Targeting regulatory T cells in anti‐PD‐1/PD‐L1 cancer immunotherapy
The programmed death (PD)‐1/PD‐ligand (PD‐L) pathway and regulatory T cells (Tregs) are essential for the maintenance of immune tolerance. Their activation in the tumour microenvironment contributes to the evasion of the transformed cells from the immune surveillance and the suppression of an antitu...
Saved in:
Published in | Scandinavian journal of immunology Vol. 95; no. 3; pp. e13129 - n/a |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The programmed death (PD)‐1/PD‐ligand (PD‐L) pathway and regulatory T cells (Tregs) are essential for the maintenance of immune tolerance. Their activation in the tumour microenvironment contributes to the evasion of the transformed cells from the immune surveillance and the suppression of an antitumour immune response. Therefore, PD‐1/PD‐L1 and Tregs are important targets for cancer immunotherapy. Our review focuses on the current role of the PD‐1/PD‐L1 axis in Treg development and function in the tumour microenvironment. We also discuss combination therapy with PD‐1/PD‐L1 inhibitors and Treg‐modulating agents affecting the adenosinergic pathway, TGF‐β signalling, immune checkpoints and other approaches to downregulation of Tregs. |
---|---|
AbstractList | The programmed death (PD)-1/PD-ligand (PD-L) pathway and regulatory T cells (Tregs) are essential for the maintenance of immune tolerance. Their activation in the tumour microenvironment contributes to the evasion of the transformed cells from the immune surveillance and the suppression of an antitumour immune response. Therefore, PD-1/PD-L1 and Tregs are important targets for cancer immunotherapy. Our review focuses on the current role of the PD-1/PD-L1 axis in Treg development and function in the tumour microenvironment. We also discuss combination therapy with PD-1/PD-L1 inhibitors and Treg-modulating agents affecting the adenosinergic pathway, TGF-β signalling, immune checkpoints and other approaches to downregulation of Tregs. The programmed death (PD)-1/PD-ligand (PD-L) pathway and regulatory T cells (Tregs) are essential for the maintenance of immune tolerance. Their activation in the tumour microenvironment contributes to the evasion of the transformed cells from the immune surveillance and the suppression of an antitumour immune response. Therefore, PD-1/PD-L1 and Tregs are important targets for cancer immunotherapy. Our review focuses on the current role of the PD-1/PD-L1 axis in Treg development and function in the tumour microenvironment. We also discuss combination therapy with PD-1/PD-L1 inhibitors and Treg-modulating agents affecting the adenosinergic pathway, TGF-β signalling, immune checkpoints and other approaches to downregulation of Tregs.The programmed death (PD)-1/PD-ligand (PD-L) pathway and regulatory T cells (Tregs) are essential for the maintenance of immune tolerance. Their activation in the tumour microenvironment contributes to the evasion of the transformed cells from the immune surveillance and the suppression of an antitumour immune response. Therefore, PD-1/PD-L1 and Tregs are important targets for cancer immunotherapy. Our review focuses on the current role of the PD-1/PD-L1 axis in Treg development and function in the tumour microenvironment. We also discuss combination therapy with PD-1/PD-L1 inhibitors and Treg-modulating agents affecting the adenosinergic pathway, TGF-β signalling, immune checkpoints and other approaches to downregulation of Tregs. |
Author | Zhulai, Galina Oleinik, Eugenia |
Author_xml | – sequence: 1 givenname: Galina orcidid: 0000-0001-6266-3289 surname: Zhulai fullname: Zhulai, Galina email: zhgali-111@yandex.ru organization: Russian Academy of Sciences – sequence: 2 givenname: Eugenia surname: Oleinik fullname: Oleinik, Eugenia organization: Russian Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34936125$$D View this record in MEDLINE/PubMed |
BookMark | eNp90UtOwzAQAFALFdEPLLgAisQGFmltj5M0S1R-rSqBRFlHjuMUV4lT7EQoO47AGTkJ7gcWSOCFR7LejMeePuroSkuETgkeErdGdqWGBAiND1CPQBj4gMfQQT0MGPsxi4Iu6lu7wpgAjeAIdYHFEBIa9NBswc1S1kovPSOXTcHryrTewhOyKKyntMd1rT7fPx6v3UZG2zAnnuBaSOOpsmx0Vb9Iw9ftMTrMeWHlyT4O0PPtzWJy788f7qaTq7kvYDyOfYHHAaUZTjHEMqWSsjQNeJQTTHPiDjnkLBRRCDFARjCIDAsIGRfABJd5CAN0sau7NtVrI22dlMpu-uVaVo1NqHtZBKG7xdHzX3RVNUa77pwCwkICDJw626smLWWWrI0quWmT719y4HIHhKmsNTL_IQQnmwkkbgLJdgLOjn5ZoWpeq0rXhqviv4w3Vcj279LJ02y6y_gCfmKXEw |
CitedBy_id | crossref_primary_10_1016_j_ctrv_2024_102749 crossref_primary_10_1080_2162402X_2024_2349347 crossref_primary_10_1080_2162402X_2024_2370544 crossref_primary_10_3390_cells12121609 crossref_primary_10_3390_livers3010011 crossref_primary_10_1016_j_isci_2024_108879 crossref_primary_10_1038_s41418_023_01217_x crossref_primary_10_1186_s12576_024_00933_4 crossref_primary_10_3390_ijms26010088 crossref_primary_10_1016_j_ctrv_2023_102629 crossref_primary_10_1002_adhm_202300164 crossref_primary_10_3389_fimmu_2024_1411923 crossref_primary_10_1016_j_ejphar_2023_175991 crossref_primary_10_1111_cas_16247 crossref_primary_10_3389_fonc_2025_1534055 crossref_primary_10_3389_fimmu_2023_1268188 crossref_primary_10_1093_abt_tbae027 crossref_primary_10_1186_s12967_023_04193_5 crossref_primary_10_3389_fonc_2022_911285 crossref_primary_10_1016_j_virol_2024_110033 crossref_primary_10_1186_s13046_023_02649_6 crossref_primary_10_1111_sji_13205 crossref_primary_10_3390_molecules27092716 crossref_primary_10_3390_cells13110959 crossref_primary_10_3389_fimmu_2022_938063 crossref_primary_10_1039_D3NR01482G crossref_primary_10_1080_15384047_2024_2308097 crossref_primary_10_3390_v14061346 crossref_primary_10_1016_j_critrevonc_2024_104389 crossref_primary_10_21320_2500_2139_2023_16_3_268_279 crossref_primary_10_1186_s12943_023_01714_0 crossref_primary_10_2174_1568026623666230417111616 crossref_primary_10_2174_0115680096337237240909101904 crossref_primary_10_1186_s12943_025_02254_5 crossref_primary_10_3390_biom12030418 crossref_primary_10_3389_fimmu_2023_1268979 crossref_primary_10_1186_s12935_024_03412_3 crossref_primary_10_3389_fimmu_2023_1296341 crossref_primary_10_1002_cncr_34683 |
Cites_doi | 10.1002/cncr.33133 10.1182/blood-2011-02-334565 10.3389/fimmu.2020.00125 10.1002/path.4287 10.1038/s41467-020-20600-7 10.1084/jem.20090847 10.1186/s40425-018-0356-4 10.1038/s41467-021-21297-y 10.1200/JCO.2020.38.15_suppl.9503 10.1111/imm.13178 10.3389/fonc.2018.00086 10.1056/NEJMoa1910836 10.3892/ol.2020.12410 10.1073/pnas.1822001116 10.1126/scitranslmed.3003130 10.1038/s41590-020-0769-3 10.1093/annonc/mdx440.011 10.1158/1538-7445.AM2017-CT018 10.1093/bfgp/ely006 10.1172/jci.insight.121157 10.1016/j.immuni.2009.03.019 10.1158/0008-5472.CAN-18-3962 10.1097/CJI.0000000000000065 10.1158/1078-0432.CCR-15-1125 10.4049/jimmunol.1401936 10.1073/pnas.1201131109 10.1158/0008-5472.CAN-16-2684 10.1016/j.humimm.2020.12.005 10.1056/NEJMoa1604958 10.3389/fphar.2017.00561 10.1002/stem.3051 10.1158/2159-8290.CD-16-1223 10.1371/journal.pone.0063777 10.1186/1479-5876-12-36 10.1038/nature23477 10.1002/ijc.27784 10.1111/imm.12209 10.1245/s10434-018-07110-z 10.1182/blood-2016-09-741629 10.1172/jci.insight.85935 10.1371/journal.pone.0109080 10.1007/s00262-018-2288-8 10.1126/science.aan6733 10.1158/1078-0432.CCR-13-0545 10.1038/s41422-019-0224-x 10.3389/fimmu.2017.01178 10.1084/jem.20130579 10.1200/JCO.2020.38.4_suppl.TPS839 10.1080/2162402X.2016.1175800 10.1158/2159-8290.CD-15-0283 10.1016/j.cell.2018.10.038 10.1126/science.aaa1348 10.1080/2162402X.2017.1299303 10.18632/oncotarget.7041 10.1517/14712598.2012.707184 10.1016/j.immuni.2018.05.006 10.1158/1078-0432.CCR-10-1757 10.1016/j.immuni.2017.02.001 10.1007/s00262-017-2021-z 10.1136/jitc-2020-002068 10.1038/s41598-020-58674-4 10.1038/ncomms7329 10.1158/1538-7445.AM2018-CT180 10.1073/pnas.1608873113 10.18632/genesandcancer.180 10.1073/pnas.1417320112 10.1093/intimm/dxab027 10.1002/hep.27188 10.1016/j.jcmgh.2021.03.003 10.1038/ni.3868 10.1158/1078-0432.CCR-15-0357 10.3390/cancers13040889 10.1016/j.mam.2020.100936 10.1038/s41467-020-17811-3 10.1038/nature23270 10.1158/2326-6066.CIR-16-0237 10.1016/j.immuni.2012.09.010 10.1002/ijc.31661 10.1038/s41571-019-0175-7 10.1200/JCO.2019.37.7_suppl.657 10.1038/s41590-019-0441-y 10.1186/s40364-020-00212-5 10.1158/1078-0432.CCR-17-0741 10.1016/j.immuni.2017.03.013 10.1186/s40425-018-0493-9 10.1038/s41598-020-76130-1 10.1172/JCI81187 10.1111/sji.12643 10.1002/eji.201344423 10.1038/s41568-020-0285-7 10.1200/JCO.2020.38.15_suppl.3002 10.1200/JCO.2019.37.15_suppl.2604 10.1158/1078-0432.CCR-18-3740 10.1038/nature25501 10.1016/j.canlet.2021.04.011 10.1016/j.molmed.2014.10.009 10.1084/jem.20141030 10.3390/cancers13102325 |
ContentType | Journal Article |
Copyright | 2021 The Scandinavian Foundation for Immunology 2021 The Scandinavian Foundation for Immunology. Copyright © 2022 The Scandinavian Foundation for Immunology |
Copyright_xml | – notice: 2021 The Scandinavian Foundation for Immunology – notice: 2021 The Scandinavian Foundation for Immunology. – notice: Copyright © 2022 The Scandinavian Foundation for Immunology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7T5 7TK 7U9 8FD FR3 H94 K9. M7N NAPCQ P64 7X8 |
DOI | 10.1111/sji.13129 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Virology and AIDS Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Nursing & Allied Health Premium CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1365-3083 |
EndPage | n/a |
ExternalDocumentID | 34936125 10_1111_sji_13129 SJI13129 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Ministry of Science and Higher Education of the Russian Federation funderid: project No. 0218‐2019‐0083 – fundername: Russian Federal Budget funderid: 0218‐2019‐0083 – fundername: Russian Federal Budget grantid: 0218-2019-0083 – fundername: Ministry of Science and Higher Education of the Russian Federation grantid: project No. 0218-2019-0083 |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 123 1OB 1OC 24P 2WC 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOETA ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPT ESX EX3 F00 F01 F04 F5P FEDTE FIJ FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M J5H K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBS OHT OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V8K W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 Y6R YFH YOC YUY ZGI ZXP ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7T5 7TK 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 H94 K9. M7N NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c3889-c08522d0b039eb2e24bb5a7f102f1b03a3f46c763933d103cd0c364ac34caef63 |
IEDL.DBID | DR2 |
ISSN | 0300-9475 1365-3083 |
IngestDate | Thu Jul 10 17:51:01 EDT 2025 Fri Jul 25 09:56:57 EDT 2025 Thu Apr 03 07:06:44 EDT 2025 Tue Jul 01 03:57:01 EDT 2025 Thu Apr 24 23:12:33 EDT 2025 Wed Jan 22 16:26:03 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | regulatory T cells cancer PD-1/PD-L1 immunotherapy |
Language | English |
License | 2021 The Scandinavian Foundation for Immunology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3889-c08522d0b039eb2e24bb5a7f102f1b03a3f46c763933d103cd0c364ac34caef63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6266-3289 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/sji.13129 |
PMID | 34936125 |
PQID | 2631461343 |
PQPubID | 37516 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2612736852 proquest_journals_2631461343 pubmed_primary_34936125 crossref_primary_10_1111_sji_13129 crossref_citationtrail_10_1111_sji_13129 wiley_primary_10_1111_sji_13129_SJI13129 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 2022-Mar 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Scandinavian journal of immunology |
PublicationTitleAlternate | Scand J Immunol |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 6 2017; 7 2017; 8 2021; 21 2010; 16 2015; 38 2011; 118 2017; 4 2020; 20 2017; 46 2020; 160 2020; 126 2019; 16 2019; 18 2020; 11 2020; 10 2015; 348 2013; 8 2018; 87 2012; 12 2014; 60 2017; 357 2018; 49 2020; 8 2018; 175 2013; 19 2018; 6 2018; 9 2018; 8 2018; 3 2021; 77 2021; 33 2019; 20 2015; 212 2021; 510 2017; 77 2019; 68 2019; 26 2016; 113 2019; 116 2019; 29 2014; 9 2009; 206 2018; 78 2021; 82 2014; 12 2017; 129 2021; 9 2019; 7 2018; 143 2015; 6 1962; 2018 2017; 28 2015; 125 2019; 79 2017; 66 2019; 37 2020; 80 2017; 23 2020; 38 2012; 37 2014; 232 2011; 3 2019; 381 2014; 44 2012; 109 2018; 25 2017; 548 2021; 13 2016; 5 2016; 6 2016; 7 2015; 194 2009; 30 2016; 1 2021; 12 2015; 112 2015; 21 2018; 554 2013; 210 2016; 375 2017; 18 2013; 132 2020; 21 2014; 141 2017; 547 2016; 22 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_29_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_102_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_59_1 e_1_2_11_50_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_96_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_16_1 e_1_2_11_39_1 Kosaka H (e_1_2_11_98_1) 2020 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_2_1 e_1_2_11_100_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 Malek E (e_1_2_11_76_1) 1962; 2018 e_1_2_11_94_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_82_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_18_1 e_1_2_11_37_1 |
References_xml | – volume: 11 start-page: 125 year: 2020 article-title: Association between response to nivolumab treatment and peripheral blood lymphocyte subsets in patients with non‐small cell lung cancer publication-title: Front Immunol – volume: 129 start-page: 2186 year: 2017 end-page: 2197 article-title: PD‐1 modulates regulatory T‐cell homeostasis during low‐dose interleukin‐2 therapy publication-title: Blood – volume: 21 start-page: 24 year: 2015 end-page: 33 article-title: Human cancer immunotherapy with antibodies to the PD‐1 and PD‐L1 pathway publication-title: Trends Mol Med – volume: 12 start-page: 346 year: 2021 article-title: Tumor‐infiltrating mast cells are associated with resistance to anti‐PD‐1 therapy publication-title: Nat Commun – volume: 8 start-page: 86 year: 2018 article-title: Anti‐PD‐1 and anti‐CTLA‐4 therapies in cancer: mechanisms of action, efficacy, and limitations publication-title: Front Oncol – volume: 12 start-page: 1119 year: 2021 article-title: Common clonal origin of conventional T cells and induced regulatory T cells in breast cancer patients publication-title: Nat Commun – volume: 210 start-page: 1695 year: 2013 end-page: 1710 article-title: Fc‐dependent depletion of tumor‐infiltrating regulatory T cells co‐defines the efficacy of anti–CTLA‐4 therapy against melanoma publication-title: J Exp Med – volume: 82 start-page: 270 year: 2021 end-page: 278 article-title: Targeting adenosine and regulatory T cells in cancer immunotherapy publication-title: Hum Immunol – volume: 11 start-page: 4545 year: 2020 article-title: Selective inhibition of TGF‐β1 produced by GARP‐expressing Tregs overcomes resistance to PD‐1/PD‐L1 blockade in cancer publication-title: Nat Commun – volume: 510 start-page: 67 year: 2021 end-page: 78 article-title: The TIM3/Gal9 signaling pathway: an emerging target for cancer immunotherapy publication-title: Cancer Lett – volume: 37 start-page: 785 issue: 5 year: 2012 end-page: 799 article-title: T cell receptor stimulation‐induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development publication-title: Immunity – volume: 46 start-page: 197 year: 2017 end-page: 204 article-title: Loss of PTEN is associated with resistance to anti‐PD‐1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma publication-title: Immunity – volume: 23 start-page: 5187 year: 2017 end-page: 5201 article-title: Entinostat neutralizes myeloid‐derived suppressor cells and enhances the antitumor effect of PD‐1 inhibition in murine models of lung and renal cell carcinoma publication-title: Clin Cancer Res – volume: 10 start-page: 18994 year: 2020 article-title: Regulatory (FoxP3 ) T cells and TGF‐β predict the response to anti‐PD‐1 immunotherapy in patients with non‐small cell lung cancer publication-title: Sci Rep – volume: 21 start-page: 149 year: 2021 article-title: Dual roles of myeloid‐derived suppressor cells induced by Toll‐like receptor signaling in cancer (Review) publication-title: Oncol Lett – volume: 548 start-page: 537 year: 2017 end-page: 542 article-title: Identification of essential genes for cancer immunotherapy publication-title: Nature – volume: 12 start-page: 1383 year: 2012 end-page: 1397 article-title: Induced and natural regulatory T cells in human cancer publication-title: Expert Opin Biol Ther – volume: 16 start-page: 356 year: 2019 end-page: 371 article-title: Regulatory T cells in cancer immunosuppression — implications for anticancer therapy publication-title: Nat Rev Clin Oncol – volume: 547 start-page: 413 year: 2017 end-page: 418 article-title: In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target publication-title: Nature – volume: 18 start-page: 99 year: 2019 end-page: 106 article-title: CD8 T‐cell exhaustion in cancer: mechanisms and new area for cancer immunotherapy publication-title: Brief Funct Genomics – volume: 8 start-page: 35 year: 2020 article-title: Resistance to PD‐1/PD‐L1 blockade cancer immunotherapy: mechanisms, predictive factors, and future perspectives publication-title: Biomark Res – volume: 118 start-page: 3003 issue: 11 year: 2011 end-page: 3012 article-title: Monoclonal antibody blockade of IL‐2 receptor α during lymphopenia selectively depletes regulatory T cells in mice and humans publication-title: Blood – volume: 4 start-page: 312 year: 2017 end-page: 318 article-title: Comprehensive meta‐analysis of key immune‐related adverse events from CTLA‐4 and PD‐1/PD‐L1 inhibitors in cancer patients publication-title: Cancer Immunol Res – volume: 109 start-page: 10468 year: 2012 end-page: 10473 article-title: Regulatory T cells use programmed death 1 ligands to directly suppress autoreactive B cells in vivo publication-title: Proc Natl Acad Sci USA – volume: 141 start-page: 467 issue: 3 year: 2014 end-page: 481 article-title: Staphylococcus aureus convert neonatal conventional CD4(+) T cells into FOXP3(+) CD25(+) CD127(low) T cells via the PD‐1/PD‐L1 axis publication-title: Immunology – volume: 357 start-page: 409 year: 2017 end-page: 413 article-title: Mismatch repair deficiency predicts response of solid tumors to PD‐1 blockade publication-title: Science – volume: 8 start-page: 1178 year: 2017 article-title: Natural killer T cells in cancer immunotherapy publication-title: Front Immunol – volume: 3 year: 2018 article-title: CD226 opposes TIGIT to disrupt Tregs in melanoma publication-title: JCI Insight – volume: 9 year: 2021 article-title: Safety and activity of the TGFβ receptor I kinase inhibitor galunisertib plus the anti‐PD‐L1 antibody durvalumab in metastatic pancreatic cancer publication-title: J Immunother Cancer – volume: 37 start-page: 657 issue: 7_suppl year: 2019 article-title: Overall responses with coordinated pembrolizumab and high dose IL‐2 (5‐in‐a‐row schedule) for therapy of metastatic clear cell renal cancer: a single center, single arm trial publication-title: J Clin Oncol – volume: 77 start-page: CT018 issue: 13 Suppl year: 2017 – volume: 212 start-page: 1603 year: 2015 end-page: 1621 article-title: Deletion of CTLA‐4 on regulatory T cells during adulthood leads to resistance to autoimmunity publication-title: J Exp Med – volume: 78 start-page: 115 year: 2018 end-page: 128 article-title: CD39 expression defines cell exhaustion in tumor‐infiltrating CD8 T cells publication-title: Cancer Res – volume: 126 start-page: 4926 year: 2020 end-page: 4935 article-title: First‐in‐human phase 1 study of MK‐1248, an anti–glucocorticoid‐induced tumor necrosis factor receptor agonist monoclonal antibody, as monotherapy or with pembrolizumab in patients with advanced solid tumors publication-title: Cancer – volume: 175 start-page: 998 issue: 4 year: 2018 end-page: 1013.e20 article-title: Defining T cell states associated with response to checkpoint immunotherapy in melanoma publication-title: Cell – volume: 77 year: 2021 article-title: Immunometabolism of regulatory T cells in cancer publication-title: Mol Aspects Med – volume: 9 start-page: 176 issue: 5‐6 year: 2018 end-page: 189 article-title: The promising immune checkpoint LAG‐3: from tumor microenvironment to cancer immunotherapy publication-title: Genes Cancer – volume: 381 start-page: 1535 year: 2019 end-page: 1546 article-title: Five‐year survival with combined nivolumab and ipilimumab in advanced melanoma publication-title: N Engl J Med – volume: 46 start-page: 577 year: 2017 end-page: 586 article-title: Fc‐Optimized anti‐CD25 depletes tumor‐infiltrating regulatory T cells and synergizes with PD‐1 blockade to eradicate established tumors publication-title: Immunity – volume: 38 start-page: TPS839 issue: 4_suppl year: 2020 article-title: Phase II study of nivolumab and relatlimab in advanced mismatch repair deficient (dMMR) cancers resistant to prior PD‐(L)1 inhibition publication-title: J Clin Oncol – volume: 37 start-page: 1273 year: 2019 end-page: 1280 article-title: Metabolism and gut microbiota in cancer immunoediting, CD8/Treg ratios, immune cell homeostasis, and cancer (immuno)therapy: concise review publication-title: Stem Cells – volume: 113 start-page: 8490 year: 2016 end-page: 8495 article-title: Nonoverlapping roles of PD‐1 and FoxP3 in maintaining immune tolerance in a novel autoimmune pancreatitis mouse model publication-title: Proc Natl Acad Sci USA – volume: 232 start-page: 199 issue: 2 year: 2014 end-page: 209 article-title: Towards the introduction of the 'Immunoscore' in the classification of malignant tumours publication-title: J Pathol – volume: 125 start-page: 4053 year: 2015 end-page: 4062 article-title: TIGIT predominantly regulates the immune response via regulatory T cells publication-title: J Clin Invest – volume: 25 start-page: 3468 year: 2018 article-title: Anti‐CTLA‐4 immunotherapy does not deplete FOXP3 regulatory T cells (Tregs) in human cancers‐Letter publication-title: Clin Cancer Res – volume: 348 start-page: 124 year: 2015 end-page: 128 article-title: Mutational landscape determines sensitivity to PD‐1 blockade in non‐small cell lung cancer publication-title: Science – volume: 6 start-page: 202 year: 2016 end-page: 16 article-title: Loss of PTEN promotes resistance to T cell‐mediated immunotherapy publication-title: Cancer Discov – volume: 8 year: 2013 article-title: Intratumor hypoxia promotes immune tolerance by inducing regulatory T cells via TGF‐beta1 in gastric cancer publication-title: PLoS One – volume: 16 start-page: 5067 issue: 20 year: 2010 end-page: 5078 article-title: Dendritic cell vaccination in combination with anti‐CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients publication-title: Clin Cancer Res – volume: 22 start-page: 1499 year: 2016 end-page: 1509 article-title: RAS/MAPK activation is associated with reduced tumor‐infiltrating lymphocytes in triple‐negative breast cancer: therapeutic cooperation between MEK and PD‐1/PD‐L1 immune checkpoint inhibitors publication-title: Clin Cancer Res – volume: 7 start-page: 62 year: 2019 article-title: α‐PD‐1 therapy elevates Treg/Th balance and increases tumor cell pSmad3 that are both targeted by α‐TGFβ antibody to promote durable rejection and immunity in squamous cell carcinomas publication-title: J Immunotherapy Cancer – volume: 12 start-page: 36 year: 2014 article-title: Combined PD‐1 blockade and GITR triggering induce a potent antitumor immunity in murine cancer models and synergizes with chemotherapeutic drugs publication-title: J Transl Med – volume: 30 start-page: 899 year: 2009 end-page: 911 article-title: Functional delineation and differentiation dynamics of human CD4 T cells expressing the FoxP3 transcription factor publication-title: Immunity – volume: 66 start-page: 1275 year: 2017 end-page: 1285 article-title: CD45R Foxp3 regulatory T cells have a negative impact on the clinical outcome of head and neck squamous cell carcinoma publication-title: Cancer Immunol Immunother – volume: 160 start-page: 24 issue: 1 year: 2020 end-page: 37 article-title: Control of regulatory T‐cell differentiation and function by T‐cell receptor signalling and Foxp3 transcription factor complexes publication-title: Immunology – volume: 49 start-page: 247 year: 2018 end-page: 263.e7 article-title: PD‐1 inhibitory receptor downregulates asparaginyl endopeptidase and maintains Foxp3 transcription factor stability in induced regulatory T cells publication-title: Immunity – volume: 28 start-page: v611 year: 2017 end-page: v612 article-title: Efficacy of BMS‐986016, a monoclonal antibody that targets lymphocyte activation gene‐3 (LAG‐3), in combination with nivolumab in pts with melanoma who progressed during prior anti–PD‐1/PD‐L1 therapy (mel prior IO) in all‐comer and biomarker‐enriched populations publication-title: Ann Oncol – volume: 79 start-page: 4557 issue: 18 year: 2019 end-page: 4566 article-title: The tumor microenvironment innately modulates cancer progression publication-title: Can Res – volume: 80 start-page: 2913 year: 2020 – volume: 5 start-page: 7 year: 2016 article-title: Regulatory T cells with multiple suppressive and potentially pro‐tumor activities accumulate in human colorectal cancer publication-title: OncoImmunology – volume: 554 start-page: 544 year: 2018 end-page: 548 article-title: TGFβ attenuates tumour response to PD‐L1 blockade by contributing to exclusion of T cells publication-title: Nature – volume: 21 start-page: 1346 year: 2020 end-page: 1358 article-title: The PD‐1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD‐1 blockade therapies publication-title: Nat Immunol – volume: 21 start-page: 4327 year: 2015 end-page: 4336 article-title: Phase I a study of FoxP3 CD4 Treg depletion by infusion of a humanized anti‐CCR4 antibody, KW‐0761, in cancer patients publication-title: Clin Cancer Res – volume: 18 start-page: 1332 year: 2017 end-page: 1341 article-title: Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD‐L1‐blockade resistance in tumor publication-title: Nat Immunol – volume: 13 start-page: 889 year: 2021 article-title: Wnt/β‐Catenin signaling and immunotherapy resistance: lessons for the treatment of urothelial carcinoma publication-title: Cancers – volume: 3 start-page: 111ra120 year: 2011 article-title: The PDL1‐PD1 axis converts human Th1 cells into regulatory T cells publication-title: Sci Transl Med – volume: 194 start-page: 5801 year: 2015 end-page: 5811 article-title: PD‐1 upregulated on regulatory T cells during chronic virus infection enhances the suppression of CD8 T cell immune response via the interaction with PD‐L1 expressed on CD8 T cells publication-title: J Immunol – volume: 29 start-page: 846 year: 2019 end-page: 861 article-title: Sustained type I interferon signaling as a mechanism of resistance to PD‐1 blockade publication-title: Cell Res – volume: 132 start-page: 1341 year: 2013 end-page: 1350 article-title: Activated but not resting regulatory T cells accumulated in tumor microenvironment and correlated with tumor progression in patients with colorectal cancer publication-title: Int J Cancer – volume: 60 start-page: 1494 year: 2014 end-page: 507 article-title: Human OX40 tunes the function of regulatory T cells in tumor and nontumor areas of hepatitis C virus‐infected liver tissue publication-title: Hepatology – volume: 87 year: 2018 article-title: T‐cell cross‐reactivity may explain the large variation in how cancer patients respond to checkpoint inhibitors publication-title: Scand J Immunol – volume: 6 start-page: 6329 year: 2015 article-title: TGF‐β3‐expressing CD4 CD25 LAG3 regulatory T cells control humoral immune responses publication-title: Nat Commun – volume: 6 issue: 8 year: 2017 article-title: Immune biomarkers for prognosis and prediction of responses to immune checkpoint blockade in cutaneous melanoma publication-title: Oncoimmunology – volume: 20 start-page: 1231 year: 2019 end-page: 1243 article-title: PD‐1 blockade in subprimed CD8 cells induces dysfunctional PD‐1 CD38 cells and anti‐PD‐1 resistance publication-title: Nat Immunol – volume: 143 start-page: 3201 year: 2018 end-page: 3208 article-title: Expression of LAG‐3 and efficacy of combination treatment with anti‐LAG‐3 and anti‐PD‐1 monoclonal antibodies in glioblastoma publication-title: Int J Cancer – volume: 9 year: 2014 article-title: Lymphocyte Activation Gene 3 (LAG‐3) modulates the ability of CD4 T‐cells to be suppressed in vivo publication-title: PLoS One – volume: 38 start-page: 96 year: 2015 end-page: 106 article-title: Enhanced T‐cell immunity to osteosarcoma through antibody blockade of PD‐1/PD‐L1 interactions publication-title: J Immunother – volume: 78 start-page: CT180 issue: 13 Suppl year: 2018 – volume: 8 start-page: 561 year: 2017 article-title: PD‐1 and PD‐L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome publication-title: Front Pharmacol – volume: 2018 start-page: 132 year: 1962 article-title: Preclinical studies and a phase I trial of the TGF‐β receptor inhibitor, Vactosertib (TEW‐7197), in combination with pomalidomide in patients with multiple myeloma refractory to bortezomib or lenalidomide publication-title: Blood – volume: 7 start-page: 27033 year: 2016 end-page: 27043 article-title: Colorectal cancer cell‐derived extracellular vesicles induce phenotypic alteration of T cells into tumor‐growth supporting cells with transforming growth factor‐β1‐mediated suppression publication-title: Oncotarget – volume: 6 start-page: 47 year: 2018 article-title: Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti‐tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade publication-title: J Immunotherapy Cancer – volume: 116 start-page: 9999 year: 2019 end-page: 10008 article-title: PD‐1 regulatory T cells amplified by PD‐1 blockade promote hyperprogression of cancer publication-title: Proc Natl Acad Sci – volume: 206 start-page: 3015 year: 2009 end-page: 3029 article-title: PD‐L1 regulates the development, maintenance, and function of induced regulatory T cells publication-title: J Exp Med – volume: 37 start-page: 2604 year: 2019 article-title: AB928, a novel dual adenosine receptor antagonist, combined with chemotherapy or AB122 (anti‐PD‐1) in patients (pts) with advanced tumors: preliminary results from ongoing phase I studies publication-title: J Clin Oncol – volume: 33 start-page: 435 year: 2021 end-page: 446 article-title: Novel anti‐GARP antibody DS‐1055a augments antitumor immunity by depleting highly suppressive GARP regulatory T cells publication-title: Int Immunol – volume: 44 start-page: 2603 year: 2014 end-page: 2616 article-title: PD‐1 regulates extrathymic regulatory T‐cell differentiation publication-title: Eur J Immunol – volume: 38 start-page: 3002 year: 2020 article-title: A phase I combination study of vigil and atezolizumab in recurrent/refractory advanced‐stage ovarian cancer: efficacy assessment in BRCA1/2‐wt patients publication-title: J Clin Oncol – volume: 112 start-page: 6140 year: 2015 end-page: 6145 article-title: XXXX publication-title: Proc Natl Acad Sci – volume: 68 start-page: 503 year: 2019 end-page: 515 article-title: The effect of everolimus and low‐dose cyclophosphamide on immune cell subsets in patients with metastatic renal cell carcinoma: results from a phase I clinical trial publication-title: Cancer Immunol Immunother – volume: 12 start-page: 443 year: 2021 end-page: 464 article-title: TIGIT and PD1 co‐blockade restores ex vivo functions of human tumor‐infiltrating CD8 T cells in hepatocellular carcinoma publication-title: Cell Mol Gastroenterol Hepatol – volume: 7 start-page: 188 year: 2017 end-page: 201 article-title: Primary resistance to PD‐1 blockade mediated by JAK1/2 mutations publication-title: Cancer Discov – volume: 13 start-page: 2325 year: 2021 article-title: The ratio of GrzB ‐ FoxP3 over CD3 T cells as a potential predictor of response to nivolumab in patients with metastatic melanoma publication-title: Cancers (Basel) – volume: 20 start-page: 662 year: 2020 end-page: 680 article-title: The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy publication-title: Nat Rev Cancer – volume: 38 start-page: 9503 year: 2020 article-title: Primary analysis of a randomized, double‐blind, phase II study of the anti‐TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first‐line (1L) treatment in patients with PD‐L1‐selected NSCLC (CITYSCAPE) publication-title: JCO – volume: 26 start-page: 415 year: 2019 end-page: 424 article-title: The Immunoscore is a superior prognostic tool in stages II and III colorectal cancer and is significantly correlated with programmed death‐ligand 1 (PD‐L1) expression on tumor‐infiltrating mononuclear cells publication-title: Ann Surg Oncol – volume: 10 start-page: 2083 year: 2020 article-title: Clinical efficacy and safety of anti‐PD‐1/PD‐L1 inhibitors for the treatment of advanced or metastatic cancer: a systematic review and meta‐analysis publication-title: Sci Rep – volume: 375 start-page: 819 year: 2016 end-page: 829 article-title: Mutations associated with acquired resistance to PD‐1 blockade in melanoma publication-title: N Engl J Med – volume: 19 start-page: 5626 year: 2013 end-page: 5635 article-title: Targeting CD73 enhances the antitumor activity of anti‐PD‐1 and anti‐CTLA‐4 mAbs publication-title: Clin Cancer Res – volume: 1 year: 2016 article-title: PD‐1 marks dysfunctional regulatory T cells in malignant gliomas publication-title: JCI Insight – ident: e_1_2_11_91_1 doi: 10.1002/cncr.33133 – ident: e_1_2_11_95_1 doi: 10.1182/blood-2011-02-334565 – start-page: 2913 volume-title: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020 year: 2020 ident: e_1_2_11_98_1 – ident: e_1_2_11_58_1 doi: 10.3389/fimmu.2020.00125 – ident: e_1_2_11_28_1 doi: 10.1002/path.4287 – ident: e_1_2_11_32_1 doi: 10.1038/s41467-020-20600-7 – ident: e_1_2_11_54_1 doi: 10.1084/jem.20090847 – ident: e_1_2_11_74_1 doi: 10.1186/s40425-018-0356-4 – ident: e_1_2_11_56_1 doi: 10.1038/s41467-021-21297-y – ident: e_1_2_11_89_1 doi: 10.1200/JCO.2020.38.15_suppl.9503 – ident: e_1_2_11_35_1 doi: 10.1111/imm.13178 – ident: e_1_2_11_82_1 doi: 10.3389/fonc.2018.00086 – ident: e_1_2_11_102_1 doi: 10.1056/NEJMoa1910836 – ident: e_1_2_11_17_1 doi: 10.3892/ol.2020.12410 – ident: e_1_2_11_50_1 doi: 10.1073/pnas.1822001116 – ident: e_1_2_11_52_1 doi: 10.1126/scitranslmed.3003130 – ident: e_1_2_11_27_1 doi: 10.1038/s41590-020-0769-3 – ident: e_1_2_11_85_1 doi: 10.1093/annonc/mdx440.011 – ident: e_1_2_11_93_1 doi: 10.1158/1538-7445.AM2017-CT018 – ident: e_1_2_11_24_1 doi: 10.1093/bfgp/ely006 – ident: e_1_2_11_40_1 doi: 10.1172/jci.insight.121157 – ident: e_1_2_11_44_1 doi: 10.1016/j.immuni.2009.03.019 – ident: e_1_2_11_18_1 doi: 10.1158/0008-5472.CAN-18-3962 – ident: e_1_2_11_25_1 doi: 10.1097/CJI.0000000000000065 – ident: e_1_2_11_16_1 doi: 10.1158/1078-0432.CCR-15-1125 – ident: e_1_2_11_61_1 doi: 10.4049/jimmunol.1401936 – ident: e_1_2_11_62_1 doi: 10.1073/pnas.1201131109 – ident: e_1_2_11_69_1 doi: 10.1158/0008-5472.CAN-16-2684 – ident: e_1_2_11_64_1 doi: 10.1016/j.humimm.2020.12.005 – ident: e_1_2_11_3_1 doi: 10.1056/NEJMoa1604958 – ident: e_1_2_11_23_1 doi: 10.3389/fphar.2017.00561 – volume: 2018 start-page: 132 year: 1962 ident: e_1_2_11_76_1 article-title: Preclinical studies and a phase I trial of the TGF‐β receptor inhibitor, Vactosertib (TEW‐7197), in combination with pomalidomide in patients with multiple myeloma refractory to bortezomib or lenalidomide publication-title: Blood – ident: e_1_2_11_21_1 doi: 10.1002/stem.3051 – ident: e_1_2_11_10_1 doi: 10.1158/2159-8290.CD-16-1223 – ident: e_1_2_11_39_1 doi: 10.1371/journal.pone.0063777 – ident: e_1_2_11_92_1 doi: 10.1186/1479-5876-12-36 – ident: e_1_2_11_11_1 doi: 10.1038/nature23477 – ident: e_1_2_11_45_1 doi: 10.1002/ijc.27784 – ident: e_1_2_11_53_1 doi: 10.1111/imm.12209 – ident: e_1_2_11_30_1 doi: 10.1245/s10434-018-07110-z – ident: e_1_2_11_47_1 doi: 10.1182/blood-2016-09-741629 – ident: e_1_2_11_48_1 doi: 10.1172/jci.insight.85935 – ident: e_1_2_11_43_1 doi: 10.1371/journal.pone.0109080 – ident: e_1_2_11_101_1 doi: 10.1007/s00262-018-2288-8 – ident: e_1_2_11_8_1 doi: 10.1126/science.aan6733 – ident: e_1_2_11_65_1 doi: 10.1158/1078-0432.CCR-13-0545 – ident: e_1_2_11_5_1 doi: 10.1038/s41422-019-0224-x – ident: e_1_2_11_19_1 doi: 10.3389/fimmu.2017.01178 – ident: e_1_2_11_78_1 doi: 10.1084/jem.20130579 – ident: e_1_2_11_86_1 doi: 10.1200/JCO.2020.38.4_suppl.TPS839 – ident: e_1_2_11_87_1 doi: 10.1172/jci.insight.121157 – ident: e_1_2_11_37_1 doi: 10.1080/2162402X.2016.1175800 – ident: e_1_2_11_13_1 doi: 10.1158/2159-8290.CD-15-0283 – ident: e_1_2_11_33_1 doi: 10.1016/j.cell.2018.10.038 – ident: e_1_2_11_4_1 doi: 10.1126/science.aaa1348 – ident: e_1_2_11_31_1 doi: 10.1080/2162402X.2017.1299303 – ident: e_1_2_11_38_1 doi: 10.18632/oncotarget.7041 – ident: e_1_2_11_57_1 doi: 10.1517/14712598.2012.707184 – ident: e_1_2_11_55_1 doi: 10.1016/j.immuni.2018.05.006 – ident: e_1_2_11_94_1 doi: 10.1158/1078-0432.CCR-10-1757 – ident: e_1_2_11_14_1 doi: 10.1016/j.immuni.2017.02.001 – ident: e_1_2_11_46_1 doi: 10.1007/s00262-017-2021-z – ident: e_1_2_11_75_1 doi: 10.1136/jitc-2020-002068 – ident: e_1_2_11_2_1 doi: 10.1038/s41598-020-58674-4 – ident: e_1_2_11_63_1 doi: 10.1038/ncomms7329 – ident: e_1_2_11_67_1 doi: 10.1158/1538-7445.AM2018-CT180 – ident: e_1_2_11_49_1 doi: 10.1073/pnas.1608873113 – ident: e_1_2_11_83_1 doi: 10.18632/genesandcancer.180 – ident: e_1_2_11_80_1 doi: 10.1073/pnas.1417320112 – ident: e_1_2_11_73_1 doi: 10.1093/intimm/dxab027 – ident: e_1_2_11_42_1 doi: 10.1002/hep.27188 – ident: e_1_2_11_88_1 doi: 10.1016/j.jcmgh.2021.03.003 – ident: e_1_2_11_66_1 doi: 10.1038/ni.3868 – ident: e_1_2_11_97_1 doi: 10.1158/1078-0432.CCR-15-0357 – ident: e_1_2_11_15_1 doi: 10.3390/cancers13040889 – ident: e_1_2_11_36_1 doi: 10.1016/j.mam.2020.100936 – ident: e_1_2_11_70_1 doi: 10.1038/s41467-020-17811-3 – ident: e_1_2_11_12_1 doi: 10.1038/nature23270 – ident: e_1_2_11_26_1 doi: 10.1158/2326-6066.CIR-16-0237 – ident: e_1_2_11_34_1 doi: 10.1016/j.immuni.2012.09.010 – ident: e_1_2_11_84_1 doi: 10.1002/ijc.31661 – ident: e_1_2_11_20_1 doi: 10.1038/s41571-019-0175-7 – ident: e_1_2_11_100_1 doi: 10.1200/JCO.2019.37.7_suppl.657 – ident: e_1_2_11_6_1 doi: 10.1038/s41590-019-0441-y – ident: e_1_2_11_9_1 doi: 10.1186/s40364-020-00212-5 – ident: e_1_2_11_99_1 doi: 10.1158/1078-0432.CCR-17-0741 – ident: e_1_2_11_96_1 doi: 10.1016/j.immuni.2017.03.013 – ident: e_1_2_11_71_1 doi: 10.1186/s40425-018-0493-9 – ident: e_1_2_11_59_1 doi: 10.1038/s41598-020-76130-1 – ident: e_1_2_11_41_1 doi: 10.1172/JCI81187 – ident: e_1_2_11_7_1 doi: 10.1111/sji.12643 – ident: e_1_2_11_51_1 doi: 10.1002/eji.201344423 – ident: e_1_2_11_29_1 doi: 10.1038/s41568-020-0285-7 – ident: e_1_2_11_77_1 doi: 10.1200/JCO.2020.38.15_suppl.3002 – ident: e_1_2_11_68_1 doi: 10.1200/JCO.2019.37.15_suppl.2604 – ident: e_1_2_11_81_1 doi: 10.1158/1078-0432.CCR-18-3740 – ident: e_1_2_11_72_1 doi: 10.1038/nature25501 – ident: e_1_2_11_90_1 doi: 10.1016/j.canlet.2021.04.011 – ident: e_1_2_11_22_1 doi: 10.1016/j.molmed.2014.10.009 – ident: e_1_2_11_79_1 doi: 10.1084/jem.20141030 – ident: e_1_2_11_60_1 doi: 10.3390/cancers13102325 |
SSID | ssj0013273 |
Score | 2.5261497 |
SecondaryResourceType | review_article |
Snippet | The programmed death (PD)‐1/PD‐ligand (PD‐L) pathway and regulatory T cells (Tregs) are essential for the maintenance of immune tolerance. Their activation in... The programmed death (PD)-1/PD-ligand (PD-L) pathway and regulatory T cells (Tregs) are essential for the maintenance of immune tolerance. Their activation in... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e13129 |
SubjectTerms | Animals Apoptosis B7-H1 Antigen - immunology cancer Cancer immunotherapy Humans Immune checkpoint Immune Tolerance - immunology Immunological tolerance Immunoregulation Immunosurveillance Immunotherapy Immunotherapy - methods Lymphocytes T Microenvironments Neoplasms - immunology Neoplasms - therapy PD-L1 protein PD‐1/PD‐L1 Programmed Cell Death 1 Receptor - immunology regulatory T cells Signal transduction T-Lymphocytes, Regulatory - immunology Transformed cells Tumor microenvironment Tumor Microenvironment - immunology Tumors |
Title | Targeting regulatory T cells in anti‐PD‐1/PD‐L1 cancer immunotherapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsji.13129 https://www.ncbi.nlm.nih.gov/pubmed/34936125 https://www.proquest.com/docview/2631461343 https://www.proquest.com/docview/2612736852 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hKioutFCgy0tu1QOXbOOM492oJx5d0VVBqF0kDpWixA9pKcqifRy2p_4EfmN_ScfOQ9CChLjkOZEdz4z92Z4HwAcrNXaM5kGe8SQQOtZBJt12oU1Mh1uCAN6L__RMnlyI_mV8uQCfal-YMj5Es-DmNMP3107Bs3xyR8knV8M2RxquqP91tloOEH2L7uwglLvLGIZBIjpxFVXIWfE0X94fi_4DmPfxqh9weq_gR13V0s7kZ3s2zdvq1z9RHJ_5L69hpQKi7KCUnFVYMMUaLJWpKedr8PK02nR_A_2BtxanMY6Ny8z1o_GcDZhb85-wYcGIOcM_v2_Pj-nAP_rTV86Uk6cxGzoHlMrNa74OF73Pg6OToErBECh09k-KEFkU6TAPMaE5uIlEnsdZxxIssZweZmiFVNRHJYiah6h0qFCKTKFQmbESN2CxGBXmLTACArFUibIE4ESkul0lNJeWwL2hWx22YL9mRqqq-OQuTcZ1Ws9TqJVS30oteN-Q3pRBOR4i2qk5mlZ6OUkjiS6ROQpswbvmNWmUa7KsMKOZo-EkO5J-vAWbpSQ0paBI0GFCqqzn5-PFp9_7X_zF1tNJt2E5ct4V3sRtBxan45nZJcwzzffgxcHh8WFvzwv5X-yp_bg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiiXUgqU7QuDOHDJEmccbyNxqaDVdtmtUNlKvaAo8UPagrLVPg7bU39Cf2N_CWPnobaAhLjk6ciOPeP57HkBvLNSY8doHuQZTwKhYx1k0qkLbWI63BIE8F78g2PZPRW9s_hsCT7WvjBlfIhmw81xhp-vHYO7DelbXD49H7U5krx6AA9dRm-_oDqJbukQSv0yhmGQiE5cxRVydjzNp3el0W8Q8y5i9SLn8Cl8rxtbWpr8aM9neVtd3ovj-L9_swarFRZl-yXxPIMlU6zDozI75WIdHg8qvftz6A29wTiJOTYpk9ePJws2ZG7bf8pGBaPxGd1cXX_9TAf-wZ_6nClHUhM2cj4olafX4gWcHh4MP3WDKgtDoNCZQCkCZVGkwzzEhJbhJhJ5HmcdS8jEcnqYoRVS0TSVIGoeotKhQikyhUJlxkp8CcvFuDCvgBEWiKVKlCUMJyK1t6eE5tISvjd0q8MWvK9HI1VViHKXKeNnWi9VqJdS30steNsUvSjjcvyp0HY9pGnFmtM0kuhymaPAFrxpXhNTuS7LCjOeuzKciEfSj7dgoySFphYUCTpYSI31A_r36tNvvSN_sfnvRV_DSnc46Kf9o-MvW_Akcs4W3uJtG5Znk7nZIQg0y3c9pf8CwVcAcA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEK4gRsIFFQUWUVvjwcss01M9vTvxZFw2sAIhuiQcTCYz_UgWyCzZx2E5-RP8jfwSqnseAcXEeJlnTbqnq6r76-56AHywUmPHaB7kGU8CoWMdZNJtF9rEdLglCOC9-I-O5f6pGJzFZ0vwqfaFKeNDNAtuTjN8f-0U_ErbO0o-PR-1OdJw9QgeCxl2nUj3vkV3thDK7WUMwyARnbgKK-TMeJpP7w9GfyDM-4DVjzj9p_CjrmtpaHLRns_ytrr-LYzjf_7MM1irkCj7XIrOc1gyxTo8KXNTLtZh5ajadX8Bg6E3F6dBjk3K1PXjyYINmVv0n7JRwYg7o5ufv056dOC7_nTImXICNWEj54FS-XktXsJpf2_4ZT-ocjAECp0BlCJIFkU6zENMaBJuIpHncdaxhEssp4cZWiEVdVIJouYhKh0qlCJTKFRmrMQNWC7GhdkCRkgglipRlhCciFS3q4Tm0hK6N3SrwxZ8rJmRqipAucuTcZnWExVqpdS3UgveN6RXZVSOh4h2ao6mlWJO00iiy2SOAlvwrnlNKuWaLCvMeO5oOMmOpB9vwWYpCU0pKBJ0oJAq6_n59-LT74MDf7H976RvYeWk108PD46_voLVyHlaeHO3HVieTebmNeGfWf7Gy_kt3lT_GQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+regulatory+T+cells+in+anti%E2%80%90PD%E2%80%901%2FPD%E2%80%90L1+cancer+immunotherapy&rft.jtitle=Scandinavian+journal+of+immunology&rft.au=Zhulai%2C+Galina&rft.au=Oleinik%2C+Eugenia&rft.date=2022-03-01&rft.issn=0300-9475&rft.eissn=1365-3083&rft.volume=95&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fsji.13129&rft.externalDBID=10.1111%252Fsji.13129&rft.externalDocID=SJI13129 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-9475&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-9475&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-9475&client=summon |