Application of the Pick Function in the Lieb Concavity Theorem for Deformed Exponentials
The Lieb concavity theorem, successfully solved in the Wigner–Yanase–Dyson conjecture, is an important application of matrix concave functions. Recently, the Thompson–Golden theorem, a corollary of the Lieb concavity theorem, was extended to deformed exponentials. Hence, it is worthwhile to study th...
Saved in:
Published in | Fractal and fractional Vol. 6; no. 1; p. 20 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Lieb concavity theorem, successfully solved in the Wigner–Yanase–Dyson conjecture, is an important application of matrix concave functions. Recently, the Thompson–Golden theorem, a corollary of the Lieb concavity theorem, was extended to deformed exponentials. Hence, it is worthwhile to study the Lieb concavity theorem for deformed exponentials. In this paper, the Pick function is used to obtain a generalization of the Lieb concavity theorem for deformed exponentials, and some corollaries associated with exterior algebra are obtained. |
---|---|
AbstractList | The Lieb concavity theorem, successfully solved in the Wigner–Yanase–Dyson conjecture, is an important application of matrix concave functions. Recently, the Thompson–Golden theorem, a corollary of the Lieb concavity theorem, was extended to deformed exponentials. Hence, it is worthwhile to study the Lieb concavity theorem for deformed exponentials. In this paper, the Pick function is used to obtain a generalization of the Lieb concavity theorem for deformed exponentials, and some corollaries associated with exterior algebra are obtained. |
Author | Sun, Huafei Yang, Guozeng Wang, Jing Li, Yonggang |
Author_xml | – sequence: 1 givenname: Guozeng surname: Yang fullname: Yang, Guozeng – sequence: 2 givenname: Yonggang surname: Li fullname: Li, Yonggang – sequence: 3 givenname: Jing surname: Wang fullname: Wang, Jing – sequence: 4 givenname: Huafei surname: Sun fullname: Sun, Huafei |
BookMark | eNp9UU1LAzEQDaLg5y_wEvBczcfudnOUWrVQ0EMFb2E2O9HU7WbNpmL_vXErIiJe5g2P994MM4dkt_UtEnLK2bmUil3YACZCM0DBOGOC7ZADkbNsJDlnuz_6fXLS90uWJGMlczY-II-XXdc4A9H5lnpL4zPSe2de6PW6NQPp2oGcO6zoxLcG3lzc0MUz-oAran2gV5jqCms6fe_Sam100PTHZM8mwJMvPCIP19PF5HY0v7uZTS7nIyPLMo54qbjkosir3ApjTGELaUtZcgZ1pbBQiFKANbXNhJCgKmCFwHFtKlHmRYbyiMy2ubWHpe6CW0HYaA9OD4QPTxpCdKZBnVfcWGYlx1pldZZBmqtUjflnD1CmrLNtVhf86xr7qJd-Hdq0vhaF4KJkWSaTSm5VJvi-D2i_p3KmPz-i__hIcqlfLuPicPYYwDX_ej8AHiSXeA |
CitedBy_id | crossref_primary_10_3390_fractalfract6070364 |
Cites_doi | 10.1561/9781601988393 10.1090/pspum/007/0155837 10.1016/0024-3795(79)90179-4 10.1016/j.aim.2013.07.019 10.1090/conm/529/10428 10.1063/1.3573594 10.1007/978-0-387-68276-1 10.1007/s11005-020-01289-7 10.4153/CJM-1964-041-x 10.1016/j.laa.2019.06.013 10.1073/pnas.0807965106 10.1007/s10955-013-0890-x 10.1090/S0002-9947-1955-0082655-4 10.1007/978-3-642-65755-9 10.1016/0001-8708(73)90011-X 10.1215/ijm/1256051007 10.1007/978-1-4612-0653-8 10.1007/BF01646492 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/fractalfract6010020 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Collection (ProQuest) ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2504-3110 |
ExternalDocumentID | oai_doaj_org_article_5b1cf0f31ed94d44a12699de5d44aaa8 10_3390_fractalfract6010020 |
GroupedDBID | 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IGS ITC L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC PTHSS ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c388t-189131265b5f2ccc6f63f83810adb9e69ee32afcdf4223a9ba062e7dcb28564e3 |
IEDL.DBID | DOA |
ISSN | 2504-3110 |
IngestDate | Wed Aug 27 01:30:14 EDT 2025 Fri Jul 25 11:52:11 EDT 2025 Tue Jul 01 00:22:01 EDT 2025 Thu Apr 24 23:07:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-189131265b5f2ccc6f63f83810adb9e69ee32afcdf4223a9ba062e7dcb28564e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/5b1cf0f31ed94d44a12699de5d44aaa8 |
PQID | 2621280443 |
PQPubID | 2055410 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5b1cf0f31ed94d44a12699de5d44aaa8 proquest_journals_2621280443 crossref_primary_10_3390_fractalfract6010020 crossref_citationtrail_10_3390_fractalfract6010020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Fractal and fractional |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Huang (ref_19) 2019; 579 Carlen (ref_4) 2010; 529 Shi (ref_13) 2020; 110 Wigner (ref_7) 1964; 16 ref_14 Bendat (ref_17) 1955; 79 Ando (ref_10) 1979; 26 ref_21 ref_20 ref_1 ref_3 ref_2 Nikoufar (ref_23) 2013; 248 ref_15 Hansen (ref_18) 2014; 154 ref_9 Epstein (ref_12) 1973; 31 Choi (ref_16) 1974; 18 Lieb (ref_8) 1973; 11 Effros (ref_11) 2009; 106 ref_5 Aujla (ref_22) 2011; 52 ref_6 |
References_xml | – ident: ref_1 doi: 10.1561/9781601988393 – ident: ref_15 doi: 10.1090/pspum/007/0155837 – volume: 26 start-page: 203 year: 1979 ident: ref_10 article-title: Concavity of certain maps on positive definite matrices and applications to Hadamard products publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(79)90179-4 – volume: 248 start-page: 531 year: 2013 ident: ref_23 article-title: The simplest proof of Lieb concavity theorem publication-title: Adv. Math. doi: 10.1016/j.aim.2013.07.019 – volume: 529 start-page: 73 year: 2010 ident: ref_4 article-title: Trace inequalities and quantum entropy: An introductory course publication-title: Contemp. Math. doi: 10.1090/conm/529/10428 – ident: ref_6 – ident: ref_9 – ident: ref_5 – ident: ref_3 – ident: ref_2 – volume: 52 start-page: 043505 year: 2011 ident: ref_22 article-title: A simple proof of Lieb concavity theorem publication-title: J. Math. Phys. doi: 10.1063/1.3573594 – ident: ref_20 doi: 10.1007/978-0-387-68276-1 – volume: 110 start-page: 2203 year: 2020 ident: ref_13 article-title: Variational representations related to Tsallis relative entropy publication-title: Lett. Math. Phys. doi: 10.1007/s11005-020-01289-7 – volume: 16 start-page: 397 year: 1964 ident: ref_7 article-title: On the positive definite nature of certain matrix expressions publication-title: Cunud. J. Math. doi: 10.4153/CJM-1964-041-x – volume: 579 start-page: 419 year: 2019 ident: ref_19 article-title: A generalized Lieb’s theorem and its applications to spectrum estimates for a sum of random matrices publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2019.06.013 – volume: 106 start-page: 1006 year: 2009 ident: ref_11 article-title: A matrix convexity approach to some celebrated quantum inequalities publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0807965106 – volume: 154 start-page: 807 year: 2014 ident: ref_18 article-title: Trace Functions with Applications in Quantum Physics publication-title: J. Stat. Phys. doi: 10.1007/s10955-013-0890-x – volume: 79 start-page: 58 year: 1955 ident: ref_17 article-title: Monotone and convex operator functions publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1955-0082655-4 – ident: ref_14 doi: 10.1007/978-3-642-65755-9 – volume: 11 start-page: 267 year: 1973 ident: ref_8 article-title: Convex trace functions and the Wigner–Yanase–Dyson conjecture publication-title: Adv. Math. doi: 10.1016/0001-8708(73)90011-X – volume: 18 start-page: 565 year: 1974 ident: ref_16 article-title: A Schwarz inequality for positive linear maps on C★-algebras publication-title: Illinois J. Math. doi: 10.1215/ijm/1256051007 – ident: ref_21 doi: 10.1007/978-1-4612-0653-8 – volume: 31 start-page: 317 year: 1973 ident: ref_12 article-title: Remarks on two theorems of E. Lieb publication-title: Comm. Math. Phys. doi: 10.1007/BF01646492 |
SSID | ssj0002793507 |
Score | 2.1766713 |
Snippet | The Lieb concavity theorem, successfully solved in the Wigner–Yanase–Dyson conjecture, is an important application of matrix concave functions. Recently, the... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 20 |
SubjectTerms | Algebra Concavity convexity of matrix Deformation deformed exponential Eigenvalues Inequality Lieb concavity theorem Pick function Theorems |
SummonAdditionalLinks | – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swELYYvGwP0xigdfyQH_ZI1MZx0uQJAWuFEKBqWqW-RWf7jKpB0tFO4s_nznXbSSCeEvkcRbbP5-_O9ndC_NAu04aUJekD-EQ7IDuIOSTooW9y7Zm1ik9b3BVXY309yScx4DaPxypXNjEYatdajpF3VUFGtuxpnZ3N_iacNYp3V2MKjQ9ih6XkfO1cDO5Gv9ZRFkXqR4hnSTeUkX_f9Xz5CB7Cg52RHmf6_m9JCsz9rwxzWG2GX8TnCBPl-XJcd8UWNl_Fp9s1x-p8T0zON3vPsvWSRHI0tX_kkJaqUDhtQuHNFI28bBsLnCdChtv4-CgJrcqfyJgVnRw8z9qGDw6RNu6L8XDw-_IqiXkSEpuV5SJJeasxVUVucq-stYUvMl8ydRc4U2FRIWYKvHVeExiAykCvUNh31qgyLzRmB2K7oZ98ExKQJnDforbgdGmtMaUHQkU-RZsqozpCrbqqtpFEnHNZPNTkTHD_1m_0b0ecrj-aLTk03q9-wWOwrsoE2KGgfbqv43yqc5Na3_NZiq7STmug9leVw5zfAcqOOFqNYB1n5bze6ND398WH4qPiaw4h1HIkthdP__CYwMfCnEQNewGBud4l priority: 102 providerName: ProQuest |
Title | Application of the Pick Function in the Lieb Concavity Theorem for Deformed Exponentials |
URI | https://www.proquest.com/docview/2621280443 https://doaj.org/article/5b1cf0f31ed94d44a12699de5d44aaa8 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swELb48QIPiG0gyrrKD3tcRGM7afJYSjuENoSmIfUtOttnqcBStBaJP393TugqgeCFp0SOI0fns--7-O47Ib4ar40lZUkGACExHmgfxAwSDDCwmQnMWsXRFpf5-bW5mGbTtVJfHBPW0AM3gjvJbOpCP-gUfWm8MZCqvCw9ZnwPENN8yeatOVM38Tit1IR0GpohTX79SeCkI7iLF3ZC-lzhe80URcb-ZxtytDKTfbHXwkM5bD7rg9jA-qPY_bniVl18EtPh_zNnOQ-SHsmrmbuVEzJRsXFWx8YfM7RyNK8dcH0IGbPw8Y8klCrPkLEqejl-vJ_XHDBEWnggrifj36PzpK2PkDhdFMsk5SNGEkdms6Ccc3nIdSiYsgu8LTEvEbWC4HwwBAKgtNDPFQ68s6rIcoP6UGzVNMiRkIC0cAcOjQNvCuesLQIQGgopulRZ1RHqSVSVa8nDuYbFXUVOBMu3ekG-HfFt9dJ9w53xevdTnoNVVya-jg2kDlWrDtVb6tAR3acZrNrVuKhUTga66Bujj99jjM9iR3ESRPwR0xVby78P-IWgydL2xGYx-d4T26fjy6tfvaiT_wCzieik |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKe6UMAHuBE1sZ1sckCotF22dFtxaKW9BT_GaEVJlu4i4E_xG5nxJlskUG89JbKdRBl_nhk_Zj6Al9orbQksydCYkGhvSA9ibhIMZmhzHThrFZ-2OCnGZ_rDNJ9uwO8-FoaPVfY6MSpq3zpeI9-RBSnZMtVavZ1_S5g1indXewqNFSyO8NcPmrIt3hzuU_--knJ0cLo3TjpWgcSpslwmGW_MZbLIbR6kc64IhQolJ7oy3lZYVIhKmuB80GQ6TWVNWkgcemdlmRcaFb33BtzUSlU8osrR-_WajiSwk3-1Sm5E9elO4FAncx4vPPVJmVf8LwMYeQL-MQPRto3uwd3OKRW7KxTdhw1sHsCd43VG18VDmO5e7nSLNgiqEh9n7osYkWGMhbMmFk5maMVe2zjDrBQixv7jV0G-sdhH9pDRi4Of87bhY0qE_Udwdi3yewybDX1kC4RBUhdDh9oZr0vnrC2DIR8sZOgyaeUAZC-q2nUpy5k547ymqQvLt_6PfAfwev3QfJWx4-rm77gP1k053XYsaC8-193orXObuZAGlaGvtNfa0P9Xlcec740pB7Dd92Dd6YBFfYnYJ1dXv4Bb49PjST05PDl6CrclB1jERZ5t2FxefMdn5PYs7fOINQGfrhvcfwBvhxpI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQOUlAqXsAW5Ysdfr16FCbZOopSWKEJVyM_uYRRHFDk1Q4a_x65hx7BQJ1FtPtnbXtjz77Tz28Q3Aa-ViZQgsQaa1D5TTpAcx0QF6nZlEeWat4t0Wk_T4XL2fJbMt-N2dheFtlZ1ObBS1qy3PkQ9kSko2D5WKB77dFjEdjt8tvgecQYpXWrt0GmuInOKvKwrflvsnQ-rrN1KOR5-OjoM2w0Bg4zxfBREv0kUyTUzipbU29Wnscya90s4UmBaIsdTeOq_IjOrC6DCVmDlrZJ6kCmN67x3YzigqCnuwfTiaTD9uZngkQZ-8rTXVURwX4cDzwSd90Vw4EAo5y_hf5rDJGvCPUWgs3XgHHrQuqjhYY-ohbGH1CO5_2PC7Lh_D7OB63VvUXlCVmM7tVzEmM9kUzqum8GyORhzVldWco0I0TAD4TZCnLIbI_jI6Mfq5qCvetEQj4Qmc34oEn0Kvoo88A6GRlEdmUVntVG6tMbnX5JH5CG0kjeyD7ERV2pbAnPNoXJQUyLB8y__Itw9vNw8t1vwdNzc_5D7YNGXy7aagvvxStmO5TExkfejjCF2hnFKa_r8oHCZ8r3Xeh92uB8tWIyzLa_w-v7n6FdwlYJdnJ5PTF3BP8mmLZsZnF3qryx_4knygldlrwSbg823j-w_bJx_a |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+the+Pick+Function+in+the+Lieb+Concavity+Theorem+for+Deformed+Exponentials&rft.jtitle=Fractal+and+fractional&rft.au=Yang%2C+Guozeng&rft.au=Li%2C+Yonggang&rft.au=Wang%2C+Jing&rft.au=Sun%2C+Huafei&rft.date=2022-01-01&rft.issn=2504-3110&rft.eissn=2504-3110&rft.volume=6&rft.issue=1&rft.spage=20&rft_id=info:doi/10.3390%2Ffractalfract6010020&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_fractalfract6010020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-3110&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-3110&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-3110&client=summon |