  doi: 10.1023/B:BILE.0000009464.23026.e0
– volume: 134
  start-page: 1038
  year: 2012
  ident: ref_50
  article-title: Effect of different fermentation parameters on L-lactic acid production from liquid distillery stillage
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2012.03.011
– volume: 35
  start-page: 123
  year: 2012
  ident: ref_45
  article-title: Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii)
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-011-0609-9
– volume: 35
  start-page: 11
  year: 2012
  ident: ref_42
  article-title: Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-011-0611-2
– volume: 173
  start-page: 376
  year: 2014
  ident: ref_16
  article-title: L-lactic acid production from starch by simultaneous saccharification and fermentation in a genetically engineered Aspergillus oryzae pure culture
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.09.094
– volume: 16
  start-page: 221
  year: 1995
  ident: ref_5
  article-title: Technological and economic-potential of poly (lactic acid) and lactic-acid derivatives
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.1995.tb00168.x
– volume: 48
  start-page: 175
  year: 2010
  ident: ref_13
  article-title: The use of response surface methodology in optimization of lactic acid production: Focus on medium supplementation, temperature and pH control
  publication-title: Food Technol. Biotechnol.
– volume: 24
  start-page: 1245
  year: 2014
  ident: ref_39
  article-title: Sulfuric acid hydrolysis and detoxification of red alga Pterocladiella capillacea for bioethanol fermentation with thermotolerant yeast Kluyveromyces marxianus
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1402.02038
– volume: 24
  start-page: 921
  year: 2017
  ident: ref_52
  article-title: The effect of inoculum size and incubation temperature on cell growth, acidproduction and curd formation during milk fermentation by Lactobacillus plantarum Dad 13
  publication-title: Int. Food Res. J.
– volume: 49
  start-page: 75
  year: 2011
  ident: ref_57
  article-title: Production of D- and L-Lactic Acid by Mono- and mixed cultures of Lactobacillus sp.
  publication-title: Food Technol. Biotechnol.
– volume: 4
  start-page: 1021
  year: 2004
  ident: ref_22
  article-title: Production of D-lactic acid by bacterial fermentation of rice starch
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.200400080
– ident: ref_49
  doi: 10.1002/9781118655252
– volume: 35
  start-page: 569
  year: 2008
  ident: ref_7
  article-title: Xylose metabolism in the fungus Rhizopus oryzae: Effect of growth and respiration on L(+)-lactic acid production
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1007/s10295-008-0318-9
– ident: ref_14
  doi: 10.3390/fermentation5020034
– volume: 10
  start-page: 75
  year: 1998
  ident: ref_53
  article-title: Comparative analysis of sulfated galactans from red algae by reductive hydrolysis and mild methanolysis coupled to two different HPLC techniques
  publication-title: J. Appl. Phycol.
  doi: 10.1023/A:1008022129661
– volume: 75
  start-page: 462
  year: 2009
  ident: ref_19
  article-title: Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and alpha-amylase-secreting Lactobacillus plantarum strain
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01514-08
– volume: 4
  start-page: 250
  year: 2008
  ident: ref_35
  article-title: Biodiesel fuel production from algae as renewable energy
  publication-title: Am. J. Biochem. Biotechnol.
  doi: 10.3844/ajbbsp.2008.250.254
– volume: 99
  start-page: 98
  year: 2006
  ident: ref_41
  article-title: Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2005.07.027
– volume: 21
  start-page: 816
  year: 2005
  ident: ref_46
  article-title: Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp049564n
– volume: 119
  start-page: 694
  year: 2015
  ident: ref_11
  article-title: Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2014.10.027
– volume: 31
  start-page: 877
  year: 2013
  ident: ref_12
  article-title: Recent advances in lactic acid production by microbial fermentation processes
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2013.04.002
– volume: 73
  start-page: 117
  year: 2007
  ident: ref_9
  article-title: Efficient production of L-lactic acid from xylose by Pichia stipitis
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01311-06
– volume: 35
  start-page: 367
  year: 1999
  ident: ref_24
  article-title: Simultaneous saccharification and fermentation of starch to lactic acid
  publication-title: Process Biochem.
  doi: 10.1016/S0032-9592(99)00080-1
– volume: 27
  start-page: 145
  year: 2009
  ident: ref_1
  article-title: Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2008.10.004
– volume: 25
  start-page: 26
  year: 2015
  ident: ref_43
  article-title: Effect of fermentation conditions on l-lactic acid production from soybean straw hydrolysate
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1405.05025
– volume: 99
  start-page: 308
  year: 2008
  ident: ref_27
  article-title: L-lactic acid. production from apple pomace by sequential hydrolysis and fermentation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2006.12.018
– volume: 9
  start-page: 58
  year: 2007
  ident: ref_18
  article-title: Lactic acid production from waste sugarcane bagasse derived cellulose
  publication-title: Green Chem.
  doi: 10.1039/B605839F
– volume: 71
  start-page: 1964
  year: 2005
  ident: ref_15
  article-title: Efficient production of L-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.71.4.1964-1970.2005
– volume: 6
  start-page: 14964
  year: 2016
  ident: ref_32
  article-title: A perspective on bioethanol production from biomass as alternative fuel for spark ignition engine
  publication-title: RSC Adv.
  doi: 10.1039/C5RA24983J
– volume: 37
  start-page: 1379
  year: 2015
  ident: ref_10
  article-title: L-lactic acid fermentation by Enterococcus faecium: A new isolate from bovine rumen
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-015-1821-5
– volume: 84
  start-page: 249
  year: 1997
  ident: ref_21
  article-title: Enhanced production of L(+)-lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift bioreactor
  publication-title: J. Ferment. Bioeng.
  doi: 10.1016/S0922-338X(97)82063-6
– volume: 29
  start-page: 876
  year: 2013
  ident: ref_8
  article-title: Mass production of spores of lactic acid-producing Rhizopus oryzae NBRC 5384 on agar plate
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.1744
– volume: 23
  start-page: 265
  year: 2005
  ident: ref_23
  article-title: Simultaneous saccharification and fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2005.01.009
SSID ssj0002246013
Score 2.3602576
Snippet Biodegradable polylactic acid material is manufactured from lactic acid, mainly produced by microbial fermentation. The high production cost of lactic acid...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 37
SubjectTerms Algae
Bacteria
Biodegradability
Biomass
Carbohydrates
Carbon
Carbon sources
Cellulase
Cellulose
Chemical synthesis
Dehydrogenases
Fermentation
Food
Food availability
Food sources
Gracilaria
gracilaria sp
Hydrolysates
Inoculum
Lactic acid
Lactic acid bacteria
Lignin
Lignocellulose
macroalgae
Polylactic acid
Proteins
sargassum siliquosum
Seaweeds
Sulfuric acid
ulva lactuca
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60XvQgPrFaZQ8eDSbZbB4nsWIpoiJqoZ7C7CMilKa2VfHfO5Nsa0XxmkxIMjs7880k8w1jx1kAhY2LzKOuSS_KQvAgAyrD-bFKpBWxpTrkzW3c7UVXfdl3BbeJ-61y5hMrR21KTTXyUwwtguiOpH82evVoahR9XXUjNJbZCrrgFC18pX15e3c_r7IQXRqCnJpuSGB-f1qgw3NdPUNKRnyagL4Qkirm_l-OuYo2nQ227mAiP6_XdZMt2eEWW1sgD9xmT3c1WSvegZcFv666nfi5fjGcekb4g4UPDE28-2nG5eBzQqCSv7_AD8l2TdYMvLPwwDus17l8vOh6blCCp0WaTtFJSGv8RJlE26gABUqA1KkBE4AUiGB0ajEwCxMVodGZRsxiElMkFsGDVToQu6wxLId2j3GpbRz7oDOUjDIbAOINZQoFxPwFQdpk4UxXuXYs4jTMYpBjNkEKzv9QcJOdzC8a1SQa_4u3aRHmosSAXR0ox8-521A5-ilhRGYNvnUEIaRaiiSRaCGARilEk7VmS5i7bTnJv41o___TB2w1pMTaF14YtVhjOn6zh4g-purImdgXvFjeVg
  priority: 102
  providerName: ProQuest
Title Production of Lactic Acid from Seaweed Hydrolysates via Lactic Acid Bacteria Fermentation
URI https://www.proquest.com/docview/2383971650
https://doaj.org/article/3053d39edbd74a2a8c53775716acca33
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kXvQgfmK1yh48Gppkd5PssZWWIlqKWqinMPsRqJRW2qr03zubpCWi6MVrmDDL7GTnvSXzhpArGUBmo0x6rmvS4zIEDyS4azg_UrGwLLLuHvK-H_WG_HYkRpVRX-6fsEIeuAhcE_ORGSatUSbmEEKiBYtjgTAf0DnLdT6x5lXI1Esu6sKRabBCZoghr29meNCV3TxTR0J8N_m8Uopyxf5vB3JeZbr7ZK-Eh7RVLOuAbNnpIdmtiAYekedBIdKKHugso3d5lxNt6bGhrleEPlr4wJJEeyszn01WCwcm6fsYvli2C5FmoN3Kgo_JsNt5uul55YAET7MkWeLhIKzxY4yMtjwDBYqB0IkBE4BgiFx0YrEgM8Oz0GipEauY2GSxRdBglQ7YCalNZ1N7SqjQNop80BItubQBIM5QJlPgFL8gSOokXMcq1aV6uBtiMUmRRbgApz8EuE6uNy-9FuIZv5u33SZsTJ3ydf4A8yEt8yH9Kx_qpLHewrT8HBcp4hLmtLKEf_YfPs7JTuhot8-8kDdIbTl_sxeITZbqkmy3O_3Bw2Wejp9F_-cS
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7RcGg5VKUPkZaWPbS3Wther-09IERaolBChFqQ6Mkd764REoppkhblT_EbmfEjDaLixjUe2_Hs7HwzY883AB91gIWLC-1x16QX6RA91MhlOD_OE-Vk7LgOeTSKB6fRtzN1tgI3bS8Mf1bZ-sTKUdvScI18m6BFMt2R8nevfns8NYrfrrYjNGqzOHTza0rZpjsHX2l9P4Vhf__ky8Brpgp4RqbpjHaUctZPcpsYFxWYYy5RmdSiDVBJgnuTOkIxaaMitEYbAnib2CJxhLQuN4Gk6z6B1UhSqNCB1d7-6Pj7oqrD9GwUVNX0RlJqf7sgB9t0EY05-fF54voSBFaTAu4BQYVu_RfwvAlLxV5tR-uw4sYvYW2JrPAV_DyuyWHpDqIsxLDqrhJ75sIK7lERPxxeExSKwdxOysv5lINY8fcC70j2anJoFP2lP_waTh9FhW-gMy7HbgOEMi6OfTSaJCPtAqT4JrdFjsw0hkHahbDVVWYa1nIennGZUfbCCs7-o-AufF6cdFWTdjws3uNFWIgy43b1Qzk5z5oNnJFflFZqZ-mpIwwxNUomiSKLRNoEUnZhs13CrHED0-yf0b59-PAWPB2cHA2z4cHo8B08Czmp96UXRpvQmU3-uPcU-czyD425Cfj12BZ-C2SbHa4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gkRh9MCIaT0H2Qd5oaLvdtvtADCdcDoHLRSXBpzrd3RoScsW7E3L_mn8dM_04j2B447Xdfs3Ozm9muvMbgI86wMLFhfa4atKLdIgeauQ0nB_niXIydpyHPB3Gg7Poy7k6X4G_bS0Mb6tsbWJlqG1pOEe-S9Aime5I-btFsy1idND_dPXb4w5S_Ke1badRq8ixm99Q-DbdOzqgud4Ow_7h988Dr-kw4BmZpjNaXcpZP8ltYlxUYI65RGVSizZAJQn6TeoI0aSNitAabQjsbWKLxBHqutwEku77BFYTLh_twGrvcDj6usjwMFUbOVg11ZGUml6cjG1TUTTmQMjn7utLcFh1DbgHChXS9V_Ci8ZFFfu1Tq3Bihu_gudLxIXr8GNUE8XSE0RZiJOq0krsmwsruF5FfHN4Q7AoBnM7KS_nU3ZoxfUF3hnZq4miUfSXXvg1nD2KCN9AZ1yO3VsQyrg49tFoGhlpFyD5OrktcmTWMQzSLoStrDLTMJhzI43LjCIZFnD2HwF3YWdx0VVN4PHw8B5PwmIos29XB8rJr6xZzBnZSGmldpa-OsIQU6NkkijSTqQFIWUXNtopzBqTMM3-KfC7h09vwVPS7OzkaHj8Hp6FHN_70gujDejMJn_cJjlBs_xDo20Cfj62gt8CN9Qh7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Production+of+Lactic+Acid+from+Seaweed+Hydrolysates+via+Lactic+Acid+Bacteria+Fermentation&rft.jtitle=Fermentation+%28Basel%29&rft.au=Lin%2C+Hong-Ting+Victor&rft.au=Huang%2C+Mei-Ying&rft.au=Kao%2C+Te-Yu&rft.au=Lu%2C+Wen-Jung&rft.date=2020-03-24&rft.issn=2311-5637&rft.eissn=2311-5637&rft.volume=6&rft.issue=1&rft.spage=37&rft_id=info:doi/10.3390%2Ffermentation6010037&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_fermentation6010037
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-5637&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-5637&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-5637&client=summon