A comparative study of methods for estimating model-agnostic Shapley value explanations
Shapley values originated in cooperative game theory but are extensively used today as a model-agnostic explanation framework to explain predictions made by complex machine learning models in the industry and academia. There are several algorithmic approaches for computing different versions of Shap...
Saved in:
Published in | Data mining and knowledge discovery Vol. 38; no. 4; pp. 1782 - 1829 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Shapley values originated in cooperative game theory but are extensively used today as a model-agnostic explanation framework to explain predictions made by complex machine learning models in the industry and academia. There are several algorithmic approaches for computing different versions of Shapley value explanations. Here, we consider Shapley values incorporating feature dependencies, referred to as conditional Shapley values, for predictive models fitted to tabular data. Estimating precise conditional Shapley values is difficult as they require the estimation of non-trivial conditional expectations. In this article, we develop new methods, extend earlier proposed approaches, and systematize the new refined and existing methods into different method classes for comparison and evaluation. The method classes use either Monte Carlo integration or regression to model the conditional expectations. We conduct extensive simulation studies to evaluate how precisely the different method classes estimate the conditional expectations, and thereby the conditional Shapley values, for different setups. We also apply the methods to several real-world data experiments and provide recommendations for when to use the different method classes and approaches. Roughly speaking, we recommend using parametric methods when we can specify the data distribution almost correctly, as they generally produce the most accurate Shapley value explanations. When the distribution is unknown, both generative methods and regression models with a similar form as the underlying predictive model are good and stable options. Regression-based methods are often slow to train but quickly produce the Shapley value explanations once trained. The vice versa is true for Monte Carlo-based methods, making the different methods appropriate in different practical situations. |
---|---|
AbstractList | Shapley values originated in cooperative game theory but are extensively used today as a model-agnostic explanation framework to explain predictions made by complex machine learning models in the industry and academia. There are several algorithmic approaches for computing different versions of Shapley value explanations. Here, we consider Shapley values incorporating feature dependencies, referred to as conditional Shapley values, for predictive models fitted to tabular data. Estimating precise conditional Shapley values is difficult as they require the estimation of non-trivial conditional expectations. In this article, we develop new methods, extend earlier proposed approaches, and systematize the new refined and existing methods into different method classes for comparison and evaluation. The method classes use either Monte Carlo integration or regression to model the conditional expectations. We conduct extensive simulation studies to evaluate how precisely the different method classes estimate the conditional expectations, and thereby the conditional Shapley values, for different setups. We also apply the methods to several real-world data experiments and provide recommendations for when to use the different method classes and approaches. Roughly speaking, we recommend using parametric methods when we can specify the data distribution almost correctly, as they generally produce the most accurate Shapley value explanations. When the distribution is unknown, both generative methods and regression models with a similar form as the underlying predictive model are good and stable options. Regression-based methods are often slow to train but quickly produce the Shapley value explanations once trained. The vice versa is true for Monte Carlo-based methods, making the different methods appropriate in different practical situations. |
Author | Glad, Ingrid Kristine Olsen, Lars Henry Berge Aas, Kjersti Jullum, Martin |
Author_xml | – sequence: 1 givenname: Lars Henry Berge orcidid: 0009-0006-9360-6993 surname: Olsen fullname: Olsen, Lars Henry Berge email: lholsen@math.uio.no organization: Department of Mathematics, University of Oslo, The Alan Turing Institute – sequence: 2 givenname: Ingrid Kristine surname: Glad fullname: Glad, Ingrid Kristine organization: Department of Mathematics, University of Oslo – sequence: 3 givenname: Martin surname: Jullum fullname: Jullum, Martin organization: Norwegian Computing Center – sequence: 4 givenname: Kjersti surname: Aas fullname: Aas, Kjersti organization: Norwegian Computing Center |
BookMark | eNp9kE9LJDEQxYMorP--wJ4CnrNWdTqdeBRZdxeEPayit5BJqseWnqRNesTx0xudlYU9eKpQeb_Hq3fAdmOKxNhXhG8IoE8LQodGQNMKQMBOvOywfVRaCq26u936lqYVyiB8YQelPACAaiTss9tz7tNqctnNwxPxMq_Dhqeer2i-T6HwPmVOZR5W9T8u-SoFGoVbxlR3nv-5d9NIG_7kxjVxep5GF6swxXLE9no3Fjr-Ow_ZzeX364uf4ur3j18X51fCS2Nm0ciFUSEsPEndBUmt6QmoV71S2tFCI2oH7qzXxiEG8uS1byS5SgcZmiAPGd_6-jzUSNHGlJ1FMKqxiKB0UyUnW8mU0-O6HmMf0jrHmspKMB22Z4htVZkPo1RKpt76YX6_Zc5uGKulfWvabpu2tWn73rR9qWjzHzrlWljefA7JLVSqOC4p_0v1CfUKKPyUUw |
CitedBy_id | crossref_primary_10_3390_app15031057 crossref_primary_10_1007_s00521_024_10349_1 crossref_primary_10_1007_s10608_024_10542_5 crossref_primary_10_1038_s41598_025_89810_7 crossref_primary_10_3390_su16187885 |
Cites_doi | 10.1007/978-3-030-57321-8_2 10.18637/jss.v077.i01 10.1007/BF01258278 10.1038/s42256-023-00657-x 10.1007/978-3-031-44064-9_8 10.1561/2200000056 10.1002/asmb.446 10.1098/rspa.1977.0041 10.1016/j.datak.2009.01.004 10.1111/j.1541-0420.2006.00574.x 10.2307/1224438 10.1287/moor.19.2.257 10.1016/j.eswa.2018.02.029 10.1109/ACCESS.2021.3119110 10.1108/JMLC-07-2019-0055 10.1016/j.csda.2018.08.016 10.1007/978-3-642-04747-3_8 10.1080/01621459.1981.10477729 10.21105/joss.02027 10.1038/s42256-019-0138-9 10.1093/biomet/40.3-4.237 10.1038/s42256-019-0048-x 10.1023/A:1010933404324 10.1137/130936233 10.1007/978-0-387-84858-7 10.1093/comjnl/7.4.308 10.1007/978-3-030-57321-8_7 10.1006/jcss.1997.1504 10.1007/978-94-009-3677-5_7 10.1201/9781420010404 10.1002/cjs.11246 10.1109/ACCESS.2018.2870052 10.4155/fmc.11.23 10.1214/009053604000000067 10.1198/106186006X133933 10.1109/ICPR48806.2021.9412511 10.1021/acs.jcim.2c00841 10.1145/3394486.3403106 10.1007/BF02868169 10.1515/demo-2021-0103 10.1016/j.csbj.2014.11.005 10.2307/2528823 10.1007/s10115-013-0679-x 10.3414/ME13-01-0122 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. info:eu-repo/semantics/openAccess |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: info:eu-repo/semantics/openAccess |
DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 3HK |
DOI | 10.1007/s10618-024-01016-z |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM global Computing Database ProQuest research library Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic NORA - Norwegian Open Research Archives |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: C6C name: Springer_OA刊 url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 1829 |
ExternalDocumentID | 10852_110572 10_1007_s10618_024_01016_z |
GrantInformation_xml | – fundername: Norges Forskningsråd grantid: 237718 funderid: http://dx.doi.org/10.13039/501100005416 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U 3HK AAFGU ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ADMDM ADOXG AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC UNUBA |
ID | FETCH-LOGICAL-c388t-23b85ddbce376d3e48fe0ef5f557aeb7117a0a9f78a11decec7c23eac38d3d2d3 |
IEDL.DBID | BENPR |
ISSN | 1384-5810 |
IngestDate | Tue Apr 30 03:31:04 EDT 2024 Sat Aug 16 21:26:41 EDT 2025 Thu Apr 24 23:11:15 EDT 2025 Tue Jul 01 00:40:33 EDT 2025 Fri Feb 21 02:39:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Explainable artificial intelligence Shapley values Feature importance Feature dependence Prediction explanation Model-agnostic explanation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-23b85ddbce376d3e48fe0ef5f557aeb7117a0a9f78a11decec7c23eac38d3d2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 NFR/237718 |
ORCID | 0009-0006-9360-6993 |
OpenAccessLink | https://doi.org/10.1007/s10618-024-01016-z |
PQID | 3086149114 |
PQPubID | 43030 |
PageCount | 48 |
ParticipantIDs | cristin_nora_10852_110572 proquest_journals_3086149114 crossref_citationtrail_10_1007_s10618_024_01016_z crossref_primary_10_1007_s10618_024_01016_z springer_journals_10_1007_s10618_024_01016_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Freund, Schapire (CR21) 1997; 55 Johansson, Sönströd, Norinder (CR35) 2011; 3 Gower (CR27) 1971; 27 CR39 CR38 CR37 CR79 CR34 CR78 CR33 Shapley (CR72) 1953; 2 CR76 CR31 Kourou, Exarchos, Exarchos (CR41) 2015; 13 Olsen, Glad, Jullum (CR63) 2022; 23 Wei, Tang, McNicholas (CR80) 2019; 130 Barndorff-Nielsen (CR5) 1977; 353 Merrick, Taly (CR55) 2020 Hastie, Tibshirani, Friedman (CR30) 2009 CR4 Owen (CR64) 2014; 2 CR6 McNeil, Frey, Embrechts (CR54) 2015 Aas, Nagler, Jullum (CR2) 2021; 9 Good (CR26) 1953; 40 CR9 CR49 Mayr, Binder, Gefeller (CR53) 2014; 53 CR48 Yari, Jafari (CR87) 2006; 17 Aas, Jullum, Løland (CR1) 2021; 298 CR88 CR43 CR42 CR84 CR82 CR81 Deng, Papadimitriou (CR16) 1994; 19 Podani (CR65) 1999; 48 Wood (CR85) 2006 Browne, McNicholas (CR8) 2015; 43 Giudici, Raffinetti (CR25) 2021; 167 CR18 Faigle, Kern (CR19) 1992; 21 Jullum, Løland, Huseby (CR36) 2020; 23 CR59 CR58 CR13 CR57 CR12 Covert, Lundberg, Lee (CR15) 2021; 22 CR11 CR10 Strumbelj, Kononenko (CR73) 2010; 11 CR52 Friedman, Stuetzle (CR22) 1981; 76 Lundberg, Erion, Chen (CR50) 2020; 2 Strumbelj, Kononenko (CR74) 2014; 41 Strumbelj, Kononenko, Sikonja (CR75) 2009; 68 Wright, Ziegler (CR86) 2017; 77 Nelder, Mead (CR60) 1965; 7 Rudin (CR70) 2019; 1 Kingma, Welling (CR40) 2019; 12 Sellereite, Jullum (CR71) 2019; 5 Efron, Hastie, Johnstone (CR17) 2004; 32 Breiman (CR7) 2001; 45 Luo, Tseng, Cui (CR51) 2019; 1 CR29 CR28 Takahasi (CR77) 1965; 17 Hothorn, Hornik, Zeileis (CR32) 2006; 15 Kurowicka, Cooke (CR44) 2005; 10 CR69 CR24 CR68 CR23 CR67 Kvamme, Sellereite, Aas (CR45) 2018; 102 CR20 Lipovetsky, Conklin (CR47) 2001; 17 Mitchell, Cooper, Frank (CR56) 2022; 23 CR62 CR61 Prokhorenkova, Gusev, Vorobev, Bengio, Wallach, Larochelle (CR66) 2018 Adadi, Berrada (CR3) 2018; 6 Lansford, Barnes, Rice (CR46) 2022; 62 Wood (CR83) 2006; 62 Covert, Lundberg, Lee (CR14) 2020; 33 B Efron (1016_CR17) 2004; 32 DP Kingma (1016_CR40) 2019; 12 E Strumbelj (1016_CR75) 2009; 68 K Takahasi (1016_CR77) 1965; 17 1016_CR34 E Strumbelj (1016_CR73) 2010; 11 1016_CR78 1016_CR33 JH Friedman (1016_CR22) 1981; 76 1016_CR76 1016_CR31 1016_CR38 1016_CR37 R Mitchell (1016_CR56) 2022; 23 1016_CR79 MN Wright (1016_CR86) 2017; 77 1016_CR39 X Deng (1016_CR16) 1994; 19 P Giudici (1016_CR25) 2021; 167 JC Gower (1016_CR27) 1971; 27 JL Lansford (1016_CR46) 2022; 62 Y Luo (1016_CR51) 2019; 1 C Rudin (1016_CR70) 2019; 1 S Wood (1016_CR83) 2006; 62 1016_CR62 1016_CR61 LHB Olsen (1016_CR63) 2022; 23 1016_CR23 1016_CR67 SN Wood (1016_CR85) 2006 1016_CR20 A Adadi (1016_CR3) 2018; 6 1016_CR69 G Yari (1016_CR87) 2006; 17 1016_CR24 1016_CR68 RP Browne (1016_CR8) 2015; 43 O Barndorff-Nielsen (1016_CR5) 1977; 353 K Aas (1016_CR1) 2021; 298 1016_CR29 1016_CR28 T Hastie (1016_CR30) 2009 E Strumbelj (1016_CR74) 2014; 41 A Mayr (1016_CR53) 2014; 53 SM Lundberg (1016_CR50) 2020; 2 IJ Good (1016_CR26) 1953; 40 D Kurowicka (1016_CR44) 2005; 10 T Hothorn (1016_CR32) 2006; 15 1016_CR52 1016_CR12 1016_CR11 L Prokhorenkova (1016_CR66) 2018 1016_CR10 AJ McNeil (1016_CR54) 2015 AB Owen (1016_CR64) 2014; 2 1016_CR59 1016_CR58 JA Nelder (1016_CR60) 1965; 7 1016_CR13 1016_CR57 1016_CR18 U Faigle (1016_CR19) 1992; 21 K Kourou (1016_CR41) 2015; 13 L Merrick (1016_CR55) 2020 Y Wei (1016_CR80) 2019; 130 M Jullum (1016_CR36) 2020; 23 L Breiman (1016_CR7) 2001; 45 S Lipovetsky (1016_CR47) 2001; 17 J Podani (1016_CR65) 1999; 48 1016_CR81 LS Shapley (1016_CR72) 1953; 2 Y Freund (1016_CR21) 1997; 55 1016_CR84 1016_CR82 1016_CR9 I Covert (1016_CR14) 2020; 33 1016_CR88 1016_CR43 1016_CR6 1016_CR42 1016_CR49 1016_CR4 1016_CR48 U Johansson (1016_CR35) 2011; 3 I Covert (1016_CR15) 2021; 22 K Aas (1016_CR2) 2021; 9 N Sellereite (1016_CR71) 2019; 5 H Kvamme (1016_CR45) 2018; 102 |
References_xml | – volume: 40 start-page: 237 issue: 3–4 year: 1953 end-page: 264 ident: CR26 article-title: The population frequencies of species and the estimation of population parameters publication-title: Biometrika – year: 2018 ident: CR66 article-title: CatBoost: unbiased boosting with categorical features publication-title: Advances in neural information processing systems – ident: CR49 – ident: CR68 – volume: 17 start-page: 61 year: 2006 end-page: 69 ident: CR87 article-title: Information and covariance matrices for multivariate Pareto (iv), Burr, and related distributions publication-title: Int J Ind Eng Prod Res – ident: CR4 – volume: 43 start-page: 176 issue: 2 year: 2015 end-page: 198 ident: CR8 article-title: A mixture of generalized hyperbolic distributions publication-title: Can J Stat – ident: CR39 – volume: 11 start-page: 1 year: 2010 end-page: 18 ident: CR73 article-title: An efficient explanation of individual classifications using game theory publication-title: J Mach Learn Res – ident: CR12 – volume: 32 start-page: 407 issue: 2 year: 2004 end-page: 451 ident: CR17 article-title: Least angle regression publication-title: Ann Stat – volume: 23 start-page: 173 issue: 1 year: 2020 end-page: 186 ident: CR36 article-title: Detecting money laundering transactions with machine learning publication-title: J Money Laund Control – year: 2015 ident: CR54 publication-title: Quantitative risk management: concepts, techniques and tools-revised edition – volume: 76 start-page: 817 issue: 376 year: 1981 end-page: 823 ident: CR22 article-title: Projection pursuit regression publication-title: J Am Stat Assoc – volume: 23 start-page: 1 issue: 213 year: 2022 end-page: 51 ident: CR63 article-title: Using Shapley values and variational autoencoders to explain predictive models with dependent mixed features publication-title: J Mach Learn Res – volume: 17 start-page: 257 issue: 1 year: 1965 end-page: 260 ident: CR77 article-title: Note on the multivariate Burr’s distribution publication-title: Ann Inst Stat Math – ident: CR29 – ident: CR61 – ident: CR58 – ident: CR84 – volume: 2 start-page: 56 issue: 1 year: 2020 end-page: 67 ident: CR50 article-title: From local explanations to global understanding with explainable AI for trees publication-title: Nat Mach Intell – volume: 298 start-page: 502 issue: 103 year: 2021 ident: CR1 article-title: Explaining individual predictions when features are dependent: more accurate approximations to Shapley values publication-title: Artif Intell – ident: CR42 – volume: 353 start-page: 401 issue: 1674 year: 1977 end-page: 419 ident: CR5 article-title: Exponentially decreasing distributions for the logarithm of particle size publication-title: Proc R Soc Lond A Math Phys Sci – ident: CR67 – ident: CR88 – ident: CR11 – ident: CR9 – ident: CR57 – volume: 21 start-page: 249 year: 1992 end-page: 266 ident: CR19 article-title: The Shapley value for cooperative games under precedence constraints publication-title: Int J Game Theory – volume: 12 start-page: 307 year: 2019 end-page: 392 ident: CR40 article-title: An introduction to variational autoencoders publication-title: Found Trends Mach Learn – volume: 41 start-page: 647 issue: 3 year: 2014 end-page: 665 ident: CR74 article-title: Explaining prediction models and individual predictions with feature contributions publication-title: Knowl Inf Syst – ident: CR78 – ident: CR81 – volume: 6 start-page: 52138 year: 2018 end-page: 52160 ident: CR3 article-title: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI) publication-title: IEEE Access – volume: 53 start-page: 419 issue: 06 year: 2014 end-page: 427 ident: CR53 article-title: The evolution of boosting algorithms publication-title: Methods Inf Med – volume: 1 start-page: 20190021 issue: 1 year: 2019 ident: CR51 article-title: Balancing accuracy and interpretability of machine learning approaches for radiation treatment outcomes modeling publication-title: BJR| Open – volume: 1 start-page: 206 issue: 5 year: 2019 end-page: 215 ident: CR70 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nat Mach Intell – volume: 10 start-page: 309 year: 2005 ident: CR44 article-title: Distribution-free continuous Bayesian belief publication-title: Mod Stat Math Methods Reliab – year: 2009 ident: CR30 publication-title: The elements of statistical learning: data mining, inference, and prediction – ident: CR18 – ident: CR43 – volume: 23 start-page: 2082 issue: 1 year: 2022 end-page: 2127 ident: CR56 article-title: Sampling permutations for Shapley value estimation publication-title: J Mach Learn Res – volume: 2 start-page: 245 issue: 1 year: 2014 end-page: 251 ident: CR64 article-title: Sobol’ indices and Shapley value publication-title: SIAM/ASA J Uncertain Quantif – year: 2006 ident: CR85 publication-title: Generalized additive models: an introduction with R – volume: 5 start-page: 2027 issue: 46 year: 2019 ident: CR71 article-title: shapr: an r-package for explaining machine learning models with dependence-aware Shapley values publication-title: J Open Source Softw – volume: 55 start-page: 119 issue: 1 year: 1997 end-page: 139 ident: CR21 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J Comput Syst Sci – volume: 130 start-page: 18 year: 2019 end-page: 41 ident: CR80 article-title: Mixtures of generalized hyperbolic distributions and mixtures of skew-t distributions for model-based clustering with incomplete data publication-title: Comput Stat I Data Anal – volume: 19 start-page: 257 issue: 2 year: 1994 end-page: 266 ident: CR16 article-title: On the complexity of cooperative solution concepts publication-title: Math Oper Res – ident: CR37 – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 ident: CR7 article-title: Random forests publication-title: Mach Learn – volume: 2 start-page: 307 issue: 28 year: 1953 end-page: 317 ident: CR72 article-title: A value for n-person games publication-title: Contrib Theory Games – volume: 15 start-page: 651 issue: 3 year: 2006 end-page: 674 ident: CR32 article-title: Unbiased recursive partitioning: a conditional inference framework publication-title: J Comput Graph Stat – volume: 33 start-page: 17212 year: 2020 end-page: 17223 ident: CR14 article-title: Understanding global feature contributions with additive importance measures publication-title: Adv Neural Inf Process Syst – ident: CR10 – ident: CR33 – ident: CR82 – start-page: 17 year: 2020 end-page: 38 ident: CR55 article-title: The explanation game: explaining machine learning models using Shapley values publication-title: Machine learning and knowledge extraction doi: 10.1007/978-3-030-57321-8_2 – ident: CR6 – volume: 167 start-page: 104 issue: 114 year: 2021 ident: CR25 article-title: Shapley–Lorenz explainable artificial intelligence publication-title: Expert Syst Appl – ident: CR79 – volume: 3 start-page: 647 issue: 6 year: 2011 end-page: 663 ident: CR35 article-title: Trade-off between accuracy and interpretability for predictive in silico modeling publication-title: Future Med Chem – volume: 62 start-page: 5397 issue: 22 year: 2022 end-page: 5410 ident: CR46 article-title: Building chemical property models for energetic materials from small datasets using a transfer learning approach publication-title: J Chem Inf Model – volume: 48 start-page: 331 issue: 2 year: 1999 end-page: 340 ident: CR65 article-title: Extending Gower’s general coefficient of similarity to ordinal characters publication-title: Taxon – volume: 68 start-page: 886 issue: 10 year: 2009 end-page: 904 ident: CR75 article-title: Explaining instance classifications with interactions of subsets of feature values publication-title: Data Knowl Eng – ident: CR23 – ident: CR69 – volume: 13 start-page: 8 year: 2015 end-page: 17 ident: CR41 article-title: Machine learning applications in cancer prognosis and prediction publication-title: Comput Struct Biotechnol J – volume: 9 start-page: 62 issue: 1 year: 2021 end-page: 81 ident: CR2 article-title: Explaining predictive models using Shapley values and non-parametric vine copulas publication-title: Depend Model – volume: 62 start-page: 1025 issue: 4 year: 2006 end-page: 1036 ident: CR83 article-title: Low-rank scale-invariant tensor product smooths for generalized additive mixed models publication-title: Biometrics – volume: 27 start-page: 857 year: 1971 end-page: 871 ident: CR27 article-title: A general coefficient of similarity and some of its properties publication-title: Biometrics – ident: CR48 – volume: 102 start-page: 207 year: 2018 end-page: 217 ident: CR45 article-title: Predicting mortgage default using convolutional neural networks publication-title: Expert Syst Appl – ident: CR38 – ident: CR52 – ident: CR31 – ident: CR13 – ident: CR34 – volume: 17 start-page: 319 issue: 4 year: 2001 end-page: 330 ident: CR47 article-title: Analysis of regression in game theory approach publication-title: Appl Stoch Model Bus Ind – volume: 77 start-page: 1 issue: 1 year: 2017 end-page: 17 ident: CR86 article-title: ranger: a fast implementation Dof random forests for high dimensional data in C++ and R publication-title: J Stat Softw doi: 10.18637/jss.v077.i01 – ident: CR59 – volume: 7 start-page: 308 issue: 4 year: 1965 end-page: 313 ident: CR60 article-title: A simplex method for function minimization publication-title: Comput J – ident: CR76 – ident: CR28 – ident: CR62 – volume: 22 start-page: 1 issue: 209 year: 2021 end-page: 90 ident: CR15 article-title: Explaining by removing: a unified framework for model explanation publication-title: J Mach Learn Res – ident: CR24 – ident: CR20 – ident: 1016_CR58 – volume: 21 start-page: 249 year: 1992 ident: 1016_CR19 publication-title: Int J Game Theory doi: 10.1007/BF01258278 – ident: 1016_CR11 doi: 10.1038/s42256-023-00657-x – volume-title: Advances in neural information processing systems year: 2018 ident: 1016_CR66 – ident: 1016_CR31 – ident: 1016_CR6 doi: 10.1007/978-3-031-44064-9_8 – ident: 1016_CR39 – volume: 22 start-page: 1 issue: 209 year: 2021 ident: 1016_CR15 publication-title: J Mach Learn Res – volume: 2 start-page: 307 issue: 28 year: 1953 ident: 1016_CR72 publication-title: Contrib Theory Games – volume: 167 start-page: 104 issue: 114 year: 2021 ident: 1016_CR25 publication-title: Expert Syst Appl – volume: 12 start-page: 307 year: 2019 ident: 1016_CR40 publication-title: Found Trends Mach Learn doi: 10.1561/2200000056 – volume: 17 start-page: 319 issue: 4 year: 2001 ident: 1016_CR47 publication-title: Appl Stoch Model Bus Ind doi: 10.1002/asmb.446 – volume: 353 start-page: 401 issue: 1674 year: 1977 ident: 1016_CR5 publication-title: Proc R Soc Lond A Math Phys Sci doi: 10.1098/rspa.1977.0041 – volume: 68 start-page: 886 issue: 10 year: 2009 ident: 1016_CR75 publication-title: Data Knowl Eng doi: 10.1016/j.datak.2009.01.004 – volume: 62 start-page: 1025 issue: 4 year: 2006 ident: 1016_CR83 publication-title: Biometrics doi: 10.1111/j.1541-0420.2006.00574.x – volume-title: Quantitative risk management: concepts, techniques and tools-revised edition year: 2015 ident: 1016_CR54 – volume: 48 start-page: 331 issue: 2 year: 1999 ident: 1016_CR65 publication-title: Taxon doi: 10.2307/1224438 – volume: 19 start-page: 257 issue: 2 year: 1994 ident: 1016_CR16 publication-title: Math Oper Res doi: 10.1287/moor.19.2.257 – volume: 102 start-page: 207 year: 2018 ident: 1016_CR45 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.02.029 – ident: 1016_CR49 – ident: 1016_CR24 doi: 10.1109/ACCESS.2021.3119110 – ident: 1016_CR34 – ident: 1016_CR82 – ident: 1016_CR13 – volume: 23 start-page: 173 issue: 1 year: 2020 ident: 1016_CR36 publication-title: J Money Laund Control doi: 10.1108/JMLC-07-2019-0055 – ident: 1016_CR38 – ident: 1016_CR59 – volume: 23 start-page: 1 issue: 213 year: 2022 ident: 1016_CR63 publication-title: J Mach Learn Res – ident: 1016_CR76 – volume: 130 start-page: 18 year: 2019 ident: 1016_CR80 publication-title: Comput Stat I Data Anal doi: 10.1016/j.csda.2018.08.016 – ident: 1016_CR23 – volume: 298 start-page: 502 issue: 103 year: 2021 ident: 1016_CR1 publication-title: Artif Intell – ident: 1016_CR12 doi: 10.1007/978-3-642-04747-3_8 – volume: 76 start-page: 817 issue: 376 year: 1981 ident: 1016_CR22 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1981.10477729 – ident: 1016_CR48 – volume: 5 start-page: 2027 issue: 46 year: 2019 ident: 1016_CR71 publication-title: J Open Source Softw doi: 10.21105/joss.02027 – ident: 1016_CR69 – ident: 1016_CR10 – ident: 1016_CR33 – volume: 2 start-page: 56 issue: 1 year: 2020 ident: 1016_CR50 publication-title: Nat Mach Intell doi: 10.1038/s42256-019-0138-9 – volume: 40 start-page: 237 issue: 3–4 year: 1953 ident: 1016_CR26 publication-title: Biometrika doi: 10.1093/biomet/40.3-4.237 – volume: 1 start-page: 206 issue: 5 year: 2019 ident: 1016_CR70 publication-title: Nat Mach Intell doi: 10.1038/s42256-019-0048-x – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 1016_CR7 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – ident: 1016_CR37 – ident: 1016_CR52 – volume: 17 start-page: 61 year: 2006 ident: 1016_CR87 publication-title: Int J Ind Eng Prod Res – volume: 2 start-page: 245 issue: 1 year: 2014 ident: 1016_CR64 publication-title: SIAM/ASA J Uncertain Quantif doi: 10.1137/130936233 – ident: 1016_CR79 – ident: 1016_CR4 – volume: 33 start-page: 17212 year: 2020 ident: 1016_CR14 publication-title: Adv Neural Inf Process Syst – volume-title: The elements of statistical learning: data mining, inference, and prediction year: 2009 ident: 1016_CR30 doi: 10.1007/978-0-387-84858-7 – volume: 7 start-page: 308 issue: 4 year: 1965 ident: 1016_CR60 publication-title: Comput J doi: 10.1093/comjnl/7.4.308 – ident: 1016_CR68 doi: 10.1007/978-3-030-57321-8_7 – volume: 55 start-page: 119 issue: 1 year: 1997 ident: 1016_CR21 publication-title: J Comput Syst Sci doi: 10.1006/jcss.1997.1504 – ident: 1016_CR18 – ident: 1016_CR43 – ident: 1016_CR9 doi: 10.1007/978-94-009-3677-5_7 – volume-title: Generalized additive models: an introduction with R year: 2006 ident: 1016_CR85 doi: 10.1201/9781420010404 – ident: 1016_CR20 – volume: 10 start-page: 309 year: 2005 ident: 1016_CR44 publication-title: Mod Stat Math Methods Reliab – volume: 43 start-page: 176 issue: 2 year: 2015 ident: 1016_CR8 publication-title: Can J Stat doi: 10.1002/cjs.11246 – ident: 1016_CR28 – ident: 1016_CR62 – volume: 6 start-page: 52138 year: 2018 ident: 1016_CR3 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870052 – volume: 3 start-page: 647 issue: 6 year: 2011 ident: 1016_CR35 publication-title: Future Med Chem doi: 10.4155/fmc.11.23 – ident: 1016_CR81 – volume: 32 start-page: 407 issue: 2 year: 2004 ident: 1016_CR17 publication-title: Ann Stat doi: 10.1214/009053604000000067 – volume: 15 start-page: 651 issue: 3 year: 2006 ident: 1016_CR32 publication-title: J Comput Graph Stat doi: 10.1198/106186006X133933 – ident: 1016_CR57 – volume: 1 start-page: 20190021 issue: 1 year: 2019 ident: 1016_CR51 publication-title: BJR| Open – ident: 1016_CR61 doi: 10.1109/ICPR48806.2021.9412511 – volume: 62 start-page: 5397 issue: 22 year: 2022 ident: 1016_CR46 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.2c00841 – volume: 23 start-page: 2082 issue: 1 year: 2022 ident: 1016_CR56 publication-title: J Mach Learn Res – ident: 1016_CR78 – ident: 1016_CR88 doi: 10.1145/3394486.3403106 – volume: 11 start-page: 1 year: 2010 ident: 1016_CR73 publication-title: J Mach Learn Res – volume: 77 start-page: 1 issue: 1 year: 2017 ident: 1016_CR86 publication-title: J Stat Softw doi: 10.18637/jss.v077.i01 – start-page: 17 volume-title: Machine learning and knowledge extraction year: 2020 ident: 1016_CR55 doi: 10.1007/978-3-030-57321-8_2 – volume: 17 start-page: 257 issue: 1 year: 1965 ident: 1016_CR77 publication-title: Ann Inst Stat Math doi: 10.1007/BF02868169 – volume: 9 start-page: 62 issue: 1 year: 2021 ident: 1016_CR2 publication-title: Depend Model doi: 10.1515/demo-2021-0103 – volume: 13 start-page: 8 year: 2015 ident: 1016_CR41 publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2014.11.005 – ident: 1016_CR29 – ident: 1016_CR42 – volume: 27 start-page: 857 year: 1971 ident: 1016_CR27 publication-title: Biometrics doi: 10.2307/2528823 – volume: 41 start-page: 647 issue: 3 year: 2014 ident: 1016_CR74 publication-title: Knowl Inf Syst doi: 10.1007/s10115-013-0679-x – ident: 1016_CR67 – ident: 1016_CR84 – volume: 53 start-page: 419 issue: 06 year: 2014 ident: 1016_CR53 publication-title: Methods Inf Med doi: 10.3414/ME13-01-0122 |
SSID | ssj0005230 |
Score | 2.476504 |
Snippet | Shapley values originated in cooperative game theory but are extensively used today as a model-agnostic explanation framework to explain predictions made by... |
SourceID | cristin proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1782 |
SubjectTerms | Artificial Intelligence Chemistry and Earth Sciences Comparative studies Computer Science Data Mining and Knowledge Discovery Estimation Game theory Information Storage and Retrieval Machine learning Methods Monte Carlo simulation Physics Prediction models Predictions Regression models Statistics for Engineering |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oRPDij6lYnZKDNw00TbOkxzEcQ9CLDncrbZLqYXTDTZD99b6kndWhguekCeR7Sb7XvPc9gEuZSasV69IsTjSNuTI0SYSiOpEJtiFD8LoFd_fd4Si-HYtxLZPjcmHW3u9diluXKYo3CfVqaHS5CVuCcenKNPS7_S_hHLzKCFYxFYqFdYLMz2Mg2dV-D5Xfr6OGY649i_rbZrAPuzVNJL0K1wPYsGUb9lYlGEi9I9uw7SM49fwQnnpEN0rexMvGkmlBqhLRc4LklDhFDcdQy2fiK-BQH2aHU5CHl2yGxwNx2t-W2PfZJKt-E86PYDS4eewPaV01gWqu1IJGPFfCmFxbPDsMt7EqbGgLUQghM5tLxmQWZkkhVcaYsdpqqSOO5y_ixE1k-DG0ymlpT4AYbYVODNMxul0yTpCNWy0Kya1CrzAPAwjqZUxLNFgnNioi9CkQ4SgAtlrYVNdy467qxSRthJIdLCnCknpY0mUAV5_fzCqxjT97d1Z4pfXGm6ccXTR0-tDLC-B6hWHT_Ptop__rfgY7kTcoF7jbgdbi9c2eIz1Z5BfeLj8ASc3aYg priority: 102 providerName: Springer Nature |
Title | A comparative study of methods for estimating model-agnostic Shapley value explanations |
URI | https://link.springer.com/article/10.1007/s10618-024-01016-z https://www.proquest.com/docview/3086149114 http://hdl.handle.net/10852/110572 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1BT9swFH6C9sKFsY2JjFL5sBuzVsdx7ZxQqVoQCIQ2KtgpSmwHDigtaychfj3PjkM2JHrJIU588Pf8_Nl-73sA32QurVZsSPMk1TThytA0FYrqVKbYhgzB6xZcXA5PZ8nZrbgNB27LEFbZ-ETvqM1cuzPyHxy5N7J5pO9Hi0fqqka529VQQmMTuuiClepA93hyefXznyAPXucJq4QKxQYhbSYkzw2ZorhGUa-zRp-RAms_s6r_F6mWeb65LPVr0HQHtgN5JKMa7Y-wYatP8KEpzEDCPP0MNyOiW1Vv4iVkybwkdbnoJUGiSpy6hmOr1R3x1XCoD7nDjsmv-3yBroI4HXBL7NPiIa-PDJe7MJtOrsenNFRQoJortaIxL5QwptAW_YjhNlGlHdhSlELI3BaSMZkP8rSUKmfMWG211DFHX4yYcRMb_gU61byye0CMtkKnhukEt2AySZGZWy1Kya3CHWIxiCAKg5dVaLxOeFTEuL9AtOMIWDOcmQ7S464CxkPWiiY7MDIEI_NgZM8RHL7-s6iFN9Z-3WtQysIkXGatyUTwvUGubX6_t6_re9uHrdibjQva7UFn9eevPUBqsir6sKmmJ33ojk5-n0_6wRrx7Xg4xucsHr0AFHTjxA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALlEJFSgEf2lOxWMfx2jkgVBWW7fNCK3pzE3sChyq77W4F9Ef1N3bsJA0g0VvPSUaK5-Fv7JlvANZ1odEZMeRFljueSeN5nivDXa5zekYIIfIWHBwOx8fZ7ok6WYDrrhcmlFV2MTEGaj9x4Yz8vSTsTWie4PvH6TkPU6PC7Wo3QqMxiz38_ZNSttmHnU-k3400HX0-2h7zdqoAd9KYOU9laZT3pUPyLS8xMxUOsFKVUrrAUguhi0GRV9oUQnh06LRLJcUn-g_pUy9J7gN4mEnayUNn-ujLHyUlsulKNhlXRgzaJp22VW8oDKcdkUdWN35FgNtFP67_3hJ7nPvP1Wzc8UZL8KSFqmyrsa1nsID1MjztxkCwNio8h29bzPUc4iwS1rJJxZrh1DNGsJgFLo-AjevvLM7e4bHAjwSzrz-KKQUmFljHkeGv6VnRHFDOXsDxvazsCizWkxpfAvMOlcu9cBklfDrLKQ9Apyot0VA-Wg4SSNrFszW5SqA5VSllM2RbaQKiW07rWqLzMG_jzPYUzUEZlpRhozLsVQKbt99MG5qPO99e67RkW5ef2d5AE3jXaa5__H9pq3dLewuPxkcH-3Z_53DvFTxOowmFcuE1WJxfXOJrAkXz8k20RAan9236N7qNHeM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYS48I1IKeADnMDqOo7XzgGhQrtqKawqoKI3k9gTeqiyC7sI6E_j1zF2HAJI9NZzEkvxPI_f2DNvAB7pSqMzYsKronS8kMbzslSGu1KX9IwYQtQteDOb7B0Vr47V8Rr87GthQlpl7xOjo_ZzF87ItyRxb2LzRN-3mpQWcbgzfb74zEMHqXDT2rfT6CBygD--Ufi2fLa_Q7Z-nOfT3fcv93jqMMCdNGbFc1kb5X3tkNaZl1iYBsfYqEYpXWGthdDVuCobbSohPDp02uWSfBX9k_S5lzTuJVjXISoawfqL3dnh2z8STGRXo2wKrowYp5KdVLg3EYbT_sijxhs_I_rt4qpu_94gB9b7z0Vt3P-m1-FqIq5su0PaDVjD9iZc65tCsOQjbsGHbeYGRXEW5WvZvGFdq-olI5LMgrJHYMrtJxY78fCY7kcDs3cn1YLcFAsa5Mjw--K06o4rl7fh6ELm9g6M2nmLd4F5h8qVXriCwj9dlBQVoFONlmgoOq3HGWRp8mxLCyeInqqcYhtCWp6B6KfTuiR7HrpvnNpBsDkYw5IxbDSGPcvgye9vFp3ox7lvb_ZWsskBLO0A1wye9pYbHv9_tI3zR3sIlwn29vX-7OAeXMkjgkLu8CaMVl--4n1iSKv6QYIig48Xjf5fuykjdQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+methods+for+estimating+model-agnostic+Shapley+value+explanations&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Olsen%2C+Lars+Henry+Berge&rft.au=Glad%2C+Ingrid+Kristine&rft.au=Jullum%2C+Martin&rft.au=Aas%2C+Kjersti&rft.date=2024-07-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=38&rft.issue=4&rft.spage=1782&rft.epage=1829&rft_id=info:doi/10.1007%2Fs10618-024-01016-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_024_01016_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |