Tricycloquinazoline-based monolayer conjugated metal–organic frameworks as promising hydrogen storage media: A theoretical investigation
The pursuit of sustainable energy has driven a significant interest in hydrogen (H2) as a clean fuel alternative. A critical challenge is the efficient storage of H2, which this study addresses by examining the potential of tricycloquinazoline-based monolayer metal–organic frameworks (MMOFs with the...
Saved in:
Published in | Green energy & environment Vol. 10; no. 6; pp. 1326 - 1336 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Henan
Elsevier B.V
01.06.2025
KeAi Publishing Communications Ltd KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The pursuit of sustainable energy has driven a significant interest in hydrogen (H2) as a clean fuel alternative. A critical challenge is the efficient storage of H2, which this study addresses by examining the potential of tricycloquinazoline-based monolayer metal–organic frameworks (MMOFs with the first “M” representing metal species). Using density functional theory, we optimized the structures of MMOFs and calculated H2 adsorption energies above the open metal sites, identifying ScMOF, TiMOF, NiMOF, and MgMOF for further validation of their thermodynamic stability via ab-initio molecular dynamics (AIMD) simulations. Force field parameters were fitted via the Morse potential, providing a solid foundation for subsequent grand canonical Monte Carlo simulations. These simulations revealed that the maximum of saturated excess gravimetric H2 uptake exceeds 14.16 wt% at 77 K, surpassing other reported MOFs, whether they possess open metal sites or not. At 298 K and 100 bar, both the planar and distorted structures derived from our AIMD simulations demonstrated comparable excess gravimetric H2 uptake within the range of 3.05 wt% to 3.94 wt%, once again outperforming other MOFs. Furthermore, lithium (Li) doping significantly enhanced the excess H2 uptake, with Li-TiMOF achieving an impressive 6.83 wt% at 298 K and 100 bar, exceeding the ultimate target set by the U.S. Department of Energy. The exceptional H2 adsorption capacities of these monolayer MOFs highlight their potential in H2 storage, contributing to the design of more efficient hydrogen storage materials and propelling the sustainable hydrogen economy forward.
[Display omitted]
•Density functional theory calculations were used to identify the optimal metal species for H2 adsorption in monolayer MOFs.•The thermodynamic stability of the studied monolayer MOFs at 298 K was assessed by ab-initio molecular dynamics simulations.•The force field parameters for the Morse potential were optimized based on the scanning results.•Grand canonical Monte Carlo simulations revealed that the studied MOFs achieve over 12.61 wt% H2 uptake at 77 K and 40 bar.•Li-doped TiMOF exhibited remarkable H2 uptake, surpassing the DOE target at 298 K and 100 bar or 233 K and 12 bar. |
---|---|
AbstractList | The pursuit of sustainable energy has driven a significant interest in hydrogen (H2) as a clean fuel alternative. A critical challenge is the efficient storage of H2, which this study addresses by examining the potential of tricycloquinazoline-based monolayer metal-organic frameworks (MMOFs with the first "M" representing metal species). Using density functional theory, we optimized the structures of MMOFs and calculated H2 adsorption energies above the open metal sites, identifying ScMOF, TiMOF, NiMOF, and MgMOF for further validation of their thermodynamic stability via ab-initio molecular dynamics (AIMD) simulations. Force field parameters were fitted via the Morse potential, providing a solid foundation for subsequent grand canonical Monte Carlo simulations. These simulations revealed that the maximum of saturated excess gravimetric H2 uptake exceeds 14.16 wt% at 77 K, surpassing other reported MOFs, whether they possess open metal sites or not. At 298 K and 100 bar, both the planar and distorted structures derived from our AIMD simulations demonstrated comparable excess gravimetric H2 uptake within the range of 3.05 wt% to 3.94 wt%, once again outperforming other MOFs. Furthermore, lithium (Li) doping significantly enhanced the excess H2 uptake, with Li-TiMOF achieving an impressive 6.83 wt% at 298 K and 100 bar, exceeding the ultimate target set by the U.S. Department of Energy. The exceptional H2 adsorption capacities of these monolayer MOFs highlight their potential in H2 storage, contributing to the design of more efficient hydrogen storage materials and propelling the sustainable hydrogen economy forward. The pursuit of sustainable energy has driven a significant interest in hydrogen (H2) as a clean fuel alternative. A critical challenge is the efficient storage of H2, which this study addresses by examining the potential of tricycloquinazoline-based monolayer metal–organic frameworks (MMOFs with the first “M” representing metal species). Using density functional theory, we optimized the structures of MMOFs and calculated H2 adsorption energies above the open metal sites, identifying ScMOF, TiMOF, NiMOF, and MgMOF for further validation of their thermodynamic stability via ab-initio molecular dynamics (AIMD) simulations. Force field parameters were fitted via the Morse potential, providing a solid foundation for subsequent grand canonical Monte Carlo simulations. These simulations revealed that the maximum of saturated excess gravimetric H2 uptake exceeds 14.16 wt% at 77 K, surpassing other reported MOFs, whether they possess open metal sites or not. At 298 K and 100 bar, both the planar and distorted structures derived from our AIMD simulations demonstrated comparable excess gravimetric H2 uptake within the range of 3.05 wt% to 3.94 wt%, once again outperforming other MOFs. Furthermore, lithium (Li) doping significantly enhanced the excess H2 uptake, with Li-TiMOF achieving an impressive 6.83 wt% at 298 K and 100 bar, exceeding the ultimate target set by the U.S. Department of Energy. The exceptional H2 adsorption capacities of these monolayer MOFs highlight their potential in H2 storage, contributing to the design of more efficient hydrogen storage materials and propelling the sustainable hydrogen economy forward. [Display omitted] •Density functional theory calculations were used to identify the optimal metal species for H2 adsorption in monolayer MOFs.•The thermodynamic stability of the studied monolayer MOFs at 298 K was assessed by ab-initio molecular dynamics simulations.•The force field parameters for the Morse potential were optimized based on the scanning results.•Grand canonical Monte Carlo simulations revealed that the studied MOFs achieve over 12.61 wt% H2 uptake at 77 K and 40 bar.•Li-doped TiMOF exhibited remarkable H2 uptake, surpassing the DOE target at 298 K and 100 bar or 233 K and 12 bar. |
Author | Meng, Zhaoshun Li, Xing'ao Li, Qingyu Sun, Huilin Wang, Yunhui |
Author_xml | – sequence: 1 givenname: Zhaoshun orcidid: 0000-0001-5529-5529 surname: Meng fullname: Meng, Zhaoshun email: zsmeng0314@outlook.com – sequence: 2 givenname: Qingyu surname: Li fullname: Li, Qingyu – sequence: 3 givenname: Huilin surname: Sun fullname: Sun, Huilin – sequence: 4 givenname: Yunhui surname: Wang fullname: Wang, Yunhui email: yhwang@njupt.edu.cn – sequence: 5 givenname: Xing'ao surname: Li fullname: Li, Xing'ao email: lxahbmy@126.com |
BookMark | eNp9UU1P3DAUtCoqlVJ-QG-Wek7wR-wk7QmhFpCQuNCz9dZ-CU6zNthZquXUM1f-Ib-k3i6qeurJT08z45k378lBiAEJ-chZzRnXJ1M9ItaCiabmomasf0MORaO7ignVHvwzvyPHOU-MFSRvuGoOydNN8nZr53i_8QEe4-wDVivI6Og6hjjDFhO1MUybEZbdEheYX349xzRC8JYOCdb4M6YfmUKmdymuffZhpLdbl-KIgeYlJhixEJ2Hz_SULrcYEy7ewkx9eMC8-CLtY_hA3g4wZzx-fY_I929fb84uqqvr88uz06vKyq5bKm4FByG61bCyqmVKKNFa11uLHTSoWddLgRqYhZYNbaO1ElYPolHKMde2II_I5V7XRZjMXfJrSFsTwZs_i5LMQCr-ZjR6JYVWbY_YY1FiPUo1aO2UdL0cEIvWp71WSX6_KVnMFDcpFPtGCik6pnjPC4rvUTbFnBMOf3_lzOwaNJMpDZpdg4YLUxosnC97DpZTPHhMJluPwZYzJrRL8er_w_4NRYCpHg |
Cites_doi | 10.1039/b802430h 10.1126/science.1067208 10.1063/1.3382344 10.1103/PhysRevB.50.17953 10.1038/nmat1927 10.1016/j.gee.2022.12.010 10.1016/j.chempr.2022.01.012 10.1016/j.ijhydene.2020.12.016 10.1021/cr200274s 10.1039/C8CC02871K 10.1016/j.ijhydene.2013.10.044 10.1016/S0022-328X(01)01066-X 10.1002/chem.200601534 10.1016/S0360-3199(01)00162-8 10.1016/j.gee.2018.03.001 10.1103/PhysRevA.31.1695 10.1103/PhysRevLett.77.3865 10.1002/anie.200900960 10.1021/ja506230r 10.1039/C6TA08924K 10.1039/B815553B 10.1016/j.ijhydene.2019.05.007 10.1063/1.447334 10.1021/ja0656853 10.1039/b702858j 10.1103/PhysRevB.54.11169 10.1021/acs.chemrev.9b00766 10.1021/jacs.3c06393 10.1103/PhysRevB.59.1758 10.1021/jp060433+ 10.1039/D0CS01160F 10.1021/jacs.1c01883 10.1002/anie.202103398 10.1021/cg070640e 10.1016/0927-0256(96)00008-0 10.1016/j.apsusc.2021.151000 10.1021/ja056639q 10.1021/cr0501846 10.3390/molecules22071149 10.1021/ja072599+ 10.1107/S0021889883010985 10.1103/PhysRevLett.68.2277 10.1002/chem.201504666 10.1002/anie.202110373 10.1002/anie.200801163 10.1038/46248 10.1038/s41563-020-00847-7 10.1016/j.ijhydene.2009.03.001 10.1021/ic0611948 10.1021/jz1015372 10.1016/j.ijhydene.2013.05.140 10.1021/jp0263931 10.1021/ja063538z 10.1126/science.286.5442.1127 10.1073/pnas.0602439103 10.1016/j.apmt.2019.03.002 10.1021/ic070338v 10.1002/anie.202006102 10.1002/anie.200600105 10.1002/anie.201001735 10.1038/386377a0 10.1002/anie.200906936 10.1016/j.gee.2020.06.006 10.1021/jp408652t 10.1021/ja058213h 10.1021/acs.accounts.3c00788 |
ContentType | Journal Article |
Copyright | 2024 Institute of Process Engineering, Chinese Academy of Sciences 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 Institute of Process Engineering, Chinese Academy of Sciences – notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 6I. AAFTH AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V M7S PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.1016/j.gee.2024.12.009 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2468-0257 |
EndPage | 1336 |
ExternalDocumentID | oai_doaj_org_article_6b326579ee9e46609e35f66d53d93fee 10_1016_j_gee_2024_12_009 S2468025724003492 |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | -03 -0C -SC -S~ 0R~ 5VR 6I. 92M 9D9 9DC AAEDW AAFTH AALRI AAXUO AAYWO ABJCF ABMAC ACGFS ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFKRA AFPUW AFTJW AFUIB AIGII AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ATCPS BCNDV BENPR BGLVJ BHPHI CAJEC CCPQU EBS EJD FDB GROUPED_DOAJ HCIFZ M41 M7S M~E OK1 PATMY PHGZM PHGZT PIMPY PQGLB PTHSS PYCSY Q-- ROL RT3 SSZ T8S U1F U1G U5C U5M AAYXX CITATION PUEGO 8FE 8FG ABUWG AZQEC DWQXO GNUQQ L6V PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c388t-1c21a228bfbc57052527cd9cce8a4e608932e6a0ca70f746652c6f2455d0d77a3 |
IEDL.DBID | DOA |
ISSN | 2468-0257 2096-2797 |
IngestDate | Wed Aug 27 01:29:29 EDT 2025 Sat Aug 23 14:29:59 EDT 2025 Thu Aug 28 08:56:29 EDT 2025 Sat Aug 02 17:11:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Open metal sites Hydrogen storage 2D monolayer MOFs Lithium doping Theoretical investigation |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-1c21a228bfbc57052527cd9cce8a4e608932e6a0ca70f746652c6f2455d0d77a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5529-5529 |
OpenAccessLink | https://doaj.org/article/6b326579ee9e46609e35f66d53d93fee |
PQID | 3232805191 |
PQPubID | 6865024 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6b326579ee9e46609e35f66d53d93fee proquest_journals_3232805191 crossref_primary_10_1016_j_gee_2024_12_009 elsevier_sciencedirect_doi_10_1016_j_gee_2024_12_009 |
PublicationCentury | 2000 |
PublicationDate | June 2025 2025-06-00 20250601 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
PublicationDecade | 2020 |
PublicationPlace | Henan |
PublicationPlace_xml | – name: Henan |
PublicationTitle | Green energy & environment |
PublicationYear | 2025 |
Publisher | Elsevier B.V KeAi Publishing Communications Ltd KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Publishing Communications Ltd – name: KeAi Communications Co., Ltd |
References | Vlugt, Schenk (bib56) 2002; 106 Kapelewski, Geier, Hudson, Stück, Mason, Nelson, Xiao, Hulvey, Gilmour, FitzGerald, Head-Gordon, Brown, Long (bib71) 2014; 136 Perdew, Burke, Ernzerhof (bib50) 1996; 77 Jena (bib60) 2011; 2 Park, Ni, Côté, Choi, Huang, Uribe-Romo, Chae, O'Keeffe, Yaghi (bib23) 2006; 103 Choi, Seo, Cho, Kim, Jin, Jung, Choi, Ahn, Rowsell, Kim (bib34) 2007; 7 Ko, Mendecki, Mirica (bib41) 2018; 54 Han, Goddard (bib54) 2007; 129 Liu, Fan, Liu, Cong, Cheng, Dresselhaus (bib7) 1999; 286 Dincă, Long (bib2) 2008; 47 Liu, Xu, Han, Chen, Sheng, Wang, Huang, Wang, Lu, Luo, He, Lan, Guo (bib4) 2021; 6 Liu, Xing, Chen (bib40) 2024; 57 Nosé (bib52) 1984; 81 Wong-Foy, Matzger, Yaghi (bib66) 2006; 128 Frost, Düren, Snurr (bib70) 2006; 110 Han, Mendoza-Cortés, Goddard (bib13) 2009; 38 Lü, Zhou, Zhou, Wang, Sun, Jena (bib61) 2011; 99 Suh, Park, Prasad, Lim (bib10) 2012; 112 Kresse, Furthmüller (bib47) 1996; 6 Hashmi, Farooq, Khan, Son, Hong (bib43) 2017; 5 Zhu, Zhang (bib14) 2017; 22 Rowsell, Yaghi (bib37) 2006; 128 Mauron, Gaboardi, Remhof, Bliersbach, Sheptyakov, Aramini, Vlahopoulou, Giglio, Pontiroli, Riccò, Züttel (bib5) 2013; 117 Dou, Arguilla, Luo, Li, Zhang, Sun, Mancuso, Yang, Chen, Parent, Skorupskii, Libretto, Sun, Yang, Dip, Brignole, Miller, Kong, Hendon, Sun, Dincă (bib58) 2021; 20 Bi, Ding, Zou, Nie, Xu, Yin, Huang, Yang, Wang (bib65) 2021; 569 Meng, Lu, Rao, Kan, Xiao, Deng (bib29) 2013; 38 Sengupta, Melix, Bose, Duncan, Wang, Mian, Kirlikovali, Joodaki, Islamoglu, Yildirim, Snurr, Farha (bib74) 2023; 145 Choi, Lee, Choi, Kang (bib30) 2008; 92 Kresse, Furthmüller (bib46) 1996; 54 bib3 Yürüm, Taralp, Veziroglu (bib19) 2009; 34 Ma, Zhou (bib35) 2006; 128 Chen, Kirlikovali, Idrees, Wasson, Farha (bib11) 2022; 8 Moon, Kobayashi, Suh (bib33) 2006; 45 Blöchl (bib48) 1994; 50 Ma, Wang, Manis, Collier, Zhou (bib36) 2007; 46 Dillon, Jones, Bekkedahl, Kiang, Bethune, Heben (bib6) 1997; 386 Kresse, Joubert (bib49) 1999; 59 Latroche, Surblé, Serre, Mellot-Draznieks, Llewellyn, Lee, Chang, Jhung, Férey (bib67) 2006; 45 Dincǎ, Dailly, Liu, Brown, Neumann, Long (bib68) 2006; 128 Jaramillo, Jiang, Evans, Chakraborty, Furukawa, Brown, Head-Gordon, Long (bib73) 2021; 143 Wang, Li, Ye, Zhang, Tang, Hu, He, Li (bib27) 2022; 32 Kim, Jung, Shin, Kim, Park, Lee, Oh, Hong (bib75) 2024; 489 Lyth, Shao, Liu, Sasaki, Akiba (bib8) 2014; 39 Gedrich, Senkovska, Klein, Stoeck, Henschel, Lohe, Baburin, Mueller, Kaskel (bib69) 2010; 49 Shevlin, Guo (bib16) 2009; 38 Hayashi, Côté, Furukawa, O'Keeffe, Yaghi (bib24) 2007; 6 Collins, Zhou (bib9) 2007; 17 Cao, Lan, Wang, Smit (bib55) 2009; 48 Wang, Zhu, Liu, Wu (bib1) 2002; 27 Wu, Wang, Sun, Jena, Kawazoe (bib32) 2010; 133 Wang, Xie, Wang, Liu, Li, Li (bib12) 2018; 3 Sun, Lee, Kim, Zhang (bib31) 2009; 95 Orimo, Nakamori, Eliseo, Züttel, Jensen (bib15) 2007; 107 Xie, Skorupskii, Dincă (bib25) 2020; 120 Li, Lu, Wang, Wang, Han, Deng (bib17) 2010; 49 Wang, Dong, Feng (bib26) 2021; 50 Hoover (bib53) 1985; 31 Kubas (bib63) 2001; 635 Montes-Andrés, Orcajo, Martos, Botas, Calleja (bib72) 2019; 44 Wu, Shi, Huang, Meng, Wang, Yang (bib44) 2021; 46 Liu, Song, Zhang, Liu, Wen, Chen (bib39) 2021; 60 Xu, Sun, Li, Shang, X. Yang, Deng (bib18) 2016; 22 Wang, Ma, Jin, Li, Javanmardi, He, Zhu, Zhang, Xu, Wang, Feng (bib42) 2024; 4 Mortazavi, Shahrokhi, Hussain, Zhuang, Rabczuk (bib64) 2019; 15 Grimme, Antony, Ehrlich, Krieg (bib51) 2010; 132 Eddaoudi, Kim, Rosi, Vodak, Wachter, O'Keeffe, Yaghi (bib22) 2002; 295 Liu, Yang, Zhou, Zhang, Xing, Liu, Ma, Terasaki, Yang, Chen (bib59) 2021; 60 Liu, Chen, Yang, Lan, Wang, Hu, Han, Liu, Chen, Feng, Cui, Fang, Wang, Li, Li, Xing, Yang, Zhao, Li (bib20) 2024; 9 Niu, Rao, Jena (bib62) 1992; 68 Li, Eddaoudi, O'Keeffe, Yaghi (bib21) 1999; 402 Cui, Yan, Chen, Xing, Ye, Li, Zou, Sun, Liu, Xu, Zhu (bib28) 2020; 23 Connolly (bib57) 1983; 16 Yan, Cui, Xie, Yang, Bin, Li (bib45) 2021; 60 Suh, Cheon, Lee (bib38) 2007; 13 Orimo (10.1016/j.gee.2024.12.009_bib15) 2007; 107 Wang (10.1016/j.gee.2024.12.009_bib12) 2018; 3 Wong-Foy (10.1016/j.gee.2024.12.009_bib66) 2006; 128 Frost (10.1016/j.gee.2024.12.009_bib70) 2006; 110 Gedrich (10.1016/j.gee.2024.12.009_bib69) 2010; 49 Dincă (10.1016/j.gee.2024.12.009_bib2) 2008; 47 Kresse (10.1016/j.gee.2024.12.009_bib46) 1996; 54 Liu (10.1016/j.gee.2024.12.009_bib39) 2021; 60 Jaramillo (10.1016/j.gee.2024.12.009_bib73) 2021; 143 Wang (10.1016/j.gee.2024.12.009_bib26) 2021; 50 Lü (10.1016/j.gee.2024.12.009_bib61) 2011; 99 Xu (10.1016/j.gee.2024.12.009_bib18) 2016; 22 Zhu (10.1016/j.gee.2024.12.009_bib14) 2017; 22 Li (10.1016/j.gee.2024.12.009_bib21) 1999; 402 Grimme (10.1016/j.gee.2024.12.009_bib51) 2010; 132 Collins (10.1016/j.gee.2024.12.009_bib9) 2007; 17 Dou (10.1016/j.gee.2024.12.009_bib58) 2021; 20 Chen (10.1016/j.gee.2024.12.009_bib11) 2022; 8 Dillon (10.1016/j.gee.2024.12.009_bib6) 1997; 386 Hayashi (10.1016/j.gee.2024.12.009_bib24) 2007; 6 Wang (10.1016/j.gee.2024.12.009_bib42) 2024; 4 Lyth (10.1016/j.gee.2024.12.009_bib8) 2014; 39 Liu (10.1016/j.gee.2024.12.009_bib20) 2024; 9 Hashmi (10.1016/j.gee.2024.12.009_bib43) 2017; 5 Vlugt (10.1016/j.gee.2024.12.009_bib56) 2002; 106 Mauron (10.1016/j.gee.2024.12.009_bib5) 2013; 117 Latroche (10.1016/j.gee.2024.12.009_bib67) 2006; 45 Wang (10.1016/j.gee.2024.12.009_bib1) 2002; 27 Suh (10.1016/j.gee.2024.12.009_bib10) 2012; 112 Moon (10.1016/j.gee.2024.12.009_bib33) 2006; 45 Bi (10.1016/j.gee.2024.12.009_bib65) 2021; 569 Ma (10.1016/j.gee.2024.12.009_bib36) 2007; 46 Liu (10.1016/j.gee.2024.12.009_bib7) 1999; 286 Liu (10.1016/j.gee.2024.12.009_bib59) 2021; 60 Eddaoudi (10.1016/j.gee.2024.12.009_bib22) 2002; 295 Kresse (10.1016/j.gee.2024.12.009_bib47) 1996; 6 Montes-Andrés (10.1016/j.gee.2024.12.009_bib72) 2019; 44 Shevlin (10.1016/j.gee.2024.12.009_bib16) 2009; 38 Choi (10.1016/j.gee.2024.12.009_bib34) 2007; 7 Nosé (10.1016/j.gee.2024.12.009_bib52) 1984; 81 Hoover (10.1016/j.gee.2024.12.009_bib53) 1985; 31 Jena (10.1016/j.gee.2024.12.009_bib60) 2011; 2 Blöchl (10.1016/j.gee.2024.12.009_bib48) 1994; 50 Ko (10.1016/j.gee.2024.12.009_bib41) 2018; 54 Connolly (10.1016/j.gee.2024.12.009_bib57) 1983; 16 Sengupta (10.1016/j.gee.2024.12.009_bib74) 2023; 145 Meng (10.1016/j.gee.2024.12.009_bib29) 2013; 38 Sun (10.1016/j.gee.2024.12.009_bib31) 2009; 95 Han (10.1016/j.gee.2024.12.009_bib54) 2007; 129 Mortazavi (10.1016/j.gee.2024.12.009_bib64) 2019; 15 Cui (10.1016/j.gee.2024.12.009_bib28) 2020; 23 Choi (10.1016/j.gee.2024.12.009_bib30) 2008; 92 Suh (10.1016/j.gee.2024.12.009_bib38) 2007; 13 Liu (10.1016/j.gee.2024.12.009_bib40) 2024; 57 Wu (10.1016/j.gee.2024.12.009_bib44) 2021; 46 Kapelewski (10.1016/j.gee.2024.12.009_bib71) 2014; 136 Liu (10.1016/j.gee.2024.12.009_bib4) 2021; 6 Ma (10.1016/j.gee.2024.12.009_bib35) 2006; 128 Li (10.1016/j.gee.2024.12.009_bib17) 2010; 49 Wang (10.1016/j.gee.2024.12.009_bib27) 2022; 32 Cao (10.1016/j.gee.2024.12.009_bib55) 2009; 48 Niu (10.1016/j.gee.2024.12.009_bib62) 1992; 68 Kresse (10.1016/j.gee.2024.12.009_bib49) 1999; 59 Kubas (10.1016/j.gee.2024.12.009_bib63) 2001; 635 Han (10.1016/j.gee.2024.12.009_bib13) 2009; 38 Yan (10.1016/j.gee.2024.12.009_bib45) 2021; 60 Kim (10.1016/j.gee.2024.12.009_bib75) 2024; 489 Yürüm (10.1016/j.gee.2024.12.009_bib19) 2009; 34 Park (10.1016/j.gee.2024.12.009_bib23) 2006; 103 Rowsell (10.1016/j.gee.2024.12.009_bib37) 2006; 128 Wu (10.1016/j.gee.2024.12.009_bib32) 2010; 133 Perdew (10.1016/j.gee.2024.12.009_bib50) 1996; 77 Xie (10.1016/j.gee.2024.12.009_bib25) 2020; 120 Dincǎ (10.1016/j.gee.2024.12.009_bib68) 2006; 128 |
References_xml | – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: bib46 publication-title: Phys. Rev. B – volume: 17 start-page: 3154 year: 2007 end-page: 3160 ident: bib9 publication-title: J. Mater. Chem. – volume: 13 start-page: 4208 year: 2007 end-page: 4215 ident: bib38 publication-title: Chem. Eur. J. – volume: 4 year: 2024 ident: bib42 publication-title: Small Sci. – volume: 95 year: 2009 ident: bib31 publication-title: Appl. Phys. Lett. – volume: 57 start-page: 1032 year: 2024 end-page: 1045 ident: bib40 publication-title: Acc. Chem. Res. – volume: 48 start-page: 4730 year: 2009 end-page: 4733 ident: bib55 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: bib47 publication-title: Comput. Mater. Sci. – volume: 6 start-page: 501 year: 2007 end-page: 506 ident: bib24 publication-title: Nat. Mater. – volume: 128 start-page: 11734 year: 2006 end-page: 11735 ident: bib35 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 1149 year: 2017 ident: bib14 publication-title: Molecules – volume: 110 start-page: 9565 year: 2006 end-page: 9570 ident: bib70 publication-title: J. Phys. Chem. B – volume: 22 start-page: 7944 year: 2016 end-page: 7949 ident: bib18 publication-title: Chem. Eur. J. – volume: 120 start-page: 8536 year: 2020 end-page: 8580 ident: bib25 publication-title: Chem. Rev. – volume: 3 start-page: 191 year: 2018 end-page: 228 ident: bib12 publication-title: Green Energy Environ. – volume: 38 start-page: 1460 year: 2009 end-page: 1476 ident: bib13 publication-title: Chem. Soc. Rev. – volume: 136 start-page: 12119 year: 2014 end-page: 12129 ident: bib71 publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 782 year: 2012 end-page: 835 ident: bib10 publication-title: Chem. Rev. – volume: 5 start-page: 2821 year: 2017 end-page: 2828 ident: bib43 publication-title: J. Mater. Chem. A – volume: 489 year: 2024 ident: bib75 publication-title: Chem. Eng. J. – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: bib48 publication-title: Phys. Rev. B – volume: 44 start-page: 18205 year: 2019 end-page: 18213 ident: bib72 publication-title: Int. J. Hydrogen Energy – volume: 402 start-page: 276 year: 1999 end-page: 279 ident: bib21 publication-title: Nature – volume: 39 start-page: 376 year: 2014 end-page: 380 ident: bib8 publication-title: Int. J. Hydrogen Energy – volume: 143 start-page: 6248 year: 2021 end-page: 6256 ident: bib73 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 528 year: 2021 end-page: 537 ident: bib4 publication-title: Green Energy Environ. – volume: 286 start-page: 1127 year: 1999 end-page: 1129 ident: bib7 publication-title: Science – volume: 103 start-page: 10186 year: 2006 end-page: 10191 ident: bib23 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 60 start-page: 24467 year: 2021 end-page: 24472 ident: bib45 publication-title: Angew. Chem. Int. Ed. – volume: 49 start-page: 8489 year: 2010 end-page: 8492 ident: bib69 publication-title: Angew. Chem. Int. Ed. – volume: 99 year: 2011 ident: bib61 publication-title: Appl. Phys. Lett. – volume: 8 start-page: 693 year: 2022 end-page: 716 ident: bib11 publication-title: Chem – volume: 386 start-page: 377 year: 1997 end-page: 379 ident: bib6 publication-title: Nature – volume: 635 start-page: 37 year: 2001 end-page: 68 ident: bib63 publication-title: J. Organomet. Chem. – volume: 7 start-page: 2290 year: 2007 end-page: 2293 ident: bib34 publication-title: Cryst. Growth Des. – volume: 117 start-page: 22598 year: 2013 end-page: 22602 ident: bib5 publication-title: J. Phys. Chem. C – volume: 49 start-page: 3330 year: 2010 end-page: 3333 ident: bib17 publication-title: Angew. Chem. Int. Ed. – volume: 38 start-page: 9811 year: 2013 end-page: 9818 ident: bib29 publication-title: Int. J. Hydrogen Energy – volume: 20 start-page: 222 year: 2021 end-page: 228 ident: bib58 publication-title: Nat. Mater. – volume: 145 start-page: 20492 year: 2023 end-page: 20502 ident: bib74 publication-title: J. Am. Chem. Soc. – volume: 92 year: 2008 ident: bib30 publication-title: Appl. Phys. Lett. – volume: 60 start-page: 14473 year: 2021 end-page: 14479 ident: bib59 publication-title: Angew. Chem. Int. Ed. – volume: 132 year: 2010 ident: bib51 publication-title: J. Chem. Phys. – volume: 106 start-page: 12757 year: 2002 end-page: 12763 ident: bib56 publication-title: J. Phys. Chem. B – volume: 68 start-page: 2277 year: 1992 end-page: 2280 ident: bib62 publication-title: Phys. Rev. Lett. – volume: 46 start-page: 3432 year: 2007 end-page: 3434 ident: bib36 publication-title: Inorg. Chem. – volume: 27 start-page: 497 year: 2002 end-page: 500 ident: bib1 publication-title: Int. J. Hydrogen Energy – volume: 45 start-page: 8672 year: 2006 end-page: 8676 ident: bib33 publication-title: Inorg. Chem. – volume: 133 year: 2010 ident: bib32 publication-title: J. Chem. Phys. – volume: 54 start-page: 7873 year: 2018 end-page: 7891 ident: bib41 publication-title: Chem. Commun. – volume: 107 start-page: 4111 year: 2007 end-page: 4132 ident: bib15 publication-title: Chem. Rev. – ident: bib3 article-title: DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles – volume: 295 start-page: 469 year: 2002 end-page: 472 ident: bib22 publication-title: Science – volume: 128 start-page: 3494 year: 2006 end-page: 3495 ident: bib66 publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 3784 year: 2009 end-page: 3798 ident: bib19 publication-title: Int. J. Hydrogen Energy – volume: 23 year: 2020 ident: bib28 publication-title: iScience – volume: 9 start-page: 217 year: 2024 end-page: 310 ident: bib20 publication-title: Green Energy Environ. – volume: 81 start-page: 511 year: 1984 end-page: 519 ident: bib52 publication-title: J. Chem. Phys. – volume: 32 year: 2022 ident: bib27 publication-title: Adv. Funct. Mater. – volume: 38 start-page: 211 year: 2009 end-page: 225 ident: bib16 publication-title: Chem. Soc. Rev. – volume: 60 start-page: 5612 year: 2021 end-page: 5624 ident: bib39 publication-title: Angew. Chem. Int. Ed. – volume: 128 start-page: 1304 year: 2006 end-page: 1315 ident: bib37 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 405 year: 2019 end-page: 415 ident: bib64 publication-title: Appl. Mater. Today – volume: 50 start-page: 2764 year: 2021 end-page: 2793 ident: bib26 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 206 year: 2011 end-page: 211 ident: bib60 publication-title: J. Phys. Chem. Lett. – volume: 45 start-page: 8227 year: 2006 end-page: 8231 ident: bib67 publication-title: Angew. Chem. Int. Ed. – volume: 46 start-page: 8104 year: 2021 end-page: 8112 ident: bib44 publication-title: Int. J. Hydrogen Energy – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: bib49 publication-title: Phys. Rev. B – volume: 129 start-page: 8422 year: 2007 end-page: 8423 ident: bib54 publication-title: J. Am. Chem. Soc. – volume: 569 year: 2021 ident: bib65 publication-title: Appl. Surf. Sci. – volume: 16 start-page: 548 year: 1983 end-page: 558 ident: bib57 publication-title: J. Appl. Crystallogr. – volume: 128 start-page: 16876 year: 2006 end-page: 16883 ident: bib68 publication-title: J. Am. Chem. Soc. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib50 publication-title: Phys. Rev. Lett. – volume: 31 start-page: 1695 year: 1985 end-page: 1697 ident: bib53 publication-title: Phys. Rev. A – volume: 47 start-page: 6766 year: 2008 end-page: 6779 ident: bib2 publication-title: Angew. Chem. Int. Ed. – volume: 38 start-page: 1460 year: 2009 ident: 10.1016/j.gee.2024.12.009_bib13 publication-title: Chem. Soc. Rev. doi: 10.1039/b802430h – volume: 295 start-page: 469 year: 2002 ident: 10.1016/j.gee.2024.12.009_bib22 publication-title: Science doi: 10.1126/science.1067208 – volume: 132 year: 2010 ident: 10.1016/j.gee.2024.12.009_bib51 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 50 start-page: 17953 year: 1994 ident: 10.1016/j.gee.2024.12.009_bib48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 6 start-page: 501 year: 2007 ident: 10.1016/j.gee.2024.12.009_bib24 publication-title: Nat. Mater. doi: 10.1038/nmat1927 – volume: 32 year: 2022 ident: 10.1016/j.gee.2024.12.009_bib27 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 217 year: 2024 ident: 10.1016/j.gee.2024.12.009_bib20 publication-title: Green Energy Environ. doi: 10.1016/j.gee.2022.12.010 – volume: 8 start-page: 693 year: 2022 ident: 10.1016/j.gee.2024.12.009_bib11 publication-title: Chem doi: 10.1016/j.chempr.2022.01.012 – volume: 99 year: 2011 ident: 10.1016/j.gee.2024.12.009_bib61 publication-title: Appl. Phys. Lett. – volume: 46 start-page: 8104 year: 2021 ident: 10.1016/j.gee.2024.12.009_bib44 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.12.016 – volume: 112 start-page: 782 year: 2012 ident: 10.1016/j.gee.2024.12.009_bib10 publication-title: Chem. Rev. doi: 10.1021/cr200274s – volume: 54 start-page: 7873 year: 2018 ident: 10.1016/j.gee.2024.12.009_bib41 publication-title: Chem. Commun. doi: 10.1039/C8CC02871K – volume: 39 start-page: 376 year: 2014 ident: 10.1016/j.gee.2024.12.009_bib8 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.10.044 – volume: 635 start-page: 37 year: 2001 ident: 10.1016/j.gee.2024.12.009_bib63 publication-title: J. Organomet. Chem. doi: 10.1016/S0022-328X(01)01066-X – volume: 13 start-page: 4208 year: 2007 ident: 10.1016/j.gee.2024.12.009_bib38 publication-title: Chem. Eur. J. doi: 10.1002/chem.200601534 – volume: 27 start-page: 497 year: 2002 ident: 10.1016/j.gee.2024.12.009_bib1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/S0360-3199(01)00162-8 – volume: 3 start-page: 191 year: 2018 ident: 10.1016/j.gee.2024.12.009_bib12 publication-title: Green Energy Environ. doi: 10.1016/j.gee.2018.03.001 – volume: 31 start-page: 1695 year: 1985 ident: 10.1016/j.gee.2024.12.009_bib53 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.31.1695 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.gee.2024.12.009_bib50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 48 start-page: 4730 year: 2009 ident: 10.1016/j.gee.2024.12.009_bib55 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200900960 – volume: 92 year: 2008 ident: 10.1016/j.gee.2024.12.009_bib30 publication-title: Appl. Phys. Lett. – volume: 23 year: 2020 ident: 10.1016/j.gee.2024.12.009_bib28 publication-title: iScience – volume: 136 start-page: 12119 year: 2014 ident: 10.1016/j.gee.2024.12.009_bib71 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja506230r – volume: 5 start-page: 2821 year: 2017 ident: 10.1016/j.gee.2024.12.009_bib43 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA08924K – volume: 38 start-page: 211 year: 2009 ident: 10.1016/j.gee.2024.12.009_bib16 publication-title: Chem. Soc. Rev. doi: 10.1039/B815553B – volume: 44 start-page: 18205 year: 2019 ident: 10.1016/j.gee.2024.12.009_bib72 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.05.007 – volume: 81 start-page: 511 year: 1984 ident: 10.1016/j.gee.2024.12.009_bib52 publication-title: J. Chem. Phys. doi: 10.1063/1.447334 – volume: 128 start-page: 16876 year: 2006 ident: 10.1016/j.gee.2024.12.009_bib68 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0656853 – volume: 17 start-page: 3154 year: 2007 ident: 10.1016/j.gee.2024.12.009_bib9 publication-title: J. Mater. Chem. doi: 10.1039/b702858j – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.gee.2024.12.009_bib46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 120 start-page: 8536 year: 2020 ident: 10.1016/j.gee.2024.12.009_bib25 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00766 – volume: 145 start-page: 20492 year: 2023 ident: 10.1016/j.gee.2024.12.009_bib74 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c06393 – volume: 59 start-page: 1758 year: 1999 ident: 10.1016/j.gee.2024.12.009_bib49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 110 start-page: 9565 year: 2006 ident: 10.1016/j.gee.2024.12.009_bib70 publication-title: J. Phys. Chem. B doi: 10.1021/jp060433+ – volume: 50 start-page: 2764 year: 2021 ident: 10.1016/j.gee.2024.12.009_bib26 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01160F – volume: 95 year: 2009 ident: 10.1016/j.gee.2024.12.009_bib31 publication-title: Appl. Phys. Lett. – volume: 143 start-page: 6248 year: 2021 ident: 10.1016/j.gee.2024.12.009_bib73 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c01883 – volume: 60 start-page: 14473 year: 2021 ident: 10.1016/j.gee.2024.12.009_bib59 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202103398 – volume: 7 start-page: 2290 year: 2007 ident: 10.1016/j.gee.2024.12.009_bib34 publication-title: Cryst. Growth Des. doi: 10.1021/cg070640e – volume: 6 start-page: 15 year: 1996 ident: 10.1016/j.gee.2024.12.009_bib47 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 569 year: 2021 ident: 10.1016/j.gee.2024.12.009_bib65 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.151000 – volume: 128 start-page: 1304 year: 2006 ident: 10.1016/j.gee.2024.12.009_bib37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056639q – volume: 107 start-page: 4111 year: 2007 ident: 10.1016/j.gee.2024.12.009_bib15 publication-title: Chem. Rev. doi: 10.1021/cr0501846 – volume: 22 start-page: 1149 year: 2017 ident: 10.1016/j.gee.2024.12.009_bib14 publication-title: Molecules doi: 10.3390/molecules22071149 – volume: 129 start-page: 8422 year: 2007 ident: 10.1016/j.gee.2024.12.009_bib54 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja072599+ – volume: 16 start-page: 548 year: 1983 ident: 10.1016/j.gee.2024.12.009_bib57 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889883010985 – volume: 68 start-page: 2277 year: 1992 ident: 10.1016/j.gee.2024.12.009_bib62 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.2277 – volume: 22 start-page: 7944 year: 2016 ident: 10.1016/j.gee.2024.12.009_bib18 publication-title: Chem. Eur. J. doi: 10.1002/chem.201504666 – volume: 60 start-page: 24467 year: 2021 ident: 10.1016/j.gee.2024.12.009_bib45 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202110373 – volume: 133 year: 2010 ident: 10.1016/j.gee.2024.12.009_bib32 publication-title: J. Chem. Phys. – volume: 47 start-page: 6766 year: 2008 ident: 10.1016/j.gee.2024.12.009_bib2 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200801163 – volume: 402 start-page: 276 year: 1999 ident: 10.1016/j.gee.2024.12.009_bib21 publication-title: Nature doi: 10.1038/46248 – volume: 20 start-page: 222 year: 2021 ident: 10.1016/j.gee.2024.12.009_bib58 publication-title: Nat. Mater. doi: 10.1038/s41563-020-00847-7 – volume: 34 start-page: 3784 year: 2009 ident: 10.1016/j.gee.2024.12.009_bib19 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.03.001 – volume: 45 start-page: 8672 year: 2006 ident: 10.1016/j.gee.2024.12.009_bib33 publication-title: Inorg. Chem. doi: 10.1021/ic0611948 – volume: 2 start-page: 206 year: 2011 ident: 10.1016/j.gee.2024.12.009_bib60 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz1015372 – volume: 38 start-page: 9811 year: 2013 ident: 10.1016/j.gee.2024.12.009_bib29 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.05.140 – volume: 106 start-page: 12757 year: 2002 ident: 10.1016/j.gee.2024.12.009_bib56 publication-title: J. Phys. Chem. B doi: 10.1021/jp0263931 – volume: 128 start-page: 11734 year: 2006 ident: 10.1016/j.gee.2024.12.009_bib35 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja063538z – volume: 286 start-page: 1127 year: 1999 ident: 10.1016/j.gee.2024.12.009_bib7 publication-title: Science doi: 10.1126/science.286.5442.1127 – volume: 103 start-page: 10186 year: 2006 ident: 10.1016/j.gee.2024.12.009_bib23 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0602439103 – volume: 15 start-page: 405 year: 2019 ident: 10.1016/j.gee.2024.12.009_bib64 publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2019.03.002 – volume: 46 start-page: 3432 year: 2007 ident: 10.1016/j.gee.2024.12.009_bib36 publication-title: Inorg. Chem. doi: 10.1021/ic070338v – volume: 60 start-page: 5612 year: 2021 ident: 10.1016/j.gee.2024.12.009_bib39 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202006102 – volume: 45 start-page: 8227 year: 2006 ident: 10.1016/j.gee.2024.12.009_bib67 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200600105 – volume: 49 start-page: 8489 year: 2010 ident: 10.1016/j.gee.2024.12.009_bib69 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201001735 – volume: 386 start-page: 377 year: 1997 ident: 10.1016/j.gee.2024.12.009_bib6 publication-title: Nature doi: 10.1038/386377a0 – volume: 4 year: 2024 ident: 10.1016/j.gee.2024.12.009_bib42 publication-title: Small Sci. – volume: 49 start-page: 3330 year: 2010 ident: 10.1016/j.gee.2024.12.009_bib17 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200906936 – volume: 6 start-page: 528 year: 2021 ident: 10.1016/j.gee.2024.12.009_bib4 publication-title: Green Energy Environ. doi: 10.1016/j.gee.2020.06.006 – volume: 117 start-page: 22598 year: 2013 ident: 10.1016/j.gee.2024.12.009_bib5 publication-title: J. Phys. Chem. C doi: 10.1021/jp408652t – volume: 128 start-page: 3494 year: 2006 ident: 10.1016/j.gee.2024.12.009_bib66 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja058213h – volume: 57 start-page: 1032 year: 2024 ident: 10.1016/j.gee.2024.12.009_bib40 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.3c00788 – volume: 489 year: 2024 ident: 10.1016/j.gee.2024.12.009_bib75 publication-title: Chem. Eng. J. |
SSID | ssj0002414154 ssib051367630 ssib043749059 ssib034324867 ssib045218355 |
Score | 2.2999783 |
Snippet | The pursuit of sustainable energy has driven a significant interest in hydrogen (H2) as a clean fuel alternative. A critical challenge is the efficient storage... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 1326 |
SubjectTerms | 2D monolayer MOFs Adsorption Clean energy Clean fuels Density functional theory Energy Graphene Hydrogen Hydrogen storage Hydrogen storage materials Investigations Ligands Lithium Lithium doping Metal-organic frameworks Metals Molecular dynamics Monolayers Monte Carlo simulation Morse potential Nitrogen Open metal sites Porous materials Simulation Sustainable energy Theoretical investigation |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07bxQxELbg0kCBeIqDBLmgQrLY9XOXBiUoUYREhFAipbO8fsBF0V7IXYpQUdPyD_klzPjs3EGRcr2W1_LMznwzngchr9s4AO6QmgUpDJOmc8xJnljThaSc6FNwaCh-OtKHJ_LjqTotDrdFCausMjEL6jD36CN_K0D1d4g32vcX3xl2jcLb1dJC4y7ZAhHcdROytbd_9PlL5SjMmsSScvUZ9iP7DUAhFSKEdWamygXMCqBGWQ76DTQcXk1zwPqMm97Uq9EcJPY1YqlNLrNLEYMaN5Rb7gHwj477T9pnFXbwkDwo2JPurpjlEbkTx8fk_kZFwifk1zHIxWt_DgvMRvcDO_pEhpouUDgAMIMBoVMwoc-u0P0GgxHA-5-fv1fNoTxNNdZrQd2CwkaAjWBh-u06XM6BVykGY4IIozlj5R3dpRuZlHS2LvoxH5-Sk4P94w-HrLRrYF503ZK1nreO825Ig1cG--Nx40PvfeycjLoBZMSjdo13pklGaq2414lLpUITjHHiGZmM8zE-J9R4HWCGkGg0Jze4BEY8D01qtZMipil5U8_ZXqyqctgarnZmgSgWiWJbboEoU7KHlLiZiAW18wAcjS3_p9UD4Fhl-hj7CFtr-ihU0jooEXqRYpwSWeloCzZZYQ5Yanbbt7crzW0RDgu7ZuUXt79-Se5xbDecnT7bZLK8vIo7gIGWw6vC6H8BedoCMA priority: 102 providerName: ProQuest |
Title | Tricycloquinazoline-based monolayer conjugated metal–organic frameworks as promising hydrogen storage media: A theoretical investigation |
URI | https://dx.doi.org/10.1016/j.gee.2024.12.009 https://www.proquest.com/docview/3232805191 https://doaj.org/article/6b326579ee9e46609e35f66d53d93fee |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTxUxEG8QLnowihqfwksPnEw27vZz1xsQnsREQggk3JpuO9VHyD7Dexzw5Nkr_yF_iTP7AasHvXhtmm4zv-nMb7rTGcZ2CqiRdyiTRSVtpmzpM69EyvIyJu1llaKnQPHzkTk8U5_O9fmo1RflhHXlgTvBvTc1EgxtK4AKlDF5BVInY6KWsZIJgKwv-rxRMEU2GP0SeiY1_MZsE7q-AJXFFKq9_qMExJEjauv1_-aP_rDMrbuZPWNPe57Id7v9PWdr0GyyJ6PqgS_Yz1O0YTfhEheYN_47dd-BjLxS5KhbGLIim-YY7l5c01UZDgIS7bsft10jp8DTkJe15H7JcSMIOS7Mv97EqwXqFafESTQ3vH1d8oHv8tGrRz5_KNCxaF6ys9nB6f5h1rdWyIIsy1VWBFF4Ico61UFb6mUnbIhVCFB6BSZHFiPA-Dx4myeLctcimCSU1jGP1nr5iq03iwZeM26DiThDKgpwk699woBbxDwVxisJacLeDXJ237oKGm5ILbtwCIojUFwhHIIyYXuExP1EKn7dDqBoXK8S7l8qMWFqwNH1PKLjB7jU_G_f3howd_1BXjqJjLMkmlu8-R9be8seC2og3F7jbLH11dU1bCOrWdVT9qicfZyyjb2Do-OTaavOvwDdnfuH |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhNBEG2FcAAOiFUxBOgDXJBGzPQ6g4SisBiHLCdHyq3p6QUcoXGIHSFz4sw1_8FH8SVUzUxjwyG3HGdRe9xVXe9Vdy2EPC1CDbxDqMwLrjOhS5tZwWKWlz5Ky6voLTqK-wdqdCg-HMmjNfIr5cJgWGWyia2h9lOHe-QvOEB_iXyj2Dr5mmHXKDxdTS00OrXYDYtv4LLNXu28Bfk-Y2z4bvxmlPVdBTLHy3KeFY4VlrGyjrWTGtu4Me185VworQgqBwBnQdncWZ1HLZSSzKnIhJQ-91pbDuNeIVcFByTHzPTh-6S_mKOJBezSNfx7Ua3QFyGRjyzzQGVbLq2n74gcgKaAp3gQzsCzyJiudDqIbUPSPgUs7MlEu4GJIZQrUNp2HPgHUf_DlhYwh7fIzZ7p0u1ONW-TtdDcITdW6h_eJT_HYIUX7gsMMGnsd-wfFDLEVU9husHpBn-AgsN-fIabfXAzgKvw-8d514rK0Zgiy2bUzih8CCgtDEw_L_zpFFYGxdBPMJi0zY95SbfpSt4mnSxLjEybe-TwUsR4n6w30yZsEKqd8vAGF-iiR1vbqKqc-TwWygoe4oA8T_NsTroaICYFxx0bEIpBoZiCGRDKgLxGSfx9Ect3tzdgakxvDYyqgTVLXYVQBfi0vApcRqW85L7iMYQBEUmOpmdCHcOBoSYX_fZmkrnpTdHMLBfOg4sfPyHXRuP9PbO3c7D7kFxn2Oi43W7aJOvz07PwCNjXvH7cqjwlHy97jf0BPm49Eg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tricycloquinazoline-based+monolayer+conjugated+metal%E2%80%93organic+frameworks+as+promising+hydrogen+storage+media%3A+A+theoretical+investigation&rft.jtitle=Green+energy+%26+environment&rft.au=Meng%2C+Zhaoshun&rft.au=Li%2C+Qingyu&rft.au=Sun%2C+Huilin&rft.au=Wang%2C+Yunhui&rft.date=2025-06-01&rft.issn=2468-0257&rft.eissn=2468-0257&rft.volume=10&rft.issue=6&rft.spage=1326&rft.epage=1336&rft_id=info:doi/10.1016%2Fj.gee.2024.12.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_gee_2024_12_009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-0257&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-0257&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-0257&client=summon |