GraphLIME: Local Interpretable Model Explanations for Graph Neural Networks

Recently, graph neural networks (GNN) were shown to be successful in effectively representing graph structured data because of their good performance and generalization ability. However, explaining the effectiveness of GNN models is a challenging task because of the complex nonlinear transformations...

Full description

Saved in:
Bibliographic Details
Published inIEEE Transactions on Knowledge and Data Engineering Vol. 35; no. 7; pp. 6968 - 6972
Main Authors Huang, Qiang, Yamada, Makoto, Tian, Yuan, Singh, Dinesh, Chang, Yi
Format Journal Article
LanguageEnglish
Japanese
Published New York IEEE 01.07.2023
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, graph neural networks (GNN) were shown to be successful in effectively representing graph structured data because of their good performance and generalization ability. However, explaining the effectiveness of GNN models is a challenging task because of the complex nonlinear transformations made over the iterations. In this paper, we propose GraphLIME, a local interpretable model explanation for graphs using the Hilbert-Schmidt Independence Criterion (HSIC) Lasso, which is a nonlinear feature selection method. GraphLIME is a generic GNN-model explanation framework that learns a nonlinear interpretable model locally in the subgraph of the node being explained. Through experiments on two real-world datasets, the explanations of GraphLIME are found to be of extraordinary degree and more descriptive in comparison to the existing explanation methods.
AbstractList Recently, graph neural networks (GNN) were shown to be successful in effectively representing graph structured data because of their good performance and generalization ability. However, explaining the effectiveness of GNN models is a challenging task because of the complex nonlinear transformations made over the iterations. In this paper, we propose GraphLIME, a local interpretable model explanation for graphs using the Hilbert-Schmidt Independence Criterion (HSIC) Lasso, which is a nonlinear feature selection method. GraphLIME is a generic GNN-model explanation framework that learns a nonlinear interpretable model locally in the subgraph of the node being explained. Through experiments on two real-world datasets, the explanations of GraphLIME are found to be of extraordinary degree and more descriptive in comparison to the existing explanation methods.
Author Singh, Dinesh
Yamada, Makoto
Tian, Yuan
Huang, Qiang
Chang, Yi
Author_xml – sequence: 1
  givenname: Qiang
  orcidid: 0000-0003-0046-0923
  surname: Huang
  fullname: Huang, Qiang
  email: huangqiang18@mails.jlu.edu.cn
  organization: School of Artificial Intelligence, International Center of Future Science, Key Laboratory of Symbolic Computation and Knowledge Engineering, Jilin University, Changchun, Jilin, China
– sequence: 2
  givenname: Makoto
  orcidid: 0000-0001-7508-5094
  surname: Yamada
  fullname: Yamada, Makoto
  email: makoto.yamada@riken.jp
  organization: Kyoto University, Kyoto, Japan
– sequence: 3
  givenname: Yuan
  surname: Tian
  fullname: Tian, Yuan
  email: yuantian@jlu.edu.cn
  organization: School of Artificial Intelligence, International Center of Future Science, Key Laboratory of Symbolic Computation and Knowledge Engineering, Jilin University, Changchun, Jilin, China
– sequence: 4
  givenname: Dinesh
  orcidid: 0000-0001-8889-9847
  surname: Singh
  fullname: Singh, Dinesh
  email: dinesh.singh@riken.jp
  organization: RIKEN AIP, Kyoto, Japan
– sequence: 5
  givenname: Yi
  orcidid: 0000-0003-2697-8093
  surname: Chang
  fullname: Chang, Yi
  email: yichang@jlu.edu.cn
  organization: School of Artificial Intelligence, International Center of Future Science, Key Laboratory of Symbolic Computation and Knowledge Engineering, Jilin University, Changchun, Jilin, China
BackLink https://cir.nii.ac.jp/crid/1873961342498426240$$DView record in CiNii
BookMark eNp9kD9PwzAQxS1UJNrCB0AskWBN8flfbDZUQqmalqXMkZO4IiXEwUkFfHuctmJgYLkb7v3u7r0RGtS2NghdAp4AYHW7XjzEE4IJmVCQEeP8BA0JJSKkUvABGgJmEDLKojM0atstxlhGEoZoMXO6eU3my_guSGyuq2Bed8Y1znQ6q0ywtIWpgvirqXStu9LWbbCxLthTwcrsnCdWpvu07q09R6cbXbXm4tjH6OUxXk-fwuR5Np_eJ2FOpexCoCwjUS6KwmQSYw4i46YgXKtISqE0L4CDUYJFQCRXjAJhmcxBYsCZKDQdo-vD3sbZj51pu3Rrd672J1MiCQVFqWBeBQdV7mzbOrNJG1e-a_edAk77zNI-s7TPLD1m5pnoD5OX3d5253RZ_UveHMi6LD3UVz-hSni3hCnJiCAMe9nVQVYaY34fUhKAgaA_r4qDIA
CODEN ITKEEH
CitedBy_id crossref_primary_10_3390_s23020634
crossref_primary_10_1016_j_ress_2024_110363
crossref_primary_10_1021_acs_chemrev_3c00189
crossref_primary_10_1080_07421222_2025_2452016
crossref_primary_10_1016_j_ipm_2023_103571
crossref_primary_10_1007_s00521_024_10868_x
crossref_primary_10_1186_s13321_024_00820_5
crossref_primary_10_1016_j_inffus_2023_102190
crossref_primary_10_1093_schbul_sbac047
crossref_primary_10_1109_ACCESS_2024_3458050
crossref_primary_10_1109_JIOT_2023_3332848
crossref_primary_10_1038_s43586_024_00294_7
crossref_primary_10_1038_s41597_023_01974_x
crossref_primary_10_1016_j_neucom_2024_127969
crossref_primary_10_1145_3696444
crossref_primary_10_1007_s10994_024_06576_1
crossref_primary_10_1007_s10489_024_06034_4
crossref_primary_10_1016_j_knosys_2024_112368
crossref_primary_10_1145_3711122
crossref_primary_10_1007_s41060_024_00636_4
crossref_primary_10_1109_TCE_2023_3303309
crossref_primary_10_1109_TSE_2024_3493245
crossref_primary_10_1145_3656464
crossref_primary_10_1145_3721129
crossref_primary_10_1016_j_apenergy_2024_124273
crossref_primary_10_3390_technologies12080128
crossref_primary_10_1109_ACCESS_2024_3440335
crossref_primary_10_1016_j_apenergy_2023_122151
crossref_primary_10_3390_computers14040119
crossref_primary_10_1007_s00521_025_11054_3
crossref_primary_10_1038_s41467_023_38192_3
crossref_primary_10_1007_s11633_024_1519_z
crossref_primary_10_3389_frai_2023_1203546
crossref_primary_10_1109_TKDE_2024_3484461
crossref_primary_10_1109_TETCI_2024_3419714
crossref_primary_10_3389_fdata_2024_1392662
crossref_primary_10_1109_TNSM_2024_3436677
crossref_primary_10_3389_fpsyt_2023_1084443
crossref_primary_10_1002_aisy_202400304
crossref_primary_10_1016_j_ipm_2023_103600
crossref_primary_10_1007_s11042_023_17666_y
crossref_primary_10_1016_j_ipm_2024_103821
crossref_primary_10_1145_3641543
crossref_primary_10_1016_j_ins_2023_119785
crossref_primary_10_1109_TAI_2024_3420262
crossref_primary_10_1021_acs_jcim_3c00396
crossref_primary_10_1021_acs_jcim_3c01642
crossref_primary_10_1109_TNSRE_2025_3530110
crossref_primary_10_1007_s13218_022_00781_7
crossref_primary_10_1016_j_neunet_2023_04_029
crossref_primary_10_1007_s10489_024_05546_3
crossref_primary_10_1109_TSIPN_2022_3180679
crossref_primary_10_1109_ACCESS_2022_3233036
crossref_primary_10_1038_s42256_025_00998_9
crossref_primary_10_1109_TPAMI_2022_3209686
crossref_primary_10_1007_s10489_023_05045_x
crossref_primary_10_1134_S1064230724700138
crossref_primary_10_1145_3703922_3703930
crossref_primary_10_1016_j_osnem_2023_100247
crossref_primary_10_1109_OJCOMS_2024_3393853
crossref_primary_10_1109_TAI_2024_3459857
crossref_primary_10_1007_s11467_023_1325_z
crossref_primary_10_1109_TPAMI_2022_3170302
crossref_primary_10_1016_j_patcog_2023_109991
crossref_primary_10_1016_j_iswa_2024_200353
crossref_primary_10_1109_TKDE_2024_3380709
crossref_primary_10_3390_rs16132504
crossref_primary_10_1080_13658816_2023_2254382
crossref_primary_10_1080_1206212X_2022_2133805
crossref_primary_10_1007_s11042_024_20271_2
crossref_primary_10_31857_S0002338824010122
crossref_primary_10_1002_cai2_136
crossref_primary_10_1111_risa_14241
crossref_primary_10_3390_info14080469
crossref_primary_10_1007_s10994_024_06733_6
crossref_primary_10_1109_ACCESS_2025_3537459
crossref_primary_10_1109_TNNLS_2022_3165618
crossref_primary_10_1016_j_neunet_2024_106885
Cites_doi 10.1109/TPAMI.2005.159
10.1007/978-3-030-86520-7_19
10.1162/NECO_a_00537
10.1007/978-3-319-46307-0_29
10.1145/3461702.3462562
10.1145/3219819.3219980
10.25300/MISQ/2014/38.1.04
10.1109/TSP.2020.3026980
10.1109/72.809084
10.1007/11564089_7
10.1109/TKDE.2018.2789451
10.1016/j.neucom.2016.12.038
10.1214/009053604000000067.MR2060166
10.1093/bioinformatics/btz333
10.18653/v1/N16-3020
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
RYH
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2022.3187455
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CiNii Complete
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2326-3865
1558-2191
EndPage 6972
ExternalDocumentID 10_1109_TKDE_2022_3187455
9811416
Genre orig-research
GrantInformation_xml – fundername: Jilin Province Youth Science and Technology Program
  grantid: 20210508060RQ
– fundername: National Natural Science Foundation of China
  grantid: U19A2065; 61976102
  funderid: 10.13039/501100001809
– fundername: MEXT KAKENHI
  grantid: 20H04243
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
RYH
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c388t-134b27c6ddeb800516b5ed25a978869a5d151e96471285943124b8c18010b6da3
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Mon Jun 30 02:35:54 EDT 2025
Thu Apr 24 23:01:23 EDT 2025
Tue Jul 01 01:19:41 EDT 2025
Fri Jun 27 00:23:08 EDT 2025
Wed Aug 27 02:04:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
Japanese
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-134b27c6ddeb800516b5ed25a978869a5d151e96471285943124b8c18010b6da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7508-5094
0000-0003-2697-8093
0000-0001-8889-9847
0000-0003-0046-0923
PQID 2823193364
PQPubID 85438
PageCount 5
ParticipantIDs crossref_citationtrail_10_1109_TKDE_2022_3187455
nii_cinii_1873961342498426240
crossref_primary_10_1109_TKDE_2022_3187455
ieee_primary_9811416
proquest_journals_2823193364
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE Transactions on Knowledge and Data Engineering
PublicationTitleAbbrev TKDE
PublicationYear 2023
Publisher IEEE
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers (IEEE)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Yeh (ref8)
ref12
Sundararajan (ref6)
ref10
ref1
ref19
ref18
Koh (ref7)
Hamilton (ref26)
ref24
Lundberg (ref5)
ref23
Chen (ref4)
ref25
ref20
ref22
ref21
Yuan (ref17)
Erhan (ref14) 2009
Shrikumar (ref15)
ref28
ref27
Luo (ref16) 2020
Ying (ref9)
Lakkaraju (ref2) 2017
ref3
Hu (ref11) 2021
References_xml – start-page: 9240
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref9
  article-title: GNNExplainer: Generating explanations for graph neural networks
– start-page: 1885
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref7
  article-title: Understanding black-box predictions via influence functions
– ident: ref24
  doi: 10.1109/TPAMI.2005.159
– start-page: 4765
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref5
  article-title: A unified approach to interpreting model predictions
– start-page: 19 620
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2020
  ident: ref16
  article-title: Parameterized explainer for graph neural network
– ident: ref18
  doi: 10.1007/978-3-030-86520-7_19
– start-page: 883
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref4
  article-title: Learning to explain: An information-theoretic perspective on model interpretation
– ident: ref20
  doi: 10.1162/NECO_a_00537
– ident: ref12
  doi: 10.1007/978-3-319-46307-0_29
– ident: ref19
  doi: 10.1145/3461702.3462562
– ident: ref27
  doi: 10.1145/3219819.3219980
– ident: ref28
  doi: 10.25300/MISQ/2014/38.1.04
– ident: ref10
  doi: 10.1109/TSP.2020.3026980
– year: 2021
  ident: ref11
  article-title: OGB-LSC: A large-scale challenge for machine learning on graphs
  publication-title: arXiv:2103.09430
– start-page: 9291
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref8
  article-title: Representer point selection for explaining deep neural networks
– ident: ref13
  doi: 10.1109/72.809084
– start-page: 1024
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref26
  article-title: Inductive representation learning on large graphs
– ident: ref25
  doi: 10.1007/11564089_7
– ident: ref21
  doi: 10.1109/TKDE.2018.2789451
– ident: ref1
  doi: 10.1016/j.neucom.2016.12.038
– year: 2009
  ident: ref14
  article-title: Visualizing higher-layer features of a deep network
– start-page: 3145
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref15
  article-title: Learning important features through propagating activation differences
– ident: ref23
  doi: 10.1214/009053604000000067.MR2060166
– ident: ref22
  doi: 10.1093/bioinformatics/btz333
– start-page: 3319
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref6
  article-title: Axiomatic attribution for deep networks
– ident: ref3
  doi: 10.18653/v1/N16-3020
– start-page: 12 241
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref17
  article-title: On explainability of graph neural networks via subgraph explorations
– year: 2017
  ident: ref2
  article-title: Interpretable & explorable approximations of black box models
  publication-title: arXiv:1707.01154
SSID ssj0008781
ssib012349108
ssib016643522
ssib030785969
ssib000200689
ssib008799116
ssib004836754
ssib001015853
Score 2.6599038
Snippet Recently, graph neural networks (GNN) were shown to be successful in effectively representing graph structured data because of their good performance and...
SourceID proquest
crossref
nii
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6968
SubjectTerms Computational modeling
Data models
explanation
Feature extraction
Graph neural networks
Graph theory
Graphical representations
interpretability
Kernel
Mathematical models
Predictive models
Structured data
Toy manufacturing industry
Title GraphLIME: Local Interpretable Model Explanations for Graph Neural Networks
URI https://ieeexplore.ieee.org/document/9811416
https://cir.nii.ac.jp/crid/1873961342498426240
https://www.proquest.com/docview/2823193364
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5RJhgoT1FokQcmRNskthObDUEBUcrUSt2i2HEkRNUi2i78eu7yKE8hliiDL4ly9vk--_x9AKekY8UDi7CERw4BSuq3FUa9tpTGZr7ysiSjA86Dx_BuJO7HcrwG56uzMM65vPjMdeg238tPZ3ZJS2VdrTB798Ma1BC4FWe1VlFXRbkgKaILxERcROUOpu_p7rB_3UMkGAQIUIndXX6Zg3JRFZxZpk9PP-JxPsnc1GFQfV5RW_LcWS5Mx759Y2787_dvw1aZbbLLonvswJqb7kK9UnJg5cDehc1PtIR70L8lFmsMa70L9kBzHfsoTTQTx0g_bcKoei8p1hLnDFNfllsxYvtAi8eivHy-D6Ob3vDqrl2KLrQtV4qk6YUJIhti2DOKhmxopEsDmSDcVKFOZIo5gqPzqz5x32H-EQijLLrV90yYJvwA1qezqTsEZrSQPEl0gPYiQ09kkXCRli5SViaRboBXuSG2JSM5CWNM4hyZeDomz8Xkubj0XAPOViYvBR3HX433yAerhuXvb0ALfY1vpCu25BpTGoEwVBE7v_Aa0Kx6QVwO6Hkc0Hap5jwUR78_9Rg2SIm-qORtwvridelamK8szEneUd8BY6ngTg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB51y4HlQKEFbaEFHzgh2iZ-JDa31dJS6OPUSr1FseNIFVW6ou2FX89MkpanEJcoBzuvsWfmi8ffB_CGdKwEdwhLROwRoGThQKPXGyhlXR7qIE9z2uC8WEbTtfy8UZsGvLvshfHel8Vnfkin5Vp-tncn-lU2Mhqz9zC6ggcY9xWvdmtd_K6OS0lSxBeIioSM6zXMMDCj1ezDGLEg5whRid9d_RKFSlkVjC3FdvuHRy7DzKQFi_MDVtUlX4anox26b79xN_7vGzyBx3W-yW6rAfIUGr5oQ-us5cDqqd2GRz8RE3Zg9pF4rNGxjd-zOUU79qM40e48IwW1HaP6vbT6m3hgmPyyshcjvg_ssawKzA_PYD0Zr-6mg1p2YeCE1iROLy2PXYSOz2qatJFVPuMqRcCpI5OqDLMETztYQ2K_wwyES6sdGjYMbJSl4jk0i33hb4BZI5VIU8Oxv8zREnksfWyUj7VTaWy6EJzNkLiak5ykMXZJiU0Ck5DlErJcUluuC28vXe4rQo5_Ne6QDS4N68_fhT7aGu9IR2wpDCY1EoGoJn5-GXShdx4FST2lDwmnBVMjRCRf_P2qr-HhdLWYJ_NPy9lLuCZd-qqutwfN49eT72P2crSvykH7HUgO45g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GraphLIME%3A+Local+Interpretable+Model+Explanations+for+Graph+Neural+Networks&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Huang%2C+Qiang&rft.au=Yamada%2C+Makoto&rft.au=Tian%2C+Yuan&rft.au=Singh%2C+Dinesh&rft.date=2023-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=35&rft.issue=7&rft.spage=6968&rft_id=info:doi/10.1109%2FTKDE.2022.3187455&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon