Tricycloquinazoline-based monolayer conjugated metal–organic frameworks as promising hydrogen storage media: A theoretical investigation

The pursuit of sustainable energy has driven a significant interest in hydrogen (H2) as a clean fuel alternative. A critical challenge is the efficient storage of H2, which this study addresses by examining the potential of tricycloquinazoline-based monolayer metal–organic frameworks (MMOFs with the...

Full description

Saved in:
Bibliographic Details
Published inGreen energy & environment Vol. 10; no. 6; pp. 1326 - 1336
Main Authors Meng, Zhaoshun, Li, Qingyu, Sun, Huilin, Wang, Yunhui, Li, Xing'ao
Format Journal Article
LanguageEnglish
Published Henan Elsevier B.V 01.06.2025
KeAi Publishing Communications Ltd
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The pursuit of sustainable energy has driven a significant interest in hydrogen (H2) as a clean fuel alternative. A critical challenge is the efficient storage of H2, which this study addresses by examining the potential of tricycloquinazoline-based monolayer metal–organic frameworks (MMOFs with the first “M” representing metal species). Using density functional theory, we optimized the structures of MMOFs and calculated H2 adsorption energies above the open metal sites, identifying ScMOF, TiMOF, NiMOF, and MgMOF for further validation of their thermodynamic stability via ab-initio molecular dynamics (AIMD) simulations. Force field parameters were fitted via the Morse potential, providing a solid foundation for subsequent grand canonical Monte Carlo simulations. These simulations revealed that the maximum of saturated excess gravimetric H2 uptake exceeds 14.16 wt% at 77 K, surpassing other reported MOFs, whether they possess open metal sites or not. At 298 K and 100 bar, both the planar and distorted structures derived from our AIMD simulations demonstrated comparable excess gravimetric H2 uptake within the range of 3.05 wt% to 3.94 wt%, once again outperforming other MOFs. Furthermore, lithium (Li) doping significantly enhanced the excess H2 uptake, with Li-TiMOF achieving an impressive 6.83 wt% at 298 K and 100 bar, exceeding the ultimate target set by the U.S. Department of Energy. The exceptional H2 adsorption capacities of these monolayer MOFs highlight their potential in H2 storage, contributing to the design of more efficient hydrogen storage materials and propelling the sustainable hydrogen economy forward. [Display omitted] •Density functional theory calculations were used to identify the optimal metal species for H2 adsorption in monolayer MOFs.•The thermodynamic stability of the studied monolayer MOFs at 298 K was assessed by ab-initio molecular dynamics simulations.•The force field parameters for the Morse potential were optimized based on the scanning results.•Grand canonical Monte Carlo simulations revealed that the studied MOFs achieve over 12.61 wt% H2 uptake at 77 K and 40 bar.•Li-doped TiMOF exhibited remarkable H2 uptake, surpassing the DOE target at 298 K and 100 bar or 233 K and 12 bar.
AbstractList The pursuit of sustainable energy has driven a significant interest in hydrogen (H2) as a clean fuel alternative. A critical challenge is the efficient storage of H2, which this study addresses by examining the potential of tricycloquinazoline-based monolayer metal-organic frameworks (MMOFs with the first "M" representing metal species). Using density functional theory, we optimized the structures of MMOFs and calculated H2 adsorption energies above the open metal sites, identifying ScMOF, TiMOF, NiMOF, and MgMOF for further validation of their thermodynamic stability via ab-initio molecular dynamics (AIMD) simulations. Force field parameters were fitted via the Morse potential, providing a solid foundation for subsequent grand canonical Monte Carlo simulations. These simulations revealed that the maximum of saturated excess gravimetric H2 uptake exceeds 14.16 wt% at 77 K, surpassing other reported MOFs, whether they possess open metal sites or not. At 298 K and 100 bar, both the planar and distorted structures derived from our AIMD simulations demonstrated comparable excess gravimetric H2 uptake within the range of 3.05 wt% to 3.94 wt%, once again outperforming other MOFs. Furthermore, lithium (Li) doping significantly enhanced the excess H2 uptake, with Li-TiMOF achieving an impressive 6.83 wt% at 298 K and 100 bar, exceeding the ultimate target set by the U.S. Department of Energy. The exceptional H2 adsorption capacities of these monolayer MOFs highlight their potential in H2 storage, contributing to the design of more efficient hydrogen storage materials and propelling the sustainable hydrogen economy forward.
The pursuit of sustainable energy has driven a significant interest in hydrogen (H2) as a clean fuel alternative. A critical challenge is the efficient storage of H2, which this study addresses by examining the potential of tricycloquinazoline-based monolayer metal–organic frameworks (MMOFs with the first “M” representing metal species). Using density functional theory, we optimized the structures of MMOFs and calculated H2 adsorption energies above the open metal sites, identifying ScMOF, TiMOF, NiMOF, and MgMOF for further validation of their thermodynamic stability via ab-initio molecular dynamics (AIMD) simulations. Force field parameters were fitted via the Morse potential, providing a solid foundation for subsequent grand canonical Monte Carlo simulations. These simulations revealed that the maximum of saturated excess gravimetric H2 uptake exceeds 14.16 wt% at 77 K, surpassing other reported MOFs, whether they possess open metal sites or not. At 298 K and 100 bar, both the planar and distorted structures derived from our AIMD simulations demonstrated comparable excess gravimetric H2 uptake within the range of 3.05 wt% to 3.94 wt%, once again outperforming other MOFs. Furthermore, lithium (Li) doping significantly enhanced the excess H2 uptake, with Li-TiMOF achieving an impressive 6.83 wt% at 298 K and 100 bar, exceeding the ultimate target set by the U.S. Department of Energy. The exceptional H2 adsorption capacities of these monolayer MOFs highlight their potential in H2 storage, contributing to the design of more efficient hydrogen storage materials and propelling the sustainable hydrogen economy forward. [Display omitted] •Density functional theory calculations were used to identify the optimal metal species for H2 adsorption in monolayer MOFs.•The thermodynamic stability of the studied monolayer MOFs at 298 K was assessed by ab-initio molecular dynamics simulations.•The force field parameters for the Morse potential were optimized based on the scanning results.•Grand canonical Monte Carlo simulations revealed that the studied MOFs achieve over 12.61 wt% H2 uptake at 77 K and 40 bar.•Li-doped TiMOF exhibited remarkable H2 uptake, surpassing the DOE target at 298 K and 100 bar or 233 K and 12 bar.
Author Meng, Zhaoshun
Li, Xing'ao
Li, Qingyu
Sun, Huilin
Wang, Yunhui
Author_xml – sequence: 1
  givenname: Zhaoshun
  orcidid: 0000-0001-5529-5529
  surname: Meng
  fullname: Meng, Zhaoshun
  email: zsmeng0314@outlook.com
– sequence: 2
  givenname: Qingyu
  surname: Li
  fullname: Li, Qingyu
– sequence: 3
  givenname: Huilin
  surname: Sun
  fullname: Sun, Huilin
– sequence: 4
  givenname: Yunhui
  surname: Wang
  fullname: Wang, Yunhui
  email: yhwang@njupt.edu.cn
– sequence: 5
  givenname: Xing'ao
  surname: Li
  fullname: Li, Xing'ao
  email: lxahbmy@126.com
BookMark eNp9UU1P3DAUtCoqlVJ-QG-Wek7wR-wk7QmhFpCQuNCz9dZ-CU6zNthZquXUM1f-Ib-k3i6qeurJT08z45k378lBiAEJ-chZzRnXJ1M9ItaCiabmomasf0MORaO7ignVHvwzvyPHOU-MFSRvuGoOydNN8nZr53i_8QEe4-wDVivI6Og6hjjDFhO1MUybEZbdEheYX349xzRC8JYOCdb4M6YfmUKmdymuffZhpLdbl-KIgeYlJhixEJ2Hz_SULrcYEy7ewkx9eMC8-CLtY_hA3g4wZzx-fY_I929fb84uqqvr88uz06vKyq5bKm4FByG61bCyqmVKKNFa11uLHTSoWddLgRqYhZYNbaO1ElYPolHKMde2II_I5V7XRZjMXfJrSFsTwZs_i5LMQCr-ZjR6JYVWbY_YY1FiPUo1aO2UdL0cEIvWp71WSX6_KVnMFDcpFPtGCik6pnjPC4rvUTbFnBMOf3_lzOwaNJMpDZpdg4YLUxosnC97DpZTPHhMJluPwZYzJrRL8er_w_4NRYCpHg
Cites_doi 10.1039/b802430h
10.1126/science.1067208
10.1063/1.3382344
10.1103/PhysRevB.50.17953
10.1038/nmat1927
10.1016/j.gee.2022.12.010
10.1016/j.chempr.2022.01.012
10.1016/j.ijhydene.2020.12.016
10.1021/cr200274s
10.1039/C8CC02871K
10.1016/j.ijhydene.2013.10.044
10.1016/S0022-328X(01)01066-X
10.1002/chem.200601534
10.1016/S0360-3199(01)00162-8
10.1016/j.gee.2018.03.001
10.1103/PhysRevA.31.1695
10.1103/PhysRevLett.77.3865
10.1002/anie.200900960
10.1021/ja506230r
10.1039/C6TA08924K
10.1039/B815553B
10.1016/j.ijhydene.2019.05.007
10.1063/1.447334
10.1021/ja0656853
10.1039/b702858j
10.1103/PhysRevB.54.11169
10.1021/acs.chemrev.9b00766
10.1021/jacs.3c06393
10.1103/PhysRevB.59.1758
10.1021/jp060433+
10.1039/D0CS01160F
10.1021/jacs.1c01883
10.1002/anie.202103398
10.1021/cg070640e
10.1016/0927-0256(96)00008-0
10.1016/j.apsusc.2021.151000
10.1021/ja056639q
10.1021/cr0501846
10.3390/molecules22071149
10.1021/ja072599+
10.1107/S0021889883010985
10.1103/PhysRevLett.68.2277
10.1002/chem.201504666
10.1002/anie.202110373
10.1002/anie.200801163
10.1038/46248
10.1038/s41563-020-00847-7
10.1016/j.ijhydene.2009.03.001
10.1021/ic0611948
10.1021/jz1015372
10.1016/j.ijhydene.2013.05.140
10.1021/jp0263931
10.1021/ja063538z
10.1126/science.286.5442.1127
10.1073/pnas.0602439103
10.1016/j.apmt.2019.03.002
10.1021/ic070338v
10.1002/anie.202006102
10.1002/anie.200600105
10.1002/anie.201001735
10.1038/386377a0
10.1002/anie.200906936
10.1016/j.gee.2020.06.006
10.1021/jp408652t
10.1021/ja058213h
10.1021/acs.accounts.3c00788
ContentType Journal Article
Copyright 2024 Institute of Process Engineering, Chinese Academy of Sciences
2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 Institute of Process Engineering, Chinese Academy of Sciences
– notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 6I.
AAFTH
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M7S
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.1016/j.gee.2024.12.009
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2468-0257
EndPage 1336
ExternalDocumentID oai_doaj_org_article_6b326579ee9e46609e35f66d53d93fee
10_1016_j_gee_2024_12_009
S2468025724003492
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID -03
-0C
-SC
-S~
0R~
5VR
6I.
92M
9D9
9DC
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ABJCF
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFKRA
AFPUW
AFTJW
AFUIB
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
CAJEC
CCPQU
EBS
EJD
FDB
GROUPED_DOAJ
HCIFZ
M41
M7S
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
PYCSY
Q--
ROL
RT3
SSZ
T8S
U1F
U1G
U5C
U5M
AAYXX
CITATION
PUEGO
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c388t-1c21a228bfbc57052527cd9cce8a4e608932e6a0ca70f746652c6f2455d0d77a3
IEDL.DBID DOA
ISSN 2468-0257
2096-2797
IngestDate Wed Aug 27 01:29:29 EDT 2025
Sat Aug 23 14:29:59 EDT 2025
Thu Aug 28 08:56:29 EDT 2025
Sat Aug 02 17:11:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Open metal sites
Hydrogen storage
2D monolayer MOFs
Lithium doping
Theoretical investigation
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-1c21a228bfbc57052527cd9cce8a4e608932e6a0ca70f746652c6f2455d0d77a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5529-5529
OpenAccessLink https://doaj.org/article/6b326579ee9e46609e35f66d53d93fee
PQID 3232805191
PQPubID 6865024
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_6b326579ee9e46609e35f66d53d93fee
proquest_journals_3232805191
crossref_primary_10_1016_j_gee_2024_12_009
elsevier_sciencedirect_doi_10_1016_j_gee_2024_12_009
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
20250601
2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationPlace Henan
PublicationPlace_xml – name: Henan
PublicationTitle Green energy & environment
PublicationYear 2025
Publisher Elsevier B.V
KeAi Publishing Communications Ltd
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Publishing Communications Ltd
– name: KeAi Communications Co., Ltd
References Vlugt, Schenk (bib56) 2002; 106
Kapelewski, Geier, Hudson, Stück, Mason, Nelson, Xiao, Hulvey, Gilmour, FitzGerald, Head-Gordon, Brown, Long (bib71) 2014; 136
Perdew, Burke, Ernzerhof (bib50) 1996; 77
Jena (bib60) 2011; 2
Park, Ni, Côté, Choi, Huang, Uribe-Romo, Chae, O'Keeffe, Yaghi (bib23) 2006; 103
Choi, Seo, Cho, Kim, Jin, Jung, Choi, Ahn, Rowsell, Kim (bib34) 2007; 7
Ko, Mendecki, Mirica (bib41) 2018; 54
Han, Goddard (bib54) 2007; 129
Liu, Fan, Liu, Cong, Cheng, Dresselhaus (bib7) 1999; 286
Dincă, Long (bib2) 2008; 47
Liu, Xu, Han, Chen, Sheng, Wang, Huang, Wang, Lu, Luo, He, Lan, Guo (bib4) 2021; 6
Liu, Xing, Chen (bib40) 2024; 57
Nosé (bib52) 1984; 81
Wong-Foy, Matzger, Yaghi (bib66) 2006; 128
Frost, Düren, Snurr (bib70) 2006; 110
Han, Mendoza-Cortés, Goddard (bib13) 2009; 38
Lü, Zhou, Zhou, Wang, Sun, Jena (bib61) 2011; 99
Suh, Park, Prasad, Lim (bib10) 2012; 112
Kresse, Furthmüller (bib47) 1996; 6
Hashmi, Farooq, Khan, Son, Hong (bib43) 2017; 5
Zhu, Zhang (bib14) 2017; 22
Rowsell, Yaghi (bib37) 2006; 128
Mauron, Gaboardi, Remhof, Bliersbach, Sheptyakov, Aramini, Vlahopoulou, Giglio, Pontiroli, Riccò, Züttel (bib5) 2013; 117
Dou, Arguilla, Luo, Li, Zhang, Sun, Mancuso, Yang, Chen, Parent, Skorupskii, Libretto, Sun, Yang, Dip, Brignole, Miller, Kong, Hendon, Sun, Dincă (bib58) 2021; 20
Bi, Ding, Zou, Nie, Xu, Yin, Huang, Yang, Wang (bib65) 2021; 569
Meng, Lu, Rao, Kan, Xiao, Deng (bib29) 2013; 38
Sengupta, Melix, Bose, Duncan, Wang, Mian, Kirlikovali, Joodaki, Islamoglu, Yildirim, Snurr, Farha (bib74) 2023; 145
Choi, Lee, Choi, Kang (bib30) 2008; 92
Kresse, Furthmüller (bib46) 1996; 54
bib3
Yürüm, Taralp, Veziroglu (bib19) 2009; 34
Ma, Zhou (bib35) 2006; 128
Chen, Kirlikovali, Idrees, Wasson, Farha (bib11) 2022; 8
Moon, Kobayashi, Suh (bib33) 2006; 45
Blöchl (bib48) 1994; 50
Ma, Wang, Manis, Collier, Zhou (bib36) 2007; 46
Dillon, Jones, Bekkedahl, Kiang, Bethune, Heben (bib6) 1997; 386
Kresse, Joubert (bib49) 1999; 59
Latroche, Surblé, Serre, Mellot-Draznieks, Llewellyn, Lee, Chang, Jhung, Férey (bib67) 2006; 45
Dincǎ, Dailly, Liu, Brown, Neumann, Long (bib68) 2006; 128
Jaramillo, Jiang, Evans, Chakraborty, Furukawa, Brown, Head-Gordon, Long (bib73) 2021; 143
Wang, Li, Ye, Zhang, Tang, Hu, He, Li (bib27) 2022; 32
Kim, Jung, Shin, Kim, Park, Lee, Oh, Hong (bib75) 2024; 489
Lyth, Shao, Liu, Sasaki, Akiba (bib8) 2014; 39
Gedrich, Senkovska, Klein, Stoeck, Henschel, Lohe, Baburin, Mueller, Kaskel (bib69) 2010; 49
Shevlin, Guo (bib16) 2009; 38
Hayashi, Côté, Furukawa, O'Keeffe, Yaghi (bib24) 2007; 6
Collins, Zhou (bib9) 2007; 17
Cao, Lan, Wang, Smit (bib55) 2009; 48
Wang, Zhu, Liu, Wu (bib1) 2002; 27
Wu, Wang, Sun, Jena, Kawazoe (bib32) 2010; 133
Wang, Xie, Wang, Liu, Li, Li (bib12) 2018; 3
Sun, Lee, Kim, Zhang (bib31) 2009; 95
Orimo, Nakamori, Eliseo, Züttel, Jensen (bib15) 2007; 107
Xie, Skorupskii, Dincă (bib25) 2020; 120
Li, Lu, Wang, Wang, Han, Deng (bib17) 2010; 49
Wang, Dong, Feng (bib26) 2021; 50
Hoover (bib53) 1985; 31
Kubas (bib63) 2001; 635
Montes-Andrés, Orcajo, Martos, Botas, Calleja (bib72) 2019; 44
Wu, Shi, Huang, Meng, Wang, Yang (bib44) 2021; 46
Liu, Song, Zhang, Liu, Wen, Chen (bib39) 2021; 60
Xu, Sun, Li, Shang, X. Yang, Deng (bib18) 2016; 22
Wang, Ma, Jin, Li, Javanmardi, He, Zhu, Zhang, Xu, Wang, Feng (bib42) 2024; 4
Mortazavi, Shahrokhi, Hussain, Zhuang, Rabczuk (bib64) 2019; 15
Grimme, Antony, Ehrlich, Krieg (bib51) 2010; 132
Eddaoudi, Kim, Rosi, Vodak, Wachter, O'Keeffe, Yaghi (bib22) 2002; 295
Liu, Yang, Zhou, Zhang, Xing, Liu, Ma, Terasaki, Yang, Chen (bib59) 2021; 60
Liu, Chen, Yang, Lan, Wang, Hu, Han, Liu, Chen, Feng, Cui, Fang, Wang, Li, Li, Xing, Yang, Zhao, Li (bib20) 2024; 9
Niu, Rao, Jena (bib62) 1992; 68
Li, Eddaoudi, O'Keeffe, Yaghi (bib21) 1999; 402
Cui, Yan, Chen, Xing, Ye, Li, Zou, Sun, Liu, Xu, Zhu (bib28) 2020; 23
Connolly (bib57) 1983; 16
Yan, Cui, Xie, Yang, Bin, Li (bib45) 2021; 60
Suh, Cheon, Lee (bib38) 2007; 13
Orimo (10.1016/j.gee.2024.12.009_bib15) 2007; 107
Wang (10.1016/j.gee.2024.12.009_bib12) 2018; 3
Wong-Foy (10.1016/j.gee.2024.12.009_bib66) 2006; 128
Frost (10.1016/j.gee.2024.12.009_bib70) 2006; 110
Gedrich (10.1016/j.gee.2024.12.009_bib69) 2010; 49
Dincă (10.1016/j.gee.2024.12.009_bib2) 2008; 47
Kresse (10.1016/j.gee.2024.12.009_bib46) 1996; 54
Liu (10.1016/j.gee.2024.12.009_bib39) 2021; 60
Jaramillo (10.1016/j.gee.2024.12.009_bib73) 2021; 143
Wang (10.1016/j.gee.2024.12.009_bib26) 2021; 50
Lü (10.1016/j.gee.2024.12.009_bib61) 2011; 99
Xu (10.1016/j.gee.2024.12.009_bib18) 2016; 22
Zhu (10.1016/j.gee.2024.12.009_bib14) 2017; 22
Li (10.1016/j.gee.2024.12.009_bib21) 1999; 402
Grimme (10.1016/j.gee.2024.12.009_bib51) 2010; 132
Collins (10.1016/j.gee.2024.12.009_bib9) 2007; 17
Dou (10.1016/j.gee.2024.12.009_bib58) 2021; 20
Chen (10.1016/j.gee.2024.12.009_bib11) 2022; 8
Dillon (10.1016/j.gee.2024.12.009_bib6) 1997; 386
Hayashi (10.1016/j.gee.2024.12.009_bib24) 2007; 6
Wang (10.1016/j.gee.2024.12.009_bib42) 2024; 4
Lyth (10.1016/j.gee.2024.12.009_bib8) 2014; 39
Liu (10.1016/j.gee.2024.12.009_bib20) 2024; 9
Hashmi (10.1016/j.gee.2024.12.009_bib43) 2017; 5
Vlugt (10.1016/j.gee.2024.12.009_bib56) 2002; 106
Mauron (10.1016/j.gee.2024.12.009_bib5) 2013; 117
Latroche (10.1016/j.gee.2024.12.009_bib67) 2006; 45
Wang (10.1016/j.gee.2024.12.009_bib1) 2002; 27
Suh (10.1016/j.gee.2024.12.009_bib10) 2012; 112
Moon (10.1016/j.gee.2024.12.009_bib33) 2006; 45
Bi (10.1016/j.gee.2024.12.009_bib65) 2021; 569
Ma (10.1016/j.gee.2024.12.009_bib36) 2007; 46
Liu (10.1016/j.gee.2024.12.009_bib7) 1999; 286
Liu (10.1016/j.gee.2024.12.009_bib59) 2021; 60
Eddaoudi (10.1016/j.gee.2024.12.009_bib22) 2002; 295
Kresse (10.1016/j.gee.2024.12.009_bib47) 1996; 6
Montes-Andrés (10.1016/j.gee.2024.12.009_bib72) 2019; 44
Shevlin (10.1016/j.gee.2024.12.009_bib16) 2009; 38
Choi (10.1016/j.gee.2024.12.009_bib34) 2007; 7
Nosé (10.1016/j.gee.2024.12.009_bib52) 1984; 81
Hoover (10.1016/j.gee.2024.12.009_bib53) 1985; 31
Jena (10.1016/j.gee.2024.12.009_bib60) 2011; 2
Blöchl (10.1016/j.gee.2024.12.009_bib48) 1994; 50
Ko (10.1016/j.gee.2024.12.009_bib41) 2018; 54
Connolly (10.1016/j.gee.2024.12.009_bib57) 1983; 16
Sengupta (10.1016/j.gee.2024.12.009_bib74) 2023; 145
Meng (10.1016/j.gee.2024.12.009_bib29) 2013; 38
Sun (10.1016/j.gee.2024.12.009_bib31) 2009; 95
Han (10.1016/j.gee.2024.12.009_bib54) 2007; 129
Mortazavi (10.1016/j.gee.2024.12.009_bib64) 2019; 15
Cui (10.1016/j.gee.2024.12.009_bib28) 2020; 23
Choi (10.1016/j.gee.2024.12.009_bib30) 2008; 92
Suh (10.1016/j.gee.2024.12.009_bib38) 2007; 13
Liu (10.1016/j.gee.2024.12.009_bib40) 2024; 57
Wu (10.1016/j.gee.2024.12.009_bib44) 2021; 46
Kapelewski (10.1016/j.gee.2024.12.009_bib71) 2014; 136
Liu (10.1016/j.gee.2024.12.009_bib4) 2021; 6
Ma (10.1016/j.gee.2024.12.009_bib35) 2006; 128
Li (10.1016/j.gee.2024.12.009_bib17) 2010; 49
Wang (10.1016/j.gee.2024.12.009_bib27) 2022; 32
Cao (10.1016/j.gee.2024.12.009_bib55) 2009; 48
Niu (10.1016/j.gee.2024.12.009_bib62) 1992; 68
Kresse (10.1016/j.gee.2024.12.009_bib49) 1999; 59
Kubas (10.1016/j.gee.2024.12.009_bib63) 2001; 635
Han (10.1016/j.gee.2024.12.009_bib13) 2009; 38
Yan (10.1016/j.gee.2024.12.009_bib45) 2021; 60
Kim (10.1016/j.gee.2024.12.009_bib75) 2024; 489
Yürüm (10.1016/j.gee.2024.12.009_bib19) 2009; 34
Park (10.1016/j.gee.2024.12.009_bib23) 2006; 103
Rowsell (10.1016/j.gee.2024.12.009_bib37) 2006; 128
Wu (10.1016/j.gee.2024.12.009_bib32) 2010; 133
Perdew (10.1016/j.gee.2024.12.009_bib50) 1996; 77
Xie (10.1016/j.gee.2024.12.009_bib25) 2020; 120
Dincǎ (10.1016/j.gee.2024.12.009_bib68) 2006; 128
References_xml – volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: bib46
  publication-title: Phys. Rev. B
– volume: 17
  start-page: 3154
  year: 2007
  end-page: 3160
  ident: bib9
  publication-title: J. Mater. Chem.
– volume: 13
  start-page: 4208
  year: 2007
  end-page: 4215
  ident: bib38
  publication-title: Chem. Eur. J.
– volume: 4
  year: 2024
  ident: bib42
  publication-title: Small Sci.
– volume: 95
  year: 2009
  ident: bib31
  publication-title: Appl. Phys. Lett.
– volume: 57
  start-page: 1032
  year: 2024
  end-page: 1045
  ident: bib40
  publication-title: Acc. Chem. Res.
– volume: 48
  start-page: 4730
  year: 2009
  end-page: 4733
  ident: bib55
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: bib47
  publication-title: Comput. Mater. Sci.
– volume: 6
  start-page: 501
  year: 2007
  end-page: 506
  ident: bib24
  publication-title: Nat. Mater.
– volume: 128
  start-page: 11734
  year: 2006
  end-page: 11735
  ident: bib35
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 1149
  year: 2017
  ident: bib14
  publication-title: Molecules
– volume: 110
  start-page: 9565
  year: 2006
  end-page: 9570
  ident: bib70
  publication-title: J. Phys. Chem. B
– volume: 22
  start-page: 7944
  year: 2016
  end-page: 7949
  ident: bib18
  publication-title: Chem. Eur. J.
– volume: 120
  start-page: 8536
  year: 2020
  end-page: 8580
  ident: bib25
  publication-title: Chem. Rev.
– volume: 3
  start-page: 191
  year: 2018
  end-page: 228
  ident: bib12
  publication-title: Green Energy Environ.
– volume: 38
  start-page: 1460
  year: 2009
  end-page: 1476
  ident: bib13
  publication-title: Chem. Soc. Rev.
– volume: 136
  start-page: 12119
  year: 2014
  end-page: 12129
  ident: bib71
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 782
  year: 2012
  end-page: 835
  ident: bib10
  publication-title: Chem. Rev.
– volume: 5
  start-page: 2821
  year: 2017
  end-page: 2828
  ident: bib43
  publication-title: J. Mater. Chem. A
– volume: 489
  year: 2024
  ident: bib75
  publication-title: Chem. Eng. J.
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: bib48
  publication-title: Phys. Rev. B
– volume: 44
  start-page: 18205
  year: 2019
  end-page: 18213
  ident: bib72
  publication-title: Int. J. Hydrogen Energy
– volume: 402
  start-page: 276
  year: 1999
  end-page: 279
  ident: bib21
  publication-title: Nature
– volume: 39
  start-page: 376
  year: 2014
  end-page: 380
  ident: bib8
  publication-title: Int. J. Hydrogen Energy
– volume: 143
  start-page: 6248
  year: 2021
  end-page: 6256
  ident: bib73
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 528
  year: 2021
  end-page: 537
  ident: bib4
  publication-title: Green Energy Environ.
– volume: 286
  start-page: 1127
  year: 1999
  end-page: 1129
  ident: bib7
  publication-title: Science
– volume: 103
  start-page: 10186
  year: 2006
  end-page: 10191
  ident: bib23
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 60
  start-page: 24467
  year: 2021
  end-page: 24472
  ident: bib45
  publication-title: Angew. Chem. Int. Ed.
– volume: 49
  start-page: 8489
  year: 2010
  end-page: 8492
  ident: bib69
  publication-title: Angew. Chem. Int. Ed.
– volume: 99
  year: 2011
  ident: bib61
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 693
  year: 2022
  end-page: 716
  ident: bib11
  publication-title: Chem
– volume: 386
  start-page: 377
  year: 1997
  end-page: 379
  ident: bib6
  publication-title: Nature
– volume: 635
  start-page: 37
  year: 2001
  end-page: 68
  ident: bib63
  publication-title: J. Organomet. Chem.
– volume: 7
  start-page: 2290
  year: 2007
  end-page: 2293
  ident: bib34
  publication-title: Cryst. Growth Des.
– volume: 117
  start-page: 22598
  year: 2013
  end-page: 22602
  ident: bib5
  publication-title: J. Phys. Chem. C
– volume: 49
  start-page: 3330
  year: 2010
  end-page: 3333
  ident: bib17
  publication-title: Angew. Chem. Int. Ed.
– volume: 38
  start-page: 9811
  year: 2013
  end-page: 9818
  ident: bib29
  publication-title: Int. J. Hydrogen Energy
– volume: 20
  start-page: 222
  year: 2021
  end-page: 228
  ident: bib58
  publication-title: Nat. Mater.
– volume: 145
  start-page: 20492
  year: 2023
  end-page: 20502
  ident: bib74
  publication-title: J. Am. Chem. Soc.
– volume: 92
  year: 2008
  ident: bib30
  publication-title: Appl. Phys. Lett.
– volume: 60
  start-page: 14473
  year: 2021
  end-page: 14479
  ident: bib59
  publication-title: Angew. Chem. Int. Ed.
– volume: 132
  year: 2010
  ident: bib51
  publication-title: J. Chem. Phys.
– volume: 106
  start-page: 12757
  year: 2002
  end-page: 12763
  ident: bib56
  publication-title: J. Phys. Chem. B
– volume: 68
  start-page: 2277
  year: 1992
  end-page: 2280
  ident: bib62
  publication-title: Phys. Rev. Lett.
– volume: 46
  start-page: 3432
  year: 2007
  end-page: 3434
  ident: bib36
  publication-title: Inorg. Chem.
– volume: 27
  start-page: 497
  year: 2002
  end-page: 500
  ident: bib1
  publication-title: Int. J. Hydrogen Energy
– volume: 45
  start-page: 8672
  year: 2006
  end-page: 8676
  ident: bib33
  publication-title: Inorg. Chem.
– volume: 133
  year: 2010
  ident: bib32
  publication-title: J. Chem. Phys.
– volume: 54
  start-page: 7873
  year: 2018
  end-page: 7891
  ident: bib41
  publication-title: Chem. Commun.
– volume: 107
  start-page: 4111
  year: 2007
  end-page: 4132
  ident: bib15
  publication-title: Chem. Rev.
– ident: bib3
  article-title: DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles
– volume: 295
  start-page: 469
  year: 2002
  end-page: 472
  ident: bib22
  publication-title: Science
– volume: 128
  start-page: 3494
  year: 2006
  end-page: 3495
  ident: bib66
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 3784
  year: 2009
  end-page: 3798
  ident: bib19
  publication-title: Int. J. Hydrogen Energy
– volume: 23
  year: 2020
  ident: bib28
  publication-title: iScience
– volume: 9
  start-page: 217
  year: 2024
  end-page: 310
  ident: bib20
  publication-title: Green Energy Environ.
– volume: 81
  start-page: 511
  year: 1984
  end-page: 519
  ident: bib52
  publication-title: J. Chem. Phys.
– volume: 32
  year: 2022
  ident: bib27
  publication-title: Adv. Funct. Mater.
– volume: 38
  start-page: 211
  year: 2009
  end-page: 225
  ident: bib16
  publication-title: Chem. Soc. Rev.
– volume: 60
  start-page: 5612
  year: 2021
  end-page: 5624
  ident: bib39
  publication-title: Angew. Chem. Int. Ed.
– volume: 128
  start-page: 1304
  year: 2006
  end-page: 1315
  ident: bib37
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 405
  year: 2019
  end-page: 415
  ident: bib64
  publication-title: Appl. Mater. Today
– volume: 50
  start-page: 2764
  year: 2021
  end-page: 2793
  ident: bib26
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 206
  year: 2011
  end-page: 211
  ident: bib60
  publication-title: J. Phys. Chem. Lett.
– volume: 45
  start-page: 8227
  year: 2006
  end-page: 8231
  ident: bib67
  publication-title: Angew. Chem. Int. Ed.
– volume: 46
  start-page: 8104
  year: 2021
  end-page: 8112
  ident: bib44
  publication-title: Int. J. Hydrogen Energy
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: bib49
  publication-title: Phys. Rev. B
– volume: 129
  start-page: 8422
  year: 2007
  end-page: 8423
  ident: bib54
  publication-title: J. Am. Chem. Soc.
– volume: 569
  year: 2021
  ident: bib65
  publication-title: Appl. Surf. Sci.
– volume: 16
  start-page: 548
  year: 1983
  end-page: 558
  ident: bib57
  publication-title: J. Appl. Crystallogr.
– volume: 128
  start-page: 16876
  year: 2006
  end-page: 16883
  ident: bib68
  publication-title: J. Am. Chem. Soc.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib50
  publication-title: Phys. Rev. Lett.
– volume: 31
  start-page: 1695
  year: 1985
  end-page: 1697
  ident: bib53
  publication-title: Phys. Rev. A
– volume: 47
  start-page: 6766
  year: 2008
  end-page: 6779
  ident: bib2
  publication-title: Angew. Chem. Int. Ed.
– volume: 38
  start-page: 1460
  year: 2009
  ident: 10.1016/j.gee.2024.12.009_bib13
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b802430h
– volume: 295
  start-page: 469
  year: 2002
  ident: 10.1016/j.gee.2024.12.009_bib22
  publication-title: Science
  doi: 10.1126/science.1067208
– volume: 132
  year: 2010
  ident: 10.1016/j.gee.2024.12.009_bib51
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 50
  start-page: 17953
  year: 1994
  ident: 10.1016/j.gee.2024.12.009_bib48
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 6
  start-page: 501
  year: 2007
  ident: 10.1016/j.gee.2024.12.009_bib24
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1927
– volume: 32
  year: 2022
  ident: 10.1016/j.gee.2024.12.009_bib27
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 217
  year: 2024
  ident: 10.1016/j.gee.2024.12.009_bib20
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2022.12.010
– volume: 8
  start-page: 693
  year: 2022
  ident: 10.1016/j.gee.2024.12.009_bib11
  publication-title: Chem
  doi: 10.1016/j.chempr.2022.01.012
– volume: 99
  year: 2011
  ident: 10.1016/j.gee.2024.12.009_bib61
  publication-title: Appl. Phys. Lett.
– volume: 46
  start-page: 8104
  year: 2021
  ident: 10.1016/j.gee.2024.12.009_bib44
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.12.016
– volume: 112
  start-page: 782
  year: 2012
  ident: 10.1016/j.gee.2024.12.009_bib10
  publication-title: Chem. Rev.
  doi: 10.1021/cr200274s
– volume: 54
  start-page: 7873
  year: 2018
  ident: 10.1016/j.gee.2024.12.009_bib41
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC02871K
– volume: 39
  start-page: 376
  year: 2014
  ident: 10.1016/j.gee.2024.12.009_bib8
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.10.044
– volume: 635
  start-page: 37
  year: 2001
  ident: 10.1016/j.gee.2024.12.009_bib63
  publication-title: J. Organomet. Chem.
  doi: 10.1016/S0022-328X(01)01066-X
– volume: 13
  start-page: 4208
  year: 2007
  ident: 10.1016/j.gee.2024.12.009_bib38
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.200601534
– volume: 27
  start-page: 497
  year: 2002
  ident: 10.1016/j.gee.2024.12.009_bib1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/S0360-3199(01)00162-8
– volume: 3
  start-page: 191
  year: 2018
  ident: 10.1016/j.gee.2024.12.009_bib12
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2018.03.001
– volume: 31
  start-page: 1695
  year: 1985
  ident: 10.1016/j.gee.2024.12.009_bib53
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.31.1695
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.gee.2024.12.009_bib50
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 48
  start-page: 4730
  year: 2009
  ident: 10.1016/j.gee.2024.12.009_bib55
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200900960
– volume: 92
  year: 2008
  ident: 10.1016/j.gee.2024.12.009_bib30
  publication-title: Appl. Phys. Lett.
– volume: 23
  year: 2020
  ident: 10.1016/j.gee.2024.12.009_bib28
  publication-title: iScience
– volume: 136
  start-page: 12119
  year: 2014
  ident: 10.1016/j.gee.2024.12.009_bib71
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja506230r
– volume: 5
  start-page: 2821
  year: 2017
  ident: 10.1016/j.gee.2024.12.009_bib43
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA08924K
– volume: 38
  start-page: 211
  year: 2009
  ident: 10.1016/j.gee.2024.12.009_bib16
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B815553B
– volume: 44
  start-page: 18205
  year: 2019
  ident: 10.1016/j.gee.2024.12.009_bib72
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.05.007
– volume: 81
  start-page: 511
  year: 1984
  ident: 10.1016/j.gee.2024.12.009_bib52
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447334
– volume: 128
  start-page: 16876
  year: 2006
  ident: 10.1016/j.gee.2024.12.009_bib68
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0656853
– volume: 17
  start-page: 3154
  year: 2007
  ident: 10.1016/j.gee.2024.12.009_bib9
  publication-title: J. Mater. Chem.
  doi: 10.1039/b702858j
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.gee.2024.12.009_bib46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 120
  start-page: 8536
  year: 2020
  ident: 10.1016/j.gee.2024.12.009_bib25
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00766
– volume: 145
  start-page: 20492
  year: 2023
  ident: 10.1016/j.gee.2024.12.009_bib74
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c06393
– volume: 59
  start-page: 1758
  year: 1999
  ident: 10.1016/j.gee.2024.12.009_bib49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 110
  start-page: 9565
  year: 2006
  ident: 10.1016/j.gee.2024.12.009_bib70
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp060433+
– volume: 50
  start-page: 2764
  year: 2021
  ident: 10.1016/j.gee.2024.12.009_bib26
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01160F
– volume: 95
  year: 2009
  ident: 10.1016/j.gee.2024.12.009_bib31
  publication-title: Appl. Phys. Lett.
– volume: 143
  start-page: 6248
  year: 2021
  ident: 10.1016/j.gee.2024.12.009_bib73
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c01883
– volume: 60
  start-page: 14473
  year: 2021
  ident: 10.1016/j.gee.2024.12.009_bib59
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202103398
– volume: 7
  start-page: 2290
  year: 2007
  ident: 10.1016/j.gee.2024.12.009_bib34
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg070640e
– volume: 6
  start-page: 15
  year: 1996
  ident: 10.1016/j.gee.2024.12.009_bib47
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 569
  year: 2021
  ident: 10.1016/j.gee.2024.12.009_bib65
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.151000
– volume: 128
  start-page: 1304
  year: 2006
  ident: 10.1016/j.gee.2024.12.009_bib37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056639q
– volume: 107
  start-page: 4111
  year: 2007
  ident: 10.1016/j.gee.2024.12.009_bib15
  publication-title: Chem. Rev.
  doi: 10.1021/cr0501846
– volume: 22
  start-page: 1149
  year: 2017
  ident: 10.1016/j.gee.2024.12.009_bib14
  publication-title: Molecules
  doi: 10.3390/molecules22071149
– volume: 129
  start-page: 8422
  year: 2007
  ident: 10.1016/j.gee.2024.12.009_bib54
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja072599+
– volume: 16
  start-page: 548
  year: 1983
  ident: 10.1016/j.gee.2024.12.009_bib57
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889883010985
– volume: 68
  start-page: 2277
  year: 1992
  ident: 10.1016/j.gee.2024.12.009_bib62
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.2277
– volume: 22
  start-page: 7944
  year: 2016
  ident: 10.1016/j.gee.2024.12.009_bib18
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201504666
– volume: 60
  start-page: 24467
  year: 2021
  ident: 10.1016/j.gee.2024.12.009_bib45
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202110373
– volume: 133
  year: 2010
  ident: 10.1016/j.gee.2024.12.009_bib32
  publication-title: J. Chem. Phys.
– volume: 47
  start-page: 6766
  year: 2008
  ident: 10.1016/j.gee.2024.12.009_bib2
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200801163
– volume: 402
  start-page: 276
  year: 1999
  ident: 10.1016/j.gee.2024.12.009_bib21
  publication-title: Nature
  doi: 10.1038/46248
– volume: 20
  start-page: 222
  year: 2021
  ident: 10.1016/j.gee.2024.12.009_bib58
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-00847-7
– volume: 34
  start-page: 3784
  year: 2009
  ident: 10.1016/j.gee.2024.12.009_bib19
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.03.001
– volume: 45
  start-page: 8672
  year: 2006
  ident: 10.1016/j.gee.2024.12.009_bib33
  publication-title: Inorg. Chem.
  doi: 10.1021/ic0611948
– volume: 2
  start-page: 206
  year: 2011
  ident: 10.1016/j.gee.2024.12.009_bib60
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz1015372
– volume: 38
  start-page: 9811
  year: 2013
  ident: 10.1016/j.gee.2024.12.009_bib29
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.05.140
– volume: 106
  start-page: 12757
  year: 2002
  ident: 10.1016/j.gee.2024.12.009_bib56
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0263931
– volume: 128
  start-page: 11734
  year: 2006
  ident: 10.1016/j.gee.2024.12.009_bib35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja063538z
– volume: 286
  start-page: 1127
  year: 1999
  ident: 10.1016/j.gee.2024.12.009_bib7
  publication-title: Science
  doi: 10.1126/science.286.5442.1127
– volume: 103
  start-page: 10186
  year: 2006
  ident: 10.1016/j.gee.2024.12.009_bib23
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0602439103
– volume: 15
  start-page: 405
  year: 2019
  ident: 10.1016/j.gee.2024.12.009_bib64
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2019.03.002
– volume: 46
  start-page: 3432
  year: 2007
  ident: 10.1016/j.gee.2024.12.009_bib36
  publication-title: Inorg. Chem.
  doi: 10.1021/ic070338v
– volume: 60
  start-page: 5612
  year: 2021
  ident: 10.1016/j.gee.2024.12.009_bib39
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202006102
– volume: 45
  start-page: 8227
  year: 2006
  ident: 10.1016/j.gee.2024.12.009_bib67
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200600105
– volume: 49
  start-page: 8489
  year: 2010
  ident: 10.1016/j.gee.2024.12.009_bib69
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201001735
– volume: 386
  start-page: 377
  year: 1997
  ident: 10.1016/j.gee.2024.12.009_bib6
  publication-title: Nature
  doi: 10.1038/386377a0
– volume: 4
  year: 2024
  ident: 10.1016/j.gee.2024.12.009_bib42
  publication-title: Small Sci.
– volume: 49
  start-page: 3330
  year: 2010
  ident: 10.1016/j.gee.2024.12.009_bib17
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200906936
– volume: 6
  start-page: 528
  year: 2021
  ident: 10.1016/j.gee.2024.12.009_bib4
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2020.06.006
– volume: 117
  start-page: 22598
  year: 2013
  ident: 10.1016/j.gee.2024.12.009_bib5
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp408652t
– volume: 128
  start-page: 3494
  year: 2006
  ident: 10.1016/j.gee.2024.12.009_bib66
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja058213h
– volume: 57
  start-page: 1032
  year: 2024
  ident: 10.1016/j.gee.2024.12.009_bib40
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.3c00788
– volume: 489
  year: 2024
  ident: 10.1016/j.gee.2024.12.009_bib75
  publication-title: Chem. Eng. J.
SSID ssj0002414154
ssib051367630
ssib043749059
ssib034324867
ssib045218355
Score 2.2999783
Snippet The pursuit of sustainable energy has driven a significant interest in hydrogen (H2) as a clean fuel alternative. A critical challenge is the efficient storage...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1326
SubjectTerms 2D monolayer MOFs
Adsorption
Clean energy
Clean fuels
Density functional theory
Energy
Graphene
Hydrogen
Hydrogen storage
Hydrogen storage materials
Investigations
Ligands
Lithium
Lithium doping
Metal-organic frameworks
Metals
Molecular dynamics
Monolayers
Monte Carlo simulation
Morse potential
Nitrogen
Open metal sites
Porous materials
Simulation
Sustainable energy
Theoretical investigation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07bxQxELbg0kCBeIqDBLmgQrLY9XOXBiUoUYREhFAipbO8fsBF0V7IXYpQUdPyD_klzPjs3EGRcr2W1_LMznwzngchr9s4AO6QmgUpDJOmc8xJnljThaSc6FNwaCh-OtKHJ_LjqTotDrdFCausMjEL6jD36CN_K0D1d4g32vcX3xl2jcLb1dJC4y7ZAhHcdROytbd_9PlL5SjMmsSScvUZ9iP7DUAhFSKEdWamygXMCqBGWQ76DTQcXk1zwPqMm97Uq9EcJPY1YqlNLrNLEYMaN5Rb7gHwj477T9pnFXbwkDwo2JPurpjlEbkTx8fk_kZFwifk1zHIxWt_DgvMRvcDO_pEhpouUDgAMIMBoVMwoc-u0P0GgxHA-5-fv1fNoTxNNdZrQd2CwkaAjWBh-u06XM6BVykGY4IIozlj5R3dpRuZlHS2LvoxH5-Sk4P94w-HrLRrYF503ZK1nreO825Ig1cG--Nx40PvfeycjLoBZMSjdo13pklGaq2414lLpUITjHHiGZmM8zE-J9R4HWCGkGg0Jze4BEY8D01qtZMipil5U8_ZXqyqctgarnZmgSgWiWJbboEoU7KHlLiZiAW18wAcjS3_p9UD4Fhl-hj7CFtr-ihU0jooEXqRYpwSWeloCzZZYQ5Yanbbt7crzW0RDgu7ZuUXt79-Se5xbDecnT7bZLK8vIo7gIGWw6vC6H8BedoCMA
  priority: 102
  providerName: ProQuest
Title Tricycloquinazoline-based monolayer conjugated metal–organic frameworks as promising hydrogen storage media: A theoretical investigation
URI https://dx.doi.org/10.1016/j.gee.2024.12.009
https://www.proquest.com/docview/3232805191
https://doaj.org/article/6b326579ee9e46609e35f66d53d93fee
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTxUxEG8QLnowihqfwksPnEw27vZz1xsQnsREQggk3JpuO9VHyD7Dexzw5Nkr_yF_iTP7AasHvXhtmm4zv-nMb7rTGcZ2CqiRdyiTRSVtpmzpM69EyvIyJu1llaKnQPHzkTk8U5_O9fmo1RflhHXlgTvBvTc1EgxtK4AKlDF5BVInY6KWsZIJgKwv-rxRMEU2GP0SeiY1_MZsE7q-AJXFFKq9_qMExJEjauv1_-aP_rDMrbuZPWNPe57Id7v9PWdr0GyyJ6PqgS_Yz1O0YTfhEheYN_47dd-BjLxS5KhbGLIim-YY7l5c01UZDgIS7bsft10jp8DTkJe15H7JcSMIOS7Mv97EqwXqFafESTQ3vH1d8oHv8tGrRz5_KNCxaF6ys9nB6f5h1rdWyIIsy1VWBFF4Ico61UFb6mUnbIhVCFB6BSZHFiPA-Dx4myeLctcimCSU1jGP1nr5iq03iwZeM26DiThDKgpwk699woBbxDwVxisJacLeDXJ237oKGm5ILbtwCIojUFwhHIIyYXuExP1EKn7dDqBoXK8S7l8qMWFqwNH1PKLjB7jU_G_f3howd_1BXjqJjLMkmlu8-R9be8seC2og3F7jbLH11dU1bCOrWdVT9qicfZyyjb2Do-OTaavOvwDdnfuH
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhNBEG2FcAAOiFUxBOgDXJBGzPQ6g4SisBiHLCdHyq3p6QUcoXGIHSFz4sw1_8FH8SVUzUxjwyG3HGdRe9xVXe9Vdy2EPC1CDbxDqMwLrjOhS5tZwWKWlz5Ky6voLTqK-wdqdCg-HMmjNfIr5cJgWGWyia2h9lOHe-QvOEB_iXyj2Dr5mmHXKDxdTS00OrXYDYtv4LLNXu28Bfk-Y2z4bvxmlPVdBTLHy3KeFY4VlrGyjrWTGtu4Me185VworQgqBwBnQdncWZ1HLZSSzKnIhJQ-91pbDuNeIVcFByTHzPTh-6S_mKOJBezSNfx7Ua3QFyGRjyzzQGVbLq2n74gcgKaAp3gQzsCzyJiudDqIbUPSPgUs7MlEu4GJIZQrUNp2HPgHUf_DlhYwh7fIzZ7p0u1ONW-TtdDcITdW6h_eJT_HYIUX7gsMMGnsd-wfFDLEVU9husHpBn-AgsN-fIabfXAzgKvw-8d514rK0Zgiy2bUzih8CCgtDEw_L_zpFFYGxdBPMJi0zY95SbfpSt4mnSxLjEybe-TwUsR4n6w30yZsEKqd8vAGF-iiR1vbqKqc-TwWygoe4oA8T_NsTroaICYFxx0bEIpBoZiCGRDKgLxGSfx9Ect3tzdgakxvDYyqgTVLXYVQBfi0vApcRqW85L7iMYQBEUmOpmdCHcOBoSYX_fZmkrnpTdHMLBfOg4sfPyHXRuP9PbO3c7D7kFxn2Oi43W7aJOvz07PwCNjXvH7cqjwlHy97jf0BPm49Eg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tricycloquinazoline-based+monolayer+conjugated+metal%E2%80%93organic+frameworks+as+promising+hydrogen+storage+media%3A+A+theoretical+investigation&rft.jtitle=Green+energy+%26+environment&rft.au=Meng%2C+Zhaoshun&rft.au=Li%2C+Qingyu&rft.au=Sun%2C+Huilin&rft.au=Wang%2C+Yunhui&rft.date=2025-06-01&rft.issn=2468-0257&rft.eissn=2468-0257&rft.volume=10&rft.issue=6&rft.spage=1326&rft.epage=1336&rft_id=info:doi/10.1016%2Fj.gee.2024.12.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_gee_2024_12_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-0257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-0257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-0257&client=summon