Bayesian longitudinal tensor response regression for modeling neuroplasticity

A major interest in longitudinal neuroimaging studies involves investigating voxel‐level neuroplasticity due to treatment and other factors across visits. However, traditional voxel‐wise methods are beset with several pitfalls, which can compromise the accuracy of these approaches. We propose a nove...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 44; no. 18; pp. 6326 - 6348
Main Authors Kundu, Suprateek, Reinhardt, Alec, Song, Serena, Han, Joo, Meadows, M. Lawson, Crosson, Bruce, Krishnamurthy, Venkatagiri
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A major interest in longitudinal neuroimaging studies involves investigating voxel‐level neuroplasticity due to treatment and other factors across visits. However, traditional voxel‐wise methods are beset with several pitfalls, which can compromise the accuracy of these approaches. We propose a novel Bayesian tensor response regression approach for longitudinal imaging data, which pools information across spatially distributed voxels to infer significant changes while adjusting for covariates. The proposed method, which is implemented using Markov chain Monte Carlo (MCMC) sampling, utilizes low‐rank decomposition to reduce dimensionality and preserve spatial configurations of voxels when estimating coefficients. It also enables feature selection via joint credible regions which respect the shape of the posterior distributions for more accurate inference. In addition to group level inferences, the method is able to infer individual‐level neuroplasticity, allowing for examination of personalized disease or recovery trajectories. The advantages of the proposed approach in terms of prediction and feature selection over voxel‐wise regression are highlighted via extensive simulation studies. Subsequently, we apply the approach to a longitudinal Aphasia dataset consisting of task functional MRI images from a group of subjects who were administered either a control intervention or intention treatment at baseline and were followed up over subsequent visits. Our analysis revealed that while the control therapy showed long‐term increases in brain activity, the intention treatment produced predominantly short‐term changes, both of which were concentrated in distinct localized regions. In contrast, the voxel‐wise regression failed to detect any significant neuroplasticity after multiplicity adjustments, which is biologically implausible and implies lack of power. In this article, we propose a novel Bayesian tensor response regression method for investigating voxel‐level longitudinal changes in neuroimaging data. The proposed method makes use of low‐rank tensor decomposition to reduce dimensionality and respect spatial contiguity across voxels, and pools information across voxels and longitudinal visits to allow for subject‐level inference. Using simulated and real datasets, we demonstrate that the proposed method allows for greater predictive performance and feature selection than routinely used voxel‐wise regression approaches.
AbstractList A major interest in longitudinal neuroimaging studies involves investigating voxel‐level neuroplasticity due to treatment and other factors across visits. However, traditional voxel‐wise methods are beset with several pitfalls, which can compromise the accuracy of these approaches. We propose a novel Bayesian tensor response regression approach for longitudinal imaging data, which pools information across spatially distributed voxels to infer significant changes while adjusting for covariates. The proposed method, which is implemented using Markov chain Monte Carlo (MCMC) sampling, utilizes low‐rank decomposition to reduce dimensionality and preserve spatial configurations of voxels when estimating coefficients. It also enables feature selection via joint credible regions which respect the shape of the posterior distributions for more accurate inference. In addition to group level inferences, the method is able to infer individual‐level neuroplasticity, allowing for examination of personalized disease or recovery trajectories. The advantages of the proposed approach in terms of prediction and feature selection over voxel‐wise regression are highlighted via extensive simulation studies. Subsequently, we apply the approach to a longitudinal Aphasia dataset consisting of task functional MRI images from a group of subjects who were administered either a control intervention or intention treatment at baseline and were followed up over subsequent visits. Our analysis revealed that while the control therapy showed long‐term increases in brain activity, the intention treatment produced predominantly short‐term changes, both of which were concentrated in distinct localized regions. In contrast, the voxel‐wise regression failed to detect any significant neuroplasticity after multiplicity adjustments, which is biologically implausible and implies lack of power.
A major interest in longitudinal neuroimaging studies involves investigating voxel-level neuroplasticity due to treatment and other factors across visits. However, traditional voxel-wise methods are beset with several pitfalls, which can compromise the accuracy of these approaches. We propose a novel Bayesian tensor response regression approach for longitudinal imaging data, which pools information across spatially distributed voxels to infer significant changes while adjusting for covariates. The proposed method, which is implemented using Markov chain Monte Carlo (MCMC) sampling, utilizes low-rank decomposition to reduce dimensionality and preserve spatial configurations of voxels when estimating coefficients. It also enables feature selection via joint credible regions which respect the shape of the posterior distributions for more accurate inference. In addition to group level inferences, the method is able to infer individual-level neuroplasticity, allowing for examination of personalized disease or recovery trajectories. The advantages of the proposed approach in terms of prediction and feature selection over voxel-wise regression are highlighted via extensive simulation studies. Subsequently, we apply the approach to a longitudinal Aphasia dataset consisting of task functional MRI images from a group of subjects who were administered either a control intervention or intention treatment at baseline and were followed up over subsequent visits. Our analysis revealed that while the control therapy showed long-term increases in brain activity, the intention treatment produced predominantly short-term changes, both of which were concentrated in distinct localized regions. In contrast, the voxel-wise regression failed to detect any significant neuroplasticity after multiplicity adjustments, which is biologically implausible and implies lack of power.A major interest in longitudinal neuroimaging studies involves investigating voxel-level neuroplasticity due to treatment and other factors across visits. However, traditional voxel-wise methods are beset with several pitfalls, which can compromise the accuracy of these approaches. We propose a novel Bayesian tensor response regression approach for longitudinal imaging data, which pools information across spatially distributed voxels to infer significant changes while adjusting for covariates. The proposed method, which is implemented using Markov chain Monte Carlo (MCMC) sampling, utilizes low-rank decomposition to reduce dimensionality and preserve spatial configurations of voxels when estimating coefficients. It also enables feature selection via joint credible regions which respect the shape of the posterior distributions for more accurate inference. In addition to group level inferences, the method is able to infer individual-level neuroplasticity, allowing for examination of personalized disease or recovery trajectories. The advantages of the proposed approach in terms of prediction and feature selection over voxel-wise regression are highlighted via extensive simulation studies. Subsequently, we apply the approach to a longitudinal Aphasia dataset consisting of task functional MRI images from a group of subjects who were administered either a control intervention or intention treatment at baseline and were followed up over subsequent visits. Our analysis revealed that while the control therapy showed long-term increases in brain activity, the intention treatment produced predominantly short-term changes, both of which were concentrated in distinct localized regions. In contrast, the voxel-wise regression failed to detect any significant neuroplasticity after multiplicity adjustments, which is biologically implausible and implies lack of power.
A major interest in longitudinal neuroimaging studies involves investigating voxel‐level neuroplasticity due to treatment and other factors across visits. However, traditional voxel‐wise methods are beset with several pitfalls, which can compromise the accuracy of these approaches. We propose a novel Bayesian tensor response regression approach for longitudinal imaging data, which pools information across spatially distributed voxels to infer significant changes while adjusting for covariates. The proposed method, which is implemented using Markov chain Monte Carlo (MCMC) sampling, utilizes low‐rank decomposition to reduce dimensionality and preserve spatial configurations of voxels when estimating coefficients. It also enables feature selection via joint credible regions which respect the shape of the posterior distributions for more accurate inference. In addition to group level inferences, the method is able to infer individual‐level neuroplasticity, allowing for examination of personalized disease or recovery trajectories. The advantages of the proposed approach in terms of prediction and feature selection over voxel‐wise regression are highlighted via extensive simulation studies. Subsequently, we apply the approach to a longitudinal Aphasia dataset consisting of task functional MRI images from a group of subjects who were administered either a control intervention or intention treatment at baseline and were followed up over subsequent visits. Our analysis revealed that while the control therapy showed long‐term increases in brain activity, the intention treatment produced predominantly short‐term changes, both of which were concentrated in distinct localized regions. In contrast, the voxel‐wise regression failed to detect any significant neuroplasticity after multiplicity adjustments, which is biologically implausible and implies lack of power. In this article, we propose a novel Bayesian tensor response regression method for investigating voxel‐level longitudinal changes in neuroimaging data. The proposed method makes use of low‐rank tensor decomposition to reduce dimensionality and respect spatial contiguity across voxels, and pools information across voxels and longitudinal visits to allow for subject‐level inference. Using simulated and real datasets, we demonstrate that the proposed method allows for greater predictive performance and feature selection than routinely used voxel‐wise regression approaches.
Author Han, Joo
Crosson, Bruce
Meadows, M. Lawson
Song, Serena
Krishnamurthy, Venkatagiri
Kundu, Suprateek
Reinhardt, Alec
Author_xml – sequence: 1
  givenname: Suprateek
  surname: Kundu
  fullname: Kundu, Suprateek
  organization: UT MD Anderson Cancer Center
– sequence: 2
  givenname: Alec
  orcidid: 0000-0001-6814-4973
  surname: Reinhardt
  fullname: Reinhardt, Alec
  email: aereinhardt@mdanderson.org
  organization: UT MD Anderson Cancer Center
– sequence: 3
  givenname: Serena
  surname: Song
  fullname: Song, Serena
  organization: Atlanta Veterans Affairs Medical Center
– sequence: 4
  givenname: Joo
  surname: Han
  fullname: Han, Joo
  organization: Atlanta Veterans Affairs Medical Center
– sequence: 5
  givenname: M. Lawson
  surname: Meadows
  fullname: Meadows, M. Lawson
  organization: Atlanta Veterans Affairs Medical Center
– sequence: 6
  givenname: Bruce
  surname: Crosson
  fullname: Crosson, Bruce
  organization: Emory University
– sequence: 7
  givenname: Venkatagiri
  orcidid: 0000-0002-0946-2311
  surname: Krishnamurthy
  fullname: Krishnamurthy, Venkatagiri
  organization: Emory University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37909393$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9LAzEQxYMo1qoHv4AseNHDarLJNpujiv-gxYuelzQ7qSnZpCa7yH57U6seCnqax_B7A_PeGO067wChE4IvCcbF1du8vSwmJRY76IBgwXNMBN1d60mZC8bJCI1jXGJMSInJPhpRLrCggh6g2Y0cIBrpMuvdwnR9Y5y0WQcu-pAFiCvvIiSxSDoa7zKd9q1vwBq3yBz0wa-sjJ1RphuO0J6WNsLx9zxEr_d3L7eP-fT54en2eporWlUiB8UVUEk0owpzXbCGE6CqKudEcskrxgoq9AQrVjTAtFAFZaVQjSy10jBp6CE639xdBf_eQ-zq1kQF1koHvo91UVVlgUvCeULPttCl70P6cU2lDFhFxZo6_ab6eQtNvQqmlWGof4JKwMUGUMHHGED_IgTX6xLqVEL9VUJir7bYlI3sUnhdkMb-5_gwFoa_T9ePN7ON4xMXLJis
CitedBy_id crossref_primary_10_1007_s12021_024_09669_3
Cites_doi 10.1016/j.jns.2015.03.020
10.1080/00401706.2020.1784799
10.1214/21-BA1280
10.1044/1092-4388(2013/12-0224)
10.1016/j.neuroimage.2021.118312
10.1016/j.conb.2017.01.002
10.1136/jnnp-2018-319649
10.1155/2016/2643491
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.neuroimage.2013.12.058
10.1523/JNEUROSCI.0276-10.2010
10.1002/hbm.23476
10.1523/JNEUROSCI.0428-14.2014
10.1080/01621459.2016.1193022
10.1002/hbm.22217
10.1055/s-0028-1082883
10.1016/j.euroneuro.2010.03.008
10.1016/j.neuroimage.2008.10.065
10.1177/1545968313517754
10.1016/j.neuroimage.2009.10.090
10.1016/j.neuroimage.2011.12.057
10.1111/psyp.13038
10.1093/brain/awl090
10.1080/10749357.2016.1150412
10.1007/s12561-013-9104-y
10.1198/106186007X208768
10.1080/01621459.1979.10482531
10.3389/fnins.2020.00336
10.1016/j.cortex.2011.06.010
10.1162/nol_a_00025
10.1016/j.csda.2008.01.016
10.1146/annurev.psych.093008.100356
10.1073/pnas.1602413113
10.1093/brain/awf191
10.1093/brain/awh659
10.1093/brain/awt289
10.1137/07070111X
10.1080/096020100389192
10.1002/hbm.25280
10.1006/nimg.2000.0568
10.1161/STROKEAHA.112.654228
ContentType Journal Article
Copyright 2023 The Authors. published by Wiley Periodicals LLC.
2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wiley Periodicals LLC.
– notice: 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7X7
7XB
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
K9.
M0S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1002/hbm.26509
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Chemoreception Abstracts
ProQuest Central (New)
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1097-0193
EndPage 6348
ExternalDocumentID 37909393
10_1002_hbm_26509
HBM26509
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: NIMH
  funderid: R01AG071174; R01MH120299
– fundername: VA Rehabilitation Research and Development Service
  funderid: 1IK2RX002934
– fundername: RRD VA
  grantid: IK2 RX002934
– fundername: NIA NIH HHS
  grantid: R01 AG071174
– fundername: NIMH NIH HHS
  grantid: R01 MH120299
– fundername: NIMH NIH HHS
  grantid: R01MH120299
– fundername: NIMH NIH HHS
  grantid: R01AG071174
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ABUWG
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
AEFGJ
AEIMD
AENEX
AFBPY
AFGKR
AFKRA
AFPKN
AFRAH
AFZJQ
AGXDD
AHMBA
AIDQK
AIDYY
AIURR
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BENPR
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
FYUFA
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HMCUK
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RX1
RYL
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
WIN
7X8
ID FETCH-LOGICAL-c3889-ec7ce3a1f43c07f24d71e3c85b1a7a7844239f60c42de4f9c23459cda5fcfe6d3
IEDL.DBID 7X7
ISSN 1065-9471
1097-0193
IngestDate Tue Aug 05 10:10:12 EDT 2025
Wed Aug 13 09:28:08 EDT 2025
Mon Jul 21 05:34:45 EDT 2025
Thu Apr 24 22:56:56 EDT 2025
Tue Jul 01 01:11:14 EDT 2025
Sun Jul 06 04:46:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords aphasia
tensor response regression
Bayesian joint credible regions
longitudinal neuroimaging
neuroplasticity
Language English
License Attribution
2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3889-ec7ce3a1f43c07f24d71e3c85b1a7a7844239f60c42de4f9c23459cda5fcfe6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6814-4973
0000-0002-0946-2311
OpenAccessLink https://www.proquest.com/docview/2893948397?pq-origsite=%requestingapplication%
PMID 37909393
PQID 2893948397
PQPubID 996345
PageCount 23
ParticipantIDs proquest_miscellaneous_2885205177
proquest_journals_2893948397
pubmed_primary_37909393
crossref_primary_10_1002_hbm_26509
crossref_citationtrail_10_1002_hbm_26509
wiley_primary_10_1002_hbm_26509_HBM26509
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 December, 2023
2023-12-15
2023-Dec-15
20231215
PublicationDateYYYYMMDD 2023-12-15
PublicationDate_xml – month: 12
  year: 2023
  text: 15 December, 2023
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2009; 45
2012; 60
2019; 90
2021; 42
2014; 91
2021; 2
2017; 43
2011; 62
2006
2020; 14
2016; 2016
2014; 28
1996; 58
1979; 74
2017; 112
2015; 7
2014; 137
2007; 16
2021; 16
2010; 20
2010; 49
2009; 51
2009; 53
2017; 38
2000; 10
2008; 29
2002; 125
2000; 11
2015; 352
2005; 128
2021; 239
2016; 113
2019
2014; 57
2014; 35
2017
2016
2017; 18
2012; 48
2018; 55
2021; 63
2006; 129
2010; 30
2014; 34
2012; 43
2016; 23
e_1_2_13_25_1
e_1_2_13_48_1
Tibshirani R. (e_1_2_13_43_1) 1996; 58
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_47_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_20_1
e_1_2_13_45_1
e_1_2_13_23_1
e_1_2_13_22_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_8_1
e_1_2_13_41_1
e_1_2_13_7_1
e_1_2_13_6_1
e_1_2_13_17_1
e_1_2_13_18_1
e_1_2_13_39_1
e_1_2_13_19_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_14_1
e_1_2_13_35_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_16_1
e_1_2_13_37_1
Kertesz A. (e_1_2_13_26_1) 2006
e_1_2_13_32_1
e_1_2_13_10_1
e_1_2_13_31_1
e_1_2_13_11_1
Guhaniyogi R. (e_1_2_13_24_1) 2017; 18
e_1_2_13_34_1
e_1_2_13_12_1
e_1_2_13_33_1
e_1_2_13_30_1
e_1_2_13_5_1
e_1_2_13_4_1
e_1_2_13_3_1
e_1_2_13_2_1
Sun W. (e_1_2_13_42_1) 2017; 18
e_1_2_13_29_1
e_1_2_13_28_1
References_xml – volume: 29
  start-page: 188
  issue: 3
  year: 2008
  end-page: 200
  article-title: An intention manipulation to change lateralization of word production in nonfluent aphasia: Current status
  publication-title: Seminars in Speech and Language
– volume: 11
  start-page: 735
  issue: 6
  year: 2000
  end-page: 759
  article-title: Characterizing the hemodynamic response: Effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing
  publication-title: NeuroImage
– volume: 90
  start-page: 1147
  issue: 10
  year: 2019
  end-page: 1155
  article-title: Neuroplasticity and aphasia treatments: New approaches for an old problem
  publication-title: Journal of Neurology, Neurosurgery, and Psychiatry
– volume: 60
  start-page: 854
  issue: 2
  year: 2012
  end-page: 863
  article-title: Left hemisphere plasticity and aphasia recovery
  publication-title: NeuroImage
– volume: 55
  issue: 3
  year: 2018
  article-title: Brain reflections: A circuit‐based framework for understanding information processing and cognitive control
  publication-title: Psychophysiology
– volume: 20
  start-page: 519
  issue: 8
  year: 2010
  end-page: 534
  article-title: Exploring the brain network: A review on resting‐state fMRI functional connectivity
  publication-title: European Neuropsychopharmacology
– volume: 63
  start-page: 160
  issue: 2
  year: 2021
  end-page: 170
  article-title: Bayesian generalized sparse symmetric tensor‐on‐vector regression
  publication-title: Technometrics
– volume: 28
  start-page: 545
  issue: 6
  year: 2014
  end-page: 553
  article-title: A behavioral manipulation engages right frontal cortex during aphasia therapy
  publication-title: Neurorehabilitation and Neural Repair
– volume: 62
  start-page: 583
  year: 2011
  end-page: 619
  article-title: The disaggregation of within‐person and between‐person effects in longitudinal models of change
  publication-title: Annual Review of Psychology
– volume: 7
  start-page: 90
  issue: 1
  year: 2015
  end-page: 107
  article-title: Semiparametric Bayes local additive models for longitudinal data
  publication-title: Statistics in Biosciences
– volume: 35
  start-page: 831
  issue: 3
  year: 2014
  end-page: 846
  article-title: Voxelwise multivariate analysis of multimodality magnetic resonance imaging
  publication-title: Human Brain Mapping
– volume: 57
  start-page: 439
  issue: 2
  year: 2014
  end-page: 454
  article-title: Delayed stimulus‐specific improvements in discourse following anomia treatment using an intentional gesture
  publication-title: Journal of Speech, Language, and Hearing Research
– volume: 38
  start-page: 1636
  issue: 3
  year: 2017
  end-page: 1658
  article-title: The canonical semantic network supports residual language function in chronic post‐stroke aphasia
  publication-title: Human Brain Mapping
– volume: 53
  start-page: 1850
  issue: 5
  year: 2009
  end-page: 1860
  article-title: Deviance information criterion (DIC) in Bayesian multiple QTL mapping
  publication-title: Computational Statistics & Data Analysis
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  end-page: 500
  article-title: Tensor decompositions and applications
  publication-title: SIAM Review
– year: 2016
– volume: 129
  start-page: 1371
  issue: 6
  year: 2006
  end-page: 1384
  article-title: Dynamics of language reorganization after stroke
  publication-title: Brain
– volume: 30
  start-page: 8171
  issue: 24
  year: 2010
  end-page: 8179
  article-title: Target‐dependent feedforward inhibition mediated by short‐ term synaptic plasticity in the cerebellum
  publication-title: Journal of Neuroscience
– volume: 112
  start-page: 1131
  issue: 519
  year: 2017
  end-page: 1146
  article-title: Parsimonious tensor response regression
  publication-title: Journal of the American Statistical Association
– volume: 49
  start-page: 3057
  issue: 4
  year: 2010
  end-page: 3064
  article-title: Topological FDR for neuroimaging
  publication-title: NeuroImage
– volume: 137
  start-page: 242
  issue: 1
  year: 2014
  end-page: 254
  article-title: Cognitive control and its impact on recovery from aphasic stroke
  publication-title: Brain
– volume: 128
  start-page: 2858
  issue: 12
  year: 2005
  end-page: 2871
  article-title: Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke
  publication-title: Brain
– volume: 34
  start-page: 8728
  issue: 26
  year: 2014
  end-page: 8740
  article-title: Overlapping networks engaged during spoken language production and its cognitive control
  publication-title: Journal of Neuroscience Research
– volume: 16
  start-page: 1221
  issue: 4
  year: 2021
  end-page: 1249
  article-title: Bayesian tensor response regression with an application to brain activation studies
  publication-title: Bayesian Analysis
– volume: 43
  start-page: 2819
  issue: 10
  year: 2012
  end-page: 2828
  article-title: Modulation of neural plasticity as a basis for stroke rehabilitation
  publication-title: Stroke
– volume: 18
  start-page: 1
  issue: 79
  year: 2017
  end-page: 31
  article-title: Bayesian Tensor Regression
  publication-title: Journal of Machine Learning Research
– volume: 42
  start-page: 1116
  issue: 4
  year: 2021
  end-page: 1129
  article-title: A method to mitigate spatio‐temporally varying task‐correlated motion artifacts from overt‐speech fMRI paradigms in aphasia
  publication-title: Human Brain Mapping
– volume: 91
  start-page: 412
  year: 2014
  end-page: 419
  article-title: Cluster‐extent based thresholding in fMRI analyses: Pitfalls and recommendations
  publication-title: NeuroImage
– volume: 125
  start-page: 1829
  issue: 8
  year: 2002
  end-page: 1838
  article-title: Speech production: Wernicke, Broca and beyond
  publication-title: Brain
– volume: 14
  start-page: 336
  year: 2020
  article-title: Correcting task fMRI signals for variability in baseline CBF improves BOLD‐behavior relationships: A feasibility study in an aging model
  publication-title: Frontiers in Neuroscience
– volume: 48
  start-page: 1179
  issue: 9
  year: 2012
  end-page: 1186
  article-title: The right hemisphere is not unitary in its role in aphasia recovery
  publication-title: Cortex
– volume: 43
  start-page: 71
  year: 2017
  end-page: 78
  article-title: Functional roles of short‐term synaptic plasticity with an emphasis on inhibition
  publication-title: Current Opinion in Neurobiology
– year: 2006
– volume: 2
  start-page: 22
  issue: 1
  year: 2021
  end-page: 82
  article-title: Neuroplasticity in post‐stroke aphasia: A systematic review and meta‐ analysis of functional imaging studies of reorganization of language processing
  publication-title: Neurobiology of Language
– volume: 16
  start-page: 265
  issue: 2
  year: 2007
  end-page: 288
  article-title: Spatially adaptive Bayesian penalized splines with heteroscedastic errors
  publication-title: Journal of Computational and Graphical Statistics
– volume: 2016
  year: 2016
  article-title: Interpreting intervention induced neuroplasticity with fMRI: The case for multimodal imaging strategies
  publication-title: Neural Plasticity
– volume: 239
  year: 2021
  article-title: Permutation‐based inference for spatially localized signals in longitudinal MRI data
  publication-title: NeuroImage
– volume: 10
  start-page: 365
  issue: 3
  year: 2000
  end-page: 376
  article-title: Neuroimaging of recovery from aphasia
  publication-title: Neuropsychological Rehabilitation
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society. Series B (Methodology)
– volume: 113
  start-page: 7900
  issue: 28
  year: 2016
  end-page: 7905
  article-title: Cluster failure: Why fMRI inferences for spatial extent have inflated false‐positive rates
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 352
  start-page: 12
  issue: 1–2
  year: 2015
  end-page: 18
  article-title: Factors predicting post‐stroke aphasia recovery
  publication-title: Journal of the Neurological Sciences
– volume: 45
  start-page: S187
  issue: 1
  year: 2009
  end-page: S198
  article-title: Modeling the hemodynamic response function in fMRI: Efficiency, bias and mis‐modeling
  publication-title: NeuroImage
– year: 2017
– volume: 74
  start-page: 427
  issue: 366a
  year: 1979
  end-page: 431
  article-title: Distribution of the estimators for autoregressive time series with a unit root
  publication-title: Journal of the American Statistical Association
– volume: 23
  start-page: 430
  issue: 6
  year: 2016
  end-page: 439
  article-title: Age and aphasia: A review of presence, type, recovery and clinical outcomes
  publication-title: Topics in Stroke Rehabilitation
– year: 2019
– volume: 18
  start-page: 4908
  issue: 1
  year: 2017
  end-page: 4944
  article-title: STORE: Sparse tensor response regression and neuroimaging analysis
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_13_46_1
  doi: 10.1016/j.jns.2015.03.020
– ident: e_1_2_13_22_1
  doi: 10.1080/00401706.2020.1784799
– ident: e_1_2_13_23_1
  doi: 10.1214/21-BA1280
– ident: e_1_2_13_2_1
  doi: 10.1044/1092-4388(2013/12-0224)
– ident: e_1_2_13_34_1
  doi: 10.1016/j.neuroimage.2021.118312
– ident: e_1_2_13_3_1
  doi: 10.1016/j.conb.2017.01.002
– ident: e_1_2_13_13_1
  doi: 10.1136/jnnp-2018-319649
– ident: e_1_2_13_38_1
  doi: 10.1155/2016/2643491
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: e_1_2_13_43_1
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society. Series B (Methodology)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 18
  start-page: 4908
  issue: 1
  year: 2017
  ident: e_1_2_13_42_1
  article-title: STORE: Sparse tensor response regression and neuroimaging analysis
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_13_48_1
  doi: 10.1016/j.neuroimage.2013.12.058
– volume: 18
  start-page: 1
  issue: 79
  year: 2017
  ident: e_1_2_13_24_1
  article-title: Bayesian Tensor Regression
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_13_4_1
  doi: 10.1523/JNEUROSCI.0276-10.2010
– ident: e_1_2_13_21_1
  doi: 10.1002/hbm.23476
– ident: e_1_2_13_19_1
  doi: 10.1523/JNEUROSCI.0428-14.2014
– ident: e_1_2_13_30_1
  doi: 10.1080/01621459.2016.1193022
– ident: e_1_2_13_33_1
  doi: 10.1002/hbm.22217
– ident: e_1_2_13_12_1
  doi: 10.1055/s-0028-1082883
– ident: e_1_2_13_45_1
  doi: 10.1016/j.euroneuro.2010.03.008
– ident: e_1_2_13_31_1
  doi: 10.1016/j.neuroimage.2008.10.065
– ident: e_1_2_13_5_1
  doi: 10.1177/1545968313517754
– ident: e_1_2_13_9_1
  doi: 10.1016/j.neuroimage.2009.10.090
– ident: e_1_2_13_18_1
  doi: 10.1016/j.neuroimage.2011.12.057
– ident: e_1_2_13_20_1
  doi: 10.1111/psyp.13038
– ident: e_1_2_13_39_1
  doi: 10.1093/brain/awl090
– ident: e_1_2_13_17_1
  doi: 10.1080/10749357.2016.1150412
– ident: e_1_2_13_25_1
  doi: 10.1007/s12561-013-9104-y
– ident: e_1_2_13_10_1
  doi: 10.1198/106186007X208768
– ident: e_1_2_13_15_1
  doi: 10.1080/01621459.1979.10482531
– ident: e_1_2_13_37_1
– ident: e_1_2_13_28_1
  doi: 10.3389/fnins.2020.00336
– ident: e_1_2_13_44_1
  doi: 10.1016/j.cortex.2011.06.010
– ident: e_1_2_13_47_1
  doi: 10.1162/nol_a_00025
– volume-title: Western Aphasia Battery–Revised (WAB‐R)
  year: 2006
  ident: e_1_2_13_26_1
– ident: e_1_2_13_40_1
  doi: 10.1016/j.csda.2008.01.016
– ident: e_1_2_13_36_1
– ident: e_1_2_13_14_1
  doi: 10.1146/annurev.psych.093008.100356
– ident: e_1_2_13_16_1
  doi: 10.1073/pnas.1602413113
– ident: e_1_2_13_6_1
  doi: 10.1093/brain/awf191
– ident: e_1_2_13_11_1
  doi: 10.1093/brain/awh659
– ident: e_1_2_13_41_1
– ident: e_1_2_13_7_1
  doi: 10.1093/brain/awt289
– ident: e_1_2_13_27_1
  doi: 10.1137/07070111X
– ident: e_1_2_13_8_1
  doi: 10.1080/096020100389192
– ident: e_1_2_13_29_1
  doi: 10.1002/hbm.25280
– ident: e_1_2_13_32_1
  doi: 10.1006/nimg.2000.0568
– ident: e_1_2_13_35_1
  doi: 10.1161/STROKEAHA.112.654228
SSID ssj0011501
Score 2.4559073
Snippet A major interest in longitudinal neuroimaging studies involves investigating voxel‐level neuroplasticity due to treatment and other factors across visits....
A major interest in longitudinal neuroimaging studies involves investigating voxel-level neuroplasticity due to treatment and other factors across visits....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6326
SubjectTerms Aphasia
Bayes Theorem
Bayesian analysis
Bayesian joint credible regions
Brain
Computer Simulation
Functional magnetic resonance imaging
Humans
longitudinal neuroimaging
Markov chains
Medical imaging
Monte Carlo Method
Neuroimaging
Neuronal Plasticity
Neuroplasticity
Regression
Sparsity
Stroke
tensor response regression
Tensors
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hDhWXPoC221Jkqgr1kiXxI07UEyDQCml7qEDigBQ5fhSpkEXL7mH76zvjPCr6kBA3S5nEju2xP9ufvwH4JIMRmbJFImQeElk7nxiRy0QHHrgI3KfxFv_0az65kGeX6nINvvR3YVp9iGHDjTwjjtfk4Ka-P_gtGnpd34456b_h-EtcLQJE3wbpKAI6cbGFU2xS4gjcqwql_GB48-Fc9BfAfIhX44Rz-gKu-qK2PJMf4-WiHtuff6g4PvFfXsLzDoiyw7bnvII132zC1mGDi_DbFdtnkRoa99w34dm0O4HfgumRWXm6eMluZhTqaOkorBYjHvxszuYt49Zj4ntLsG0YomIW4-3gJMmifOYdInYicy9W23BxenJ-PEm6kAyJFcSH8lZbL0wWpLAptqd0OvPCFqrOjDa6kKQnGPLUSu68DKXlQqrSOqOCDT534jWsN7PGvwUWstopV6jcqSALVZZWOydEEHlqtNP1CD73jVPZTq-cwmbcVK3SMq-w1qpYayP4OJjetSId_zLa6Vu46vz0vsLlpiglgkQ9gr3hMXoYHZuYxs-WZFMoTlJmaPOm7RlDLkKXKX5BYGFj-_4_-2pyNI2Jd483fQ8bFN2e2DOZ2oH1xXzpPyAGWtS7sbP_AqCyAwM
  priority: 102
  providerName: Wiley-Blackwell
Title Bayesian longitudinal tensor response regression for modeling neuroplasticity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26509
https://www.ncbi.nlm.nih.gov/pubmed/37909393
https://www.proquest.com/docview/2893948397
https://www.proquest.com/docview/2885205177
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La-MwEB76gLKXspu2u2mzQVtK6cWtrYdln5amtISFhFJayM3IeuweWjubJof8-2pkJyXs42IEHiwxY2lmpE_fAJxxp1gidBYxnrqIl8ZGiqU8ko46yhy1cbjFPxqnwyf-YyIm7YbbawurXK2JYaE2tcY98iufGLCce3cuv09_R1g1Ck9X2xIa27CL1GUI6ZKTdcKFwU5IuLybjXK_Cq-YhWJ69at8uaTIHrfpj_4IMjdj1uB07j7CfhstkuvGvJ9gy1YdOLiufKb8siTnJOA3w8Z4B_ZG7TH5AYwGamnxdiR5rrEe0cJg7SuCYPV6RmYNLNb6xs8GBVsRH7qSUBTHezISOC6nPqxGxPV8eQhPd7ePN8OorZsQaYagJaultkwljjMde6VzIxPLdCbKREklM46kfy6NNafGcpdryrjItVHCaWdTw45gp6or-wWIS0ojTCZSIxzPRJ5raQxjjqWxkkaWXbhYaa_QLak41rZ4Lho6ZFp4RRdB0V04XYtOGyaNvwn1ViYo2sn0Wrybvgvf1q_9NMCzDVXZeoEymaDIN-ZlPjemW_fCZB77LzA_2GDLf3dfDAej0Dj-_zhO4AOWnUdYSyJ6sDOfLexXH5zMyz5sU37fD_9hH3YHt-P7h35I9PH5QN8AODXnbg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQS9IGh5LBQwCBCX0MSPODkg1IVWW9qsEGql3oLjRzm0ybLdFdo_xW9k7CSLKh633ixlZFszY89MZvwNwEvuFEuEziLGUxfxythIsZRH0lFHmaM2Dq_4i0k6PuGfTsXpGvzs38L4ssr-TgwXtWm0_0e-g4EByzmac_l--j3yXaN8drVvodGqxaFd_sCQ7fLdwUeU7ytK9_eOP4yjrqtApJkv6bFaastU4jjTMW6JG5lYpjNRJUoqmXEPiefSWHNqLHe5poyLXBslnHY2NQznvQHrnGEoM4D10d7k85dV3gLdqxDioWGPcrz3eyyjmO58qy7eUo9Xd9UC_uHWXvWSg5nbvwO3O_-U7LYKdRfWbL0JW7s1xuYXS_KahIrR8Ct-E24WXWJ-C4qRWlr_HpOcN74D0sL4blvEl8c3MzJrC3EtDs7autuaoLNMQhsetJ0koGpO0ZH3Nd7z5T04uRae3odB3dT2IRCXVEaYTKRGOJ6JPNfSGMYcsltJI6shvOm5V-oOxtx30zgvWwBmWiKjy8DoIbxYkU5b7I6_EW33Iii743tZ_la2ITxffcaD57MpqrbNwtNkgnqEM6R50IputQqTeYwzMNxskOW_ly_HoyIMHv1_H8_g1vi4OCqPDiaHj2HDN733RTWJ2IbBfLawT9A1mldPO30k8PW6j8Av1xwiVQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcELQ8thQwCBCXsIkfcXJAqKWstpStOFBpbyHxAw5tst3uCu1f49cx4ySLKh633izFsq2Zseeb-PMMwAvpS5Eok0VCpj6SlXVRKVIZac89F567OLzin5yk41P5caqmG_CzfwtDtMr-TAwHtW0M_SMfYmAgconuXA99R4v4fDh6N7uIqIIU3bT25TRaEzl2qx8Yvl2-PTpEXb_kfPThy_tx1FUYiIwgeo8z2jhRJl4KE-PypNWJEyZTVVLqUmeS0uP5NDaSWyd9briQKje2VN54l1qB496Am1qohPaYnq6DPQJaIdhDFx_l6AH6rEYxH36vzt9wylx31Rf-AXCv4uXg8EZ34HaHVNl-a1p3YcPV27CzX2OUfr5ir1jgjoaf8tuwNemu6HdgclCuHL3MZGcN1UJaWqq7xYgo38zZvKXkOmx8axm4NUPYzEJBHvSiLOTXnCGkJ7b3YnUPTq9Fovdhs25q9xCYTyqrbKZSq7zMVJ4bba0QXqRxqa2uBvC6l15huoTmVFfjrGhTMfMCBV0EQQ_g-brrrM3i8bdOe70Kim4jXxa_zW4Az9afcQvSvUpZu2ZJfTLFKdcZ9nnQqm49i9B5jCMIXGzQ5b-nL8YHk9DY_f86nsIWGn7x6ejk-BHc4oi5iF2TqD3YXMyX7jFipEX1JBgjg6_Xbf2_ACjgJSU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+longitudinal+tensor+response+regression+for+modeling+neuroplasticity&rft.jtitle=Human+brain+mapping&rft.au=Kundu%2C+Suprateek&rft.au=Reinhardt%2C+Alec&rft.au=Song%2C+Serena&rft.au=Han%2C+Joo&rft.date=2023-12-15&rft.issn=1097-0193&rft.eissn=1097-0193&rft.volume=44&rft.issue=18&rft.spage=6326&rft_id=info:doi/10.1002%2Fhbm.26509&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon