The inverse electron demand Diels–Alder cycloaddition with carbon‐11 and fluorine‐18: A gateway to pretargeted imaging across the blood–brain barrier
There is increased focus on developing tools to image large biomolecules, such as antibodies, within the brain using positron emission tomography (PET). The inverse electron demand Diels–Alder cycloaddition (IEDDA) reaction has offered the greatest prospect of achieving such a feat and has gained mu...
Saved in:
Published in | Journal of labelled compounds & radiopharmaceuticals Vol. 66; no. 9; pp. 249 - 268 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is increased focus on developing tools to image large biomolecules, such as antibodies, within the brain using positron emission tomography (PET). The inverse electron demand Diels–Alder cycloaddition (IEDDA) reaction has offered the greatest prospect of achieving such a feat and has gained much interest over the past decade. The fast reaction kinetics of the IEDDA reaction opens up the possibility of utilising a pretargeted approach, whereby the subject is pretreated with a biomolecule that has high specificity for its target. A radiolabelled second component is then administered to the subject, enabling the biomolecule to be visualised by PET. However, for this to become common practice, there is a need for the development of either radiolabelled trans‐cyclooctenes (TCOs) or tetrazines that can cross the blood–brain barrier (BBB). This review highlights the advancements in the development of both radiolabelled TCOs and tetrazines, which have been radiolabelled with either carbon‐11 or fluorine‐18 and show promise or have been evaluated for use in pretargeted PET imaging across the BBB.
There has been increased interest in the use of inverse electron demand Diels–Alder cycloaddition reaction in pretargeted PET imaging making use of tetrazines and trans‐cyclooctenes. This has opened up the possibility to perform pretargeted PET imaging within the brain. This review highlights the development of carbon‐11 and fluorine‐18 radiolabelled tetrazines and trans‐cyclooctenes and then explores their ability to cross the blood–brain barrier, their stability and finally their use in pretargeted PET imaging experiments. |
---|---|
AbstractList | There is increased focus on developing tools to image large biomolecules, such as antibodies, within the brain using positron emission tomography (PET). The inverse electron demand Diels-Alder cycloaddition (IEDDA) reaction has offered the greatest prospect of achieving such a feat and has gained much interest over the past decade. The fast reaction kinetics of the IEDDA reaction opens up the possibility of utilising a pretargeted approach, whereby the subject is pretreated with a biomolecule that has high specificity for its target. A radiolabelled second component is then administered to the subject, enabling the biomolecule to be visualised by PET. However, for this to become common practice, there is a need for the development of either radiolabelled trans-cyclooctenes (TCOs) or tetrazines that can cross the blood-brain barrier (BBB). This review highlights the advancements in the development of both radiolabelled TCOs and tetrazines, which have been radiolabelled with either carbon-11 or fluorine-18 and show promise or have been evaluated for use in pretargeted PET imaging across the BBB. There is increased focus on developing tools to image large biomolecules, such as antibodies, within the brain using positron emission tomography (PET). The inverse electron demand Diels-Alder cycloaddition (IEDDA) reaction has offered the greatest prospect of achieving such a feat and has gained much interest over the past decade. The fast reaction kinetics of the IEDDA reaction opens up the possibility of utilising a pretargeted approach, whereby the subject is pretreated with a biomolecule that has high specificity for its target. A radiolabelled second component is then administered to the subject, enabling the biomolecule to be visualised by PET. However, for this to become common practice, there is a need for the development of either radiolabelled trans-cyclooctenes (TCOs) or tetrazines that can cross the blood-brain barrier (BBB). This review highlights the advancements in the development of both radiolabelled TCOs and tetrazines, which have been radiolabelled with either carbon-11 or fluorine-18 and show promise or have been evaluated for use in pretargeted PET imaging across the BBB.There is increased focus on developing tools to image large biomolecules, such as antibodies, within the brain using positron emission tomography (PET). The inverse electron demand Diels-Alder cycloaddition (IEDDA) reaction has offered the greatest prospect of achieving such a feat and has gained much interest over the past decade. The fast reaction kinetics of the IEDDA reaction opens up the possibility of utilising a pretargeted approach, whereby the subject is pretreated with a biomolecule that has high specificity for its target. A radiolabelled second component is then administered to the subject, enabling the biomolecule to be visualised by PET. However, for this to become common practice, there is a need for the development of either radiolabelled trans-cyclooctenes (TCOs) or tetrazines that can cross the blood-brain barrier (BBB). This review highlights the advancements in the development of both radiolabelled TCOs and tetrazines, which have been radiolabelled with either carbon-11 or fluorine-18 and show promise or have been evaluated for use in pretargeted PET imaging across the BBB. There is increased focus on developing tools to image large biomolecules, such as antibodies, within the brain using positron emission tomography (PET). The inverse electron demand Diels–Alder cycloaddition (IEDDA) reaction has offered the greatest prospect of achieving such a feat and has gained much interest over the past decade. The fast reaction kinetics of the IEDDA reaction opens up the possibility of utilising a pretargeted approach, whereby the subject is pretreated with a biomolecule that has high specificity for its target. A radiolabelled second component is then administered to the subject, enabling the biomolecule to be visualised by PET. However, for this to become common practice, there is a need for the development of either radiolabelled trans‐cyclooctenes (TCOs) or tetrazines that can cross the blood–brain barrier (BBB). This review highlights the advancements in the development of both radiolabelled TCOs and tetrazines, which have been radiolabelled with either carbon‐11 or fluorine‐18 and show promise or have been evaluated for use in pretargeted PET imaging across the BBB. There has been increased interest in the use of inverse electron demand Diels–Alder cycloaddition reaction in pretargeted PET imaging making use of tetrazines and trans‐cyclooctenes. This has opened up the possibility to perform pretargeted PET imaging within the brain. This review highlights the development of carbon‐11 and fluorine‐18 radiolabelled tetrazines and trans‐cyclooctenes and then explores their ability to cross the blood–brain barrier, their stability and finally their use in pretargeted PET imaging experiments. There is increased focus on developing tools to image large biomolecules, such as antibodies, within the brain using positron emission tomography (PET). The inverse electron demand Diels–Alder cycloaddition (IEDDA) reaction has offered the greatest prospect of achieving such a feat and has gained much interest over the past decade. The fast reaction kinetics of the IEDDA reaction opens up the possibility of utilising a pretargeted approach, whereby the subject is pretreated with a biomolecule that has high specificity for its target. A radiolabelled second component is then administered to the subject, enabling the biomolecule to be visualised by PET. However, for this to become common practice, there is a need for the development of either radiolabelled trans ‐cyclooctenes (TCOs) or tetrazines that can cross the blood–brain barrier (BBB). This review highlights the advancements in the development of both radiolabelled TCOs and tetrazines, which have been radiolabelled with either carbon‐11 or fluorine‐18 and show promise or have been evaluated for use in pretargeted PET imaging across the BBB. |
Author | Thompson, Stephen Aigbirhio, Franklin I. Zientek, Simon H. Sephton, Selena Milicevic |
Author_xml | – sequence: 1 givenname: Simon H. surname: Zientek fullname: Zientek, Simon H. organization: University of Cambridge – sequence: 2 givenname: Stephen orcidid: 0000-0003-3596-7812 surname: Thompson fullname: Thompson, Stephen email: st534@cam.ac.uk organization: University of Cambridge – sequence: 3 givenname: Selena Milicevic orcidid: 0000-0002-1105-6726 surname: Sephton fullname: Sephton, Selena Milicevic organization: University of Cambridge – sequence: 4 givenname: Franklin I. surname: Aigbirhio fullname: Aigbirhio, Franklin I. organization: University of Cambridge |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37147795$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1uGyEUhVGVqnHSLvoCFVI3zWISGPB46M5y_2WpUpWuEQN3HCwMLjCxvMsjVMq6L5cnKZM4m6hdIcF3Dveec4KOfPCA0GtKzikh9cXa6XjOSS2eoQklQlSUcX6EJoQ1dcVbwo7RSUprQsob5y_QMZtRPpuJ6QT9ubwCbP01xAQYHOgcg8cGNsob_MGCS3c3t3NnIGK91y4oY2y2BdnZfIW1il3wdze_KcWjoHdDiNbDeNO-x3O8Uhl2ao9zwNsIWcUVZDDYbtTK-hVWOoaUcC4zdC4EU_7qorIedypGC_Elet4rl-DV4TxFPz99vFx8qZbfP39dzJeVZm0rqqbtjQDdClL3U6LrXiluWs2Vrqfc1MawjnBhmGhmogFOe02njeIN60wLXaPYKXr34LuN4dcAKcuNTRqcUx7CkGTdlljpjFNe0LdP0HUYoi_TFYoTyutGsEK9OVBDtwEjt7GsHPfyMfgCXDwA9wlE6KW2WY3J5hKAk5TIsVo5VivHaovi7Ini0fRf7MF9Zx3s_w_Kb8vFj3vFX9HuuL0 |
CitedBy_id | crossref_primary_10_3390_molecules29133198 crossref_primary_10_1002_hlca_202400014 crossref_primary_10_1016_j_bioorg_2024_107573 crossref_primary_10_1002_jlcr_4126 |
Cites_doi | 10.1016/j.bioadv.2022.213125 10.1039/C6SC02933G 10.3390/cancers14061454 10.3390/pharmaceutics14061283 10.1016/S0969‐8051(22)00370‐5 10.1007/s11307‐022‐01744‐y 10.1038/s41578‐021‐00394‐w 10.1039/C5CS00784D 10.1016/j.currproblcancer.2021.100796 10.1039/c3cc41027g 10.1039/C7OB01707C 10.1016/S0969‐8051(22)00232‐3 10.1016/j.bmcl.2011.04.116 10.1021/bc400153y 10.1016/j.nucmedbio.2019.11.001 10.1039/C6OB01411A 10.3390/ph16040497 10.1039/C4SC01348D 10.1016/j.bmcl.2019.02.014 10.1039/D2MD00360K 10.1039/C7CS00184C 10.1038/s41591‐019‐0723‐9 10.1021/acschemneuro.0c00652 10.3109/10611869808997889 10.1016/j.apradiso.2008.08.015 10.1021/acs.bioconjchem.5b00089 10.1002/chem.202000028 10.1039/C8CC09747J 10.1002/asia.201700442 10.1056/NEJMcibr2213596 10.1124/dmd.108.024745 10.1016/j.cbpa.2017.04.019 10.1097/PPO.0000000000000625 10.1021/cn100008c 10.1053/j.seminoncol.2014.07.004 10.1021/jacs.2c01056 10.7150/thno.14742 10.1016/j.apradiso.2004.04.011 10.1039/C6CS00076B 10.1517/17425247.2014.952627 10.1007/s10593‐013‐1232‐2 10.1021/acs.bioconjchem.0c00568 10.1021/acs.bioconjchem.7b00635 10.1007/s00259‐019‐04426‐0 10.1021/acs.molpharmaceut.0c00523 10.3390/ph15060685 10.1002/anie.201404277 10.1039/c0cc03078c 10.1021/acs.bioconjchem.6b00234 10.1016/j.biomaterials.2018.06.021 10.3390/ph14090847 10.1021/acs.jmedchem.1c00667 10.1038/d41587‐019‐00017‐4 10.3390/ph15101191 10.1016/j.cbpa.2003.08.006 10.1021/acsomega.9b03584 10.1016/j.drudis.2014.08.012 10.1021/acs.jmedchem.9b01220 10.1021/acsptsci.1c00133 10.1021/ja201844c 10.1021/bc200295y 10.1038/jcbfm.2012.126 10.1021/cr0782426 10.1021/acs.jmedchem.0c00955 10.1016/j.nucmedbio.2014.03.023 10.1021/acs.molpharmaceut.7b00158 10.1080/17425247.2018.1378180 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Ltd. 2023 The Authors. Journal of Labelled Compounds and Radiopharmaceuticals published by John Wiley & Sons Ltd. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd. – notice: 2023 The Authors. Journal of Labelled Compounds and Radiopharmaceuticals published by John Wiley & Sons Ltd. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/jlcr.4029 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1099-1344 |
EndPage | 268 |
ExternalDocumentID | 37147795 10_1002_jlcr_4029 JLCR4029 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ACAHQ ACBWZ ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AI. AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GWYGA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES M6Q MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO ROL RX1 SAMSI SUPJJ TUS UB1 V2E VH1 W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c3889-68fd9ec8902f50c2faa4d8c4ac254d2dd3b049d396796e41fc156a463bd8eb6a3 |
IEDL.DBID | DR2 |
ISSN | 0362-4803 1099-1344 |
IngestDate | Thu Jul 10 17:19:54 EDT 2025 Fri Jul 25 12:23:50 EDT 2025 Mon Jul 21 05:55:20 EDT 2025 Tue Jul 01 01:21:00 EDT 2025 Thu Apr 24 23:10:56 EDT 2025 Sun Jul 06 04:45:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | blood-brain barrier trans-cyclooctene carbon-11 inverse electron demand Diels-Alder reaction tetrazine pretargeted imaging |
Language | English |
License | Attribution 2023 The Authors. Journal of Labelled Compounds and Radiopharmaceuticals published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3889-68fd9ec8902f50c2faa4d8c4ac254d2dd3b049d396796e41fc156a463bd8eb6a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3596-7812 0000-0002-1105-6726 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjlcr.4029 |
PMID | 37147795 |
PQID | 2840142693 |
PQPubID | 1006402 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2810917414 proquest_journals_2840142693 pubmed_primary_37147795 crossref_citationtrail_10_1002_jlcr_4029 crossref_primary_10_1002_jlcr_4029 wiley_primary_10_1002_jlcr_4029_JLCR4029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 20230701 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bognor Regis |
PublicationTitle | Journal of labelled compounds & radiopharmaceuticals |
PublicationTitleAlternate | J Labelled Comp Radiopharm |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2004; 61 2021; 64 2020; 63 2013; 24 2019; 55 2017; 46 2020; 17 2008; 108 2022; 24 2020; 11 2022; 28 2020; 5 2021; 32 2014; 5 2022; 108–109 2010; 1 2019; 62 2017; 38 2018; 179 2003; 7 2011; 22 2011; 21 2019; 29 2014; 19 2016; 45 2014; 53 2009; 67 2015; 12 2021; 7 2021; 4 2023; 14 2021; 45 2019; 76–77 2013; 49 2012 2017; 28 2023; 16 2019; 37 2014; 41 2012; 32 2016; 14 2011; 133 2022; 144 2021; 14 2022; 387 2016; 6 2015; 26 2022; 141 2010; 46 2017; 15 2017; 14 2019; 46 2017; 12 2022; 14 2020; 26 2022; 15 1998; 6 2016; 27 2018; 15 2009; 37 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 Barbet J (e_1_2_6_26_1) 2012 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – volume: 27 start-page: 1707 issue: 7 year: 2016 end-page: 1712 article-title: Design, synthesis, and evaluation of a low‐molecular‐weight 11 C‐labeled Tetrazine for pretargeted PET imaging applying bioorthogonal in vivo click chemistry publication-title: Bioconjug Chem – volume: 24 start-page: 940 issue: 6 year: 2022 end-page: 949 article-title: Non‐invasive imaging of antisense oligonucleotides in the brain via in vivo click chemistry publication-title: Mol Imaging Biol – volume: 387 start-page: 2291 issue: 24 year: 2022 end-page: 2293 article-title: Click here for better chemistry publication-title: N Engl J Med – volume: 21 start-page: 5011 issue: 17 year: 2011 end-page: 5014 article-title: Tetrazine‐trans‐cyclooctene ligation for the rapid construction of integrin αvβ3 targeted PET tracer based on a cyclic RGD peptide publication-title: Bioorg Med Chem Lett – volume: 49 start-page: 3805 issue: 36 year: 2013 end-page: 3807 article-title: Development of a 11C‐labeled tetrazine for rapid tetrazine–trans‐cyclooctene ligation publication-title: Chem Commun – volume: 53 start-page: 9655 issue: 36 year: 2014 end-page: 9659 article-title: Development of a 18 F‐labeled Tetrazine with favorable pharmacokinetics for bioorthogonal PET imaging publication-title: Angew Chem Int Ed – volume: 16 start-page: 497 issue: 4 year: 2023 article-title: Clearing and masking agents in pretargeting strategies publication-title: Pharmaceuticals – volume: 1 start-page: 435 issue: 6 year: 2010 end-page: 449 article-title: Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties publication-title: ACS Chem Nerosci – volume: 49 start-page: 66 issue: 1 year: 2013 end-page: 91 article-title: 1,2,4,5‐tetrazines and azolo[1,2,4,5]tetrazines: synthesis and reactions with nucleophiles publication-title: Chem Heterocycl Compd – volume: 4 start-page: 1556 issue: 5 year: 2021 end-page: 1566 article-title: Insights into elution of anion exchange cartridges: opening the path toward aliphatic 18 F‐radiolabeling of base‐sensitive tracers publication-title: ACS Pharmacol Transl Sci – volume: 12 start-page: 2142 issue: 17 year: 2017 end-page: 2159 article-title: Inverse‐electron‐demand Diels–Alder reactions: principles and applications publication-title: Chem ‐ An Asian J – volume: 45 start-page: 6415 issue: 23 year: 2016 end-page: 6431 article-title: New insights into the pretargeting approach to image and treat tumours publication-title: Chem Soc Rev – volume: 46 start-page: 4895 issue: 16 year: 2017 end-page: 4950 article-title: Inverse electron demand Diels–Alder reactions in chemical biology publication-title: Chem Soc Rev – volume: 15 start-page: 185 issue: 2 year: 2018 end-page: 196 article-title: Radioimmunotherapy for delivery of cytotoxic radioisotopes: current status and challenges publication-title: Expert Opin Drug Deliv – volume: 8 start-page: 1251 issue: 2 year: 2017 end-page: 1258 article-title: Micro‐flow photosynthesis of new dienophiles for inverse‐electron‐demand Diels–Alder reactions. Potential applications for pretargeted in vivo PET imaging publication-title: Chem Sci – volume: 32 start-page: 1959 issue: 11 year: 2012 end-page: 1972 article-title: Drug transport across the blood–brain barrier publication-title: J Cereb Blood Flow Metab – volume: 14 start-page: 847 issue: 9 year: 2021 article-title: Alpha‐synuclein PET tracer development—an overview about current efforts publication-title: Pharmaceuticals – volume: 19 start-page: 1936 issue: 12 year: 2014 end-page: 1944 article-title: Radioligand development for molecular imaging of the central nervous system with positron emission tomography publication-title: Drug Discov Today – volume: 17 start-page: 3115 year: 2020 article-title: Metabolism of a bioorthogonal PET tracer candidate [19 F/18 F]SiFA‐tetrazine in mouse liver microsomes: biotransformation pathways and defluorination investigated by UHPLC‐HRMS publication-title: Mol Pharm – volume: 76–77 start-page: 36 year: 2019 end-page: 42 article-title: Improved stability of a novel fluorine‐18 labeled TCO analogue for pretargeted PET imaging publication-title: Nucl Med Biol – volume: 32 start-page: 63 issue: 1 year: 2021 end-page: 72 article-title: Tailored bioorthogonal and bioconjugate chemistry: a source of inspiration for developing kinetic target‐guided synthesis strategies publication-title: Bioconjug Chem – volume: 61 start-page: 1279 issue: 6 year: 2004 end-page: 1287 article-title: Stability of 11C‐labeled PET radiopharmaceuticals publication-title: Appl Radiat Isot – volume: 37 start-page: 835 issue: 8 year: 2019 end-page: 837 article-title: Click chemistry targets antibody‐drug conjugates for the clinic publication-title: Nat Biotechnol – volume: 28 start-page: 446 issue: 6 year: 2022 end-page: 453 article-title: The role of radiolabeled monoclonal antibodies in cancer imaging and ADC treatment publication-title: Cancer J – volume: 14 start-page: 7544 issue: 31 year: 2016 end-page: 7551 article-title: Development of a novel antibody–tetrazine conjugate for bioorthogonal pretargeting publication-title: Org Biomol Chem – volume: 55 start-page: 2485 issue: 17 year: 2019 end-page: 2488 article-title: Hydrophilic 18 F‐labeled trans ‐5‐oxocene (oxoTCO) for efficient construction of PET agents with improved tumor‐to‐background ratios in neurotensin receptor (NTR) imaging publication-title: Chem Commun – volume: 64 start-page: 12003 issue: 16 year: 2021 end-page: 12021 article-title: [11 C]CHDI‐626, a PET tracer candidate for imaging mutant huntingtin aggregates with reduced binding to AD pathological proteins publication-title: J Med Chem – volume: 108–109 start-page: S101 year: 2022 end-page: S102 article-title: Synthesis and evaluation of fluorine‐18 labelled tetrazines as pre‐targeting imaging agents for amyloid PET‐imaging publication-title: Nucl Med Biol – volume: 5 start-page: 3770 issue: 10 year: 2014 end-page: 3776 article-title: Conformationally strained trans‐cyclooctene with improved stability and excellent reactivity in tetrazine ligation publication-title: Chem Sci – volume: 41 start-page: 513 issue: 6 year: 2014 end-page: 523 article-title: In vivo evaluation of 18F‐labeled TCO for pre‐targeted PET imaging in the brain publication-title: Nucl Med Biol – start-page: 681 year: 2012 end-page: 697 – volume: 45 start-page: 4690 issue: 17 year: 2016 end-page: 4707 article-title: Blood–brain barrier shuttle peptides: an emerging paradigm for brain delivery publication-title: Chem Soc Rev – volume: 26 start-page: 281 issue: 2 year: 2020 end-page: 288 article-title: Visualization of AMPA receptors in living human brain with positron emission tomography publication-title: Nat Med – volume: 62 start-page: 9824 issue: 21 year: 2019 end-page: 9836 article-title: The blood–brain barrier (BBB) score publication-title: J Med Chem – volume: 26 start-page: 4690 issue: 21 year: 2020 end-page: 4694 article-title: Improving tumor‐to‐background contrast through hydrophilic tetrazines: the construction of 18 F‐labeled PET agents targeting nonsmall cell lung carcinoma publication-title: Chem – A Eur J – volume: 63 start-page: 8608 issue: 15 year: 2020 end-page: 8633 article-title: Imaging mutant huntingtin aggregates: development of a potential PET ligand publication-title: J Med Chem – volume: 37 start-page: 635 issue: 3 year: 2009 end-page: 643 article-title: Species differences in blood–brain barrier transport of three positron emission tomography radioligands with emphasis on P‐glycoprotein transport publication-title: Drug Metab Dispos – volume: 12 start-page: 207 issue: 2 year: 2015 end-page: 222 article-title: Blood–brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody publication-title: Expert Opin Drug Deliv – volume: 144 start-page: 8171 issue: 18 year: 2022 end-page: 8177 article-title: Uncovering the key role of distortion in bioorthogonal tetrazine tools that defy the reactivity/stability trade‐off publication-title: J am Chem Soc – volume: 14 start-page: 444 issue: 3 year: 2023 end-page: 453 article-title: Pretargeted imaging beyond the blood–brain barrier. RSC publication-title: Med Chem – volume: 38 start-page: 134 year: 2017 end-page: 140 article-title: Blood–brain barrier peptide shuttles publication-title: Curr Opin Chem Biol – volume: 14 start-page: 1283 issue: 6 year: 2022 article-title: A historical review of brain drug delivery publication-title: Pharmaceutics – volume: 108 start-page: 1501 issue: 5 year: 2008 end-page: 1516 article-title: Molecular imaging with PET publication-title: Chem Rev – volume: 6 start-page: 151 issue: 2 year: 1998 end-page: 165 article-title: Estimation of blood–brain barrier crossing of drugs using molecular size and shape, and H‐bonding descriptors publication-title: J Drug Target – volume: 14 start-page: 2177 issue: 7 year: 2017 end-page: 2196 article-title: Targeting the central nervous system (CNS): a review of rabies virus‐targeting strategies publication-title: Mol Pharm – volume: 14 start-page: 1454 issue: 6 year: 2022 article-title: Radiolabeled antibodies for cancer imaging and therapy publication-title: Cancers (Basel) – volume: 6 start-page: 887 issue: 6 year: 2016 end-page: 895 article-title: Conformationally strained trans‐cyclooctene (sTCO) enables the rapid construction of 18 F‐PET probes via tetrazine ligation publication-title: Theranostics – volume: 7 start-page: 314 issue: 4 year: 2021 end-page: 331 article-title: Drug delivery to the central nervous system publication-title: Nat Rev Mater – volume: 7 start-page: 616 issue: 5 year: 2003 end-page: 625 article-title: Metabolic oligosaccharide engineering as a tool for glycobiology publication-title: Curr Opin Chem Biol – volume: 108–109 start-page: S176 year: 2022 article-title: Development and evaluaton of a trans‐cyclooctene (TCO) probe for pretargeted PET imaging publication-title: Nucl Med Biol – volume: 22 start-page: 2263 issue: 11 year: 2011 end-page: 2270 article-title: Synthesis and evaluation of a series of 1,2,4,5‐Tetrazines for bioorthogonal conjugation publication-title: Bioconjug Chem – volume: 15 start-page: 685 issue: 6 year: 2022 article-title: Recent advances in the development of tetrazine ligation tools for pretargeted nuclear imaging publication-title: Pharmaceuticals – volume: 28 start-page: 2915 issue: 12 year: 2017 end-page: 2920 article-title: Pretargeted PET imaging using a bioorthogonal 18 F‐labeled trans‐cyclooctene in an ovarian carcinoma model publication-title: Bioconjug Chem – volume: 29 start-page: 986 issue: 8 year: 2019 end-page: 990 article-title: Improved radiosynthesis and preliminary in vivo evaluation of the 11C‐labeled tetrazine [11C]AE‐1 for pretargeted PET imaging publication-title: Bioorg Med Chem Lett – volume: 179 start-page: 209 year: 2018 end-page: 245 article-title: Pretargeting in nuclear imaging and radionuclide therapy: improving efficacy of theranostics and nanomedicines publication-title: Biomaterials – volume: 11 start-page: 4460 issue: 24 year: 2020 end-page: 4468 article-title: Fluorine‐18‐labeled antibody ligands for PET imaging of amyloid‐β in brain publication-title: ACS Chem Nerosci – volume: 15 start-page: 1191 issue: 10 year: 2022 article-title: Pretargeted imaging beyond the blood–brain barrier—utopia or feasible? publication-title: Pharmaceuticals – volume: 141 year: 2022 article-title: Transport of nanomedicines across the blood–brain barrier: challenges and opportunities for imaging and therapy publication-title: Biomater Adv – volume: 5 start-page: 4449 issue: 9 year: 2020 end-page: 4456 article-title: Preclinical evaluation of a novel 18 F‐labeled dTCO‐amide derivative for bioorthogonal pretargeted positron emission tomography imaging publication-title: ACS Omega – volume: 46 start-page: 2848 issue: 13 year: 2019 end-page: 2858 article-title: Engineered antibodies: new possibilities for brain PET? publication-title: Eur J Nucl Med Mol Imaging – volume: 26 start-page: 435 issue: 3 year: 2015 end-page: 442 article-title: Improved metabolic stability for 18 F PET probes rapidly constructed via tetrazine trans‐cyclooctene ligation publication-title: Bioconjug Chem – volume: 133 start-page: 9646 issue: 25 year: 2011 end-page: 9649 article-title: Design and synthesis of highly reactive dienophiles for the tetrazine‐trans‐cyclooctene ligation publication-title: J am Chem Soc – volume: 45 issue: 5 year: 2021 article-title: Monoclonal antibody based radiopharmaceuticals for imaging and therapy publication-title: Curr Probl Cancer – volume: 67 start-page: 88 issue: 1 year: 2009 end-page: 94 article-title: Studies into radiolytic decomposition of fluorine‐18 labeled radiopharmaceuticals for positron emission tomography publication-title: Appl Radiat Isot – volume: 15 start-page: 6640 issue: 31 year: 2017 end-page: 6644 article-title: Computationally guided discovery of a reactive, hydrophilic trans‐5‐oxocene dienophile for bioorthogonal labeling publication-title: Org Biomol Chem – volume: 46 start-page: 8043 issue: 42 year: 2010 end-page: 8045 article-title: Tetrazine–trans‐cyclooctene ligation for the rapid construction of 18F labeled probes publication-title: Chem Commun – volume: 24 start-page: 1210 issue: 7 year: 2013 end-page: 1217 article-title: Highly reactive trans‐cyclooctene tags with improved stability for Diels–Alder chemistry in living systems publication-title: Bioconjug Chem – volume: 41 start-page: 613 issue: 5 year: 2014 end-page: 622 article-title: Radioimmunoconjugates for the treatment of cancer publication-title: Semin Oncol – ident: e_1_2_6_4_1 doi: 10.1016/j.bioadv.2022.213125 – ident: e_1_2_6_36_1 doi: 10.1039/C6SC02933G – ident: e_1_2_6_31_1 doi: 10.3390/cancers14061454 – ident: e_1_2_6_7_1 doi: 10.3390/pharmaceutics14061283 – ident: e_1_2_6_46_1 doi: 10.1016/S0969‐8051(22)00370‐5 – ident: e_1_2_6_58_1 doi: 10.1007/s11307‐022‐01744‐y – ident: e_1_2_6_5_1 doi: 10.1038/s41578‐021‐00394‐w – ident: e_1_2_6_59_1 doi: 10.1039/C5CS00784D – ident: e_1_2_6_29_1 doi: 10.1016/j.currproblcancer.2021.100796 – ident: e_1_2_6_48_1 doi: 10.1039/c3cc41027g – ident: e_1_2_6_19_1 doi: 10.1039/C7OB01707C – ident: e_1_2_6_55_1 doi: 10.1016/S0969‐8051(22)00232‐3 – ident: e_1_2_6_41_1 doi: 10.1016/j.bmcl.2011.04.116 – ident: e_1_2_6_24_1 doi: 10.1021/bc400153y – ident: e_1_2_6_44_1 doi: 10.1016/j.nucmedbio.2019.11.001 – ident: e_1_2_6_45_1 doi: 10.1039/C6OB01411A – ident: e_1_2_6_32_1 doi: 10.3390/ph16040497 – ident: e_1_2_6_18_1 doi: 10.1039/C4SC01348D – ident: e_1_2_6_49_1 doi: 10.1016/j.bmcl.2019.02.014 – ident: e_1_2_6_56_1 doi: 10.1039/D2MD00360K – ident: e_1_2_6_14_1 doi: 10.1039/C7CS00184C – ident: e_1_2_6_65_1 doi: 10.1038/s41591‐019‐0723‐9 – ident: e_1_2_6_67_1 doi: 10.1021/acschemneuro.0c00652 – ident: e_1_2_6_34_1 doi: 10.3109/10611869808997889 – ident: e_1_2_6_51_1 doi: 10.1016/j.apradiso.2008.08.015 – ident: e_1_2_6_42_1 doi: 10.1021/acs.bioconjchem.5b00089 – ident: e_1_2_6_43_1 doi: 10.1002/chem.202000028 – ident: e_1_2_6_40_1 doi: 10.1039/C8CC09747J – ident: e_1_2_6_13_1 doi: 10.1002/asia.201700442 – ident: e_1_2_6_61_1 doi: 10.1056/NEJMcibr2213596 – ident: e_1_2_6_52_1 doi: 10.1124/dmd.108.024745 – ident: e_1_2_6_9_1 doi: 10.1016/j.cbpa.2017.04.019 – ident: e_1_2_6_30_1 doi: 10.1097/PPO.0000000000000625 – ident: e_1_2_6_25_1 doi: 10.1021/cn100008c – ident: e_1_2_6_27_1 doi: 10.1053/j.seminoncol.2014.07.004 – ident: e_1_2_6_16_1 doi: 10.1021/jacs.2c01056 – ident: e_1_2_6_39_1 doi: 10.7150/thno.14742 – ident: e_1_2_6_50_1 doi: 10.1016/j.apradiso.2004.04.011 – ident: e_1_2_6_8_1 doi: 10.1039/C6CS00076B – ident: e_1_2_6_69_1 doi: 10.1517/17425247.2014.952627 – ident: e_1_2_6_21_1 doi: 10.1007/s10593‐013‐1232‐2 – ident: e_1_2_6_11_1 doi: 10.1021/acs.bioconjchem.0c00568 – ident: e_1_2_6_37_1 doi: 10.1021/acs.bioconjchem.7b00635 – ident: e_1_2_6_68_1 doi: 10.1007/s00259‐019‐04426‐0 – ident: e_1_2_6_22_1 doi: 10.1021/acs.molpharmaceut.0c00523 – ident: e_1_2_6_20_1 doi: 10.3390/ph15060685 – ident: e_1_2_6_53_1 doi: 10.1002/anie.201404277 – ident: e_1_2_6_33_1 doi: 10.1039/c0cc03078c – ident: e_1_2_6_54_1 doi: 10.1021/acs.bioconjchem.6b00234 – ident: e_1_2_6_3_1 doi: 10.1016/j.biomaterials.2018.06.021 – start-page: 681 volume-title: Methods in molecular biology year: 2012 ident: e_1_2_6_26_1 – ident: e_1_2_6_62_1 doi: 10.3390/ph14090847 – ident: e_1_2_6_63_1 doi: 10.1021/acs.jmedchem.1c00667 – ident: e_1_2_6_60_1 doi: 10.1038/d41587‐019‐00017‐4 – ident: e_1_2_6_66_1 doi: 10.3390/ph15101191 – ident: e_1_2_6_12_1 doi: 10.1016/j.cbpa.2003.08.006 – ident: e_1_2_6_38_1 doi: 10.1021/acsomega.9b03584 – ident: e_1_2_6_35_1 doi: 10.1016/j.drudis.2014.08.012 – ident: e_1_2_6_57_1 doi: 10.1021/acs.jmedchem.9b01220 – ident: e_1_2_6_47_1 doi: 10.1021/acsptsci.1c00133 – ident: e_1_2_6_17_1 doi: 10.1021/ja201844c – ident: e_1_2_6_15_1 doi: 10.1021/bc200295y – ident: e_1_2_6_6_1 doi: 10.1038/jcbfm.2012.126 – ident: e_1_2_6_2_1 doi: 10.1021/cr0782426 – ident: e_1_2_6_64_1 doi: 10.1021/acs.jmedchem.0c00955 – ident: e_1_2_6_23_1 doi: 10.1016/j.nucmedbio.2014.03.023 – ident: e_1_2_6_10_1 doi: 10.1021/acs.molpharmaceut.7b00158 – ident: e_1_2_6_28_1 doi: 10.1080/17425247.2018.1378180 |
SSID | ssj0009944 |
Score | 2.3364997 |
SecondaryResourceType | review_article |
Snippet | There is increased focus on developing tools to image large biomolecules, such as antibodies, within the brain using positron emission tomography (PET). The... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 249 |
SubjectTerms | Antibodies Biomolecules Blood-Brain Barrier Carbon Carbon cycle carbon‐11 Cycloaddition Cycloaddition Reaction Diels-Alder reactions Electrons Fluorine inverse electron demand Diels‐Alder reaction Medical imaging Neuroimaging Positron emission Positron emission tomography pretargeted imaging Reaction kinetics tetrazine trans‐cyclooctene |
Title | The inverse electron demand Diels–Alder cycloaddition with carbon‐11 and fluorine‐18: A gateway to pretargeted imaging across the blood–brain barrier |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjlcr.4029 https://www.ncbi.nlm.nih.gov/pubmed/37147795 https://www.proquest.com/docview/2840142693 https://www.proquest.com/docview/2810917414 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFL0qZQEbWl4l0EYXxIKN02Q8djx0laZEVQUIVVTqAsmal6VAaqM0WZRVPwGJNT_XL-m9fkXlISF2UTLWjGfuZM69Pj4H4KVxMpNODAMnKF2loFCBCU0cDGJlM4LkRpV2b-_ex4cn8ug0Ol2DveZdmEofoi248c4o_695g2tzvrsSDf08s_MeZT_88h5ztRgQHa-ko5SSK-mopB82qkJ9sdteefMs-g1g3sSr5YEz2YBPzVArnsmX3nJhevbbLyqO_3kvm3CvBqI4qiLnPqz5_AHcGTf-bw_hJ0UQTnOmbXhs3HLQ-TOdOzyY0pl6dfljxCbfaC_srGBmEq8ycmkXrZ6bIr-6_D4YIF-QzZZM9fP8TfIaR1iX73BRYMl55Mq8dzg9K22TUJdThgRPseTWU1-G3SzQ6Dmb7D2Ck8mbj-PDoDZzCGzITKo4yZzylh9rZlHfikxr6RIrtaUU1QnnQkPJigsVF7a8HGSWMkst49C4xJtYh49hPS9y_wQwSSKrCecoa4eS8GsilfexsIx1I6dlB141y5raWumcDTdmaaXRLFKe75TnuwMv2qZfK3mPPzXabmIjrXf4eUrHOoWyiFXYgeftz7RE_MBF575YchuWXSXMRkPaqmKq7YWVEodDFdFgy8j4e_fp0dvxMX94-u9Nn8FdQWis4hVvw_pivvQ7hJ4Wpgu3hPzQhduj_YP9SbfcNNeWfB4Z |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VcigX3pRAgQFx4OI0sdeOF3GJAlUoaQ9VK_WCrH1ZCqQ2CsmhPfUnIPXcP9dfwsz6EZWHhLhZ9q52vTvr_WZ2_H0Ar7UVubDhILAhuatkFDLQkU6CfiJNTpBcSy_3trefjI_E7nF8vAbvmn9hKn6INuDGK8N_r3mBc0B6e8Ua-mVm5l1yf-QNuMmK3t6hOliRR0kpVuRRaS9qeIV64XZb9fpu9BvEvI5Y_Zazcwc-N52tMk2-dpcL3TVnv_A4_u_b3IXbNRbFYWU892DNFfdhY9RIwD2ASzIinBacueGwEcxB605UYfH9lLbVq_OLIet8ozk1s5KTk3iikaO7aNRcl8XV-Y9-H7lCPltytp_jO-lbHGIdwcNFiT7tkYPzzuL0xCsnofJjhoRQ0afXU1uaBS1Qqznr7D2Eo50Ph6NxUOs5BCbiZKokza10hk8287hnwlwpYVMjlCEv1YbWRpr8FRtJjm050c8NOZdKJJG2qdOJih7BelEW7jFgmsZGEdSRxgwEQdhUSOeS0DDcja0SHXjTzGtmarJz1tyYZRVNc5jxeGc83h141Rb9VjF8_KnQVmMcWb3Iv2e0s5M1h4mMOvCyfUxTxGcuqnDlkssw8yrBNurSZmVUbStMljgYyJg6603j781nu5PRAV88-feiL2BjfLg3ySYf9z89hVshgbMqzXgL1hfzpXtGYGqhn_s18xORIR_r |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkYAL5c1CgQFx4JLtruNk7XJa7bIqpVSoolIPSJFfkRa2SbXsHuDUn4DEuX-uv6QzzmNVHhLiFiW27Njj-Jvx5PsYe2mcyIXjg8hxdFfRKFRkYpNG_VTZHCG5UUHu7f1-unModo-SozX2uvkXpuKHaANutDLC95oW-InLt1akoZ9ndt5F70ddYVdF2pNk0uODFXeUUmLFHSV7cUMr1ONbbdXLm9FvCPMyYA07zmSDfWr6WiWafOkuF6Zrv_9C4_ifL3OL3ayRKAwr07nN1nxxh10fNQJwd9kZmhBMC8rb8NDI5YDzx7pwMJ7ipnp--nNIKt9gv9lZSalJNM1AsV2wem7K4vz0R78PVCGfLSnXz9MduQ1DqON3sCghJD1SaN47mB4H3STQYcgA8SmE5Hpsy5CcBRg9J5W9e-xw8ubjaCeq1RwiG1MqVSpzp7ylc8086Vmeay2ctEJb9FEddy426K24WFFky4t-btG11CKNjZPepDq-z9aLsvAPGUiZWI1AR1k7EAhgpVDep9wS2E2cFh32qpnWzNZU56S4Mcsqkmae0XhnNN4d9qItelLxe_yp0GZjG1m9xL9muK-jLfNUxR32vH2MU0QnLrrw5ZLKEO8qgjbs0oPKptpWiCpxMFAJdjZYxt-bz3b3Rgd08ejfiz5j1z6MJ9ne2_13j9kNjsisyjHeZOuL-dI_QSS1ME_DirkASt4eow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+inverse+electron+demand+Diels-Alder+cycloaddition+with+carbon-11+and+fluorine-18%3A+A+gateway+to+pretargeted+imaging+across+the+blood-brain+barrier&rft.jtitle=Journal+of+labelled+compounds+%26+radiopharmaceuticals&rft.au=Zientek%2C+Simon+H&rft.au=Thompson%2C+Stephen&rft.au=Sephton%2C+Selena+Milicevic&rft.au=Aigbirhio%2C+Franklin+I&rft.date=2023-07-01&rft.eissn=1099-1344&rft.volume=66&rft.issue=9&rft.spage=249&rft_id=info:doi/10.1002%2Fjlcr.4029&rft_id=info%3Apmid%2F37147795&rft.externalDocID=37147795 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0362-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0362-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0362-4803&client=summon |