Quantitative proteomics of forebrain subcellular fractions in fragile X mental retardation 1 knockout mice following acute treatment with 2‐Methyl‐6‐(phenylethynyl)pyridine: Relevance to developmental study of schizophrenia
The fragile X mental retardation 1 knockout (Fmr1 KO) mouse replicates behavioral deficits associated with autism, fragile X syndrome, and schizophrenia. Less is known whether protein expression changes are consistent with findings in subjects with schizophrenia. In the current study, we used liquid...
Saved in:
Published in | Synapse (New York, N.Y.) Vol. 73; no. 1; pp. e22069 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.01.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0887-4476 1098-2396 1098-2396 |
DOI | 10.1002/syn.22069 |
Cover
Abstract | The fragile X mental retardation 1 knockout (Fmr1 KO) mouse replicates behavioral deficits associated with autism, fragile X syndrome, and schizophrenia. Less is known whether protein expression changes are consistent with findings in subjects with schizophrenia. In the current study, we used liquid chromatography tandem mass spectrometry (LC‐MS/MS) proteomics to determine the protein expression of four subcellular fractions in the forebrains of Fmr1 KO mice vs. C57BL/6 J mice and the effect of a negative allosteric modulator of mGluR5—2‐Methyl‐6‐(phenylethynyl)pyridine (MPEP)—on protein expression. Strain‐ and treatment‐specific differential expression of proteins was observed, many of which have previously been observed in the brains of subjects with schizophrenia. Western blotting verified the direction and magnitude of change for several proteins in different subcellular fractions as follows: neurofilament light protein (NEFL) and 2′,3′‐cyclic‐nucleotide 3′‐phosphodiesterase (CNP) in the total homogenate; heterogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC) and heterogeneous nuclear ribonucleoprotein D0 (HNRNPD) in the nuclear fraction; excitatory amino acid transporter 2 (EAAT2) and ras‐related protein rab 3a (RAB3A) in the synaptic fraction; and ras‐related protein rab 35 (RAB35) and neuromodulin (GAP43) in the rough endoplasmic reticulum fraction. Individuals with FXS do not display symptoms of schizophrenia. However, the biomarkers that have been identified suggest that the Fmr1 KO model could potentially be useful in the study of schizophrenia.
Concordant changes in protein expression in subcellular compartments [total homogenate, synapse, nucleus, and rough endoplasmic reticulum (rER)] via proteomics and western blotting in forebrain neurons of fragile X mental retardation knockout (Fmr1 KO) mice. |
---|---|
AbstractList | The fragile X mental retardation 1 knockout (Fmr1 KO) mouse replicates behavioral deficits associated with autism, fragile X syndrome, and schizophrenia. Less is known whether protein expression changes are consistent with findings in subjects with schizophrenia. In the current study, we used liquid chromatography tandem mass spectrometry (LC‐MS/MS) proteomics to determine the protein expression of four subcellular fractions in the forebrains of Fmr1 KO mice vs. C57BL/6 J mice and the effect of a negative allosteric modulator of mGluR5—2‐Methyl‐6‐(phenylethynyl)pyridine (MPEP)—on protein expression. Strain‐ and treatment‐specific differential expression of proteins was observed, many of which have previously been observed in the brains of subjects with schizophrenia. Western blotting verified the direction and magnitude of change for several proteins in different subcellular fractions as follows: neurofilament light protein (NEFL) and 2′,3′‐cyclic‐nucleotide 3′‐phosphodiesterase (CNP) in the total homogenate; heterogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC) and heterogeneous nuclear ribonucleoprotein D0 (HNRNPD) in the nuclear fraction; excitatory amino acid transporter 2 (EAAT2) and ras‐related protein rab 3a (RAB3A) in the synaptic fraction; and ras‐related protein rab 35 (RAB35) and neuromodulin (GAP43) in the rough endoplasmic reticulum fraction. Individuals with FXS do not display symptoms of schizophrenia. However, the biomarkers that have been identified suggest that the Fmr1 KO model could potentially be useful in the study of schizophrenia. The fragile X mental retardation 1 knockout (Fmr1 KO) mouse replicates behavioral deficits associated with autism, fragile X syndrome, and schizophrenia. Less is known whether protein expression changes are consistent with findings in subjects with schizophrenia. In the current study, we used liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics to determine the protein expression of four subcellular fractions in the forebrains of Fmr1 KO mice vs. C57BL/6 J mice and the effect of a negative allosteric modulator of mGluR5-2-Methyl-6-(phenylethynyl)pyridine (MPEP)-on protein expression. Strain- and treatment-specific differential expression of proteins was observed, many of which have previously been observed in the brains of subjects with schizophrenia. Western blotting verified the direction and magnitude of change for several proteins in different subcellular fractions as follows: neurofilament light protein (NEFL) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP) in the total homogenate; heterogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC) and heterogeneous nuclear ribonucleoprotein D0 (HNRNPD) in the nuclear fraction; excitatory amino acid transporter 2 (EAAT2) and ras-related protein rab 3a (RAB3A) in the synaptic fraction; and ras-related protein rab 35 (RAB35) and neuromodulin (GAP43) in the rough endoplasmic reticulum fraction. Individuals with FXS do not display symptoms of schizophrenia. However, the biomarkers that have been identified suggest that the Fmr1 KO model could potentially be useful in the study of schizophrenia. The fragile X mental retardation 1 knockout ( Fmr1 KO) mouse replicates behavioral deficits associated with autism, fragile X syndrome, and schizophrenia. Less is known whether protein expression changes are consistent with findings in subjects with schizophrenia. In the current study, we used liquid chromatography tandem mass spectrometry (LC‐MS/MS) proteomics to determine the protein expression of four subcellular fractions in the forebrains of Fmr1 KO mice vs. C57BL/6 J mice and the effect of a negative allosteric modulator of mGluR5—2‐Methyl‐6‐(phenylethynyl)pyridine (MPEP)—on protein expression. Strain‐ and treatment‐specific differential expression of proteins was observed, many of which have previously been observed in the brains of subjects with schizophrenia. Western blotting verified the direction and magnitude of change for several proteins in different subcellular fractions as follows: neurofilament light protein (NEFL) and 2′,3′‐cyclic‐nucleotide 3′‐phosphodiesterase (CNP) in the total homogenate; heterogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC) and heterogeneous nuclear ribonucleoprotein D0 (HNRNPD) in the nuclear fraction; excitatory amino acid transporter 2 (EAAT2) and ras‐related protein rab 3a (RAB3A) in the synaptic fraction; and ras‐related protein rab 35 (RAB35) and neuromodulin (GAP43) in the rough endoplasmic reticulum fraction. Individuals with FXS do not display symptoms of schizophrenia. However, the biomarkers that have been identified suggest that the Fmr1 KO model could potentially be useful in the study of schizophrenia. The fragile X mental retardation 1 knockout (Fmr1 KO) mouse replicates behavioral deficits associated with autism, fragile X syndrome, and schizophrenia. Less is known whether protein expression changes are consistent with findings in subjects with schizophrenia. In the current study, we used liquid chromatography tandem mass spectrometry (LC‐MS/MS) proteomics to determine the protein expression of four subcellular fractions in the forebrains of Fmr1 KO mice vs. C57BL/6 J mice and the effect of a negative allosteric modulator of mGluR5—2‐Methyl‐6‐(phenylethynyl)pyridine (MPEP)—on protein expression. Strain‐ and treatment‐specific differential expression of proteins was observed, many of which have previously been observed in the brains of subjects with schizophrenia. Western blotting verified the direction and magnitude of change for several proteins in different subcellular fractions as follows: neurofilament light protein (NEFL) and 2′,3′‐cyclic‐nucleotide 3′‐phosphodiesterase (CNP) in the total homogenate; heterogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC) and heterogeneous nuclear ribonucleoprotein D0 (HNRNPD) in the nuclear fraction; excitatory amino acid transporter 2 (EAAT2) and ras‐related protein rab 3a (RAB3A) in the synaptic fraction; and ras‐related protein rab 35 (RAB35) and neuromodulin (GAP43) in the rough endoplasmic reticulum fraction. Individuals with FXS do not display symptoms of schizophrenia. However, the biomarkers that have been identified suggest that the Fmr1 KO model could potentially be useful in the study of schizophrenia. Concordant changes in protein expression in subcellular compartments [total homogenate, synapse, nucleus, and rough endoplasmic reticulum (rER)] via proteomics and western blotting in forebrain neurons of fragile X mental retardation knockout (Fmr1 KO) mice. The fragile X mental retardation 1 knockout (Fmr1 KO) mouse replicates behavioral deficits associated with autism, fragile X syndrome, and schizophrenia. Less is known whether protein expression changes are consistent with findings in subjects with schizophrenia. In the current study, we used liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics to determine the protein expression of four subcellular fractions in the forebrains of Fmr1 KO mice vs. C57BL/6 J mice and the effect of a negative allosteric modulator of mGluR5-2-Methyl-6-(phenylethynyl)pyridine (MPEP)-on protein expression. Strain- and treatment-specific differential expression of proteins was observed, many of which have previously been observed in the brains of subjects with schizophrenia. Western blotting verified the direction and magnitude of change for several proteins in different subcellular fractions as follows: neurofilament light protein (NEFL) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP) in the total homogenate; heterogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC) and heterogeneous nuclear ribonucleoprotein D0 (HNRNPD) in the nuclear fraction; excitatory amino acid transporter 2 (EAAT2) and ras-related protein rab 3a (RAB3A) in the synaptic fraction; and ras-related protein rab 35 (RAB35) and neuromodulin (GAP43) in the rough endoplasmic reticulum fraction. Individuals with FXS do not display symptoms of schizophrenia. However, the biomarkers that have been identified suggest that the Fmr1 KO model could potentially be useful in the study of schizophrenia.The fragile X mental retardation 1 knockout (Fmr1 KO) mouse replicates behavioral deficits associated with autism, fragile X syndrome, and schizophrenia. Less is known whether protein expression changes are consistent with findings in subjects with schizophrenia. In the current study, we used liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics to determine the protein expression of four subcellular fractions in the forebrains of Fmr1 KO mice vs. C57BL/6 J mice and the effect of a negative allosteric modulator of mGluR5-2-Methyl-6-(phenylethynyl)pyridine (MPEP)-on protein expression. Strain- and treatment-specific differential expression of proteins was observed, many of which have previously been observed in the brains of subjects with schizophrenia. Western blotting verified the direction and magnitude of change for several proteins in different subcellular fractions as follows: neurofilament light protein (NEFL) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP) in the total homogenate; heterogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC) and heterogeneous nuclear ribonucleoprotein D0 (HNRNPD) in the nuclear fraction; excitatory amino acid transporter 2 (EAAT2) and ras-related protein rab 3a (RAB3A) in the synaptic fraction; and ras-related protein rab 35 (RAB35) and neuromodulin (GAP43) in the rough endoplasmic reticulum fraction. Individuals with FXS do not display symptoms of schizophrenia. However, the biomarkers that have been identified suggest that the Fmr1 KO model could potentially be useful in the study of schizophrenia. |
Author | Fatemi, S. Hossein Folsom, Timothy D. Higgins, LeeAnn Griffin, Timothy J. Markowski, Todd W. |
Author_xml | – sequence: 1 givenname: Timothy D. surname: Folsom fullname: Folsom, Timothy D. organization: University of Minnesota Medical School – sequence: 2 givenname: LeeAnn surname: Higgins fullname: Higgins, LeeAnn organization: University of Minnesota Medical School – sequence: 3 givenname: Todd W. surname: Markowski fullname: Markowski, Todd W. organization: University of Minnesota Medical School – sequence: 4 givenname: Timothy J. surname: Griffin fullname: Griffin, Timothy J. organization: University of Minnesota Medical School – sequence: 5 givenname: S. Hossein orcidid: 0000-0002-6859-2626 surname: Fatemi fullname: Fatemi, S. Hossein email: fatem002@umn.edu organization: University of Minnesota Medical School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30176067$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ksluFDEQhi0URCaBAy-ALHFJDpN46emFG4ogIAUQmwQny21XZ5x47MZ2z6hz4hF4RiTeA3dmcongYJeX7_9dctUB2nPeAUJPKTmhhLDTOLoTxkjZPEAzSpp6znhT7qEZqetqXhRVuY8OYrwihHBKikdonxNalaSsZujPx0G6ZJJMZg24Dz6BXxkVse9w5wO0QRqH49AqsHawMuAuSJWMdxHni7y5NBbwN7wCl6TFAZIMWk4ApvjaeXXth4SzJWQ_a_3GuEss1ZAApwAyTTq8MWmJ2e-fv95BWo42L8o8jvoluNFORzkc92Mw2jh4gT-BhbV02TJ5rGEN1ve792Ma9DglH9XS3Ph-GcAZ-Rg97KSN8GQXD9HX16--nL2ZX3w4f3v28mKueF03c9pQumirruWNLmpNFHC90KXWBa1Iy1WnlSJd1eVIqroEWXNVKdbliYNiBT9ER1vf_JE_BohJrEycfk468EMUjDQNKRivaUaf30Ov_BBczk4wytmiWpCSZOrZjhraFWjRB7OSYRR3BczA6RZQwccYoBPqtpjepVw5KygRU4uI3CLitkWy4vie4s70X-zOfZOLPP4fFJ-_v98q_gI3ktWV |
CitedBy_id | crossref_primary_10_1093_cercor_bhae044 crossref_primary_10_1080_15622975_2023_2258975 crossref_primary_10_1007_s12031_022_02013_x crossref_primary_10_1038_s41380_024_02805_0 |
Cites_doi | 10.1074/jbc.M112.405761 10.1038/mp.2008.60 10.1016/j.euroneuro.2015.09.013 10.1038/sj.mp.4001532 10.1080/21541248.2016.1270392 10.1038/mp.2008.7 10.1016/j.nbd.2008.04.002 10.1073/pnas.1502258112 10.1016/j.neuron.2007.12.001 10.1001/archgenpsychiatry.2011.43 10.1016/j.nbd.2006.02.002 10.1038/mp.2010.102 10.1007/s11064-011-0677-x 10.1055/s-0037-1606370 10.1038/nn.3379 10.1080/00048670902721103 10.1007/s00213-011-2375-4 10.1021/pr5006372 10.1016/j.nbd.2005.08.012 10.1007/s00702-008-0156-y 10.1002/pmic.200900015 10.1038/tp.2015.102 10.1016/j.tins.2004.04.009 10.3389/fendo.2013.00165 10.1016/j.schres.2015.10.012 10.1016/j.schres.2015.04.012 10.1016/0092-8674(91)90397-H 10.1073/pnas.122205699 10.1016/j.jpsychires.2010.03.003 10.1186/2040-2392-5-41 10.1007/s00406-008-0847-2 10.1038/npp.2009.201 10.1007/s00406-015-0621-1 10.1038/ng0193-31 10.1016/j.bbr.2013.05.060 10.1136/jmg.2008.063701 10.1016/j.jpsychires.2010.04.014 10.1074/jbc.M110.210260 10.5582/irdr.2014.01024 10.1038/npp.2017.177 10.1016/j.pnpbp.2013.06.017 10.1016/j.cell.2011.06.013 10.1016/j.schres.2010.07.017 10.1038/sj.mp.4002098 10.1037/a0023561 10.1371/journal.pone.0091465 10.1385/JMN:13:1-2:101 10.1002/ajmg.a.33626 10.1038/sj.mp.4001806 10.1097/YPG.0b013e3282fa1874 10.1523/JNEUROSCI.2021-11.2011 10.1021/pr070492f 10.1016/S0920-9964(99)00037-7 10.2174/157015906778520782 10.1038/nbt.2377 10.1016/j.tjog.2011.01.018 10.1002/prca.200600541 10.1016/j.psychres.2012.12.022 10.1016/j.jpsychires.2008.11.006 10.1038/tp.2013.46 10.1186/1471-244X-9-17 10.1038/ejhg.2013.311 10.1016/j.mcp.2014.08.003 10.1097/00004703-200112000-00008 10.1016/j.nbd.2005.12.012 10.1126/scitranslmed.aab4109 10.1016/j.neulet.2004.11.013 10.1097/WNR.0000000000000880 10.1038/ng0895-483 10.3389/fnsyn.2018.00022 10.1159/000172086 10.1016/j.neuropharm.2005.06.004 |
ContentType | Journal Article |
Copyright | 2018 Wiley Periodicals, Inc. 2019 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. – notice: 2019 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK K9. 7X8 |
DOI | 10.1002/syn.22069 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1098-2396 |
EndPage | n/a |
ExternalDocumentID | 30176067 10_1002_syn_22069 SYN22069 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Winston and Maxine Wallin Neuroscience Discovery Fund funderid: N/A – fundername: University of Minnesota – fundername: National Science Foundation funderid: 9871237 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 123 1CY 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GAKWD GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XV2 YNT ZGI ZXP ZZTAW ~IA ~WT AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 |
ID | FETCH-LOGICAL-c3889-19115b7fb39d48d0ce3d5d6dd4170b3cfdcc0f7ffdc0786ea83c7c2fc7c3ec243 |
IEDL.DBID | DR2 |
ISSN | 0887-4476 1098-2396 |
IngestDate | Fri Jul 11 15:40:58 EDT 2025 Mon Jul 21 01:47:19 EDT 2025 Thu Apr 03 07:07:10 EDT 2025 Tue Jul 01 01:20:11 EDT 2025 Thu Apr 24 23:10:40 EDT 2025 Wed Jan 22 16:29:29 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | FXS FMRP MPEP schizophrenia brain mGluR5 autism |
Language | English |
License | 2018 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3889-19115b7fb39d48d0ce3d5d6dd4170b3cfdcc0f7ffdc0786ea83c7c2fc7c3ec243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6859-2626 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/syn.22069 |
PMID | 30176067 |
PQID | 2132575060 |
PQPubID | 1046379 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2099042381 proquest_journals_2132575060 pubmed_primary_30176067 crossref_citationtrail_10_1002_syn_22069 crossref_primary_10_1002_syn_22069 wiley_primary_10_1002_syn_22069_SYN22069 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 2019-01-00 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Synapse (New York, N.Y.) |
PublicationTitleAlternate | Synapse |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2009; 46 2013; 3 2013; 4 2009; 43 2000; 5 2004; 27 2015; 265 2002; 99 2004; 9 2013; 288 2008; 7 1999; 40 2008; 31 2014; 28 2011; 16 2018; 43 1993; 3 2018; 49 2014; 22 2009; 116 2009; 14 2011; 125 2014; 5 2014; 3 2013; 16 2006; 23 2006; 21 2006; 22 2010; 152A 1999; 13 1994; 78 2014; 13 2011; 68 2014; 9 2007; 1 2011; 286 2012; 219 2015; 5 2010; 35 2005; 275 2017; 28 2013; 46 2006; 11 2017; 27 2015; 169 2008; 18 2010; 124 2015; 165 1995; 10 2011; 31 2008; 13 2006; 4 2012; 37 2001; 22 2008; 122 2005; 49 2007; 56 2012; 30 2009; 259 2010; 44 2011; 146 2015; 25 1991; 65 2015; 112 2011; 50 2016; 20 2013; 210 2009; 9 2015 2013; 252 2009; 3 2018; 10 2016; 8 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 Srivastava S (e_1_2_6_64_1) 2015 Westmark C. J. (e_1_2_6_73_1) 2009; 3 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 Dutch‐Belgian Fragile X Consortium (e_1_2_6_25_1) 1994; 78 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_12_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 Johnston‐Wilson N. L. (e_1_2_6_35_1) 2000; 5 Hu X. (e_1_2_6_33_1) 2016; 20 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – volume: 50 start-page: 339 year: 2011 end-page: 344 article-title: De novo duplication of Xq22‐q24 with a disruption of the NXF gene cluster in a mentally retarded woman with short stature and premature ovarian failure publication-title: Taiwan Journal of Obstetrics and Gynecology – volume: 3 start-page: 118 year: 2014 end-page: 133 article-title: Modeling fragile X syndrome in the knockout mouse publication-title: Intractable and Rare Disease Research – volume: 22 start-page: 1185 year: 2014 end-page: 1189 article-title: Fragile X syndrome due to a missense mutation publication-title: European Journal of Human Genetics – volume: 116 start-page: 275 year: 2009 end-page: 289 article-title: Alterations in oligodendrocyte proteins, calcium homeostasis and new potential markers in schizophrenia anterior temporal lobe are revealed by shotgun proteomic analysis publication-title: Journal of Neural Transmission (Vienna, Austria) – volume: 219 start-page: 47 year: 2012 end-page: 58 article-title: Group 1 metabotropic glutamate receptor antagonists alter select behaviors in a mouse model of fragile X syndrome publication-title: Psychopharmacology (Berlin) – volume: 65 start-page: 905 year: 1991 end-page: 914 article-title: Identification of a gene (FMR‐1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome publication-title: Cell – volume: 3 start-page: e271 year: 2013 article-title: mRNA and protein expression for novel GABA receptors θ and ρ2 are altered in schizophrenia and mood disorders; relevance to FMRP‐mGluR5 signaling pathway publication-title: Translational Psychiatry – volume: 31 start-page: 127 year: 2008 end-page: 132 article-title: Rescue of behavioral phenotype and neuronal protrusion morphology in KO mice publication-title: Neurobiology of Disease – volume: 259 start-page: 151 year: 2009 end-page: 163 article-title: Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia publication-title: European Archives of Psychiatry and Clinical Neuroscience – volume: 7 start-page: 3661 year: 2008 end-page: 3667 article-title: Nonlinear fitting method for determining local false discovery rates from decoy database searches publication-title: Journal of Proteome Research – volume: 23 start-page: 61 year: 2006 end-page: 76 article-title: Identification of protein biomarkers for schizophrenia and bipolar disorder in the postmortem prefrontal cortex using SELDI‐TOF‐MS ProteinChip profiling combined with MALDI‐TOF‐PSD‐MS analysis publication-title: Neurobiology of Disease – volume: 46 start-page: 266 year: 2009 end-page: 271 article-title: A pilot open labels, single dose trial of fenobam in adults with fragile X syndrome publication-title: Journal of Medical Genetics – volume: 30 start-page: 918 year: 2012 end-page: 920 article-title: A cross‐platform toolkit for mass spectrometry and proteomics publication-title: Nature Biotechnology – volume: 5 start-page: 142 year: 2000 end-page: 149 article-title: Disease‐specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder publication-title: The Stanley Neuropathology Consortium. Molecular Psychiatry – volume: 31 start-page: 10971 year: 2011 end-page: 10982 article-title: Abnormal presynaptic short‐term plasticity and information processing in a mouse model of fragile X syndrome publication-title: Journal of Neuroscience – volume: 9 start-page: 3368 year: 2009 end-page: 3382 article-title: 2‐D DIGE analysis implicates cytoskeletal abnormalities in psychiatric disease publication-title: Proteomics – volume: 44 start-page: 989 year: 2010 end-page: 991 article-title: Sex‐specific proteome differences in the anterior cingulate cortex of schizophrenia publication-title: Journal or Psychiatric Research – volume: 68 start-page: 477 year: 2011 end-page: 488 article-title: Common proteomic changes in the hippocampus in schizophrenia and bipolar disorder and particular evidence for involvement of cornu ammonis regions 2 and 3 publication-title: Archives of General Psychiatry – volume: 165 start-page: 201 year: 2015 end-page: 211 article-title: Protein expression of targets of the FMRP regulon is altered in brains of subjects with schizophrenia publication-title: Schizophrenia Research – volume: 11 start-page: 459 year: 2006 end-page: 470 article-title: A proteome analysis of the anterior cingulate cortex gray matter in schizophrenia publication-title: Molecular Psychiatry – volume: 43 start-page: 978 year: 2009 end-page: 986 article-title: Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia publication-title: Journal of Psychiatric Research – volume: 112 start-page: E4697 year: 2015 end-page: E4706 article-title: deficiency promotes age‐dependent alterations in the cortical synaptic proteome publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 27 start-page: 1 year: 2017 end-page: 10 article-title: Coordination of synaptic vesicle trafficking and turnover by the Rab35 signaling network publication-title: Small GTPases – volume: 122 start-page: 181 year: 2008 end-page: 187 article-title: Characterization of 11p14‐p12 deletion in WAGR syndrome by array CGH for identifying genes contributing to mental retardation and autism publication-title: Cytogenetic and Genome Research – volume: 99 start-page: 7746 year: 2002 end-page: 7750 article-title: Altered synaptic plasticity in a mouse model of fragile X mental retardation publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 20 start-page: 4516 year: 2016 end-page: 4524 article-title: The relationship between the occurrence of intractable epilepsy with glial cells and myelin sheath – An experimental study publication-title: European Review for Medical and Pharmacological Sciences – volume: 49 start-page: 1053 year: 2005 end-page: 1066 article-title: Suppression of two major fragile X syndrome mouse model phenotypes by the mGluR5 antagonist MPEP publication-title: Neuropharmacology – volume: 28 start-page: 279 year: 2014 end-page: 283 article-title: Point mutation frequency in the gene as revealed by fragile X syndrome screening publication-title: Molecular and Cellular Probes – volume: 44 start-page: 1176 year: 2010 end-page: 1189 article-title: Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia publication-title: Journal or Psychiatric Research – volume: 13 start-page: 4388 year: 2014 end-page: 4397 article-title: Quantitative proteomics of murine ‐KO cell lines provides new insights into FMRP‐dependent signal transduction mechanisms publication-title: Journal of Proteome Research – volume: 4 start-page: 293 year: 2006 end-page: 304 article-title: Molecular mechanisms, biological actions, and neuropharmacology of the growth‐associated protein GAP‐43 publication-title: Current Neuropsychopharmacology – volume: 275 start-page: 207 year: 2005 end-page: 210 article-title: A family‐based association study of PLP1 in schizophrenia publication-title: Neuroscience Letters – volume: 28 start-page: 1066 year: 2017 end-page: 1070 article-title: Altered subcellular localization of fragile X mental retardation signaling partners and targets in superior frontal cortex of individuals with schizophrenia publication-title: Neuroreport – volume: 152A start-page: 2512 year: 2010 end-page: 2520 article-title: Identification of novel variants by massively parallel sequencing in developmentally delayed males publication-title: American Journal of Medical Genetics A – volume: 13 start-page: 878 year: 2008 end-page: 896 article-title: A comparison of the synaptic proteome in human chronic schizophrenia and rat ketamine psychosis suggest that prohibitin is involved in the synaptic pathology of schizophrenia publication-title: Molecular Psychiatry – volume: 9 start-page: e91465 year: 2014 article-title: Subcellular fractionation and localization studies reveal a direct interaction of the fragile X mental retardation protein FMRP with nucleolin publication-title: PLoS One – year: 2015 – volume: 18 start-page: 143 year: 2008 end-page: 146 article-title: A family‐based association study of the myelin‐associated glycoprotein and 2’3’‐cyclic nucleotide 3’‐phosphodiesterase genes with schizophrenia publication-title: Psychiatric Genetics – volume: 13 start-page: 1102 year: 2008 end-page: 1117 article-title: Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder publication-title: Molecular Psychiatry – volume: 40 start-page: 23 year: 1999 end-page: 29 article-title: The synaptic‐vesicle‐specific proteins Rab3a and synaptophysin are reduced in the thalamus and related cortical brain regions in schizophrenic brains publication-title: Schizophrenia Research – volume: 288 start-page: 355 year: 2013 end-page: 367 article-title: Re‐evaluating the role of calcium homeostasis endoplasmic reticulum protein (CHERP) in cellular calcium signaling publication-title: Journal of Biological Chemistry – volume: 210 start-page: 690 year: 2013 end-page: 693 article-title: Decreased fragile X mental retardation protein (FMRP) is associated with lower IQ and earlier illness onset in patients with schizophrenia publication-title: Psychiatry Research – volume: 16 start-page: 1213 year: 2011 end-page: 1220 article-title: Sex‐specific serum biomarker patterns in adults with Asperger’s syndrome publication-title: Molecular Psychiatry – volume: 22 start-page: 409 year: 2001 end-page: 417 article-title: The behavioral phenotype in fragile X: symptoms of autism in very young children with fragile X syndrome, idiopathic autism, and other developmental disorders publication-title: Journal of Developmental and Behavioral Pediatrics – volume: 286 start-page: 25495 year: 2011 end-page: 25504 article-title: Proteomics, ultrastructure, and physiology of hippocampal synapses in fragile X syndrome mouse model reveal presynaptic phenotype publication-title: Journal or Biological Chemistry – volume: 9 start-page: 17 year: 2009 article-title: Proteome analysis of schizophrenia patients Wernicke’s area reveals an energy metabolism dysregulation publication-title: BMC Psychiatry – volume: 8 start-page: 321ra5 year: 2016 article-title: Mavoglurant in fragile X syndrome: Results from two randomized double‐blind, placebo controlled trials publication-title: Science Translational Medicine – volume: 125 start-page: 473 year: 2011 end-page: 479 article-title: Discrimination learning and attentional set formation in a mouse model of Fragile X publication-title: Behavioral Neuroscience – volume: 14 start-page: 601 year: 2009 end-page: 613 article-title: Proteomic analysis of membrane microdomain‐associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression publication-title: Molecular Psychiatry – volume: 5 start-page: 41 year: 2014 article-title: Proteomic analysis of post mortem brain tissue from autism patients: Evidence for opposite changes in prefrontal cortex and cerebellum in synaptic connectivity‐related proteins publication-title: Molecular Autism – volume: 10 start-page: 22 year: 2018 article-title: Are FXR family proteins integrators of dopamine signaling and glutamatergic neurotransmission in mental illnesses? publication-title: Frontiers in Synaptic Neuroscience – volume: 56 start-page: 955 year: 2007 end-page: 962 article-title: Correction of fragile X syndrome in mice publication-title: Neuron – volume: 49 start-page: 59 year: 2018 end-page: 62 article-title: Biallelic mutations of SLC1A2: an additional mode of inheritance for SLC1A2‐related epilepsy publication-title: Neuropediatrics – volume: 35 start-page: 976 year: 2010 end-page: 989 article-title: Repetitive self‐grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP publication-title: Neuropsychopharmacology – volume: 1 start-page: 157 year: 2007 end-page: 166 article-title: Altered proteins of the anterior cingulate cortex white matter proteome in schizophrenia publication-title: Proteomics. Clinical Applications – volume: 46 start-page: 97 year: 2013 end-page: 97 article-title: Contrast, motion, perceptual integration, and neurocognition in schizophrenia: the role of fragile‐X related mechanisms publication-title: Progress in Neuropsychopharmacology and Biological Psychiatry – volume: 78 start-page: 23 year: 1994 end-page: 33 article-title: knockout mice: a model to study fragile X mental retardation publication-title: Cell – volume: 27 start-page: 370 year: 2004 end-page: 377 article-title: The mGluR5 theory of fragile X mental retardation publication-title: Trends in Neurosciences – volume: 9 start-page: 643 issue: 684–697 year: 2004 article-title: Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress publication-title: Molecular Psychiatry – volume: 16 start-page: 1530 year: 2013 end-page: 1536 article-title: The translation and translational control by FMRP: therapeutic targets for FXS publication-title: Nature Neuroscience – volume: 169 start-page: 128 year: 2015 end-page: 134 article-title: Common variants in SLC1A2 and schizophrenia; association and cognitive function in patients with schizophrenia and healthy individuals publication-title: Schizophrenia Research – volume: 37 start-page: 819 year: 2012 end-page: 825 article-title: Role of neural cell adhesion molecule found in cerebral spinal fluid as a potential biomarker for epilepsy publication-title: Neurochemical Research – volume: 146 start-page: 247 year: 2011 end-page: 261 article-title: FMRP stalls ribosomal translation on mRNAs linked to synaptic function in autism publication-title: Cell – volume: 4 start-page: 165 year: 2013 article-title: GABA and glutamate transporters in brain publication-title: Frontiers in Endocrinology (Lausanne) – volume: 21 start-page: 531 year: 2006 end-page: 540 article-title: Myelin‐associated mRNA and protein expression deficits in the anterior cingulate cortex and hippocampus in elderly schizophrenia patients publication-title: Neurobiology of Disease – volume: 43 start-page: 503 year: 2018 end-page: 512 article-title: Effect of the mGluR5‐NAM Basimglurant on Behavior in Adolescents and Adults with Fragile X Syndrome in a Randomized, Double‐Blind, Placebo‐Controlled Trial: FragXis Phase 2 Results publication-title: Neuropsychophermacology – volume: 252 start-page: 126 year: 2013 end-page: 135 article-title: Effects of stimulus silence on touchscreen serial reversal learning in a mouse model of fragile X syndrome publication-title: Behavioural Brain Research – volume: 124 start-page: 246 year: 2010 end-page: 247 article-title: Fragile X mental retardation protein levels are decreased in major psychiatric disorders publication-title: Schizophrenia Research – volume: 265 start-page: 601 year: 2015 end-page: 612 article-title: Proteomics of the corpus callosum unravel pivotal players in the dysfunction of cell signaling structures, and myelination in schizophrenia brains publication-title: European Archives of Psychiatry and Clinical Neuroscience – volume: 5 start-page: e612 year: 2015 article-title: Abnormal subcellular localization of GABA receptor subunits in schizophrenia brain publication-title: Translational Psychiatry – volume: 43 start-page: 310 year: 2009 end-page: 322 article-title: Anterior hippocampus in schizophrenia pathogenesis: molecular evidence from a proteome study publication-title: Australian and New Zealand Journal of Psychiatry – volume: 3 start-page: 56 year: 2009 end-page: 68 article-title: MPEP reduces seizure severity in ‐KO mice overexpressing Abeta publication-title: International Journal of Clinical and Experimental Pathology – volume: 10 start-page: 483 year: 1995 end-page: 485 article-title: Intragenic loss of function mutations demonstrate the primary role of in fragile X syndrome publication-title: Nature Genetics – volume: 3 start-page: 31 year: 1993 end-page: 35 article-title: A point mutation in the FMR‐1 gene associated with fragile X mental retardation publication-title: Nature Genetics – volume: 13 start-page: 101 year: 1999 end-page: 109 article-title: The growth‐associated protein GAP‐43 in increased in the hippocampus and gyrus cingulii in schizophrenia publication-title: Journal of Molecular Neuroscience – volume: 22 start-page: 374 year: 2006 end-page: 387 article-title: Correlation of transcriptome profile with electrical activity in temporal lobe epilepsy publication-title: Neurobiology of Disease – volume: 25 start-page: 2416 year: 2015 end-page: 2425 article-title: Increased expression of NDEL1 and MBP genes in the peripheral blood of antipsychotic‐naïve patients with first‐episode psychosis publication-title: European Neuropsychopharmacology – ident: e_1_2_6_41_1 doi: 10.1074/jbc.M112.405761 – ident: e_1_2_6_63_1 doi: 10.1038/mp.2008.60 – ident: e_1_2_6_54_1 doi: 10.1016/j.euroneuro.2015.09.013 – ident: e_1_2_6_56_1 doi: 10.1038/sj.mp.4001532 – ident: e_1_2_6_61_1 doi: 10.1080/21541248.2016.1270392 – ident: e_1_2_6_4_1 doi: 10.1038/mp.2008.7 – ident: e_1_2_6_19_1 doi: 10.1016/j.nbd.2008.04.002 – ident: e_1_2_6_67_1 doi: 10.1073/pnas.1502258112 – volume: 5 start-page: 142 year: 2000 ident: e_1_2_6_35_1 article-title: Disease‐specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder publication-title: The Stanley Neuropathology Consortium. Molecular Psychiatry – ident: e_1_2_6_23_1 doi: 10.1016/j.neuron.2007.12.001 – volume-title: Gene reviews year: 2015 ident: e_1_2_6_64_1 – volume: 78 start-page: 23 year: 1994 ident: e_1_2_6_25_1 article-title: Fmr1 knockout mice: a model to study fragile X mental retardation publication-title: Cell – ident: e_1_2_6_30_1 doi: 10.1001/archgenpsychiatry.2011.43 – ident: e_1_2_6_53_1 doi: 10.1016/j.nbd.2006.02.002 – ident: e_1_2_6_60_1 doi: 10.1038/mp.2010.102 – ident: e_1_2_6_72_1 doi: 10.1007/s11064-011-0677-x – ident: e_1_2_6_71_1 doi: 10.1055/s-0037-1606370 – ident: e_1_2_6_15_1 doi: 10.1038/nn.3379 – ident: e_1_2_6_52_1 doi: 10.1080/00048670902721103 – ident: e_1_2_6_68_1 doi: 10.1007/s00213-011-2375-4 – ident: e_1_2_6_49_1 doi: 10.1021/pr5006372 – ident: e_1_2_6_24_1 doi: 10.1016/j.nbd.2005.08.012 – ident: e_1_2_6_46_1 doi: 10.1007/s00702-008-0156-y – ident: e_1_2_6_26_1 doi: 10.1002/pmic.200900015 – ident: e_1_2_6_50_1 doi: 10.1038/tp.2015.102 – ident: e_1_2_6_3_1 doi: 10.1016/j.tins.2004.04.009 – ident: e_1_2_6_78_1 doi: 10.3389/fendo.2013.00165 – volume: 3 start-page: 56 year: 2009 ident: e_1_2_6_73_1 article-title: MPEP reduces seizure severity in Fmr1‐KO mice overexpressing Abeta publication-title: International Journal of Clinical and Experimental Pathology – ident: e_1_2_6_77_1 doi: 10.1016/j.schres.2015.10.012 – ident: e_1_2_6_31_1 doi: 10.1016/j.schres.2015.04.012 – ident: e_1_2_6_69_1 doi: 10.1016/0092-8674(91)90397-H – ident: e_1_2_6_34_1 doi: 10.1073/pnas.122205699 – ident: e_1_2_6_48_1 doi: 10.1016/j.jpsychires.2010.03.003 – ident: e_1_2_6_8_1 doi: 10.1186/2040-2392-5-41 – ident: e_1_2_6_45_1 doi: 10.1007/s00406-008-0847-2 – ident: e_1_2_6_62_1 doi: 10.1038/npp.2009.201 – ident: e_1_2_6_59_1 doi: 10.1007/s00406-015-0621-1 – ident: e_1_2_6_18_1 doi: 10.1038/ng0193-31 – ident: e_1_2_6_22_1 doi: 10.1016/j.bbr.2013.05.060 – ident: e_1_2_6_6_1 doi: 10.1136/jmg.2008.063701 – ident: e_1_2_6_47_1 doi: 10.1016/j.jpsychires.2010.04.014 – ident: e_1_2_6_39_1 doi: 10.1074/jbc.M110.210260 – ident: e_1_2_6_36_1 doi: 10.5582/irdr.2014.01024 – ident: e_1_2_6_76_1 doi: 10.1038/npp.2017.177 – ident: e_1_2_6_37_1 doi: 10.1016/j.pnpbp.2013.06.017 – ident: e_1_2_6_16_1 doi: 10.1016/j.cell.2011.06.013 – ident: e_1_2_6_29_1 doi: 10.1016/j.schres.2010.07.017 – ident: e_1_2_6_55_1 doi: 10.1038/sj.mp.4002098 – ident: e_1_2_6_9_1 doi: 10.1037/a0023561 – ident: e_1_2_6_65_1 doi: 10.1371/journal.pone.0091465 – ident: e_1_2_6_7_1 doi: 10.1385/JMN:13:1-2:101 – ident: e_1_2_6_14_1 doi: 10.1002/ajmg.a.33626 – ident: e_1_2_6_12_1 doi: 10.1038/sj.mp.4001806 – ident: e_1_2_6_70_1 doi: 10.1097/YPG.0b013e3282fa1874 – ident: e_1_2_6_20_1 doi: 10.1523/JNEUROSCI.2021-11.2011 – ident: e_1_2_6_66_1 doi: 10.1021/pr070492f – ident: e_1_2_6_17_1 doi: 10.1016/S0920-9964(99)00037-7 – ident: e_1_2_6_21_1 doi: 10.2174/157015906778520782 – ident: e_1_2_6_10_1 doi: 10.1038/nbt.2377 – ident: e_1_2_6_11_1 doi: 10.1016/j.tjog.2011.01.018 – ident: e_1_2_6_13_1 doi: 10.1002/prca.200600541 – ident: e_1_2_6_40_1 doi: 10.1016/j.psychres.2012.12.022 – ident: e_1_2_6_43_1 doi: 10.1016/j.jpsychires.2008.11.006 – ident: e_1_2_6_27_1 doi: 10.1038/tp.2013.46 – ident: e_1_2_6_44_1 doi: 10.1186/1471-244X-9-17 – volume: 20 start-page: 4516 year: 2016 ident: e_1_2_6_33_1 article-title: The relationship between the occurrence of intractable epilepsy with glial cells and myelin sheath – An experimental study publication-title: European Review for Medical and Pharmacological Sciences – ident: e_1_2_6_51_1 doi: 10.1038/ejhg.2013.311 – ident: e_1_2_6_32_1 doi: 10.1016/j.mcp.2014.08.003 – ident: e_1_2_6_58_1 doi: 10.1097/00004703-200112000-00008 – ident: e_1_2_6_2_1 doi: 10.1016/j.nbd.2005.12.012 – ident: e_1_2_6_5_1 doi: 10.1126/scitranslmed.aab4109 – ident: e_1_2_6_57_1 doi: 10.1016/j.neulet.2004.11.013 – ident: e_1_2_6_28_1 doi: 10.1097/WNR.0000000000000880 – ident: e_1_2_6_42_1 doi: 10.1038/ng0895-483 – ident: e_1_2_6_38_1 doi: 10.3389/fnsyn.2018.00022 – ident: e_1_2_6_74_1 doi: 10.1159/000172086 – ident: e_1_2_6_75_1 doi: 10.1016/j.neuropharm.2005.06.004 |
SSID | ssj0003104 |
Score | 2.2641144 |
Snippet | The fragile X mental retardation 1 knockout (Fmr1 KO) mouse replicates behavioral deficits associated with autism, fragile X syndrome, and schizophrenia. Less... The fragile X mental retardation 1 knockout ( Fmr1 KO) mouse replicates behavioral deficits associated with autism, fragile X syndrome, and schizophrenia. Less... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e22069 |
SubjectTerms | 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase - genetics 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase - metabolism Allosteric properties Amino acids Animals Autism brain Endoplasmic reticulum Excitatory Amino Acid Antagonists - pharmacology Excitatory amino acid transporter 2 Excitatory Amino Acid Transporter 2 - genetics Excitatory Amino Acid Transporter 2 - metabolism Excitatory amino acid transporters FMR1 protein FMRP Forebrain Fragile X Mental Retardation Protein - genetics Fragile X syndrome FXS GAP-43 protein GAP-43 Protein - genetics GAP-43 Protein - metabolism Gene Deletion Glutamic acid receptors (metabotropic) Intellectual disabilities Liquid chromatography Mass spectroscopy mGluR5 Mice Mice, Inbred C57BL MPEP Neurofilament Proteins - genetics Neurofilament Proteins - metabolism Phosphodiesterase Prosencephalon - drug effects Prosencephalon - metabolism Protein expression Proteins Proteome - genetics Proteome - metabolism Proteomics Pyridines Pyridines - pharmacology rab GTP-Binding Proteins - genetics rab GTP-Binding Proteins - metabolism Rab3A protein Ribonucleoproteins Ribonucleoproteins - genetics Ribonucleoproteins - metabolism Schizophrenia Schizophrenia - genetics Schizophrenia - metabolism Western blotting |
Title | Quantitative proteomics of forebrain subcellular fractions in fragile X mental retardation 1 knockout mice following acute treatment with 2‐Methyl‐6‐(phenylethynyl)pyridine: Relevance to developmental study of schizophrenia |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsyn.22069 https://www.ncbi.nlm.nih.gov/pubmed/30176067 https://www.proquest.com/docview/2132575060 https://www.proquest.com/docview/2099042381 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5Kn3zxVi-rVY4iUh-yzWUyyepTUUsRWrBaWEEIc4uUxqRsEmR98if4GwX_h-fMbLLWC4gPuU8yE-bMme_MnPMNY49kJuQsF2impioOuA55kBtuAqmEkGg_a55TNPLhkTg44a_m6XyDPRtiYTw_xDjgRi3D6Wtq4FK1u2vS0HZZT-M4FBS8FyWCePNfHK-poxC28IHlk_NMDKxCYbw7vnmxL_oNYF7Eq67D2b_C3g9F9X4mZ9O-U1P9-RcWx__8l6vs8gqIwp6XnGtsw9bX2dZejUb4xyU8Buca6sbct9j3172sXTQa6kZw1A4UzNxCUwKCXpp7Pq2h7RVNA5BfK5QLHzDRAj7Aiw9YLJiDX0kAyMdx4RdzggjOatTJTd8BftLi96qq-YQdKkjddxZGT3igIWOIv335emhRuio8EbjtkJPasqJbeHhyvlycYndsn8IxRc6TTEPXgFn7RmH-jlOXCt_-7HJ4g53sv3z7_CBYrQ8R6IScs9DUjFKVlSqZGZ6bUNvEpEYYw6MsVIkujdZhmZV4RCAkrMwTnem4xF1idcyTm2yzbmp7m0GOIqLKLOeqRIszFVIIk5dJZmacGO3EhO0MklLoFXk6reFRFZ72OS6wCgtXhRP2cEx67hlD_pRoexC3YqU02iKOElSgxPg4YQ_Gx9jcqfJkbZse09BEJiecNWG3vJiOuaCuztAezbCwTtj-nn3x5t2RO7nz70nvsksIFmd--GmbbXaL3t5DQNap-67l_QAvyjwX |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcCFV3ksFBgQQuWQbTZxnARxqYBqge5KlFbaHlCU2A6qGpJqkwgtJ34CvxGJ_8GMvclSHhLisEl2440deTz-ZjzzmbFHaSjSOBJopgaZ53DpcidSXDlpJkSK9rPkEWUjT6ZifMhfz4LZGnvW5cJYfoje4UYjw-hrGuDkkN5esYbWi3Loea6Iz7HzHIEGmV4v9lfkUQhceMfzyXkoOl4h19vu_3p2NvoNYp5FrGbK2b3M3neNtZEmJ8O2yYby8y88jv_7NlfYpSUWhR0rPFfZmi6vsY2dEu3wjwt4DCY61LjdN9j3t21amoQ0VI9g2B0on7mGKgfEvbT8fFxC3Wa0EkChrZDPbc5EDXgDv3zAdsEM7GYCQGGOc7ufE4zgpES1XLUN4CM1Pq8oqk84p0Iq20ZDHwwP5DUG79uXrxONAlbghcDPFsWpLQr6CU9PThfzY5yR9VPYp-R5EmtoKlCr8Cis39DqUuPrn6MOr7PD3ZcHz8fOcosIR_oUn4XW5ijIwjzzY8Uj5Urtq0AJpfgodDNf5kpKNw9zPCMWEjqNfBlKL8eDr6XH_RtsvaxKfYtBhDKS5WHEsxyNzkCkQqgo90MVcyK1EwO21YlKIpf86bSNR5FY5mcvwS5MTBcO2MO-6KklDflToc1O3pKl3qgTb-SjDiXSxwF70N_GEU-dl5a6arEMrWVygloDdtPKaV8LqusQTdIQG2uk7e_VJ--Opubi9r8Xvc8ujA8me8neq-mbO-wiYsfYeqM22Xozb_VdxGdNds8Mwx-zS0A2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZKkRAv5SjHQoEBIVQess0mjpPAUwWsytEVFCotElKU-KiqhmS1SYSWJ34CvxGJ_8GMs8lSDgnxkNuJHXk8_sae-czY_TQUaRwJNFODzHO4dLkTKa6cNBMiRftZ8oiikfcnYu-Qv5gG0zX2uIuFafkh-gE3ahlWX1MDnymzsyINrRbF0PNcEZ9hZ7lAJEGI6GDFHYW4hXc0n5yHoqMVcr2d_tXTndFvCPM0YLU9zvgC-9CVtXU0ORk2dTaUn3-hcfzPn7nINpZIFHZb0bnE1nRxmW3uFmiFf1zAA7C-oXbQfZN9f9OkhQ1HQ-UIltuBopkrKA0g6qXJ5-MCqiajeQBybAUzbyMmKsAHeHGExYIptEsJADk5ztvVnGAEJwUq5bKpAT-p8Xt5Xn7CHhVS2dQaeld4oDFj8L59-bqvUbxyPBG4bZOX2iKnW3h4OFvMj7E_1o_ggELnSaihLkGtnKMwf0uqS4WvfvY5vMIOx8_ePdlzlgtEONIn7yy0NUdBFprMjxWPlCu1rwIllOKj0M18aZSUrgkNHhEJCZ1GvgylZ3Dna-lx_ypbL8pCX2cQoYhkJox4ZtDkDEQqhIqMH6qYE6WdGLDtTlISuWRPp0U88qTlffYSrMLEVuGA3euTzlrKkD8l2urELVlqjSrxRj5qUKJ8HLC7_WNs71R5aaHLBtPQTCYnoDVg11ox7XNBZR2iQRpiYa2w_T375O37iT258e9J77Bzr5-Ok1fPJy9vsvMIHON2KGqLrdfzRt9CcFZnt20j_AHgIT7l |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+proteomics+of+forebrain+subcellular+fractions+in+fragile+X+mental+retardation+1+knockout+mice+following+acute+treatment+with+2%E2%80%90Methyl%E2%80%906%E2%80%90%28phenylethynyl%29pyridine%3A+Relevance+to+developmental+study+of+schizophrenia&rft.jtitle=Synapse+%28New+York%2C+N.Y.%29&rft.au=Folsom%2C+Timothy+D.&rft.au=Higgins%2C+LeeAnn&rft.au=Markowski%2C+Todd+W.&rft.au=Griffin%2C+Timothy+J.&rft.date=2019-01-01&rft.issn=0887-4476&rft.eissn=1098-2396&rft.volume=73&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsyn.22069&rft.externalDBID=10.1002%252Fsyn.22069&rft.externalDocID=SYN22069 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-4476&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-4476&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-4476&client=summon |