A comparative study of methods for estimating model-agnostic Shapley value explanations

Shapley values originated in cooperative game theory but are extensively used today as a model-agnostic explanation framework to explain predictions made by complex machine learning models in the industry and academia. There are several algorithmic approaches for computing different versions of Shap...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 38; no. 4; pp. 1782 - 1829
Main Authors Olsen, Lars Henry Berge, Glad, Ingrid Kristine, Jullum, Martin, Aas, Kjersti
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Shapley values originated in cooperative game theory but are extensively used today as a model-agnostic explanation framework to explain predictions made by complex machine learning models in the industry and academia. There are several algorithmic approaches for computing different versions of Shapley value explanations. Here, we consider Shapley values incorporating feature dependencies, referred to as conditional Shapley values, for predictive models fitted to tabular data. Estimating precise conditional Shapley values is difficult as they require the estimation of non-trivial conditional expectations. In this article, we develop new methods, extend earlier proposed approaches, and systematize the new refined and existing methods into different method classes for comparison and evaluation. The method classes use either Monte Carlo integration or regression to model the conditional expectations. We conduct extensive simulation studies to evaluate how precisely the different method classes estimate the conditional expectations, and thereby the conditional Shapley values, for different setups. We also apply the methods to several real-world data experiments and provide recommendations for when to use the different method classes and approaches. Roughly speaking, we recommend using parametric methods when we can specify the data distribution almost correctly, as they generally produce the most accurate Shapley value explanations. When the distribution is unknown, both generative methods and regression models with a similar form as the underlying predictive model are good and stable options. Regression-based methods are often slow to train but quickly produce the Shapley value explanations once trained. The vice versa is true for Monte Carlo-based methods, making the different methods appropriate in different practical situations.
AbstractList Shapley values originated in cooperative game theory but are extensively used today as a model-agnostic explanation framework to explain predictions made by complex machine learning models in the industry and academia. There are several algorithmic approaches for computing different versions of Shapley value explanations. Here, we consider Shapley values incorporating feature dependencies, referred to as conditional Shapley values, for predictive models fitted to tabular data. Estimating precise conditional Shapley values is difficult as they require the estimation of non-trivial conditional expectations. In this article, we develop new methods, extend earlier proposed approaches, and systematize the new refined and existing methods into different method classes for comparison and evaluation. The method classes use either Monte Carlo integration or regression to model the conditional expectations. We conduct extensive simulation studies to evaluate how precisely the different method classes estimate the conditional expectations, and thereby the conditional Shapley values, for different setups. We also apply the methods to several real-world data experiments and provide recommendations for when to use the different method classes and approaches. Roughly speaking, we recommend using parametric methods when we can specify the data distribution almost correctly, as they generally produce the most accurate Shapley value explanations. When the distribution is unknown, both generative methods and regression models with a similar form as the underlying predictive model are good and stable options. Regression-based methods are often slow to train but quickly produce the Shapley value explanations once trained. The vice versa is true for Monte Carlo-based methods, making the different methods appropriate in different practical situations.
Author Glad, Ingrid Kristine
Olsen, Lars Henry Berge
Aas, Kjersti
Jullum, Martin
Author_xml – sequence: 1
  givenname: Lars Henry Berge
  orcidid: 0009-0006-9360-6993
  surname: Olsen
  fullname: Olsen, Lars Henry Berge
  email: lholsen@math.uio.no
  organization: Department of Mathematics, University of Oslo, The Alan Turing Institute
– sequence: 2
  givenname: Ingrid Kristine
  surname: Glad
  fullname: Glad, Ingrid Kristine
  organization: Department of Mathematics, University of Oslo
– sequence: 3
  givenname: Martin
  surname: Jullum
  fullname: Jullum, Martin
  organization: Norwegian Computing Center
– sequence: 4
  givenname: Kjersti
  surname: Aas
  fullname: Aas, Kjersti
  organization: Norwegian Computing Center
BookMark eNp9kE9LJDEQxYMorP--wJ4CnrNWdTqdeBRZdxeEPayit5BJqseWnqRNesTx0xudlYU9eKpQeb_Hq3fAdmOKxNhXhG8IoE8LQodGQNMKQMBOvOywfVRaCq26u936lqYVyiB8YQelPACAaiTss9tz7tNqctnNwxPxMq_Dhqeer2i-T6HwPmVOZR5W9T8u-SoFGoVbxlR3nv-5d9NIG_7kxjVxep5GF6swxXLE9no3Fjr-Ow_ZzeX364uf4ur3j18X51fCS2Nm0ciFUSEsPEndBUmt6QmoV71S2tFCI2oH7qzXxiEG8uS1byS5SgcZmiAPGd_6-jzUSNHGlJ1FMKqxiKB0UyUnW8mU0-O6HmMf0jrHmspKMB22Z4htVZkPo1RKpt76YX6_Zc5uGKulfWvabpu2tWn73rR9qWjzHzrlWljefA7JLVSqOC4p_0v1CfUKKPyUUw
CitedBy_id crossref_primary_10_3390_app15031057
crossref_primary_10_1007_s00521_024_10349_1
crossref_primary_10_1007_s10608_024_10542_5
crossref_primary_10_1038_s41598_025_89810_7
crossref_primary_10_3390_su16187885
Cites_doi 10.1007/978-3-030-57321-8_2
10.18637/jss.v077.i01
10.1007/BF01258278
10.1038/s42256-023-00657-x
10.1007/978-3-031-44064-9_8
10.1561/2200000056
10.1002/asmb.446
10.1098/rspa.1977.0041
10.1016/j.datak.2009.01.004
10.1111/j.1541-0420.2006.00574.x
10.2307/1224438
10.1287/moor.19.2.257
10.1016/j.eswa.2018.02.029
10.1109/ACCESS.2021.3119110
10.1108/JMLC-07-2019-0055
10.1016/j.csda.2018.08.016
10.1007/978-3-642-04747-3_8
10.1080/01621459.1981.10477729
10.21105/joss.02027
10.1038/s42256-019-0138-9
10.1093/biomet/40.3-4.237
10.1038/s42256-019-0048-x
10.1023/A:1010933404324
10.1137/130936233
10.1007/978-0-387-84858-7
10.1093/comjnl/7.4.308
10.1007/978-3-030-57321-8_7
10.1006/jcss.1997.1504
10.1007/978-94-009-3677-5_7
10.1201/9781420010404
10.1002/cjs.11246
10.1109/ACCESS.2018.2870052
10.4155/fmc.11.23
10.1214/009053604000000067
10.1198/106186006X133933
10.1109/ICPR48806.2021.9412511
10.1021/acs.jcim.2c00841
10.1145/3394486.3403106
10.1007/BF02868169
10.1515/demo-2021-0103
10.1016/j.csbj.2014.11.005
10.2307/2528823
10.1007/s10115-013-0679-x
10.3414/ME13-01-0122
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
info:eu-repo/semantics/openAccess
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: info:eu-repo/semantics/openAccess
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
3HK
DOI 10.1007/s10618-024-01016-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM global
Computing Database
ProQuest research library
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
NORA - Norwegian Open Research Archives
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef

ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: C6C
  name: Springer_OA刊
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 1829
ExternalDocumentID 10852_110572
10_1007_s10618_024_01016_z
GrantInformation_xml – fundername: Norges Forskningsråd
  grantid: 237718
  funderid: http://dx.doi.org/10.13039/501100005416
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
3HK
AAFGU
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
UNUBA
ID FETCH-LOGICAL-c388t-23b85ddbce376d3e48fe0ef5f557aeb7117a0a9f78a11decec7c23eac38d3d2d3
IEDL.DBID BENPR
ISSN 1384-5810
IngestDate Tue Apr 30 03:31:04 EDT 2024
Sat Aug 16 21:26:41 EDT 2025
Thu Apr 24 23:11:15 EDT 2025
Tue Jul 01 00:40:33 EDT 2025
Fri Feb 21 02:39:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Explainable artificial intelligence
Shapley values
Feature importance
Feature dependence
Prediction explanation
Model-agnostic explanation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-23b85ddbce376d3e48fe0ef5f557aeb7117a0a9f78a11decec7c23eac38d3d2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
NFR/237718
ORCID 0009-0006-9360-6993
OpenAccessLink https://doi.org/10.1007/s10618-024-01016-z
PQID 3086149114
PQPubID 43030
PageCount 48
ParticipantIDs cristin_nora_10852_110572
proquest_journals_3086149114
crossref_citationtrail_10_1007_s10618_024_01016_z
crossref_primary_10_1007_s10618_024_01016_z
springer_journals_10_1007_s10618_024_01016_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Freund, Schapire (CR21) 1997; 55
Johansson, Sönströd, Norinder (CR35) 2011; 3
Gower (CR27) 1971; 27
CR39
CR38
CR37
CR79
CR34
CR78
CR33
Shapley (CR72) 1953; 2
CR76
CR31
Kourou, Exarchos, Exarchos (CR41) 2015; 13
Olsen, Glad, Jullum (CR63) 2022; 23
Wei, Tang, McNicholas (CR80) 2019; 130
Barndorff-Nielsen (CR5) 1977; 353
Merrick, Taly (CR55) 2020
Hastie, Tibshirani, Friedman (CR30) 2009
CR4
Owen (CR64) 2014; 2
CR6
McNeil, Frey, Embrechts (CR54) 2015
Aas, Nagler, Jullum (CR2) 2021; 9
Good (CR26) 1953; 40
CR9
CR49
Mayr, Binder, Gefeller (CR53) 2014; 53
CR48
Yari, Jafari (CR87) 2006; 17
Aas, Jullum, Løland (CR1) 2021; 298
CR88
CR43
CR42
CR84
CR82
CR81
Deng, Papadimitriou (CR16) 1994; 19
Podani (CR65) 1999; 48
Wood (CR85) 2006
Browne, McNicholas (CR8) 2015; 43
Giudici, Raffinetti (CR25) 2021; 167
CR18
Faigle, Kern (CR19) 1992; 21
Jullum, Løland, Huseby (CR36) 2020; 23
CR59
CR58
CR13
CR57
CR12
Covert, Lundberg, Lee (CR15) 2021; 22
CR11
CR10
Strumbelj, Kononenko (CR73) 2010; 11
CR52
Friedman, Stuetzle (CR22) 1981; 76
Lundberg, Erion, Chen (CR50) 2020; 2
Strumbelj, Kononenko (CR74) 2014; 41
Strumbelj, Kononenko, Sikonja (CR75) 2009; 68
Wright, Ziegler (CR86) 2017; 77
Nelder, Mead (CR60) 1965; 7
Rudin (CR70) 2019; 1
Kingma, Welling (CR40) 2019; 12
Sellereite, Jullum (CR71) 2019; 5
Efron, Hastie, Johnstone (CR17) 2004; 32
Breiman (CR7) 2001; 45
Luo, Tseng, Cui (CR51) 2019; 1
CR29
CR28
Takahasi (CR77) 1965; 17
Hothorn, Hornik, Zeileis (CR32) 2006; 15
Kurowicka, Cooke (CR44) 2005; 10
CR69
CR24
CR68
CR23
CR67
Kvamme, Sellereite, Aas (CR45) 2018; 102
CR20
Lipovetsky, Conklin (CR47) 2001; 17
Mitchell, Cooper, Frank (CR56) 2022; 23
CR62
CR61
Prokhorenkova, Gusev, Vorobev, Bengio, Wallach, Larochelle (CR66) 2018
Adadi, Berrada (CR3) 2018; 6
Lansford, Barnes, Rice (CR46) 2022; 62
Wood (CR83) 2006; 62
Covert, Lundberg, Lee (CR14) 2020; 33
B Efron (1016_CR17) 2004; 32
DP Kingma (1016_CR40) 2019; 12
E Strumbelj (1016_CR75) 2009; 68
K Takahasi (1016_CR77) 1965; 17
1016_CR34
E Strumbelj (1016_CR73) 2010; 11
1016_CR78
1016_CR33
JH Friedman (1016_CR22) 1981; 76
1016_CR76
1016_CR31
1016_CR38
1016_CR37
R Mitchell (1016_CR56) 2022; 23
1016_CR79
MN Wright (1016_CR86) 2017; 77
1016_CR39
X Deng (1016_CR16) 1994; 19
P Giudici (1016_CR25) 2021; 167
JC Gower (1016_CR27) 1971; 27
JL Lansford (1016_CR46) 2022; 62
Y Luo (1016_CR51) 2019; 1
C Rudin (1016_CR70) 2019; 1
S Wood (1016_CR83) 2006; 62
1016_CR62
1016_CR61
LHB Olsen (1016_CR63) 2022; 23
1016_CR23
1016_CR67
SN Wood (1016_CR85) 2006
1016_CR20
A Adadi (1016_CR3) 2018; 6
1016_CR69
G Yari (1016_CR87) 2006; 17
1016_CR24
1016_CR68
RP Browne (1016_CR8) 2015; 43
O Barndorff-Nielsen (1016_CR5) 1977; 353
K Aas (1016_CR1) 2021; 298
1016_CR29
1016_CR28
T Hastie (1016_CR30) 2009
E Strumbelj (1016_CR74) 2014; 41
A Mayr (1016_CR53) 2014; 53
SM Lundberg (1016_CR50) 2020; 2
IJ Good (1016_CR26) 1953; 40
D Kurowicka (1016_CR44) 2005; 10
T Hothorn (1016_CR32) 2006; 15
1016_CR52
1016_CR12
1016_CR11
L Prokhorenkova (1016_CR66) 2018
1016_CR10
AJ McNeil (1016_CR54) 2015
AB Owen (1016_CR64) 2014; 2
1016_CR59
1016_CR58
JA Nelder (1016_CR60) 1965; 7
1016_CR13
1016_CR57
1016_CR18
U Faigle (1016_CR19) 1992; 21
K Kourou (1016_CR41) 2015; 13
L Merrick (1016_CR55) 2020
Y Wei (1016_CR80) 2019; 130
M Jullum (1016_CR36) 2020; 23
L Breiman (1016_CR7) 2001; 45
S Lipovetsky (1016_CR47) 2001; 17
J Podani (1016_CR65) 1999; 48
1016_CR81
LS Shapley (1016_CR72) 1953; 2
Y Freund (1016_CR21) 1997; 55
1016_CR84
1016_CR82
1016_CR9
I Covert (1016_CR14) 2020; 33
1016_CR88
1016_CR43
1016_CR6
1016_CR42
1016_CR49
1016_CR4
1016_CR48
U Johansson (1016_CR35) 2011; 3
I Covert (1016_CR15) 2021; 22
K Aas (1016_CR2) 2021; 9
N Sellereite (1016_CR71) 2019; 5
H Kvamme (1016_CR45) 2018; 102
References_xml – volume: 40
  start-page: 237
  issue: 3–4
  year: 1953
  end-page: 264
  ident: CR26
  article-title: The population frequencies of species and the estimation of population parameters
  publication-title: Biometrika
– year: 2018
  ident: CR66
  article-title: CatBoost: unbiased boosting with categorical features
  publication-title: Advances in neural information processing systems
– ident: CR49
– ident: CR68
– volume: 17
  start-page: 61
  year: 2006
  end-page: 69
  ident: CR87
  article-title: Information and covariance matrices for multivariate Pareto (iv), Burr, and related distributions
  publication-title: Int J Ind Eng Prod Res
– ident: CR4
– volume: 43
  start-page: 176
  issue: 2
  year: 2015
  end-page: 198
  ident: CR8
  article-title: A mixture of generalized hyperbolic distributions
  publication-title: Can J Stat
– ident: CR39
– volume: 11
  start-page: 1
  year: 2010
  end-page: 18
  ident: CR73
  article-title: An efficient explanation of individual classifications using game theory
  publication-title: J Mach Learn Res
– ident: CR12
– volume: 32
  start-page: 407
  issue: 2
  year: 2004
  end-page: 451
  ident: CR17
  article-title: Least angle regression
  publication-title: Ann Stat
– volume: 23
  start-page: 173
  issue: 1
  year: 2020
  end-page: 186
  ident: CR36
  article-title: Detecting money laundering transactions with machine learning
  publication-title: J Money Laund Control
– year: 2015
  ident: CR54
  publication-title: Quantitative risk management: concepts, techniques and tools-revised edition
– volume: 76
  start-page: 817
  issue: 376
  year: 1981
  end-page: 823
  ident: CR22
  article-title: Projection pursuit regression
  publication-title: J Am Stat Assoc
– volume: 23
  start-page: 1
  issue: 213
  year: 2022
  end-page: 51
  ident: CR63
  article-title: Using Shapley values and variational autoencoders to explain predictive models with dependent mixed features
  publication-title: J Mach Learn Res
– volume: 17
  start-page: 257
  issue: 1
  year: 1965
  end-page: 260
  ident: CR77
  article-title: Note on the multivariate Burr’s distribution
  publication-title: Ann Inst Stat Math
– ident: CR29
– ident: CR61
– ident: CR58
– ident: CR84
– volume: 2
  start-page: 56
  issue: 1
  year: 2020
  end-page: 67
  ident: CR50
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat Mach Intell
– volume: 298
  start-page: 502
  issue: 103
  year: 2021
  ident: CR1
  article-title: Explaining individual predictions when features are dependent: more accurate approximations to Shapley values
  publication-title: Artif Intell
– ident: CR42
– volume: 353
  start-page: 401
  issue: 1674
  year: 1977
  end-page: 419
  ident: CR5
  article-title: Exponentially decreasing distributions for the logarithm of particle size
  publication-title: Proc R Soc Lond A Math Phys Sci
– ident: CR67
– ident: CR88
– ident: CR11
– ident: CR9
– ident: CR57
– volume: 21
  start-page: 249
  year: 1992
  end-page: 266
  ident: CR19
  article-title: The Shapley value for cooperative games under precedence constraints
  publication-title: Int J Game Theory
– volume: 12
  start-page: 307
  year: 2019
  end-page: 392
  ident: CR40
  article-title: An introduction to variational autoencoders
  publication-title: Found Trends Mach Learn
– volume: 41
  start-page: 647
  issue: 3
  year: 2014
  end-page: 665
  ident: CR74
  article-title: Explaining prediction models and individual predictions with feature contributions
  publication-title: Knowl Inf Syst
– ident: CR78
– ident: CR81
– volume: 6
  start-page: 52138
  year: 2018
  end-page: 52160
  ident: CR3
  article-title: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI)
  publication-title: IEEE Access
– volume: 53
  start-page: 419
  issue: 06
  year: 2014
  end-page: 427
  ident: CR53
  article-title: The evolution of boosting algorithms
  publication-title: Methods Inf Med
– volume: 1
  start-page: 20190021
  issue: 1
  year: 2019
  ident: CR51
  article-title: Balancing accuracy and interpretability of machine learning approaches for radiation treatment outcomes modeling
  publication-title: BJR| Open
– volume: 1
  start-page: 206
  issue: 5
  year: 2019
  end-page: 215
  ident: CR70
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nat Mach Intell
– volume: 10
  start-page: 309
  year: 2005
  ident: CR44
  article-title: Distribution-free continuous Bayesian belief
  publication-title: Mod Stat Math Methods Reliab
– year: 2009
  ident: CR30
  publication-title: The elements of statistical learning: data mining, inference, and prediction
– ident: CR18
– ident: CR43
– volume: 23
  start-page: 2082
  issue: 1
  year: 2022
  end-page: 2127
  ident: CR56
  article-title: Sampling permutations for Shapley value estimation
  publication-title: J Mach Learn Res
– volume: 2
  start-page: 245
  issue: 1
  year: 2014
  end-page: 251
  ident: CR64
  article-title: Sobol’ indices and Shapley value
  publication-title: SIAM/ASA J Uncertain Quantif
– year: 2006
  ident: CR85
  publication-title: Generalized additive models: an introduction with R
– volume: 5
  start-page: 2027
  issue: 46
  year: 2019
  ident: CR71
  article-title: shapr: an r-package for explaining machine learning models with dependence-aware Shapley values
  publication-title: J Open Source Softw
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  end-page: 139
  ident: CR21
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J Comput Syst Sci
– volume: 130
  start-page: 18
  year: 2019
  end-page: 41
  ident: CR80
  article-title: Mixtures of generalized hyperbolic distributions and mixtures of skew-t distributions for model-based clustering with incomplete data
  publication-title: Comput Stat I Data Anal
– volume: 19
  start-page: 257
  issue: 2
  year: 1994
  end-page: 266
  ident: CR16
  article-title: On the complexity of cooperative solution concepts
  publication-title: Math Oper Res
– ident: CR37
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: CR7
  article-title: Random forests
  publication-title: Mach Learn
– volume: 2
  start-page: 307
  issue: 28
  year: 1953
  end-page: 317
  ident: CR72
  article-title: A value for n-person games
  publication-title: Contrib Theory Games
– volume: 15
  start-page: 651
  issue: 3
  year: 2006
  end-page: 674
  ident: CR32
  article-title: Unbiased recursive partitioning: a conditional inference framework
  publication-title: J Comput Graph Stat
– volume: 33
  start-page: 17212
  year: 2020
  end-page: 17223
  ident: CR14
  article-title: Understanding global feature contributions with additive importance measures
  publication-title: Adv Neural Inf Process Syst
– ident: CR10
– ident: CR33
– ident: CR82
– start-page: 17
  year: 2020
  end-page: 38
  ident: CR55
  article-title: The explanation game: explaining machine learning models using Shapley values
  publication-title: Machine learning and knowledge extraction
  doi: 10.1007/978-3-030-57321-8_2
– ident: CR6
– volume: 167
  start-page: 104
  issue: 114
  year: 2021
  ident: CR25
  article-title: Shapley–Lorenz explainable artificial intelligence
  publication-title: Expert Syst Appl
– ident: CR79
– volume: 3
  start-page: 647
  issue: 6
  year: 2011
  end-page: 663
  ident: CR35
  article-title: Trade-off between accuracy and interpretability for predictive in silico modeling
  publication-title: Future Med Chem
– volume: 62
  start-page: 5397
  issue: 22
  year: 2022
  end-page: 5410
  ident: CR46
  article-title: Building chemical property models for energetic materials from small datasets using a transfer learning approach
  publication-title: J Chem Inf Model
– volume: 48
  start-page: 331
  issue: 2
  year: 1999
  end-page: 340
  ident: CR65
  article-title: Extending Gower’s general coefficient of similarity to ordinal characters
  publication-title: Taxon
– volume: 68
  start-page: 886
  issue: 10
  year: 2009
  end-page: 904
  ident: CR75
  article-title: Explaining instance classifications with interactions of subsets of feature values
  publication-title: Data Knowl Eng
– ident: CR23
– ident: CR69
– volume: 13
  start-page: 8
  year: 2015
  end-page: 17
  ident: CR41
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Comput Struct Biotechnol J
– volume: 9
  start-page: 62
  issue: 1
  year: 2021
  end-page: 81
  ident: CR2
  article-title: Explaining predictive models using Shapley values and non-parametric vine copulas
  publication-title: Depend Model
– volume: 62
  start-page: 1025
  issue: 4
  year: 2006
  end-page: 1036
  ident: CR83
  article-title: Low-rank scale-invariant tensor product smooths for generalized additive mixed models
  publication-title: Biometrics
– volume: 27
  start-page: 857
  year: 1971
  end-page: 871
  ident: CR27
  article-title: A general coefficient of similarity and some of its properties
  publication-title: Biometrics
– ident: CR48
– volume: 102
  start-page: 207
  year: 2018
  end-page: 217
  ident: CR45
  article-title: Predicting mortgage default using convolutional neural networks
  publication-title: Expert Syst Appl
– ident: CR38
– ident: CR52
– ident: CR31
– ident: CR13
– ident: CR34
– volume: 17
  start-page: 319
  issue: 4
  year: 2001
  end-page: 330
  ident: CR47
  article-title: Analysis of regression in game theory approach
  publication-title: Appl Stoch Model Bus Ind
– volume: 77
  start-page: 1
  issue: 1
  year: 2017
  end-page: 17
  ident: CR86
  article-title: ranger: a fast implementation Dof random forests for high dimensional data in C++ and R
  publication-title: J Stat Softw
  doi: 10.18637/jss.v077.i01
– ident: CR59
– volume: 7
  start-page: 308
  issue: 4
  year: 1965
  end-page: 313
  ident: CR60
  article-title: A simplex method for function minimization
  publication-title: Comput J
– ident: CR76
– ident: CR28
– ident: CR62
– volume: 22
  start-page: 1
  issue: 209
  year: 2021
  end-page: 90
  ident: CR15
  article-title: Explaining by removing: a unified framework for model explanation
  publication-title: J Mach Learn Res
– ident: CR24
– ident: CR20
– ident: 1016_CR58
– volume: 21
  start-page: 249
  year: 1992
  ident: 1016_CR19
  publication-title: Int J Game Theory
  doi: 10.1007/BF01258278
– ident: 1016_CR11
  doi: 10.1038/s42256-023-00657-x
– volume-title: Advances in neural information processing systems
  year: 2018
  ident: 1016_CR66
– ident: 1016_CR31
– ident: 1016_CR6
  doi: 10.1007/978-3-031-44064-9_8
– ident: 1016_CR39
– volume: 22
  start-page: 1
  issue: 209
  year: 2021
  ident: 1016_CR15
  publication-title: J Mach Learn Res
– volume: 2
  start-page: 307
  issue: 28
  year: 1953
  ident: 1016_CR72
  publication-title: Contrib Theory Games
– volume: 167
  start-page: 104
  issue: 114
  year: 2021
  ident: 1016_CR25
  publication-title: Expert Syst Appl
– volume: 12
  start-page: 307
  year: 2019
  ident: 1016_CR40
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000056
– volume: 17
  start-page: 319
  issue: 4
  year: 2001
  ident: 1016_CR47
  publication-title: Appl Stoch Model Bus Ind
  doi: 10.1002/asmb.446
– volume: 353
  start-page: 401
  issue: 1674
  year: 1977
  ident: 1016_CR5
  publication-title: Proc R Soc Lond A Math Phys Sci
  doi: 10.1098/rspa.1977.0041
– volume: 68
  start-page: 886
  issue: 10
  year: 2009
  ident: 1016_CR75
  publication-title: Data Knowl Eng
  doi: 10.1016/j.datak.2009.01.004
– volume: 62
  start-page: 1025
  issue: 4
  year: 2006
  ident: 1016_CR83
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00574.x
– volume-title: Quantitative risk management: concepts, techniques and tools-revised edition
  year: 2015
  ident: 1016_CR54
– volume: 48
  start-page: 331
  issue: 2
  year: 1999
  ident: 1016_CR65
  publication-title: Taxon
  doi: 10.2307/1224438
– volume: 19
  start-page: 257
  issue: 2
  year: 1994
  ident: 1016_CR16
  publication-title: Math Oper Res
  doi: 10.1287/moor.19.2.257
– volume: 102
  start-page: 207
  year: 2018
  ident: 1016_CR45
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.02.029
– ident: 1016_CR49
– ident: 1016_CR24
  doi: 10.1109/ACCESS.2021.3119110
– ident: 1016_CR34
– ident: 1016_CR82
– ident: 1016_CR13
– volume: 23
  start-page: 173
  issue: 1
  year: 2020
  ident: 1016_CR36
  publication-title: J Money Laund Control
  doi: 10.1108/JMLC-07-2019-0055
– ident: 1016_CR38
– ident: 1016_CR59
– volume: 23
  start-page: 1
  issue: 213
  year: 2022
  ident: 1016_CR63
  publication-title: J Mach Learn Res
– ident: 1016_CR76
– volume: 130
  start-page: 18
  year: 2019
  ident: 1016_CR80
  publication-title: Comput Stat I Data Anal
  doi: 10.1016/j.csda.2018.08.016
– ident: 1016_CR23
– volume: 298
  start-page: 502
  issue: 103
  year: 2021
  ident: 1016_CR1
  publication-title: Artif Intell
– ident: 1016_CR12
  doi: 10.1007/978-3-642-04747-3_8
– volume: 76
  start-page: 817
  issue: 376
  year: 1981
  ident: 1016_CR22
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1981.10477729
– ident: 1016_CR48
– volume: 5
  start-page: 2027
  issue: 46
  year: 2019
  ident: 1016_CR71
  publication-title: J Open Source Softw
  doi: 10.21105/joss.02027
– ident: 1016_CR69
– ident: 1016_CR10
– ident: 1016_CR33
– volume: 2
  start-page: 56
  issue: 1
  year: 2020
  ident: 1016_CR50
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-019-0138-9
– volume: 40
  start-page: 237
  issue: 3–4
  year: 1953
  ident: 1016_CR26
  publication-title: Biometrika
  doi: 10.1093/biomet/40.3-4.237
– volume: 1
  start-page: 206
  issue: 5
  year: 2019
  ident: 1016_CR70
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-019-0048-x
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 1016_CR7
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– ident: 1016_CR37
– ident: 1016_CR52
– volume: 17
  start-page: 61
  year: 2006
  ident: 1016_CR87
  publication-title: Int J Ind Eng Prod Res
– volume: 2
  start-page: 245
  issue: 1
  year: 2014
  ident: 1016_CR64
  publication-title: SIAM/ASA J Uncertain Quantif
  doi: 10.1137/130936233
– ident: 1016_CR79
– ident: 1016_CR4
– volume: 33
  start-page: 17212
  year: 2020
  ident: 1016_CR14
  publication-title: Adv Neural Inf Process Syst
– volume-title: The elements of statistical learning: data mining, inference, and prediction
  year: 2009
  ident: 1016_CR30
  doi: 10.1007/978-0-387-84858-7
– volume: 7
  start-page: 308
  issue: 4
  year: 1965
  ident: 1016_CR60
  publication-title: Comput J
  doi: 10.1093/comjnl/7.4.308
– ident: 1016_CR68
  doi: 10.1007/978-3-030-57321-8_7
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  ident: 1016_CR21
  publication-title: J Comput Syst Sci
  doi: 10.1006/jcss.1997.1504
– ident: 1016_CR18
– ident: 1016_CR43
– ident: 1016_CR9
  doi: 10.1007/978-94-009-3677-5_7
– volume-title: Generalized additive models: an introduction with R
  year: 2006
  ident: 1016_CR85
  doi: 10.1201/9781420010404
– ident: 1016_CR20
– volume: 10
  start-page: 309
  year: 2005
  ident: 1016_CR44
  publication-title: Mod Stat Math Methods Reliab
– volume: 43
  start-page: 176
  issue: 2
  year: 2015
  ident: 1016_CR8
  publication-title: Can J Stat
  doi: 10.1002/cjs.11246
– ident: 1016_CR28
– ident: 1016_CR62
– volume: 6
  start-page: 52138
  year: 2018
  ident: 1016_CR3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870052
– volume: 3
  start-page: 647
  issue: 6
  year: 2011
  ident: 1016_CR35
  publication-title: Future Med Chem
  doi: 10.4155/fmc.11.23
– ident: 1016_CR81
– volume: 32
  start-page: 407
  issue: 2
  year: 2004
  ident: 1016_CR17
  publication-title: Ann Stat
  doi: 10.1214/009053604000000067
– volume: 15
  start-page: 651
  issue: 3
  year: 2006
  ident: 1016_CR32
  publication-title: J Comput Graph Stat
  doi: 10.1198/106186006X133933
– ident: 1016_CR57
– volume: 1
  start-page: 20190021
  issue: 1
  year: 2019
  ident: 1016_CR51
  publication-title: BJR| Open
– ident: 1016_CR61
  doi: 10.1109/ICPR48806.2021.9412511
– volume: 62
  start-page: 5397
  issue: 22
  year: 2022
  ident: 1016_CR46
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.2c00841
– volume: 23
  start-page: 2082
  issue: 1
  year: 2022
  ident: 1016_CR56
  publication-title: J Mach Learn Res
– ident: 1016_CR78
– ident: 1016_CR88
  doi: 10.1145/3394486.3403106
– volume: 11
  start-page: 1
  year: 2010
  ident: 1016_CR73
  publication-title: J Mach Learn Res
– volume: 77
  start-page: 1
  issue: 1
  year: 2017
  ident: 1016_CR86
  publication-title: J Stat Softw
  doi: 10.18637/jss.v077.i01
– start-page: 17
  volume-title: Machine learning and knowledge extraction
  year: 2020
  ident: 1016_CR55
  doi: 10.1007/978-3-030-57321-8_2
– volume: 17
  start-page: 257
  issue: 1
  year: 1965
  ident: 1016_CR77
  publication-title: Ann Inst Stat Math
  doi: 10.1007/BF02868169
– volume: 9
  start-page: 62
  issue: 1
  year: 2021
  ident: 1016_CR2
  publication-title: Depend Model
  doi: 10.1515/demo-2021-0103
– volume: 13
  start-page: 8
  year: 2015
  ident: 1016_CR41
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2014.11.005
– ident: 1016_CR29
– ident: 1016_CR42
– volume: 27
  start-page: 857
  year: 1971
  ident: 1016_CR27
  publication-title: Biometrics
  doi: 10.2307/2528823
– volume: 41
  start-page: 647
  issue: 3
  year: 2014
  ident: 1016_CR74
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-013-0679-x
– ident: 1016_CR67
– ident: 1016_CR84
– volume: 53
  start-page: 419
  issue: 06
  year: 2014
  ident: 1016_CR53
  publication-title: Methods Inf Med
  doi: 10.3414/ME13-01-0122
SSID ssj0005230
Score 2.476504
Snippet Shapley values originated in cooperative game theory but are extensively used today as a model-agnostic explanation framework to explain predictions made by...
SourceID cristin
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1782
SubjectTerms Artificial Intelligence
Chemistry and Earth Sciences
Comparative studies
Computer Science
Data Mining and Knowledge Discovery
Estimation
Game theory
Information Storage and Retrieval
Machine learning
Methods
Monte Carlo simulation
Physics
Prediction models
Predictions
Regression models
Statistics for Engineering
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oRPDij6lYnZKDNw00TbOkxzEcQ9CLDncrbZLqYXTDTZD99b6kndWhguekCeR7Sb7XvPc9gEuZSasV69IsTjSNuTI0SYSiOpEJtiFD8LoFd_fd4Si-HYtxLZPjcmHW3u9diluXKYo3CfVqaHS5CVuCcenKNPS7_S_hHLzKCFYxFYqFdYLMz2Mg2dV-D5Xfr6OGY649i_rbZrAPuzVNJL0K1wPYsGUb9lYlGEi9I9uw7SM49fwQnnpEN0rexMvGkmlBqhLRc4LklDhFDcdQy2fiK-BQH2aHU5CHl2yGxwNx2t-W2PfZJKt-E86PYDS4eewPaV01gWqu1IJGPFfCmFxbPDsMt7EqbGgLUQghM5tLxmQWZkkhVcaYsdpqqSOO5y_ixE1k-DG0ymlpT4AYbYVODNMxul0yTpCNWy0Kya1CrzAPAwjqZUxLNFgnNioi9CkQ4SgAtlrYVNdy467qxSRthJIdLCnCknpY0mUAV5_fzCqxjT97d1Z4pfXGm6ccXTR0-tDLC-B6hWHT_Ptop__rfgY7kTcoF7jbgdbi9c2eIz1Z5BfeLj8ASc3aYg
  priority: 102
  providerName: Springer Nature
Title A comparative study of methods for estimating model-agnostic Shapley value explanations
URI https://link.springer.com/article/10.1007/s10618-024-01016-z
https://www.proquest.com/docview/3086149114
http://hdl.handle.net/10852/110572
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1BT9swFH6C9sKFsY2JjFL5sBuzVsdx7ZxQqVoQCIQ2KtgpSmwHDigtaychfj3PjkM2JHrJIU588Pf8_Nl-73sA32QurVZsSPMk1TThytA0FYrqVKbYhgzB6xZcXA5PZ8nZrbgNB27LEFbZ-ETvqM1cuzPyHxy5N7J5pO9Hi0fqqka529VQQmMTuuiClepA93hyefXznyAPXucJq4QKxQYhbSYkzw2ZorhGUa-zRp-RAms_s6r_F6mWeb65LPVr0HQHtgN5JKMa7Y-wYatP8KEpzEDCPP0MNyOiW1Vv4iVkybwkdbnoJUGiSpy6hmOr1R3x1XCoD7nDjsmv-3yBroI4HXBL7NPiIa-PDJe7MJtOrsenNFRQoJortaIxL5QwptAW_YjhNlGlHdhSlELI3BaSMZkP8rSUKmfMWG211DFHX4yYcRMb_gU61byye0CMtkKnhukEt2AySZGZWy1Kya3CHWIxiCAKg5dVaLxOeFTEuL9AtOMIWDOcmQ7S464CxkPWiiY7MDIEI_NgZM8RHL7-s6iFN9Z-3WtQysIkXGatyUTwvUGubX6_t6_re9uHrdibjQva7UFn9eevPUBqsir6sKmmJ33ojk5-n0_6wRrx7Xg4xucsHr0AFHTjxA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALlEJFSgEf2lOxWMfx2jkgVBWW7fNCK3pzE3sChyq77W4F9Ef1N3bsJA0g0VvPSUaK5-Fv7JlvANZ1odEZMeRFljueSeN5nivDXa5zekYIIfIWHBwOx8fZ7ok6WYDrrhcmlFV2MTEGaj9x4Yz8vSTsTWie4PvH6TkPU6PC7Wo3QqMxiz38_ZNSttmHnU-k3400HX0-2h7zdqoAd9KYOU9laZT3pUPyLS8xMxUOsFKVUrrAUguhi0GRV9oUQnh06LRLJcUn-g_pUy9J7gN4mEnayUNn-ujLHyUlsulKNhlXRgzaJp22VW8oDKcdkUdWN35FgNtFP67_3hJ7nPvP1Wzc8UZL8KSFqmyrsa1nsID1MjztxkCwNio8h29bzPUc4iwS1rJJxZrh1DNGsJgFLo-AjevvLM7e4bHAjwSzrz-KKQUmFljHkeGv6VnRHFDOXsDxvazsCizWkxpfAvMOlcu9cBklfDrLKQ9Apyot0VA-Wg4SSNrFszW5SqA5VSllM2RbaQKiW07rWqLzMG_jzPYUzUEZlpRhozLsVQKbt99MG5qPO99e67RkW5ef2d5AE3jXaa5__H9pq3dLewuPxkcH-3Z_53DvFTxOowmFcuE1WJxfXOJrAkXz8k20RAan9236N7qNHeM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYS48I1IKeADnMDqOo7XzgGhQrtqKawqoKI3k9gTeqiyC7sI6E_j1zF2HAJI9NZzEkvxPI_f2DNvAB7pSqMzYsKronS8kMbzslSGu1KX9IwYQtQteDOb7B0Vr47V8Rr87GthQlpl7xOjo_ZzF87ItyRxb2LzRN-3mpQWcbgzfb74zEMHqXDT2rfT6CBygD--Ufi2fLa_Q7Z-nOfT3fcv93jqMMCdNGbFc1kb5X3tkNaZl1iYBsfYqEYpXWGthdDVuCobbSohPDp02uWSfBX9k_S5lzTuJVjXISoawfqL3dnh2z8STGRXo2wKrowYp5KdVLg3EYbT_sijxhs_I_rt4qpu_94gB9b7z0Vt3P-m1-FqIq5su0PaDVjD9iZc65tCsOQjbsGHbeYGRXEW5WvZvGFdq-olI5LMgrJHYMrtJxY78fCY7kcDs3cn1YLcFAsa5Mjw--K06o4rl7fh6ELm9g6M2nmLd4F5h8qVXriCwj9dlBQVoFONlmgoOq3HGWRp8mxLCyeInqqcYhtCWp6B6KfTuiR7HrpvnNpBsDkYw5IxbDSGPcvgye9vFp3ox7lvb_ZWsskBLO0A1wye9pYbHv9_tI3zR3sIlwn29vX-7OAeXMkjgkLu8CaMVl--4n1iSKv6QYIig48Xjf5fuykjdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+methods+for+estimating+model-agnostic+Shapley+value+explanations&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Olsen%2C+Lars+Henry+Berge&rft.au=Glad%2C+Ingrid+Kristine&rft.au=Jullum%2C+Martin&rft.au=Aas%2C+Kjersti&rft.date=2024-07-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=38&rft.issue=4&rft.spage=1782&rft.epage=1829&rft_id=info:doi/10.1007%2Fs10618-024-01016-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_024_01016_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon