Targeting regulatory T cells in anti‐PD‐1/PD‐L1 cancer immunotherapy

The programmed death (PD)‐1/PD‐ligand (PD‐L) pathway and regulatory T cells (Tregs) are essential for the maintenance of immune tolerance. Their activation in the tumour microenvironment contributes to the evasion of the transformed cells from the immune surveillance and the suppression of an antitu...

Full description

Saved in:
Bibliographic Details
Published inScandinavian journal of immunology Vol. 95; no. 3; pp. e13129 - n/a
Main Authors Zhulai, Galina, Oleinik, Eugenia
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The programmed death (PD)‐1/PD‐ligand (PD‐L) pathway and regulatory T cells (Tregs) are essential for the maintenance of immune tolerance. Their activation in the tumour microenvironment contributes to the evasion of the transformed cells from the immune surveillance and the suppression of an antitumour immune response. Therefore, PD‐1/PD‐L1 and Tregs are important targets for cancer immunotherapy. Our review focuses on the current role of the PD‐1/PD‐L1 axis in Treg development and function in the tumour microenvironment. We also discuss combination therapy with PD‐1/PD‐L1 inhibitors and Treg‐modulating agents affecting the adenosinergic pathway, TGF‐β signalling, immune checkpoints and other approaches to downregulation of Tregs.
AbstractList The programmed death (PD)-1/PD-ligand (PD-L) pathway and regulatory T cells (Tregs) are essential for the maintenance of immune tolerance. Their activation in the tumour microenvironment contributes to the evasion of the transformed cells from the immune surveillance and the suppression of an antitumour immune response. Therefore, PD-1/PD-L1 and Tregs are important targets for cancer immunotherapy. Our review focuses on the current role of the PD-1/PD-L1 axis in Treg development and function in the tumour microenvironment. We also discuss combination therapy with PD-1/PD-L1 inhibitors and Treg-modulating agents affecting the adenosinergic pathway, TGF-β signalling, immune checkpoints and other approaches to downregulation of Tregs.
The programmed death (PD)-1/PD-ligand (PD-L) pathway and regulatory T cells (Tregs) are essential for the maintenance of immune tolerance. Their activation in the tumour microenvironment contributes to the evasion of the transformed cells from the immune surveillance and the suppression of an antitumour immune response. Therefore, PD-1/PD-L1 and Tregs are important targets for cancer immunotherapy. Our review focuses on the current role of the PD-1/PD-L1 axis in Treg development and function in the tumour microenvironment. We also discuss combination therapy with PD-1/PD-L1 inhibitors and Treg-modulating agents affecting the adenosinergic pathway, TGF-β signalling, immune checkpoints and other approaches to downregulation of Tregs.The programmed death (PD)-1/PD-ligand (PD-L) pathway and regulatory T cells (Tregs) are essential for the maintenance of immune tolerance. Their activation in the tumour microenvironment contributes to the evasion of the transformed cells from the immune surveillance and the suppression of an antitumour immune response. Therefore, PD-1/PD-L1 and Tregs are important targets for cancer immunotherapy. Our review focuses on the current role of the PD-1/PD-L1 axis in Treg development and function in the tumour microenvironment. We also discuss combination therapy with PD-1/PD-L1 inhibitors and Treg-modulating agents affecting the adenosinergic pathway, TGF-β signalling, immune checkpoints and other approaches to downregulation of Tregs.
Author Zhulai, Galina
Oleinik, Eugenia
Author_xml – sequence: 1
  givenname: Galina
  orcidid: 0000-0001-6266-3289
  surname: Zhulai
  fullname: Zhulai, Galina
  email: zhgali-111@yandex.ru
  organization: Russian Academy of Sciences
– sequence: 2
  givenname: Eugenia
  surname: Oleinik
  fullname: Oleinik, Eugenia
  organization: Russian Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34936125$$D View this record in MEDLINE/PubMed
BookMark eNp90UtOwzAQAFALFdEPLLgAisQGFmltj5M0S1R-rSqBRFlHjuMUV4lT7EQoO47AGTkJ7gcWSOCFR7LejMeePuroSkuETgkeErdGdqWGBAiND1CPQBj4gMfQQT0MGPsxi4Iu6lu7wpgAjeAIdYHFEBIa9NBswc1S1kovPSOXTcHryrTewhOyKKyntMd1rT7fPx6v3UZG2zAnnuBaSOOpsmx0Vb9Iw9ftMTrMeWHlyT4O0PPtzWJy788f7qaTq7kvYDyOfYHHAaUZTjHEMqWSsjQNeJQTTHPiDjnkLBRRCDFARjCIDAsIGRfABJd5CAN0sau7NtVrI22dlMpu-uVaVo1NqHtZBKG7xdHzX3RVNUa77pwCwkICDJw626smLWWWrI0quWmT719y4HIHhKmsNTL_IQQnmwkkbgLJdgLOjn5ZoWpeq0rXhqviv4w3Vcj279LJ02y6y_gCfmKXEw
CitedBy_id crossref_primary_10_1016_j_ctrv_2024_102749
crossref_primary_10_1080_2162402X_2024_2349347
crossref_primary_10_1080_2162402X_2024_2370544
crossref_primary_10_3390_cells12121609
crossref_primary_10_3390_livers3010011
crossref_primary_10_1016_j_isci_2024_108879
crossref_primary_10_1038_s41418_023_01217_x
crossref_primary_10_1186_s12576_024_00933_4
crossref_primary_10_3390_ijms26010088
crossref_primary_10_1016_j_ctrv_2023_102629
crossref_primary_10_1002_adhm_202300164
crossref_primary_10_3389_fimmu_2024_1411923
crossref_primary_10_1016_j_ejphar_2023_175991
crossref_primary_10_1111_cas_16247
crossref_primary_10_3389_fonc_2025_1534055
crossref_primary_10_3389_fimmu_2023_1268188
crossref_primary_10_1093_abt_tbae027
crossref_primary_10_1186_s12967_023_04193_5
crossref_primary_10_3389_fonc_2022_911285
crossref_primary_10_1016_j_virol_2024_110033
crossref_primary_10_1186_s13046_023_02649_6
crossref_primary_10_1111_sji_13205
crossref_primary_10_3390_molecules27092716
crossref_primary_10_3390_cells13110959
crossref_primary_10_3389_fimmu_2022_938063
crossref_primary_10_1039_D3NR01482G
crossref_primary_10_1080_15384047_2024_2308097
crossref_primary_10_3390_v14061346
crossref_primary_10_1016_j_critrevonc_2024_104389
crossref_primary_10_21320_2500_2139_2023_16_3_268_279
crossref_primary_10_1186_s12943_023_01714_0
crossref_primary_10_2174_1568026623666230417111616
crossref_primary_10_2174_0115680096337237240909101904
crossref_primary_10_1186_s12943_025_02254_5
crossref_primary_10_3390_biom12030418
crossref_primary_10_3389_fimmu_2023_1268979
crossref_primary_10_1186_s12935_024_03412_3
crossref_primary_10_3389_fimmu_2023_1296341
crossref_primary_10_1002_cncr_34683
Cites_doi 10.1002/cncr.33133
10.1182/blood-2011-02-334565
10.3389/fimmu.2020.00125
10.1002/path.4287
10.1038/s41467-020-20600-7
10.1084/jem.20090847
10.1186/s40425-018-0356-4
10.1038/s41467-021-21297-y
10.1200/JCO.2020.38.15_suppl.9503
10.1111/imm.13178
10.3389/fonc.2018.00086
10.1056/NEJMoa1910836
10.3892/ol.2020.12410
10.1073/pnas.1822001116
10.1126/scitranslmed.3003130
10.1038/s41590-020-0769-3
10.1093/annonc/mdx440.011
10.1158/1538-7445.AM2017-CT018
10.1093/bfgp/ely006
10.1172/jci.insight.121157
10.1016/j.immuni.2009.03.019
10.1158/0008-5472.CAN-18-3962
10.1097/CJI.0000000000000065
10.1158/1078-0432.CCR-15-1125
10.4049/jimmunol.1401936
10.1073/pnas.1201131109
10.1158/0008-5472.CAN-16-2684
10.1016/j.humimm.2020.12.005
10.1056/NEJMoa1604958
10.3389/fphar.2017.00561
10.1002/stem.3051
10.1158/2159-8290.CD-16-1223
10.1371/journal.pone.0063777
10.1186/1479-5876-12-36
10.1038/nature23477
10.1002/ijc.27784
10.1111/imm.12209
10.1245/s10434-018-07110-z
10.1182/blood-2016-09-741629
10.1172/jci.insight.85935
10.1371/journal.pone.0109080
10.1007/s00262-018-2288-8
10.1126/science.aan6733
10.1158/1078-0432.CCR-13-0545
10.1038/s41422-019-0224-x
10.3389/fimmu.2017.01178
10.1084/jem.20130579
10.1200/JCO.2020.38.4_suppl.TPS839
10.1080/2162402X.2016.1175800
10.1158/2159-8290.CD-15-0283
10.1016/j.cell.2018.10.038
10.1126/science.aaa1348
10.1080/2162402X.2017.1299303
10.18632/oncotarget.7041
10.1517/14712598.2012.707184
10.1016/j.immuni.2018.05.006
10.1158/1078-0432.CCR-10-1757
10.1016/j.immuni.2017.02.001
10.1007/s00262-017-2021-z
10.1136/jitc-2020-002068
10.1038/s41598-020-58674-4
10.1038/ncomms7329
10.1158/1538-7445.AM2018-CT180
10.1073/pnas.1608873113
10.18632/genesandcancer.180
10.1073/pnas.1417320112
10.1093/intimm/dxab027
10.1002/hep.27188
10.1016/j.jcmgh.2021.03.003
10.1038/ni.3868
10.1158/1078-0432.CCR-15-0357
10.3390/cancers13040889
10.1016/j.mam.2020.100936
10.1038/s41467-020-17811-3
10.1038/nature23270
10.1158/2326-6066.CIR-16-0237
10.1016/j.immuni.2012.09.010
10.1002/ijc.31661
10.1038/s41571-019-0175-7
10.1200/JCO.2019.37.7_suppl.657
10.1038/s41590-019-0441-y
10.1186/s40364-020-00212-5
10.1158/1078-0432.CCR-17-0741
10.1016/j.immuni.2017.03.013
10.1186/s40425-018-0493-9
10.1038/s41598-020-76130-1
10.1172/JCI81187
10.1111/sji.12643
10.1002/eji.201344423
10.1038/s41568-020-0285-7
10.1200/JCO.2020.38.15_suppl.3002
10.1200/JCO.2019.37.15_suppl.2604
10.1158/1078-0432.CCR-18-3740
10.1038/nature25501
10.1016/j.canlet.2021.04.011
10.1016/j.molmed.2014.10.009
10.1084/jem.20141030
10.3390/cancers13102325
ContentType Journal Article
Copyright 2021 The Scandinavian Foundation for Immunology
2021 The Scandinavian Foundation for Immunology.
Copyright © 2022 The Scandinavian Foundation for Immunology
Copyright_xml – notice: 2021 The Scandinavian Foundation for Immunology
– notice: 2021 The Scandinavian Foundation for Immunology.
– notice: Copyright © 2022 The Scandinavian Foundation for Immunology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7T5
7TK
7U9
8FD
FR3
H94
K9.
M7N
NAPCQ
P64
7X8
DOI 10.1111/sji.13129
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Virology and AIDS Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Nursing & Allied Health Premium

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1365-3083
EndPage n/a
ExternalDocumentID 34936125
10_1111_sji_13129
SJI13129
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Ministry of Science and Higher Education of the Russian Federation
  funderid: project No. 0218‐2019‐0083
– fundername: Russian Federal Budget
  funderid: 0218‐2019‐0083
– fundername: Russian Federal Budget
  grantid: 0218-2019-0083
– fundername: Ministry of Science and Higher Education of the Russian Federation
  grantid: project No. 0218-2019-0083
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
1OB
1OC
24P
2WC
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOETA
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPT
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
J5H
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
Y6R
YFH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7T5
7TK
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
H94
K9.
M7N
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c3889-c08522d0b039eb2e24bb5a7f102f1b03a3f46c763933d103cd0c364ac34caef63
IEDL.DBID DR2
ISSN 0300-9475
1365-3083
IngestDate Thu Jul 10 17:51:01 EDT 2025
Fri Jul 25 09:56:57 EDT 2025
Thu Apr 03 07:06:44 EDT 2025
Tue Jul 01 03:57:01 EDT 2025
Thu Apr 24 23:12:33 EDT 2025
Wed Jan 22 16:26:03 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords regulatory T cells
cancer
PD-1/PD-L1
immunotherapy
Language English
License 2021 The Scandinavian Foundation for Immunology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3889-c08522d0b039eb2e24bb5a7f102f1b03a3f46c763933d103cd0c364ac34caef63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6266-3289
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/sji.13129
PMID 34936125
PQID 2631461343
PQPubID 37516
PageCount 14
ParticipantIDs proquest_miscellaneous_2612736852
proquest_journals_2631461343
pubmed_primary_34936125
crossref_primary_10_1111_sji_13129
crossref_citationtrail_10_1111_sji_13129
wiley_primary_10_1111_sji_13129_SJI13129
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
2022-Mar
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Scandinavian journal of immunology
PublicationTitleAlternate Scand J Immunol
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 6
2017; 7
2017; 8
2021; 21
2010; 16
2015; 38
2011; 118
2017; 4
2020; 20
2017; 46
2020; 160
2020; 126
2019; 16
2019; 18
2020; 11
2020; 10
2015; 348
2013; 8
2018; 87
2012; 12
2014; 60
2017; 357
2018; 49
2020; 8
2018; 175
2013; 19
2018; 6
2018; 9
2018; 8
2018; 3
2021; 77
2021; 33
2019; 20
2015; 212
2021; 510
2017; 77
2019; 68
2019; 26
2016; 113
2019; 116
2019; 29
2014; 9
2009; 206
2018; 78
2021; 82
2014; 12
2017; 129
2021; 9
2019; 7
2018; 143
2015; 6
1962; 2018
2017; 28
2015; 125
2019; 79
2017; 66
2019; 37
2020; 80
2017; 23
2020; 38
2012; 37
2014; 232
2011; 3
2019; 381
2014; 44
2012; 109
2018; 25
2017; 548
2021; 13
2016; 5
2016; 6
2016; 7
2015; 194
2009; 30
2016; 1
2021; 12
2015; 112
2015; 21
2018; 554
2013; 210
2016; 375
2017; 18
2013; 132
2020; 21
2014; 141
2017; 547
2016; 22
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_29_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_102_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_59_1
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_16_1
e_1_2_11_39_1
Kosaka H (e_1_2_11_98_1) 2020
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_2_1
e_1_2_11_100_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
Malek E (e_1_2_11_76_1) 1962; 2018
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_18_1
e_1_2_11_37_1
References_xml – volume: 11
  start-page: 125
  year: 2020
  article-title: Association between response to nivolumab treatment and peripheral blood lymphocyte subsets in patients with non‐small cell lung cancer
  publication-title: Front Immunol
– volume: 129
  start-page: 2186
  year: 2017
  end-page: 2197
  article-title: PD‐1 modulates regulatory T‐cell homeostasis during low‐dose interleukin‐2 therapy
  publication-title: Blood
– volume: 21
  start-page: 24
  year: 2015
  end-page: 33
  article-title: Human cancer immunotherapy with antibodies to the PD‐1 and PD‐L1 pathway
  publication-title: Trends Mol Med
– volume: 12
  start-page: 346
  year: 2021
  article-title: Tumor‐infiltrating mast cells are associated with resistance to anti‐PD‐1 therapy
  publication-title: Nat Commun
– volume: 8
  start-page: 86
  year: 2018
  article-title: Anti‐PD‐1 and anti‐CTLA‐4 therapies in cancer: mechanisms of action, efficacy, and limitations
  publication-title: Front Oncol
– volume: 12
  start-page: 1119
  year: 2021
  article-title: Common clonal origin of conventional T cells and induced regulatory T cells in breast cancer patients
  publication-title: Nat Commun
– volume: 210
  start-page: 1695
  year: 2013
  end-page: 1710
  article-title: Fc‐dependent depletion of tumor‐infiltrating regulatory T cells co‐defines the efficacy of anti–CTLA‐4 therapy against melanoma
  publication-title: J Exp Med
– volume: 82
  start-page: 270
  year: 2021
  end-page: 278
  article-title: Targeting adenosine and regulatory T cells in cancer immunotherapy
  publication-title: Hum Immunol
– volume: 11
  start-page: 4545
  year: 2020
  article-title: Selective inhibition of TGF‐β1 produced by GARP‐expressing Tregs overcomes resistance to PD‐1/PD‐L1 blockade in cancer
  publication-title: Nat Commun
– volume: 510
  start-page: 67
  year: 2021
  end-page: 78
  article-title: The TIM3/Gal9 signaling pathway: an emerging target for cancer immunotherapy
  publication-title: Cancer Lett
– volume: 37
  start-page: 785
  issue: 5
  year: 2012
  end-page: 799
  article-title: T cell receptor stimulation‐induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development
  publication-title: Immunity
– volume: 46
  start-page: 197
  year: 2017
  end-page: 204
  article-title: Loss of PTEN is associated with resistance to anti‐PD‐1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma
  publication-title: Immunity
– volume: 23
  start-page: 5187
  year: 2017
  end-page: 5201
  article-title: Entinostat neutralizes myeloid‐derived suppressor cells and enhances the antitumor effect of PD‐1 inhibition in murine models of lung and renal cell carcinoma
  publication-title: Clin Cancer Res
– volume: 10
  start-page: 18994
  year: 2020
  article-title: Regulatory (FoxP3 ) T cells and TGF‐β predict the response to anti‐PD‐1 immunotherapy in patients with non‐small cell lung cancer
  publication-title: Sci Rep
– volume: 21
  start-page: 149
  year: 2021
  article-title: Dual roles of myeloid‐derived suppressor cells induced by Toll‐like receptor signaling in cancer (Review)
  publication-title: Oncol Lett
– volume: 548
  start-page: 537
  year: 2017
  end-page: 542
  article-title: Identification of essential genes for cancer immunotherapy
  publication-title: Nature
– volume: 12
  start-page: 1383
  year: 2012
  end-page: 1397
  article-title: Induced and natural regulatory T cells in human cancer
  publication-title: Expert Opin Biol Ther
– volume: 16
  start-page: 356
  year: 2019
  end-page: 371
  article-title: Regulatory T cells in cancer immunosuppression — implications for anticancer therapy
  publication-title: Nat Rev Clin Oncol
– volume: 547
  start-page: 413
  year: 2017
  end-page: 418
  article-title: In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target
  publication-title: Nature
– volume: 18
  start-page: 99
  year: 2019
  end-page: 106
  article-title: CD8 T‐cell exhaustion in cancer: mechanisms and new area for cancer immunotherapy
  publication-title: Brief Funct Genomics
– volume: 8
  start-page: 35
  year: 2020
  article-title: Resistance to PD‐1/PD‐L1 blockade cancer immunotherapy: mechanisms, predictive factors, and future perspectives
  publication-title: Biomark Res
– volume: 118
  start-page: 3003
  issue: 11
  year: 2011
  end-page: 3012
  article-title: Monoclonal antibody blockade of IL‐2 receptor α during lymphopenia selectively depletes regulatory T cells in mice and humans
  publication-title: Blood
– volume: 4
  start-page: 312
  year: 2017
  end-page: 318
  article-title: Comprehensive meta‐analysis of key immune‐related adverse events from CTLA‐4 and PD‐1/PD‐L1 inhibitors in cancer patients
  publication-title: Cancer Immunol Res
– volume: 109
  start-page: 10468
  year: 2012
  end-page: 10473
  article-title: Regulatory T cells use programmed death 1 ligands to directly suppress autoreactive B cells in vivo
  publication-title: Proc Natl Acad Sci USA
– volume: 141
  start-page: 467
  issue: 3
  year: 2014
  end-page: 481
  article-title: Staphylococcus aureus convert neonatal conventional CD4(+) T cells into FOXP3(+) CD25(+) CD127(low) T cells via the PD‐1/PD‐L1 axis
  publication-title: Immunology
– volume: 357
  start-page: 409
  year: 2017
  end-page: 413
  article-title: Mismatch repair deficiency predicts response of solid tumors to PD‐1 blockade
  publication-title: Science
– volume: 8
  start-page: 1178
  year: 2017
  article-title: Natural killer T cells in cancer immunotherapy
  publication-title: Front Immunol
– volume: 3
  year: 2018
  article-title: CD226 opposes TIGIT to disrupt Tregs in melanoma
  publication-title: JCI Insight
– volume: 9
  year: 2021
  article-title: Safety and activity of the TGFβ receptor I kinase inhibitor galunisertib plus the anti‐PD‐L1 antibody durvalumab in metastatic pancreatic cancer
  publication-title: J Immunother Cancer
– volume: 37
  start-page: 657
  issue: 7_suppl
  year: 2019
  article-title: Overall responses with coordinated pembrolizumab and high dose IL‐2 (5‐in‐a‐row schedule) for therapy of metastatic clear cell renal cancer: a single center, single arm trial
  publication-title: J Clin Oncol
– volume: 77
  start-page: CT018
  issue: 13 Suppl
  year: 2017
– volume: 212
  start-page: 1603
  year: 2015
  end-page: 1621
  article-title: Deletion of CTLA‐4 on regulatory T cells during adulthood leads to resistance to autoimmunity
  publication-title: J Exp Med
– volume: 78
  start-page: 115
  year: 2018
  end-page: 128
  article-title: CD39 expression defines cell exhaustion in tumor‐infiltrating CD8 T cells
  publication-title: Cancer Res
– volume: 126
  start-page: 4926
  year: 2020
  end-page: 4935
  article-title: First‐in‐human phase 1 study of MK‐1248, an anti–glucocorticoid‐induced tumor necrosis factor receptor agonist monoclonal antibody, as monotherapy or with pembrolizumab in patients with advanced solid tumors
  publication-title: Cancer
– volume: 175
  start-page: 998
  issue: 4
  year: 2018
  end-page: 1013.e20
  article-title: Defining T cell states associated with response to checkpoint immunotherapy in melanoma
  publication-title: Cell
– volume: 77
  year: 2021
  article-title: Immunometabolism of regulatory T cells in cancer
  publication-title: Mol Aspects Med
– volume: 9
  start-page: 176
  issue: 5‐6
  year: 2018
  end-page: 189
  article-title: The promising immune checkpoint LAG‐3: from tumor microenvironment to cancer immunotherapy
  publication-title: Genes Cancer
– volume: 381
  start-page: 1535
  year: 2019
  end-page: 1546
  article-title: Five‐year survival with combined nivolumab and ipilimumab in advanced melanoma
  publication-title: N Engl J Med
– volume: 46
  start-page: 577
  year: 2017
  end-page: 586
  article-title: Fc‐Optimized anti‐CD25 depletes tumor‐infiltrating regulatory T cells and synergizes with PD‐1 blockade to eradicate established tumors
  publication-title: Immunity
– volume: 38
  start-page: TPS839
  issue: 4_suppl
  year: 2020
  article-title: Phase II study of nivolumab and relatlimab in advanced mismatch repair deficient (dMMR) cancers resistant to prior PD‐(L)1 inhibition
  publication-title: J Clin Oncol
– volume: 37
  start-page: 1273
  year: 2019
  end-page: 1280
  article-title: Metabolism and gut microbiota in cancer immunoediting, CD8/Treg ratios, immune cell homeostasis, and cancer (immuno)therapy: concise review
  publication-title: Stem Cells
– volume: 113
  start-page: 8490
  year: 2016
  end-page: 8495
  article-title: Nonoverlapping roles of PD‐1 and FoxP3 in maintaining immune tolerance in a novel autoimmune pancreatitis mouse model
  publication-title: Proc Natl Acad Sci USA
– volume: 232
  start-page: 199
  issue: 2
  year: 2014
  end-page: 209
  article-title: Towards the introduction of the 'Immunoscore' in the classification of malignant tumours
  publication-title: J Pathol
– volume: 125
  start-page: 4053
  year: 2015
  end-page: 4062
  article-title: TIGIT predominantly regulates the immune response via regulatory T cells
  publication-title: J Clin Invest
– volume: 25
  start-page: 3468
  year: 2018
  article-title: Anti‐CTLA‐4 immunotherapy does not deplete FOXP3 regulatory T cells (Tregs) in human cancers‐Letter
  publication-title: Clin Cancer Res
– volume: 348
  start-page: 124
  year: 2015
  end-page: 128
  article-title: Mutational landscape determines sensitivity to PD‐1 blockade in non‐small cell lung cancer
  publication-title: Science
– volume: 6
  start-page: 202
  year: 2016
  end-page: 16
  article-title: Loss of PTEN promotes resistance to T cell‐mediated immunotherapy
  publication-title: Cancer Discov
– volume: 8
  year: 2013
  article-title: Intratumor hypoxia promotes immune tolerance by inducing regulatory T cells via TGF‐beta1 in gastric cancer
  publication-title: PLoS One
– volume: 16
  start-page: 5067
  issue: 20
  year: 2010
  end-page: 5078
  article-title: Dendritic cell vaccination in combination with anti‐CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients
  publication-title: Clin Cancer Res
– volume: 22
  start-page: 1499
  year: 2016
  end-page: 1509
  article-title: RAS/MAPK activation is associated with reduced tumor‐infiltrating lymphocytes in triple‐negative breast cancer: therapeutic cooperation between MEK and PD‐1/PD‐L1 immune checkpoint inhibitors
  publication-title: Clin Cancer Res
– volume: 7
  start-page: 62
  year: 2019
  article-title: α‐PD‐1 therapy elevates Treg/Th balance and increases tumor cell pSmad3 that are both targeted by α‐TGFβ antibody to promote durable rejection and immunity in squamous cell carcinomas
  publication-title: J Immunotherapy Cancer
– volume: 12
  start-page: 36
  year: 2014
  article-title: Combined PD‐1 blockade and GITR triggering induce a potent antitumor immunity in murine cancer models and synergizes with chemotherapeutic drugs
  publication-title: J Transl Med
– volume: 30
  start-page: 899
  year: 2009
  end-page: 911
  article-title: Functional delineation and differentiation dynamics of human CD4 T cells expressing the FoxP3 transcription factor
  publication-title: Immunity
– volume: 66
  start-page: 1275
  year: 2017
  end-page: 1285
  article-title: CD45R Foxp3 regulatory T cells have a negative impact on the clinical outcome of head and neck squamous cell carcinoma
  publication-title: Cancer Immunol Immunother
– volume: 160
  start-page: 24
  issue: 1
  year: 2020
  end-page: 37
  article-title: Control of regulatory T‐cell differentiation and function by T‐cell receptor signalling and Foxp3 transcription factor complexes
  publication-title: Immunology
– volume: 49
  start-page: 247
  year: 2018
  end-page: 263.e7
  article-title: PD‐1 inhibitory receptor downregulates asparaginyl endopeptidase and maintains Foxp3 transcription factor stability in induced regulatory T cells
  publication-title: Immunity
– volume: 28
  start-page: v611
  year: 2017
  end-page: v612
  article-title: Efficacy of BMS‐986016, a monoclonal antibody that targets lymphocyte activation gene‐3 (LAG‐3), in combination with nivolumab in pts with melanoma who progressed during prior anti–PD‐1/PD‐L1 therapy (mel prior IO) in all‐comer and biomarker‐enriched populations
  publication-title: Ann Oncol
– volume: 79
  start-page: 4557
  issue: 18
  year: 2019
  end-page: 4566
  article-title: The tumor microenvironment innately modulates cancer progression
  publication-title: Can Res
– volume: 80
  start-page: 2913
  year: 2020
– volume: 5
  start-page: 7
  year: 2016
  article-title: Regulatory T cells with multiple suppressive and potentially pro‐tumor activities accumulate in human colorectal cancer
  publication-title: OncoImmunology
– volume: 554
  start-page: 544
  year: 2018
  end-page: 548
  article-title: TGFβ attenuates tumour response to PD‐L1 blockade by contributing to exclusion of T cells
  publication-title: Nature
– volume: 21
  start-page: 1346
  year: 2020
  end-page: 1358
  article-title: The PD‐1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD‐1 blockade therapies
  publication-title: Nat Immunol
– volume: 21
  start-page: 4327
  year: 2015
  end-page: 4336
  article-title: Phase I a study of FoxP3 CD4 Treg depletion by infusion of a humanized anti‐CCR4 antibody, KW‐0761, in cancer patients
  publication-title: Clin Cancer Res
– volume: 18
  start-page: 1332
  year: 2017
  end-page: 1341
  article-title: Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD‐L1‐blockade resistance in tumor
  publication-title: Nat Immunol
– volume: 13
  start-page: 889
  year: 2021
  article-title: Wnt/β‐Catenin signaling and immunotherapy resistance: lessons for the treatment of urothelial carcinoma
  publication-title: Cancers
– volume: 3
  start-page: 111ra120
  year: 2011
  article-title: The PDL1‐PD1 axis converts human Th1 cells into regulatory T cells
  publication-title: Sci Transl Med
– volume: 194
  start-page: 5801
  year: 2015
  end-page: 5811
  article-title: PD‐1 upregulated on regulatory T cells during chronic virus infection enhances the suppression of CD8 T cell immune response via the interaction with PD‐L1 expressed on CD8 T cells
  publication-title: J Immunol
– volume: 29
  start-page: 846
  year: 2019
  end-page: 861
  article-title: Sustained type I interferon signaling as a mechanism of resistance to PD‐1 blockade
  publication-title: Cell Res
– volume: 132
  start-page: 1341
  year: 2013
  end-page: 1350
  article-title: Activated but not resting regulatory T cells accumulated in tumor microenvironment and correlated with tumor progression in patients with colorectal cancer
  publication-title: Int J Cancer
– volume: 60
  start-page: 1494
  year: 2014
  end-page: 507
  article-title: Human OX40 tunes the function of regulatory T cells in tumor and nontumor areas of hepatitis C virus‐infected liver tissue
  publication-title: Hepatology
– volume: 87
  year: 2018
  article-title: T‐cell cross‐reactivity may explain the large variation in how cancer patients respond to checkpoint inhibitors
  publication-title: Scand J Immunol
– volume: 6
  start-page: 6329
  year: 2015
  article-title: TGF‐β3‐expressing CD4 CD25 LAG3 regulatory T cells control humoral immune responses
  publication-title: Nat Commun
– volume: 6
  issue: 8
  year: 2017
  article-title: Immune biomarkers for prognosis and prediction of responses to immune checkpoint blockade in cutaneous melanoma
  publication-title: Oncoimmunology
– volume: 20
  start-page: 1231
  year: 2019
  end-page: 1243
  article-title: PD‐1 blockade in subprimed CD8 cells induces dysfunctional PD‐1 CD38 cells and anti‐PD‐1 resistance
  publication-title: Nat Immunol
– volume: 143
  start-page: 3201
  year: 2018
  end-page: 3208
  article-title: Expression of LAG‐3 and efficacy of combination treatment with anti‐LAG‐3 and anti‐PD‐1 monoclonal antibodies in glioblastoma
  publication-title: Int J Cancer
– volume: 9
  year: 2014
  article-title: Lymphocyte Activation Gene 3 (LAG‐3) modulates the ability of CD4 T‐cells to be suppressed in vivo
  publication-title: PLoS One
– volume: 38
  start-page: 96
  year: 2015
  end-page: 106
  article-title: Enhanced T‐cell immunity to osteosarcoma through antibody blockade of PD‐1/PD‐L1 interactions
  publication-title: J Immunother
– volume: 78
  start-page: CT180
  issue: 13 Suppl
  year: 2018
– volume: 8
  start-page: 561
  year: 2017
  article-title: PD‐1 and PD‐L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome
  publication-title: Front Pharmacol
– volume: 2018
  start-page: 132
  year: 1962
  article-title: Preclinical studies and a phase I trial of the TGF‐β receptor inhibitor, Vactosertib (TEW‐7197), in combination with pomalidomide in patients with multiple myeloma refractory to bortezomib or lenalidomide
  publication-title: Blood
– volume: 7
  start-page: 27033
  year: 2016
  end-page: 27043
  article-title: Colorectal cancer cell‐derived extracellular vesicles induce phenotypic alteration of T cells into tumor‐growth supporting cells with transforming growth factor‐β1‐mediated suppression
  publication-title: Oncotarget
– volume: 6
  start-page: 47
  year: 2018
  article-title: Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti‐tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade
  publication-title: J Immunotherapy Cancer
– volume: 116
  start-page: 9999
  year: 2019
  end-page: 10008
  article-title: PD‐1 regulatory T cells amplified by PD‐1 blockade promote hyperprogression of cancer
  publication-title: Proc Natl Acad Sci
– volume: 206
  start-page: 3015
  year: 2009
  end-page: 3029
  article-title: PD‐L1 regulates the development, maintenance, and function of induced regulatory T cells
  publication-title: J Exp Med
– volume: 37
  start-page: 2604
  year: 2019
  article-title: AB928, a novel dual adenosine receptor antagonist, combined with chemotherapy or AB122 (anti‐PD‐1) in patients (pts) with advanced tumors: preliminary results from ongoing phase I studies
  publication-title: J Clin Oncol
– volume: 33
  start-page: 435
  year: 2021
  end-page: 446
  article-title: Novel anti‐GARP antibody DS‐1055a augments antitumor immunity by depleting highly suppressive GARP regulatory T cells
  publication-title: Int Immunol
– volume: 44
  start-page: 2603
  year: 2014
  end-page: 2616
  article-title: PD‐1 regulates extrathymic regulatory T‐cell differentiation
  publication-title: Eur J Immunol
– volume: 38
  start-page: 3002
  year: 2020
  article-title: A phase I combination study of vigil and atezolizumab in recurrent/refractory advanced‐stage ovarian cancer: efficacy assessment in BRCA1/2‐wt patients
  publication-title: J Clin Oncol
– volume: 112
  start-page: 6140
  year: 2015
  end-page: 6145
  article-title: XXXX
  publication-title: Proc Natl Acad Sci
– volume: 68
  start-page: 503
  year: 2019
  end-page: 515
  article-title: The effect of everolimus and low‐dose cyclophosphamide on immune cell subsets in patients with metastatic renal cell carcinoma: results from a phase I clinical trial
  publication-title: Cancer Immunol Immunother
– volume: 12
  start-page: 443
  year: 2021
  end-page: 464
  article-title: TIGIT and PD1 co‐blockade restores ex vivo functions of human tumor‐infiltrating CD8 T cells in hepatocellular carcinoma
  publication-title: Cell Mol Gastroenterol Hepatol
– volume: 7
  start-page: 188
  year: 2017
  end-page: 201
  article-title: Primary resistance to PD‐1 blockade mediated by JAK1/2 mutations
  publication-title: Cancer Discov
– volume: 13
  start-page: 2325
  year: 2021
  article-title: The ratio of GrzB ‐ FoxP3 over CD3 T cells as a potential predictor of response to nivolumab in patients with metastatic melanoma
  publication-title: Cancers (Basel)
– volume: 20
  start-page: 662
  year: 2020
  end-page: 680
  article-title: The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy
  publication-title: Nat Rev Cancer
– volume: 38
  start-page: 9503
  year: 2020
  article-title: Primary analysis of a randomized, double‐blind, phase II study of the anti‐TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first‐line (1L) treatment in patients with PD‐L1‐selected NSCLC (CITYSCAPE)
  publication-title: JCO
– volume: 26
  start-page: 415
  year: 2019
  end-page: 424
  article-title: The Immunoscore is a superior prognostic tool in stages II and III colorectal cancer and is significantly correlated with programmed death‐ligand 1 (PD‐L1) expression on tumor‐infiltrating mononuclear cells
  publication-title: Ann Surg Oncol
– volume: 10
  start-page: 2083
  year: 2020
  article-title: Clinical efficacy and safety of anti‐PD‐1/PD‐L1 inhibitors for the treatment of advanced or metastatic cancer: a systematic review and meta‐analysis
  publication-title: Sci Rep
– volume: 375
  start-page: 819
  year: 2016
  end-page: 829
  article-title: Mutations associated with acquired resistance to PD‐1 blockade in melanoma
  publication-title: N Engl J Med
– volume: 19
  start-page: 5626
  year: 2013
  end-page: 5635
  article-title: Targeting CD73 enhances the antitumor activity of anti‐PD‐1 and anti‐CTLA‐4 mAbs
  publication-title: Clin Cancer Res
– volume: 1
  year: 2016
  article-title: PD‐1 marks dysfunctional regulatory T cells in malignant gliomas
  publication-title: JCI Insight
– ident: e_1_2_11_91_1
  doi: 10.1002/cncr.33133
– ident: e_1_2_11_95_1
  doi: 10.1182/blood-2011-02-334565
– start-page: 2913
  volume-title: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020
  year: 2020
  ident: e_1_2_11_98_1
– ident: e_1_2_11_58_1
  doi: 10.3389/fimmu.2020.00125
– ident: e_1_2_11_28_1
  doi: 10.1002/path.4287
– ident: e_1_2_11_32_1
  doi: 10.1038/s41467-020-20600-7
– ident: e_1_2_11_54_1
  doi: 10.1084/jem.20090847
– ident: e_1_2_11_74_1
  doi: 10.1186/s40425-018-0356-4
– ident: e_1_2_11_56_1
  doi: 10.1038/s41467-021-21297-y
– ident: e_1_2_11_89_1
  doi: 10.1200/JCO.2020.38.15_suppl.9503
– ident: e_1_2_11_35_1
  doi: 10.1111/imm.13178
– ident: e_1_2_11_82_1
  doi: 10.3389/fonc.2018.00086
– ident: e_1_2_11_102_1
  doi: 10.1056/NEJMoa1910836
– ident: e_1_2_11_17_1
  doi: 10.3892/ol.2020.12410
– ident: e_1_2_11_50_1
  doi: 10.1073/pnas.1822001116
– ident: e_1_2_11_52_1
  doi: 10.1126/scitranslmed.3003130
– ident: e_1_2_11_27_1
  doi: 10.1038/s41590-020-0769-3
– ident: e_1_2_11_85_1
  doi: 10.1093/annonc/mdx440.011
– ident: e_1_2_11_93_1
  doi: 10.1158/1538-7445.AM2017-CT018
– ident: e_1_2_11_24_1
  doi: 10.1093/bfgp/ely006
– ident: e_1_2_11_40_1
  doi: 10.1172/jci.insight.121157
– ident: e_1_2_11_44_1
  doi: 10.1016/j.immuni.2009.03.019
– ident: e_1_2_11_18_1
  doi: 10.1158/0008-5472.CAN-18-3962
– ident: e_1_2_11_25_1
  doi: 10.1097/CJI.0000000000000065
– ident: e_1_2_11_16_1
  doi: 10.1158/1078-0432.CCR-15-1125
– ident: e_1_2_11_61_1
  doi: 10.4049/jimmunol.1401936
– ident: e_1_2_11_62_1
  doi: 10.1073/pnas.1201131109
– ident: e_1_2_11_69_1
  doi: 10.1158/0008-5472.CAN-16-2684
– ident: e_1_2_11_64_1
  doi: 10.1016/j.humimm.2020.12.005
– ident: e_1_2_11_3_1
  doi: 10.1056/NEJMoa1604958
– ident: e_1_2_11_23_1
  doi: 10.3389/fphar.2017.00561
– volume: 2018
  start-page: 132
  year: 1962
  ident: e_1_2_11_76_1
  article-title: Preclinical studies and a phase I trial of the TGF‐β receptor inhibitor, Vactosertib (TEW‐7197), in combination with pomalidomide in patients with multiple myeloma refractory to bortezomib or lenalidomide
  publication-title: Blood
– ident: e_1_2_11_21_1
  doi: 10.1002/stem.3051
– ident: e_1_2_11_10_1
  doi: 10.1158/2159-8290.CD-16-1223
– ident: e_1_2_11_39_1
  doi: 10.1371/journal.pone.0063777
– ident: e_1_2_11_92_1
  doi: 10.1186/1479-5876-12-36
– ident: e_1_2_11_11_1
  doi: 10.1038/nature23477
– ident: e_1_2_11_45_1
  doi: 10.1002/ijc.27784
– ident: e_1_2_11_53_1
  doi: 10.1111/imm.12209
– ident: e_1_2_11_30_1
  doi: 10.1245/s10434-018-07110-z
– ident: e_1_2_11_47_1
  doi: 10.1182/blood-2016-09-741629
– ident: e_1_2_11_48_1
  doi: 10.1172/jci.insight.85935
– ident: e_1_2_11_43_1
  doi: 10.1371/journal.pone.0109080
– ident: e_1_2_11_101_1
  doi: 10.1007/s00262-018-2288-8
– ident: e_1_2_11_8_1
  doi: 10.1126/science.aan6733
– ident: e_1_2_11_65_1
  doi: 10.1158/1078-0432.CCR-13-0545
– ident: e_1_2_11_5_1
  doi: 10.1038/s41422-019-0224-x
– ident: e_1_2_11_19_1
  doi: 10.3389/fimmu.2017.01178
– ident: e_1_2_11_78_1
  doi: 10.1084/jem.20130579
– ident: e_1_2_11_86_1
  doi: 10.1200/JCO.2020.38.4_suppl.TPS839
– ident: e_1_2_11_87_1
  doi: 10.1172/jci.insight.121157
– ident: e_1_2_11_37_1
  doi: 10.1080/2162402X.2016.1175800
– ident: e_1_2_11_13_1
  doi: 10.1158/2159-8290.CD-15-0283
– ident: e_1_2_11_33_1
  doi: 10.1016/j.cell.2018.10.038
– ident: e_1_2_11_4_1
  doi: 10.1126/science.aaa1348
– ident: e_1_2_11_31_1
  doi: 10.1080/2162402X.2017.1299303
– ident: e_1_2_11_38_1
  doi: 10.18632/oncotarget.7041
– ident: e_1_2_11_57_1
  doi: 10.1517/14712598.2012.707184
– ident: e_1_2_11_55_1
  doi: 10.1016/j.immuni.2018.05.006
– ident: e_1_2_11_94_1
  doi: 10.1158/1078-0432.CCR-10-1757
– ident: e_1_2_11_14_1
  doi: 10.1016/j.immuni.2017.02.001
– ident: e_1_2_11_46_1
  doi: 10.1007/s00262-017-2021-z
– ident: e_1_2_11_75_1
  doi: 10.1136/jitc-2020-002068
– ident: e_1_2_11_2_1
  doi: 10.1038/s41598-020-58674-4
– ident: e_1_2_11_63_1
  doi: 10.1038/ncomms7329
– ident: e_1_2_11_67_1
  doi: 10.1158/1538-7445.AM2018-CT180
– ident: e_1_2_11_49_1
  doi: 10.1073/pnas.1608873113
– ident: e_1_2_11_83_1
  doi: 10.18632/genesandcancer.180
– ident: e_1_2_11_80_1
  doi: 10.1073/pnas.1417320112
– ident: e_1_2_11_73_1
  doi: 10.1093/intimm/dxab027
– ident: e_1_2_11_42_1
  doi: 10.1002/hep.27188
– ident: e_1_2_11_88_1
  doi: 10.1016/j.jcmgh.2021.03.003
– ident: e_1_2_11_66_1
  doi: 10.1038/ni.3868
– ident: e_1_2_11_97_1
  doi: 10.1158/1078-0432.CCR-15-0357
– ident: e_1_2_11_15_1
  doi: 10.3390/cancers13040889
– ident: e_1_2_11_36_1
  doi: 10.1016/j.mam.2020.100936
– ident: e_1_2_11_70_1
  doi: 10.1038/s41467-020-17811-3
– ident: e_1_2_11_12_1
  doi: 10.1038/nature23270
– ident: e_1_2_11_26_1
  doi: 10.1158/2326-6066.CIR-16-0237
– ident: e_1_2_11_34_1
  doi: 10.1016/j.immuni.2012.09.010
– ident: e_1_2_11_84_1
  doi: 10.1002/ijc.31661
– ident: e_1_2_11_20_1
  doi: 10.1038/s41571-019-0175-7
– ident: e_1_2_11_100_1
  doi: 10.1200/JCO.2019.37.7_suppl.657
– ident: e_1_2_11_6_1
  doi: 10.1038/s41590-019-0441-y
– ident: e_1_2_11_9_1
  doi: 10.1186/s40364-020-00212-5
– ident: e_1_2_11_99_1
  doi: 10.1158/1078-0432.CCR-17-0741
– ident: e_1_2_11_96_1
  doi: 10.1016/j.immuni.2017.03.013
– ident: e_1_2_11_71_1
  doi: 10.1186/s40425-018-0493-9
– ident: e_1_2_11_59_1
  doi: 10.1038/s41598-020-76130-1
– ident: e_1_2_11_41_1
  doi: 10.1172/JCI81187
– ident: e_1_2_11_7_1
  doi: 10.1111/sji.12643
– ident: e_1_2_11_51_1
  doi: 10.1002/eji.201344423
– ident: e_1_2_11_29_1
  doi: 10.1038/s41568-020-0285-7
– ident: e_1_2_11_77_1
  doi: 10.1200/JCO.2020.38.15_suppl.3002
– ident: e_1_2_11_68_1
  doi: 10.1200/JCO.2019.37.15_suppl.2604
– ident: e_1_2_11_81_1
  doi: 10.1158/1078-0432.CCR-18-3740
– ident: e_1_2_11_72_1
  doi: 10.1038/nature25501
– ident: e_1_2_11_90_1
  doi: 10.1016/j.canlet.2021.04.011
– ident: e_1_2_11_22_1
  doi: 10.1016/j.molmed.2014.10.009
– ident: e_1_2_11_79_1
  doi: 10.1084/jem.20141030
– ident: e_1_2_11_60_1
  doi: 10.3390/cancers13102325
SSID ssj0013273
Score 2.5261497
SecondaryResourceType review_article
Snippet The programmed death (PD)‐1/PD‐ligand (PD‐L) pathway and regulatory T cells (Tregs) are essential for the maintenance of immune tolerance. Their activation in...
The programmed death (PD)-1/PD-ligand (PD-L) pathway and regulatory T cells (Tregs) are essential for the maintenance of immune tolerance. Their activation in...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e13129
SubjectTerms Animals
Apoptosis
B7-H1 Antigen - immunology
cancer
Cancer immunotherapy
Humans
Immune checkpoint
Immune Tolerance - immunology
Immunological tolerance
Immunoregulation
Immunosurveillance
Immunotherapy
Immunotherapy - methods
Lymphocytes T
Microenvironments
Neoplasms - immunology
Neoplasms - therapy
PD-L1 protein
PD‐1/PD‐L1
Programmed Cell Death 1 Receptor - immunology
regulatory T cells
Signal transduction
T-Lymphocytes, Regulatory - immunology
Transformed cells
Tumor microenvironment
Tumor Microenvironment - immunology
Tumors
Title Targeting regulatory T cells in anti‐PD‐1/PD‐L1 cancer immunotherapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsji.13129
https://www.ncbi.nlm.nih.gov/pubmed/34936125
https://www.proquest.com/docview/2631461343
https://www.proquest.com/docview/2612736852
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hKioutFCgy0tu1QOXbOOM492oJx5d0VVBqF0kDpWixA9pKcqifRy2p_4EfmN_ScfOQ9CChLjkOZEdz4z92Z4HwAcrNXaM5kGe8SQQOtZBJt12oU1Mh1uCAN6L__RMnlyI_mV8uQCfal-YMj5Es-DmNMP3107Bs3xyR8knV8M2RxquqP91tloOEH2L7uwglLvLGIZBIjpxFVXIWfE0X94fi_4DmPfxqh9weq_gR13V0s7kZ3s2zdvq1z9RHJ_5L69hpQKi7KCUnFVYMMUaLJWpKedr8PK02nR_A_2BtxanMY6Ny8z1o_GcDZhb85-wYcGIOcM_v2_Pj-nAP_rTV86Uk6cxGzoHlMrNa74OF73Pg6OToErBECh09k-KEFkU6TAPMaE5uIlEnsdZxxIssZweZmiFVNRHJYiah6h0qFCKTKFQmbESN2CxGBXmLTACArFUibIE4ESkul0lNJeWwL2hWx22YL9mRqqq-OQuTcZ1Ws9TqJVS30oteN-Q3pRBOR4i2qk5mlZ6OUkjiS6ROQpswbvmNWmUa7KsMKOZo-EkO5J-vAWbpSQ0paBI0GFCqqzn5-PFp9_7X_zF1tNJt2E5ct4V3sRtBxan45nZJcwzzffgxcHh8WFvzwv5X-yp_bg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiiXUgqU7QuDOHDJEmccbyNxqaDVdtmtUNlKvaAo8UPagrLVPg7bU39Cf2N_CWPnobaAhLjk6ciOPeP57HkBvLNSY8doHuQZTwKhYx1k0qkLbWI63BIE8F78g2PZPRW9s_hsCT7WvjBlfIhmw81xhp-vHYO7DelbXD49H7U5krx6AA9dRm-_oDqJbukQSv0yhmGQiE5cxRVydjzNp3el0W8Q8y5i9SLn8Cl8rxtbWpr8aM9neVtd3ovj-L9_swarFRZl-yXxPIMlU6zDozI75WIdHg8qvftz6A29wTiJOTYpk9ePJws2ZG7bf8pGBaPxGd1cXX_9TAf-wZ_6nClHUhM2cj4olafX4gWcHh4MP3WDKgtDoNCZQCkCZVGkwzzEhJbhJhJ5HmcdS8jEcnqYoRVS0TSVIGoeotKhQikyhUJlxkp8CcvFuDCvgBEWiKVKlCUMJyK1t6eE5tISvjd0q8MWvK9HI1VViHKXKeNnWi9VqJdS30steNsUvSjjcvyp0HY9pGnFmtM0kuhymaPAFrxpXhNTuS7LCjOeuzKciEfSj7dgoySFphYUCTpYSI31A_r36tNvvSN_sfnvRV_DSnc46Kf9o-MvW_Akcs4W3uJtG5Znk7nZIQg0y3c9pf8CwVcAcA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEK4gRsIFFQUWUVvjwcss01M9vTvxZFw2sAIhuiQcTCYz_UgWyCzZx2E5-RP8jfwSqnseAcXEeJlnTbqnq6r76-56AHywUmPHaB7kGU8CoWMdZNJtF9rEdLglCOC9-I-O5f6pGJzFZ0vwqfaFKeNDNAtuTjN8f-0U_ErbO0o-PR-1OdJw9QgeCxl2nUj3vkV3thDK7WUMwyARnbgKK-TMeJpP7w9GfyDM-4DVjzj9p_CjrmtpaHLRns_ytrr-LYzjf_7MM1irkCj7XIrOc1gyxTo8KXNTLtZh5ajadX8Bg6E3F6dBjk3K1PXjyYINmVv0n7JRwYg7o5ufv056dOC7_nTImXICNWEj54FS-XktXsJpf2_4ZT-ocjAECp0BlCJIFkU6zENMaBJuIpHncdaxhEssp4cZWiEVdVIJouYhKh0qlCJTKFRmrMQNWC7GhdkCRkgglipRlhCciFS3q4Tm0hK6N3SrwxZ8rJmRqipAucuTcZnWExVqpdS3UgveN6RXZVSOh4h2ao6mlWJO00iiy2SOAlvwrnlNKuWaLCvMeO5oOMmOpB9vwWYpCU0pKBJ0oJAq6_n59-LT74MDf7H976RvYeWk108PD46_voLVyHlaeHO3HVieTebmNeGfWf7Gy_kt3lT_GQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+regulatory+T+cells+in+anti%E2%80%90PD%E2%80%901%2FPD%E2%80%90L1+cancer+immunotherapy&rft.jtitle=Scandinavian+journal+of+immunology&rft.au=Zhulai%2C+Galina&rft.au=Oleinik%2C+Eugenia&rft.date=2022-03-01&rft.issn=0300-9475&rft.eissn=1365-3083&rft.volume=95&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fsji.13129&rft.externalDBID=10.1111%252Fsji.13129&rft.externalDocID=SJI13129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-9475&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-9475&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-9475&client=summon