Application of the Pick Function in the Lieb Concavity Theorem for Deformed Exponentials

The Lieb concavity theorem, successfully solved in the Wigner–Yanase–Dyson conjecture, is an important application of matrix concave functions. Recently, the Thompson–Golden theorem, a corollary of the Lieb concavity theorem, was extended to deformed exponentials. Hence, it is worthwhile to study th...

Full description

Saved in:
Bibliographic Details
Published inFractal and fractional Vol. 6; no. 1; p. 20
Main Authors Yang, Guozeng, Li, Yonggang, Wang, Jing, Sun, Huafei
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Lieb concavity theorem, successfully solved in the Wigner–Yanase–Dyson conjecture, is an important application of matrix concave functions. Recently, the Thompson–Golden theorem, a corollary of the Lieb concavity theorem, was extended to deformed exponentials. Hence, it is worthwhile to study the Lieb concavity theorem for deformed exponentials. In this paper, the Pick function is used to obtain a generalization of the Lieb concavity theorem for deformed exponentials, and some corollaries associated with exterior algebra are obtained.
AbstractList The Lieb concavity theorem, successfully solved in the Wigner–Yanase–Dyson conjecture, is an important application of matrix concave functions. Recently, the Thompson–Golden theorem, a corollary of the Lieb concavity theorem, was extended to deformed exponentials. Hence, it is worthwhile to study the Lieb concavity theorem for deformed exponentials. In this paper, the Pick function is used to obtain a generalization of the Lieb concavity theorem for deformed exponentials, and some corollaries associated with exterior algebra are obtained.
Author Sun, Huafei
Yang, Guozeng
Wang, Jing
Li, Yonggang
Author_xml – sequence: 1
  givenname: Guozeng
  surname: Yang
  fullname: Yang, Guozeng
– sequence: 2
  givenname: Yonggang
  surname: Li
  fullname: Li, Yonggang
– sequence: 3
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
– sequence: 4
  givenname: Huafei
  surname: Sun
  fullname: Sun, Huafei
BookMark eNp9UU1LAzEQDaLg5y_wEvBczcfudnOUWrVQ0EMFb2E2O9HU7WbNpmL_vXErIiJe5g2P994MM4dkt_UtEnLK2bmUil3YACZCM0DBOGOC7ZADkbNsJDlnuz_6fXLS90uWJGMlczY-II-XXdc4A9H5lnpL4zPSe2de6PW6NQPp2oGcO6zoxLcG3lzc0MUz-oAran2gV5jqCms6fe_Sam100PTHZM8mwJMvPCIP19PF5HY0v7uZTS7nIyPLMo54qbjkosir3ApjTGELaUtZcgZ1pbBQiFKANbXNhJCgKmCFwHFtKlHmRYbyiMy2ubWHpe6CW0HYaA9OD4QPTxpCdKZBnVfcWGYlx1pldZZBmqtUjflnD1CmrLNtVhf86xr7qJd-Hdq0vhaF4KJkWSaTSm5VJvi-D2i_p3KmPz-i__hIcqlfLuPicPYYwDX_ej8AHiSXeA
CitedBy_id crossref_primary_10_3390_fractalfract6070364
Cites_doi 10.1561/9781601988393
10.1090/pspum/007/0155837
10.1016/0024-3795(79)90179-4
10.1016/j.aim.2013.07.019
10.1090/conm/529/10428
10.1063/1.3573594
10.1007/978-0-387-68276-1
10.1007/s11005-020-01289-7
10.4153/CJM-1964-041-x
10.1016/j.laa.2019.06.013
10.1073/pnas.0807965106
10.1007/s10955-013-0890-x
10.1090/S0002-9947-1955-0082655-4
10.1007/978-3-642-65755-9
10.1016/0001-8708(73)90011-X
10.1215/ijm/1256051007
10.1007/978-1-4612-0653-8
10.1007/BF01646492
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/fractalfract6010020
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Collection (ProQuest)
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2504-3110
ExternalDocumentID oai_doaj_org_article_5b1cf0f31ed94d44a12699de5d44aaa8
10_3390_fractalfract6010020
GroupedDBID 8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c388t-189131265b5f2ccc6f63f83810adb9e69ee32afcdf4223a9ba062e7dcb28564e3
IEDL.DBID DOA
ISSN 2504-3110
IngestDate Wed Aug 27 01:30:14 EDT 2025
Fri Jul 25 11:52:11 EDT 2025
Tue Jul 01 00:22:01 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-189131265b5f2ccc6f63f83810adb9e69ee32afcdf4223a9ba062e7dcb28564e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/5b1cf0f31ed94d44a12699de5d44aaa8
PQID 2621280443
PQPubID 2055410
ParticipantIDs doaj_primary_oai_doaj_org_article_5b1cf0f31ed94d44a12699de5d44aaa8
proquest_journals_2621280443
crossref_primary_10_3390_fractalfract6010020
crossref_citationtrail_10_3390_fractalfract6010020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Fractal and fractional
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Huang (ref_19) 2019; 579
Carlen (ref_4) 2010; 529
Shi (ref_13) 2020; 110
Wigner (ref_7) 1964; 16
ref_14
Bendat (ref_17) 1955; 79
Ando (ref_10) 1979; 26
ref_21
ref_20
ref_1
ref_3
ref_2
Nikoufar (ref_23) 2013; 248
ref_15
Hansen (ref_18) 2014; 154
ref_9
Epstein (ref_12) 1973; 31
Choi (ref_16) 1974; 18
Lieb (ref_8) 1973; 11
Effros (ref_11) 2009; 106
ref_5
Aujla (ref_22) 2011; 52
ref_6
References_xml – ident: ref_1
  doi: 10.1561/9781601988393
– ident: ref_15
  doi: 10.1090/pspum/007/0155837
– volume: 26
  start-page: 203
  year: 1979
  ident: ref_10
  article-title: Concavity of certain maps on positive definite matrices and applications to Hadamard products
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(79)90179-4
– volume: 248
  start-page: 531
  year: 2013
  ident: ref_23
  article-title: The simplest proof of Lieb concavity theorem
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2013.07.019
– volume: 529
  start-page: 73
  year: 2010
  ident: ref_4
  article-title: Trace inequalities and quantum entropy: An introductory course
  publication-title: Contemp. Math.
  doi: 10.1090/conm/529/10428
– ident: ref_6
– ident: ref_9
– ident: ref_5
– ident: ref_3
– ident: ref_2
– volume: 52
  start-page: 043505
  year: 2011
  ident: ref_22
  article-title: A simple proof of Lieb concavity theorem
  publication-title: J. Math. Phys.
  doi: 10.1063/1.3573594
– ident: ref_20
  doi: 10.1007/978-0-387-68276-1
– volume: 110
  start-page: 2203
  year: 2020
  ident: ref_13
  article-title: Variational representations related to Tsallis relative entropy
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-020-01289-7
– volume: 16
  start-page: 397
  year: 1964
  ident: ref_7
  article-title: On the positive definite nature of certain matrix expressions
  publication-title: Cunud. J. Math.
  doi: 10.4153/CJM-1964-041-x
– volume: 579
  start-page: 419
  year: 2019
  ident: ref_19
  article-title: A generalized Lieb’s theorem and its applications to spectrum estimates for a sum of random matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2019.06.013
– volume: 106
  start-page: 1006
  year: 2009
  ident: ref_11
  article-title: A matrix convexity approach to some celebrated quantum inequalities
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0807965106
– volume: 154
  start-page: 807
  year: 2014
  ident: ref_18
  article-title: Trace Functions with Applications in Quantum Physics
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-013-0890-x
– volume: 79
  start-page: 58
  year: 1955
  ident: ref_17
  article-title: Monotone and convex operator functions
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1955-0082655-4
– ident: ref_14
  doi: 10.1007/978-3-642-65755-9
– volume: 11
  start-page: 267
  year: 1973
  ident: ref_8
  article-title: Convex trace functions and the Wigner–Yanase–Dyson conjecture
  publication-title: Adv. Math.
  doi: 10.1016/0001-8708(73)90011-X
– volume: 18
  start-page: 565
  year: 1974
  ident: ref_16
  article-title: A Schwarz inequality for positive linear maps on C★-algebras
  publication-title: Illinois J. Math.
  doi: 10.1215/ijm/1256051007
– ident: ref_21
  doi: 10.1007/978-1-4612-0653-8
– volume: 31
  start-page: 317
  year: 1973
  ident: ref_12
  article-title: Remarks on two theorems of E. Lieb
  publication-title: Comm. Math. Phys.
  doi: 10.1007/BF01646492
SSID ssj0002793507
Score 2.1766713
Snippet The Lieb concavity theorem, successfully solved in the Wigner–Yanase–Dyson conjecture, is an important application of matrix concave functions. Recently, the...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 20
SubjectTerms Algebra
Concavity
convexity of matrix
Deformation
deformed exponential
Eigenvalues
Inequality
Lieb concavity theorem
Pick function
Theorems
SummonAdditionalLinks – databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swELYYvGwP0xigdfyQH_ZI1MZx0uQJAWuFEKBqWqW-RWf7jKpB0tFO4s_nznXbSSCeEvkcRbbP5-_O9ndC_NAu04aUJekD-EQ7IDuIOSTooW9y7Zm1ik9b3BVXY309yScx4DaPxypXNjEYatdajpF3VUFGtuxpnZ3N_iacNYp3V2MKjQ9ih6XkfO1cDO5Gv9ZRFkXqR4hnSTeUkX_f9Xz5CB7Cg52RHmf6_m9JCsz9rwxzWG2GX8TnCBPl-XJcd8UWNl_Fp9s1x-p8T0zON3vPsvWSRHI0tX_kkJaqUDhtQuHNFI28bBsLnCdChtv4-CgJrcqfyJgVnRw8z9qGDw6RNu6L8XDw-_IqiXkSEpuV5SJJeasxVUVucq-stYUvMl8ydRc4U2FRIWYKvHVeExiAykCvUNh31qgyLzRmB2K7oZ98ExKQJnDforbgdGmtMaUHQkU-RZsqozpCrbqqtpFEnHNZPNTkTHD_1m_0b0ecrj-aLTk03q9-wWOwrsoE2KGgfbqv43yqc5Na3_NZiq7STmug9leVw5zfAcqOOFqNYB1n5bze6ND398WH4qPiaw4h1HIkthdP__CYwMfCnEQNewGBud4l
  priority: 102
  providerName: ProQuest
Title Application of the Pick Function in the Lieb Concavity Theorem for Deformed Exponentials
URI https://www.proquest.com/docview/2621280443
https://doaj.org/article/5b1cf0f31ed94d44a12699de5d44aaa8
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swELb48QIPiG0gyrrKD3tcRGM7afJYSjuENoSmIfUtOttnqcBStBaJP393TugqgeCFp0SOI0fns--7-O47Ib4ar40lZUkGACExHmgfxAwSDDCwmQnMWsXRFpf5-bW5mGbTtVJfHBPW0AM3gjvJbOpCP-gUfWm8MZCqvCw9ZnwPENN8yeatOVM38Tit1IR0GpohTX79SeCkI7iLF3ZC-lzhe80URcb-ZxtytDKTfbHXwkM5bD7rg9jA-qPY_bniVl18EtPh_zNnOQ-SHsmrmbuVEzJRsXFWx8YfM7RyNK8dcH0IGbPw8Y8klCrPkLEqejl-vJ_XHDBEWnggrifj36PzpK2PkDhdFMsk5SNGEkdms6Ccc3nIdSiYsgu8LTEvEbWC4HwwBAKgtNDPFQ68s6rIcoP6UGzVNMiRkIC0cAcOjQNvCuesLQIQGgopulRZ1RHqSVSVa8nDuYbFXUVOBMu3ekG-HfFt9dJ9w53xevdTnoNVVya-jg2kDlWrDtVb6tAR3acZrNrVuKhUTga66Bujj99jjM9iR3ESRPwR0xVby78P-IWgydL2xGYx-d4T26fjy6tfvaiT_wCzieik
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKe6UMAHuBE1sZ1sckCotF22dFtxaKW9BT_GaEVJlu4i4E_xG5nxJlskUG89JbKdRBl_nhk_Zj6Al9orbQksydCYkGhvSA9ibhIMZmhzHThrFZ-2OCnGZ_rDNJ9uwO8-FoaPVfY6MSpq3zpeI9-RBSnZMtVavZ1_S5g1indXewqNFSyO8NcPmrIt3hzuU_--knJ0cLo3TjpWgcSpslwmGW_MZbLIbR6kc64IhQolJ7oy3lZYVIhKmuB80GQ6TWVNWkgcemdlmRcaFb33BtzUSlU8osrR-_WajiSwk3-1Sm5E9elO4FAncx4vPPVJmVf8LwMYeQL-MQPRto3uwd3OKRW7KxTdhw1sHsCd43VG18VDmO5e7nSLNgiqEh9n7osYkWGMhbMmFk5maMVe2zjDrBQixv7jV0G-sdhH9pDRi4Of87bhY0qE_Udwdi3yewybDX1kC4RBUhdDh9oZr0vnrC2DIR8sZOgyaeUAZC-q2nUpy5k547ymqQvLt_6PfAfwev3QfJWx4-rm77gP1k053XYsaC8-193orXObuZAGlaGvtNfa0P9Xlcec740pB7Dd92Dd6YBFfYnYJ1dXv4Bb49PjST05PDl6CrclB1jERZ5t2FxefMdn5PYs7fOINQGfrhvcfwBvhxpI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQOUlAqXsAW5Ysdfr16FCbZOopSWKEJVyM_uYRRHFDk1Q4a_x65hx7BQJ1FtPtnbXtjz77Tz28Q3Aa-ViZQgsQaa1D5TTpAcx0QF6nZlEeWat4t0Wk_T4XL2fJbMt-N2dheFtlZ1ObBS1qy3PkQ9kSko2D5WKB77dFjEdjt8tvgecQYpXWrt0GmuInOKvKwrflvsnQ-rrN1KOR5-OjoM2w0Bg4zxfBREv0kUyTUzipbU29Wnscya90s4UmBaIsdTeOq_IjOrC6DCVmDlrZJ6kCmN67x3YzigqCnuwfTiaTD9uZngkQZ-8rTXVURwX4cDzwSd90Vw4EAo5y_hf5rDJGvCPUWgs3XgHHrQuqjhYY-ohbGH1CO5_2PC7Lh_D7OB63VvUXlCVmM7tVzEmM9kUzqum8GyORhzVldWco0I0TAD4TZCnLIbI_jI6Mfq5qCvetEQj4Qmc34oEn0Kvoo88A6GRlEdmUVntVG6tMbnX5JH5CG0kjeyD7ERV2pbAnPNoXJQUyLB8y__Itw9vNw8t1vwdNzc_5D7YNGXy7aagvvxStmO5TExkfejjCF2hnFKa_r8oHCZ8r3Xeh92uB8tWIyzLa_w-v7n6FdwlYJdnJ5PTF3BP8mmLZsZnF3qryx_4knygldlrwSbg823j-w_bJx_a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+the+Pick+Function+in+the+Lieb+Concavity+Theorem+for+Deformed+Exponentials&rft.jtitle=Fractal+and+fractional&rft.au=Yang%2C+Guozeng&rft.au=Li%2C+Yonggang&rft.au=Wang%2C+Jing&rft.au=Sun%2C+Huafei&rft.date=2022-01-01&rft.issn=2504-3110&rft.eissn=2504-3110&rft.volume=6&rft.issue=1&rft.spage=20&rft_id=info:doi/10.3390%2Ffractalfract6010020&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_fractalfract6010020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-3110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-3110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-3110&client=summon