The JA‐pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression

Summary Jasmonates are key regulators of the balance between defence and growth in plants. However, the molecular mechanisms by which activation of defence reduces growth are not yet fully understood. Here, we analyze the role of MYC transcription factors (TFs) and jasmonic acid (JA) in photomorphog...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 102; no. 1; pp. 138 - 152
Main Authors Ortigosa, Andrés, Fonseca, Sandra, Franco‐Zorrilla, José M., Fernández‐Calvo, Patricia, Zander, Mark, Lewsey, Mathew G., García‐Casado, Gloria, Fernández‐Barbero, Gemma, Ecker, Joseph R., Solano, Roberto
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Jasmonates are key regulators of the balance between defence and growth in plants. However, the molecular mechanisms by which activation of defence reduces growth are not yet fully understood. Here, we analyze the role of MYC transcription factors (TFs) and jasmonic acid (JA) in photomorphogenic growth. We found that multiple myc mutants share light‐associated phenotypes with mutants of the phytochrome B photoreceptor, such as delayed seed germination in the dark and long hypocotyl growth. Overexpression of MYC2 in a phyB background partially suppressed its long hypocotyl phenotype. Transcriptomic analysis of multiple myc mutants confirmed that MYCs are required for full expression of red (R) light‐regulated genes, including the master regulator HY5. ChIP‐seq analyses revealed that MYC2 and MYC3 bind directly to the promoter of HY5 and that HY5 gene expression and protein levels are compromised in multiple myc mutants. Altogether, our results pinpoint MYCs as photomorphogenic TFs that control phytochrome responses by activating HY5 expression. This has important implications in understanding the trade‐off between growth and defence as the same TFs that activate defence responses are photomorphogenic growth regulators. Significance Statement Activation of defences reduces growth, which affects crop yield. The molecular mechanisms underlying this trade‐off are not fully understood. We found that MYC transcription factors that regulate jasmonate‐dependent plant defences are also photomorphogenic growth regulators required for expression of red light‐regulated genes. Our results show that defence and growth are tightly coordinated by the action of MYCs and suggest strategies to uncouple this trade‐off to increase plant responses to stress without a growth penalty.
AbstractList Jasmonates are key regulators of the balance between defence and growth in plants. However, the molecular mechanisms by which activation of defence reduces growth are not yet fully understood. Here, we analyze the role of MYC transcription factors (TFs) and jasmonic acid (JA) in photomorphogenic growth. We found that multiple myc mutants share light‐associated phenotypes with mutants of the phytochrome B photoreceptor, such as delayed seed germination in the dark and long hypocotyl growth. Overexpression of MYC2 in a phyB background partially suppressed its long hypocotyl phenotype. Transcriptomic analysis of multiple myc mutants confirmed that MYCs are required for full expression of red (R) light‐regulated genes, including the master regulator HY5. ChIP‐seq analyses revealed that MYC2 and MYC3 bind directly to the promoter of HY5 and that HY5 gene expression and protein levels are compromised in multiple myc mutants. Altogether, our results pinpoint MYCs as photomorphogenic TFs that control phytochrome responses by activating HY5 expression. This has important implications in understanding the trade‐off between growth and defence as the same TFs that activate defence responses are photomorphogenic growth regulators.
Summary Jasmonates are key regulators of the balance between defence and growth in plants. However, the molecular mechanisms by which activation of defence reduces growth are not yet fully understood. Here, we analyze the role of MYC transcription factors (TFs) and jasmonic acid (JA) in photomorphogenic growth. We found that multiple myc mutants share light‐associated phenotypes with mutants of the phytochrome B photoreceptor, such as delayed seed germination in the dark and long hypocotyl growth. Overexpression of MYC2 in a phyB background partially suppressed its long hypocotyl phenotype. Transcriptomic analysis of multiple myc mutants confirmed that MYCs are required for full expression of red (R) light‐regulated genes, including the master regulator HY5. ChIP‐seq analyses revealed that MYC2 and MYC3 bind directly to the promoter of HY5 and that HY5 gene expression and protein levels are compromised in multiple myc mutants. Altogether, our results pinpoint MYCs as photomorphogenic TFs that control phytochrome responses by activating HY5 expression. This has important implications in understanding the trade‐off between growth and defence as the same TFs that activate defence responses are photomorphogenic growth regulators. Significance Statement Activation of defences reduces growth, which affects crop yield. The molecular mechanisms underlying this trade‐off are not fully understood. We found that MYC transcription factors that regulate jasmonate‐dependent plant defences are also photomorphogenic growth regulators required for expression of red light‐regulated genes. Our results show that defence and growth are tightly coordinated by the action of MYCs and suggest strategies to uncouple this trade‐off to increase plant responses to stress without a growth penalty.
Summary Jasmonates are key regulators of the balance between defence and growth in plants. However, the molecular mechanisms by which activation of defence reduces growth are not yet fully understood. Here, we analyze the role of MYC transcription factors (TFs) and jasmonic acid (JA) in photomorphogenic growth. We found that multiple myc mutants share light‐associated phenotypes with mutants of the phytochrome B photoreceptor, such as delayed seed germination in the dark and long hypocotyl growth. Overexpression of MYC2 in a phyB background partially suppressed its long hypocotyl phenotype. Transcriptomic analysis of multiple myc mutants confirmed that MYCs are required for full expression of red (R) light‐regulated genes, including the master regulator HY5 . ChIP‐seq analyses revealed that MYC2 and MYC3 bind directly to the promoter of HY5 and that HY5 gene expression and protein levels are compromised in multiple myc mutants. Altogether, our results pinpoint MYCs as photomorphogenic TFs that control phytochrome responses by activating HY5 expression. This has important implications in understanding the trade‐off between growth and defence as the same TFs that activate defence responses are photomorphogenic growth regulators. Significance Statement Activation of defences reduces growth, which affects crop yield. The molecular mechanisms underlying this trade‐off are not fully understood. We found that MYC transcription factors that regulate jasmonate‐dependent plant defences are also photomorphogenic growth regulators required for expression of red light‐regulated genes. Our results show that defence and growth are tightly coordinated by the action of MYCs and suggest strategies to uncouple this trade‐off to increase plant responses to stress without a growth penalty.
Author Fernández‐Calvo, Patricia
Solano, Roberto
Franco‐Zorrilla, José M.
Zander, Mark
Fonseca, Sandra
García‐Casado, Gloria
Lewsey, Mathew G.
Fernández‐Barbero, Gemma
Ecker, Joseph R.
Ortigosa, Andrés
Author_xml – sequence: 1
  givenname: Andrés
  surname: Ortigosa
  fullname: Ortigosa, Andrés
  organization: Consejo Superior de Investigaciones Científicas (CNB‐CSIC)
– sequence: 2
  givenname: Sandra
  surname: Fonseca
  fullname: Fonseca, Sandra
  organization: Consejo Superior de Investigaciones Científicas (CNB‐CSIC)
– sequence: 3
  givenname: José M.
  orcidid: 0000-0001-6769-7349
  surname: Franco‐Zorrilla
  fullname: Franco‐Zorrilla, José M.
  organization: Consejo Superior de Investigaciones Científicas (CNB‐CSIC)
– sequence: 4
  givenname: Patricia
  surname: Fernández‐Calvo
  fullname: Fernández‐Calvo, Patricia
  organization: Consejo Superior de Investigaciones Científicas (CNB‐CSIC)
– sequence: 5
  givenname: Mark
  surname: Zander
  fullname: Zander, Mark
  organization: The Salk Institute for Biological Studies
– sequence: 6
  givenname: Mathew G.
  orcidid: 0000-0002-2631-4337
  surname: Lewsey
  fullname: Lewsey, Mathew G.
  organization: La Trobe University
– sequence: 7
  givenname: Gloria
  surname: García‐Casado
  fullname: García‐Casado, Gloria
  organization: Consejo Superior de Investigaciones Científicas (CNB‐CSIC)
– sequence: 8
  givenname: Gemma
  surname: Fernández‐Barbero
  fullname: Fernández‐Barbero, Gemma
  organization: Consejo Superior de Investigaciones Científicas (CNB‐CSIC)
– sequence: 9
  givenname: Joseph R.
  surname: Ecker
  fullname: Ecker, Joseph R.
  organization: The Salk Institute for Biological Studies
– sequence: 10
  givenname: Roberto
  orcidid: 0000-0001-5459-2417
  surname: Solano
  fullname: Solano, Roberto
  email: rsolano@cnb.csic.es
  organization: Consejo Superior de Investigaciones Científicas (CNB‐CSIC)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31755159$$D View this record in MEDLINE/PubMed
BookMark eNp10cFO3DAQBmALgWChHHiByhKX9hDwxHHiHNGqhSIQPWylcooc73g3q6wdbEd0bzxCn7FPUtMFDpXwZQ7-9Gs0_yHZtc4iISfAziC98ziszqAoQe6QCfBSZBz4z10yYXXJsqqA_IAchrBiDCpeFvvkgEMlBIh6QtxsifT64s_T70HF5aPa0Nv7KY1e2aB9N8TOWWqUjs4H6nEx9ioiHZYuurXzaS7Qdjr9hMHZgIG2GxqVX2Ds7IJe3QuaAFL8NSQSUtgHsmdUH_D4ZR6RH1-_zKZX2c3d5bfpxU2muZQy0wVgCS0zOi9BcF0KbUyOyjChURZ6DqzKwbA2Z6pmqgIDoCUDKct2rirBj8inbe7g3cOIITbrLmjse2XRjaHJn09QF3XNEz39j67c6G3aLqmap0xZVUl93irtXQgeTTP4bq38pgHWPLfQpBaafy0k-_ElcWzXOH-Tr2dP4HwLHrseN-8nNbPv19vIv6WllO4
CitedBy_id crossref_primary_10_1080_17429145_2021_1998681
crossref_primary_10_1016_j_xplc_2021_100232
crossref_primary_10_1073_pnas_1912199117
crossref_primary_10_1093_plphys_kiab493
crossref_primary_10_3389_fpls_2021_680255
crossref_primary_10_1016_j_tplants_2020_12_006
crossref_primary_10_1111_tpj_15873
crossref_primary_10_1016_j_prp_2022_154083
crossref_primary_10_3389_fpls_2022_1051107
crossref_primary_10_1186_s40538_022_00295_2
crossref_primary_10_3390_agronomy11061148
crossref_primary_10_1007_s12374_020_09232_y
crossref_primary_10_1016_j_plantsci_2024_112168
crossref_primary_10_3390_plants13081156
crossref_primary_10_48130_mpb_0024_0006
crossref_primary_10_1093_plphys_kiad633
crossref_primary_10_1016_j_indcrop_2021_114423
crossref_primary_10_48130_vegres_0024_0026
crossref_primary_10_1016_j_pbi_2022_102197
crossref_primary_10_1093_jxb_erac365
crossref_primary_10_1016_j_envexpbot_2023_105607
crossref_primary_10_1007_s11103_021_01199_9
crossref_primary_10_1111_tpj_15124
crossref_primary_10_1111_tpj_16653
crossref_primary_10_1111_plb_13560
crossref_primary_10_1016_j_molp_2020_11_021
crossref_primary_10_1111_tpj_14929
crossref_primary_10_1093_jxb_erac440
crossref_primary_10_3389_fpls_2021_800989
crossref_primary_10_1016_j_tplants_2020_11_013
crossref_primary_10_1371_journal_pgen_1010213
crossref_primary_10_1111_pce_14560
crossref_primary_10_3389_fpls_2021_808960
crossref_primary_10_3389_fpls_2022_868874
crossref_primary_10_1093_plcell_koac319
crossref_primary_10_3389_fphbi_2023_1346705
crossref_primary_10_1093_hr_uhad118
crossref_primary_10_1007_s11105_022_01351_9
crossref_primary_10_1016_j_indcrop_2024_118479
Cites_doi 10.1101/gr.136184.111
10.1038/nmeth.1923
10.1105/tpc.109.070672
10.1093/aob/mct067
10.1016/j.pbi.2006.07.013
10.1038/nature14661
10.1038/ncomms12570
10.1111/nph.14354
10.1371/journal.pone.0003699
10.1016/j.devcel.2005.05.014
10.1038/nprot.2012.101
10.1105/tpc.110.080788
10.1101/gad.5.7.1172
10.1038/nature06448
10.1186/gb-2008-9-9-r137
10.1105/tpc.006130
10.1093/bioinformatics/btl476
10.1038/nature06520
10.1105/tpc.15.00116
10.1105/tpc.113.115139
10.1105/tpc.111.093005
10.1093/mp/ssu049
10.1111/tpj.13539
10.1016/j.pmpp.2016.02.004
10.1093/jxb/erp304
10.1093/bioinformatics/btm412
10.1046/j.1365-313X.2003.01770.x
10.1101/gad.14.8.963
10.1105/tpc.020958
10.1038/s41589-018-0033-4
10.1073/pnas.0711203105
10.1186/1471-2105-11-237
10.1101/gad.969002
10.1105/tpc.010827
10.1111/j.1365-313X.2012.05033.x
10.1093/mp/sss128
10.1038/nature08854
10.1105/tpc.105.032060
10.1016/j.molp.2017.07.002
10.1016/0092-8674(94)90034-5
10.1016/j.pbi.2009.07.013
10.1073/pnas.0900701106
10.1016/j.tplants.2016.12.006
10.1105/tpc.112.095711
10.1105/tpc.107.050708
10.1111/j.1365-313X.2011.04519.x
10.1073/pnas.1201616109
10.1038/nature06006
10.1038/nature09430
10.1126/science.280.5366.1091
10.3389/fpls.2017.00736
10.1073/pnas.0802332105
10.1104/pp.107.098293
10.1111/nph.14638
10.1105/tpc.18.00018
10.1146/annurev.arplant.51.1.501
10.1016/j.tplants.2010.08.003
10.1101/gad.915001
10.1016/j.cell.2016.04.038
10.1105/tpc.114.125047
10.1101/gad.297704
10.1101/gad.12.23.3703
10.1104/pp.104.2.363
10.1073/pnas.1110682108
10.1038/nbt.1508
10.1104/pp.109.138529
10.1086/417659
10.1038/nchembio.161
10.1146/annurev-arplant-043015-112252
10.1016/j.devcel.2010.10.024
10.1104/pp.113.214908
10.1105/tpc.113.122002
10.1038/nature05960
10.1146/annurev-arplant-050213-040145
10.1146/annurev-arplant-042817-040047
10.1105/tpc.113.120394
10.1146/annurev-arplant-050312-120221
10.1111/tpj.14381
10.1105/tpc.022319
10.1016/j.pbi.2016.07.005
10.1016/j.pbi.2018.02.009
10.1073/pnas.1316278111
ContentType Journal Article
Copyright 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd
2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd.
Copyright © 2020 John Wiley & Sons Ltd and the Society for Experimental Biology
Copyright_xml – notice: 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd
– notice: 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd.
– notice: Copyright © 2020 John Wiley & Sons Ltd and the Society for Experimental Biology
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
DOI 10.1111/tpj.14618
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage 152
ExternalDocumentID 10_1111_tpj_14618
31755159
TPJ14618
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (DFG)
  funderid: Za‐730/1‐1
– fundername: Severo Ochoa
– fundername: National Science Foundation
  funderid: MCB‐1024999
– fundername: Salk Pioneer Postdoctoral Endowment Fund
– fundername: EU Marie Curie FP7 International Outgoing Fellowship
  funderid: 252475
– fundername: Gordon and Betty Moore Foundation
  funderid: 3034
– fundername: Spanish Ministry for Science and Innovation
  funderid: BIO2016‐77216‐R; BIO2017‐86651‐P
– fundername: Marie Curie
  grantid: 252475
– fundername: Howard Hughes Medical Institute
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c3888-c41e61b0fc26153c65cff2eaf05ce84cd10721f0b20a90a71f11c801886bda753
IEDL.DBID DR2
ISSN 0960-7412
IngestDate Thu Jul 25 09:11:25 EDT 2024
Fri Sep 13 03:25:23 EDT 2024
Fri Aug 23 02:58:05 EDT 2024
Sat Sep 28 08:35:58 EDT 2024
Sat Aug 24 01:06:56 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Arabidopsis
HY5
defence
MYC
jasmonate
trade-off
light signalling
Language English
License 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3888-c41e61b0fc26153c65cff2eaf05ce84cd10721f0b20a90a71f11c801886bda753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6769-7349
0000-0002-2631-4337
0000-0001-5459-2417
OpenAccessLink https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1111/tpj.14618
PMID 31755159
PQID 2393188877
PQPubID 31702
PageCount 15
ParticipantIDs proquest_miscellaneous_2317594993
proquest_journals_2393188877
crossref_primary_10_1111_tpj_14618
pubmed_primary_31755159
wiley_primary_10_1111_tpj_14618_TPJ14618
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2002; 16
2010; 11
2017; 8
1998; 280
2013; 25
2010; 19
2019; 99
2010; 468
2007; 144
2013; 64
2010; 464
2008; 9
2014; 26
2000; 51
2003; 15
2008; 105
2009; 150
2008; 3
2018; 44
2011; 16
2013; 161
2013; 6
2014; 65
2010; 61
2016; 33
2012; 71
1994; 104
2000; 14
2006; 22
2008; 26
2013; 111
2011; 66
1994; 79
2001; 15
2018; 30
2011; 23
2012; 24
2014; 7
2012; 22
2007; 23
1998; 12
2007; 19
2007; 448
2009; 21
2017; 22
2006; 9
2016; 95
2016; 165
2015; 525
2009a; 12
2014; 111
2017; 213
2017; 215
2018; 69
2012; 109
1991; 5
2003; 34
2016; 7
2011; 108
2015; 27
2017; 90
2004; 18
2004; 16
2009b; 5
2005; 9
2017; 10
2012; 7
2008; 451
2005; 17
1992; 67
2016; 67
2018; 14
2012; 9
2009; 106
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 22
  start-page: 1813
  year: 2012
  end-page: 1831
  article-title: ChIP‐seq guidelines and practices of the ENCODE and modENCODE consortia
  publication-title: Genome Res.
– volume: 104
  start-page: 363
  year: 1994
  end-page: 371
  article-title: The induction of seed germination in Arabidopsis thaliana Is regulated principally by phytochrome B and secondarily by phytochrome A
  publication-title: Plant Physiol.
– volume: 16
  start-page: 19
  year: 2011
  end-page: 28
  article-title: PIFs: pivotal components in a cellular signaling hub
  publication-title: Trends Plant Sci.
– volume: 106
  start-page: 4935
  year: 2009
  end-page: 4940
  article-title: Ecological modulation of plant defence via phytochrome control of jasmonate sensitivity
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 6
  start-page: 686
  year: 2013
  end-page: 703
  article-title: MYC2: the master in action
  publication-title: Mol. Plant
– volume: 23
  start-page: 701
  year: 2011
  end-page: 715
  article-title: The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses
  publication-title: Plant Cell
– volume: 3
  year: 2008
  article-title: Wound‐induced endogenous jasmonates stunt plant growth by inhibiting mitosis
  publication-title: PLoS ONE
– volume: 21
  start-page: 3535
  year: 2009
  end-page: 3553
  article-title: Definition of early transcriptional circuitry involved in light‐induced reversal of PIF‐imposed repression of photomorphogenesis in young Arabidopsis seedlings
  publication-title: Plant Cell
– volume: 105
  start-page: 1380
  year: 2008
  end-page: 1385
  article-title: Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 18
  start-page: 1577
  year: 2004
  end-page: 91
  article-title: Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis
  publication-title: Genes Dev.
– volume: 9
  start-page: 109
  year: 2005
  end-page: 119
  article-title: Plant development is regulated by a family of auxin receptor F box proteins
  publication-title: Dev. Cell
– volume: 27
  start-page: 1620
  year: 2015
  end-page: 1633
  article-title: Regulation of jasmonate‐mediated stamen development and seed production by a bHLH‐MYB complex in Arabidopsis
  publication-title: Plant Cell
– volume: 109
  start-page: E1192
  year: 2012
  end-page: 200
  article-title: Plant hormone jasmonate prioritizes defence over growth by interfering with gibberellin signaling cascade
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 34
  start-page: 827
  year: 2003
  end-page: 836
  article-title: HFR1, a putative bHLH transcription factor, mediates both phytochrome A and cryptochrome signalling
  publication-title: Plant J.
– volume: 67
  start-page: 513
  year: 2016
  end-page: 537
  article-title: Light‐mediated hormonal regulation of plant growth and development
  publication-title: Annu. Rev. Plant Biol.
– volume: 111
  start-page: 2367
  year: 2014
  end-page: 2372
  article-title: DNA‐binding specificities of plant transcription factors and their potential to define target genes
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 71
  start-page: 699
  year: 2012
  end-page: 711
  article-title: Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling
  publication-title: Plant J.
– volume: 30
  start-page: 1971
  year: 2018
  end-page: 1988
  article-title: Integrated regulation of apical hook development by transcriptional coupling of EIN3/EIL1 and PIFs in Arabidopsis
  publication-title: Plant Cell
– volume: 10
  start-page: 1035
  issue: 8
  year: 2017
  end-page: 1046
  article-title: Expanding roles of PIFs in signal integration from multiple processes
  publication-title: Mol Plant.
– volume: 150
  start-page: 1310
  year: 2009
  end-page: 1321
  article-title: The tryptophan conjugates of jasmonic and indole‐3‐acetic acids are endogenous auxin inhibitors
  publication-title: Plant Physiol.
– volume: 7
  start-page: 12570
  year: 2016
  article-title: Rewiring of jasmonate and phytochrome B signalling uncouples plant growth‐defence tradeoffs
  publication-title: Nat. Commun.
– volume: 26
  start-page: 1351
  year: 2008
  end-page: 1359
  article-title: Design and analysis of ChIP‐seq experiments for DNA‐binding proteins
  publication-title: Nat. Biotechnol.
– volume: 161
  start-page: 1930
  issue: 4
  year: 2013
  end-page: 1951
  article-title: Jasmonate controls leaf growth by repressing cell proliferation and the onset of endoreduplication while maintaining a potential stand‐by mode
  publication-title: Plant Physiol.
– volume: 61
  start-page: 11
  year: 2010
  end-page: 24
  article-title: Phytochrome functions in Arabidopsis development
  publication-title: J. Exp. Bot.
– volume: 33
  start-page: 147
  year: 2016
  end-page: 156
  article-title: Redundancy and specificity in jasmonate signalling
  publication-title: Curr. Opin. Plant Biol.
– volume: 12
  start-page: 3703
  year: 1998
  end-page: 3714
  article-title: Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE‐INSENSITIVE3 and ETHYLENE‐RESPONSE‐FACTOR1
  publication-title: Genes Dev.
– volume: 9
  start-page: R137
  year: 2008
  article-title: Model‐based analysis of ChIP‐Seq (MACS)
  publication-title: Genome Biol.
– volume: 15
  start-page: 1120
  year: 2003
  end-page: 1130
  article-title: The Arabidopsis SLEEPY1 gene encodes a putative F‐box subunit of an SCF E3 ubiquitin ligase
  publication-title: Plant Cell
– volume: 448
  start-page: 666
  year: 2007
  end-page: 671
  article-title: The JAZ family of repressors is the missing link in jasmonate signalling
  publication-title: Nature
– volume: 26
  start-page: 263
  year: 2014
  end-page: 279
  article-title: Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis
  publication-title: Plant Cell
– volume: 65
  start-page: 335
  year: 2014
  end-page: 363
  article-title: Light regulation of plant defence
  publication-title: Annu. Rev. Plant Biol.
– volume: 24
  start-page: 536
  year: 2012
  end-page: 550
  article-title: JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in Arabidopsis
  publication-title: Plant Cell
– volume: 67
  start-page: 283
  year: 1992
  end-page: 335
  article-title: The dilemma of plants: to grow or defend
  publication-title: Q. Rev. Biol.
– volume: 23
  start-page: 2700
  year: 2007
  end-page: 2707
  article-title: A comparison of background correction methods for two‐colour microarrays
  publication-title: Bioinformatics
– volume: 90
  start-page: 1144
  year: 2017
  end-page: 1155
  article-title: Jasmonate inhibits COP1 activity to suppress hypocotyl elongation and promote cotyledon opening in etiolated Arabidopsis seedlings
  publication-title: Plant J.
– volume: 8
  start-page: 736
  year: 2017
  article-title: Jasmonoyl‐L‐tryptophan disrupts IAA activity through the AUX1 auxin permease
  publication-title: Front. Plant Sci.
– volume: 9
  start-page: 357
  year: 2012
  end-page: 359
  article-title: Fast gapped‐read alignment with Bowtie 2
  publication-title: Nat. Methods
– volume: 17
  start-page: 1953
  year: 2005
  end-page: 1966
  article-title: A basic helix‐loop‐helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light‐mediated photomorphogenic growth
  publication-title: Plant Cell
– volume: 11
  start-page: 237
  year: 2010
  article-title: ChIPpeakAnno: a bioconductor package to annotate ChIP‐seq and ChIP‐chip data
  publication-title: BMC Bioinformatics
– volume: 451
  start-page: 480
  year: 2008
  end-page: 484
  article-title: A molecular framework for light and gibberellin control of cell elongation
  publication-title: Nature
– volume: 215
  start-page: 1533
  year: 2017
  end-page: 1547
  article-title: Regulation of growth–defence balance by the JASMONATE ZIM‐DOMAIN (JAZ)‐MYC transcriptional module
  publication-title: New Phytol.
– volume: 105
  start-page: 7100
  year: 2008
  end-page: 7105
  article-title: COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 5
  start-page: 344
  year: 2009b
  end-page: 350
  article-title: (+)‐7‐iso‐Jasmonoyl‐L‐isoleucine is the endogenous bioactive jasmonate
  publication-title: Nat. Chem. Biol.
– volume: 468
  start-page: 400
  year: 2010
  end-page: 405
  article-title: Jasmonate perception by inositol‐phosphate‐potentiated COI1–JAZ co‐receptor
  publication-title: Nature
– volume: 7
  start-page: 1267
  year: 2014
  end-page: 1287
  article-title: Growth‐defence tradeoffs in plants: a balancing act to optimize fitness
  publication-title: Mol. Plant
– volume: 16
  start-page: 646
  issue: 5
  year: 2002
  end-page: 658
  article-title: Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA‐like gene whose expression is up‐regulated following imbibition
  publication-title: Genes Dev.
– volume: 24
  start-page: 1398
  year: 2012
  end-page: 1419
  article-title: Dynamic antagonism between phytochromes and PIF family basic helix‐loop‐helix factors induces selective reciprocal responses to light and shade in a rapidly responsive transcriptional network in Arabidopsis
  publication-title: Plant Cell
– volume: 44
  start-page: 72
  year: 2018
  end-page: 81
  article-title: Resolution of growth–defence conflict: mechanistic insights from jasmonate signaling
  publication-title: Curr. Opin. Plant Biol.
– volume: 95
  start-page: 55
  year: 2016
  end-page: 59
  article-title: False idolatry of the mythical growth versus immunity tradeoff in molecular systems plant pathology
  publication-title: Physiol. Mol. Plant Pathol.
– volume: 51
  start-page: 501
  year: 2000
  end-page: 531
  article-title: GROWTH RETARDANTS: effects on gibberellin biosynthesis and other metabolic pathways
  publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol.
– volume: 26
  start-page: 1105
  issue: 3
  year: 2014
  end-page: 1117
  article-title: Jasmonate‐activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene‐promoted apical hook formation in Arabidopsis
  publication-title: Plant Cell
– volume: 7
  start-page: 1728
  year: 2012
  end-page: 1740
  article-title: Identifying ChIP‐seq enrichment using MACS
  publication-title: Nat. Protoc.
– volume: 99
  start-page: 1080
  year: 2019
  end-page: 1097
  article-title: Functional interrelation of MYC2 and HY5 plays an important role in Arabidopsis seedling development
  publication-title: Plant J.
– volume: 451
  start-page: 475
  year: 2008
  end-page: 479
  article-title: Coordinated regulation of Arabidopsis thaliana development by light and gibberellins
  publication-title: Nature
– volume: 25
  start-page: 3117
  year: 2013
  end-page: 3132
  article-title: Arabidopsis basic helix‐loop‐helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior
  publication-title: Plant Cell
– volume: 12
  start-page: 539
  year: 2009a
  end-page: 547
  article-title: The jasmonate pathway: the ligand, the receptor and the core signalling module
  publication-title: Curr. Opin. Plant Biol.
– volume: 66
  start-page: 700
  year: 2011
  end-page: 711
  article-title: Improved protein‐binding microarrays for the identification of DNA‐binding specificities of transcription factors
  publication-title: Plant J.
– volume: 69
  start-page: 387
  year: 2018
  end-page: 415
  article-title: Modularity in jasmonate signaling for multistress resilience
  publication-title: Annu. Rev. Plant Biol.
– volume: 64
  start-page: 403
  year: 2013
  end-page: 427
  article-title: Photoreceptor signaling networks in plant responses to shade
  publication-title: Annu. Rev. Plant Biol.
– volume: 16
  start-page: 1392
  year: 2004
  end-page: 405
  article-title: The Arabidopsis F‐box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin‐induced degradation
  publication-title: Plant Cell
– volume: 14
  start-page: 963
  year: 2000
  end-page: 980
  article-title: Leptin‐specific patterns of gene expression in white adipose tissue
  publication-title: Genes Dev.
– volume: 15
  start-page: 63
  year: 2003
  end-page: 78
  article-title: Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling
  publication-title: Plant Cell
– volume: 15
  start-page: 2613
  year: 2001
  end-page: 2625
  article-title: LAF1, a MYB transcription activator for phytochrome A signaling
  publication-title: Genes Dev.
– volume: 16
  start-page: 1938
  year: 2004
  end-page: 50
  article-title: JASMONATE‐INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate‐regulated defence responses in Arabidopsis
  publication-title: Plant Cell
– volume: 464
  start-page: 788
  year: 2010
  end-page: 791
  article-title: NINJA connects the co‐repressor TOPLESS to jasmonate signalling
  publication-title: Nature
– volume: 79
  start-page: 1035
  year: 1994
  end-page: 1045
  article-title: Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell‐specific regulation of its nucleocytoplasmic partitioning
  publication-title: Cell
– volume: 213
  start-page: 1378
  year: 2017
  end-page: 1392
  article-title: JAZ2 controls stomata dynamics during bacterial invasion
  publication-title: New Phytol.
– volume: 14
  start-page: 480
  year: 2018
  end-page: 488
  article-title: Ligand‐receptor co‐evolution shaped the jasmonate pathway in land plants
  publication-title: Nat. Chem. Biol.
– volume: 19
  start-page: 2470
  year: 2007
  end-page: 2483
  article-title: A downstream mediator in the growth repression limb of the jasmonate pathway
  publication-title: Plant Cell Online
– volume: 280
  start-page: 1091
  year: 1998
  end-page: 1094
  article-title: COI1: an Arabidopsis gene required for jasmonate‐regulated defence and fertility
  publication-title: Science
– volume: 144
  start-page: 1391
  year: 2007
  end-page: 1406
  article-title: Genome‐wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance
  publication-title: Plant Physiol.
– volume: 22
  start-page: 329
  year: 2017
  end-page: 337
  article-title: Dynamic plant–plant–herbivore interactions govern plant growth‐defence integration
  publication-title: Trends Plant Sci.
– volume: 111
  start-page: 1021
  year: 2013
  end-page: 1058
  article-title: Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany
  publication-title: Ann. Bot.
– volume: 165
  start-page: 1280
  year: 2016
  end-page: 1292
  article-title: Cistrome and epicistrome features shape the regulatory DNA landscape
  publication-title: Cell
– volume: 108
  start-page: 20231
  year: 2011
  end-page: 20235
  article-title: PHYTOCHROME‐INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 9
  start-page: 509
  year: 2006
  end-page: 514
  article-title: Let there be light in the nucleus!
  publication-title: Curr. Opin. Plant Biol.
– volume: 26
  start-page: 1967
  year: 2014
  end-page: 1980
  article-title: Repression of jasmonate‐dependent defences by shade involves differential regulation of protein stability of MYC transcription factors and their JAZ repressors in Arabidopsis
  publication-title: Plant Cell
– volume: 5
  start-page: 1172
  year: 1991
  end-page: 1182
  article-title: Cop1: a regulatory locus involved m hght‐controlled development and gene expression in Arabidopsis
  publication-title: Genes Dev.
– volume: 19
  start-page: 884
  year: 2010
  end-page: 894
  article-title: DELLAs Modulate Jasmonate Signaling via Competitive Binding to JAZs
  publication-title: Dev. Cell
– volume: 22
  start-page: 2825
  year: 2006
  end-page: 2827
  article-title: RankProd: a bioconductor package for detecting differentially expressed genes in meta‐analysis
  publication-title: Bioinformatics
– volume: 448
  start-page: 661
  year: 2007
  end-page: 665
  article-title: JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling
  publication-title: Nature
– volume: 525
  start-page: 269
  year: 2015
  end-page: 273
  article-title: Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling
  publication-title: Nature
– ident: e_1_2_8_38_1
  doi: 10.1101/gr.136184.111
– ident: e_1_2_8_39_1
  doi: 10.1038/nmeth.1923
– ident: e_1_2_8_42_1
  doi: 10.1105/tpc.109.070672
– ident: e_1_2_8_72_1
  doi: 10.1093/aob/mct067
– ident: e_1_2_8_45_1
  doi: 10.1016/j.pbi.2006.07.013
– ident: e_1_2_8_80_1
  doi: 10.1038/nature14661
– ident: e_1_2_8_6_1
  doi: 10.1038/ncomms12570
– ident: e_1_2_8_24_1
  doi: 10.1111/nph.14354
– ident: e_1_2_8_77_1
  doi: 10.1371/journal.pone.0003699
– ident: e_1_2_8_13_1
  doi: 10.1016/j.devcel.2005.05.014
– ident: e_1_2_8_17_1
  doi: 10.1038/nprot.2012.101
– ident: e_1_2_8_18_1
  doi: 10.1105/tpc.110.080788
– ident: e_1_2_8_12_1
  doi: 10.1101/gad.5.7.1172
– ident: e_1_2_8_16_1
  doi: 10.1038/nature06448
– ident: e_1_2_8_78_1
  doi: 10.1186/gb-2008-9-9-r137
– ident: e_1_2_8_2_1
  doi: 10.1105/tpc.006130
– ident: e_1_2_8_28_1
  doi: 10.1093/bioinformatics/btl476
– ident: e_1_2_8_46_1
  doi: 10.1038/nature06520
– ident: e_1_2_8_58_1
  doi: 10.1105/tpc.15.00116
– ident: e_1_2_8_61_1
  doi: 10.1105/tpc.113.115139
– ident: e_1_2_8_64_1
  doi: 10.1105/tpc.111.093005
– ident: e_1_2_8_32_1
  doi: 10.1093/mp/ssu049
– ident: e_1_2_8_82_1
  doi: 10.1111/tpj.13539
– ident: e_1_2_8_37_1
  doi: 10.1016/j.pmpp.2016.02.004
– ident: e_1_2_8_22_1
  doi: 10.1093/jxb/erp304
– ident: e_1_2_8_60_1
  doi: 10.1093/bioinformatics/btm412
– ident: e_1_2_8_15_1
  doi: 10.1046/j.1365-313X.2003.01770.x
– ident: e_1_2_8_67_1
  doi: 10.1101/gad.14.8.963
– ident: e_1_2_8_14_1
  doi: 10.1105/tpc.020958
– ident: e_1_2_8_51_1
  doi: 10.1038/s41589-018-0033-4
– ident: e_1_2_8_56_1
  doi: 10.1073/pnas.0711203105
– ident: e_1_2_8_83_1
  doi: 10.1186/1471-2105-11-237
– ident: e_1_2_8_40_1
  doi: 10.1101/gad.969002
– ident: e_1_2_8_50_1
  doi: 10.1105/tpc.010827
– ident: e_1_2_8_29_1
  doi: 10.1111/j.1365-313X.2012.05033.x
– ident: e_1_2_8_34_1
  doi: 10.1093/mp/sss128
– ident: e_1_2_8_57_1
  doi: 10.1038/nature08854
– ident: e_1_2_8_74_1
  doi: 10.1105/tpc.105.032060
– ident: e_1_2_8_55_1
  doi: 10.1016/j.molp.2017.07.002
– ident: e_1_2_8_71_1
  doi: 10.1016/0092-8674(94)90034-5
– ident: e_1_2_8_19_1
  doi: 10.1016/j.pbi.2009.07.013
– ident: e_1_2_8_52_1
  doi: 10.1073/pnas.0900701106
– ident: e_1_2_8_47_1
  doi: 10.1016/j.tplants.2016.12.006
– ident: e_1_2_8_43_1
  doi: 10.1105/tpc.112.095711
– ident: e_1_2_8_75_1
  doi: 10.1105/tpc.107.050708
– ident: e_1_2_8_25_1
  doi: 10.1111/j.1365-313X.2011.04519.x
– ident: e_1_2_8_76_1
  doi: 10.1073/pnas.1201616109
– ident: e_1_2_8_10_1
  doi: 10.1038/nature06006
– ident: e_1_2_8_62_1
  doi: 10.1038/nature09430
– ident: e_1_2_8_73_1
  doi: 10.1126/science.280.5366.1091
– ident: e_1_2_8_69_1
  doi: 10.3389/fpls.2017.00736
– ident: e_1_2_8_33_1
  doi: 10.1073/pnas.0802332105
– ident: e_1_2_8_36_1
  doi: 10.1104/pp.107.098293
– ident: e_1_2_8_49_1
  doi: 10.1111/nph.14638
– ident: e_1_2_8_81_1
  doi: 10.1105/tpc.18.00018
– ident: e_1_2_8_59_1
  doi: 10.1146/annurev.arplant.51.1.501
– ident: e_1_2_8_41_1
  doi: 10.1016/j.tplants.2010.08.003
– ident: e_1_2_8_4_1
  doi: 10.1101/gad.915001
– ident: e_1_2_8_54_1
  doi: 10.1016/j.cell.2016.04.038
– ident: e_1_2_8_9_1
  doi: 10.1105/tpc.114.125047
– ident: e_1_2_8_5_1
  doi: 10.1101/gad.297704
– ident: e_1_2_8_65_1
  doi: 10.1101/gad.12.23.3703
– ident: e_1_2_8_63_1
  doi: 10.1104/pp.104.2.363
– ident: e_1_2_8_23_1
  doi: 10.1073/pnas.1110682108
– ident: e_1_2_8_35_1
  doi: 10.1038/nbt.1508
– ident: e_1_2_8_68_1
  doi: 10.1104/pp.109.138529
– ident: e_1_2_8_27_1
  doi: 10.1086/417659
– ident: e_1_2_8_20_1
  doi: 10.1038/nchembio.161
– ident: e_1_2_8_48_1
  doi: 10.1146/annurev-arplant-043015-112252
– ident: e_1_2_8_30_1
  doi: 10.1016/j.devcel.2010.10.024
– ident: e_1_2_8_53_1
  doi: 10.1104/pp.113.214908
– ident: e_1_2_8_79_1
  doi: 10.1105/tpc.113.122002
– ident: e_1_2_8_70_1
  doi: 10.1038/nature05960
– ident: e_1_2_8_3_1
  doi: 10.1146/annurev-arplant-050213-040145
– ident: e_1_2_8_31_1
  doi: 10.1146/annurev-arplant-042817-040047
– ident: e_1_2_8_66_1
  doi: 10.1105/tpc.113.120394
– ident: e_1_2_8_7_1
  doi: 10.1146/annurev-arplant-050312-120221
– ident: e_1_2_8_8_1
  doi: 10.1111/tpj.14381
– ident: e_1_2_8_44_1
  doi: 10.1105/tpc.022319
– ident: e_1_2_8_11_1
  doi: 10.1016/j.pbi.2016.07.005
– ident: e_1_2_8_26_1
  doi: 10.1016/j.pbi.2018.02.009
– ident: e_1_2_8_21_1
  doi: 10.1073/pnas.1316278111
SSID ssj0017364
Score 2.5403268
Snippet Summary Jasmonates are key regulators of the balance between defence and growth in plants. However, the molecular mechanisms by which activation of defence...
Jasmonates are key regulators of the balance between defence and growth in plants. However, the molecular mechanisms by which activation of defence reduces...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 138
SubjectTerms Arabidopsis
Arabidopsis - growth & development
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis Proteins - physiology
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - physiology
Basic-Leucine Zipper Transcription Factors - metabolism
Basic-Leucine Zipper Transcription Factors - physiology
Cyclopentanes - metabolism
defence
Gene expression
Gene Expression Regulation, Plant
Genes, myc
Germination
Growth regulators
HY5
jasmonate
Jasmonic acid
light signalling
Molecular modelling
Mutants
MYC
Myc protein
Oxylipins - metabolism
Phenotypes
Phototropism - genetics
Phototropism - physiology
Phytochrome B
Plant Growth Regulators - metabolism
Seed germination
Signal Transduction
trade‐off
Transcription factors
Title The JA‐pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.14618
https://www.ncbi.nlm.nih.gov/pubmed/31755159
https://www.proquest.com/docview/2393188877/abstract/
https://search.proquest.com/docview/2317594993
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-UwEB5EfNgXb-ul6koUH_al0qQ9veCTysrhgCKioLBQkjRFEduDpwc9PvkT_I3-EmfSC15YkH0rJCFtZibzTTr5BmBH8DDUnkJD0gIDlFgnrlRx6Pq-CRKuuMyMZfs8CfsXweCydzkFe-1dmJofojtwI8uw-zUZuFSjd0ZeDa2Zc7roS0R6BIjOOuooHvk1dRQidBe9pmhYhSiLpxv50Rd9AZgf8ap1OEdz8Ld91TrP5HZ3XKld_fSJxfE_v2UeZhsgyvZrzVmAKVMswsxBiWBx8hNKVB822H99fqGSxQ9ywo6vDllFjq3dZlhTqofd1-XsDRtel1V5V6LkSlTLG40tNgHXjJiasDrnHD0l61_1GHYwzDw2abjFElwc_Tk_7LtNbQZX-xg0uzrgJuTKy7UgyKjDns5zYWTu9bSJA51xIl7LPSU8mXgy4jnnGr1hHIcqkxgjLcN0URZmFViIg0USiSCLkyC3_PY6jzgRGYooSwIHtlsppcOagiNtQxdcuNQunAMbrfzSxgpHKdG74YxxFDmw1TWj_dBPEVmYckx9EEARQ4_vwEot924WaiK858BvK71_T5-enw7sw9r3u67DD0HBu00D2oDp6n5sfiHCqdSmVeU3ovT3aw
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD602aB9Wbf1Mrfppo0-9MXBku-wlzQ0ZFkTxkigfSjGkmU2xuyQOGzpU39Cf-N-SY_kC71QKHszSEK2zvl8viMffwI4YtTzhMURSIJhghKI0Ix54Jm2LZ2QchonUqt9jr3B1Bmeu-dr8Ln-F6bUh2g23BQy9PtaAVxtSN9BeTHTOKfBOrxAuLs6ofreiEdR3y7Fo5Cjmxg3WaUrpOp4mqH3o9EjinmfseqQ09-Cy_pmy0qTX51lwTvi6oGO4_8-zWt4VXFR0i2d5w2syewtvDzJkS-utiFHDyLD7r_rG3Vq8Z94RUYXPVKo2Fa_aUh1Wg-ZlyfaSzL7kRf57xyNl6Nn_hTYomtw5YLwFSnLzjFYksGFS7CDJPJvVYmb7cC0fzrpDczqeAZT2Jg3m8Kh0qPcSgVTrFF4rkhTJuPUcoUMHJFQpb2WWpxZcWjFPk0pFRgQg8DjSYz22oVWlmfyHRAPB7PQZ04ShE6qJe5F6lOlZcj8JHQM-FSbKZqVKhxRnb3gwkV64Qxo1waMKiAuIqXwhjMGvm_Ax6YZIaS-i8SZzJeqD3IoJdJjG7BXGr6ZRTUpymfAsTbf09NHk29DfbH__K4fYGMwGZ1FZ1_GXw9gk6lcXlcFtaFVzJfyEAlPwd9rv74FJI_7jQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED9tHUK8sI0ByzbAoD3wkip2UicRT2OjKh1UFWqlTUKKYscW07SkalOx7mkfgc_IJ-Hs_BEDIaG9RTpbTnx3vt8ll98BHDLKufQEOpJkmKBEMnZTEXHX91UQU0HTTFm2zxEfTIPhWe9sDd41_8JU_BDtCzfjGfa8Ng4-y_RvTl7OrJvTaB02Au4zY9InX1ruKBr6FXcUQnQXwyaraYVMGU879W4w-gth3gWsNuL0N-Frc69Voclld1mKrrz5g8bxng-zBY9rJEqOKtPZhjWVP4EH7wtEi6sdKNB-yPDo5-0P07P4e7oin8-PSWkiW3POkLpXD5lX_ewVmX0ryuKqQNUVaJcXEiW2AlctiFiRqugcQyUZnPcIDlBEXdd1uPlTmPY_TI4Hbt2cwZU-Zs2uDKjiVHhaMoMZJe9JrZlKtdeTKgpkRg3zmvYE89LYS0OqKZUYDqOIiyzFJOkZdPIiV7tAOE5mcciCLIoDbQnupQ6pYTJkYRYHDrxptJTMKg6OpMldcOMSu3EOHDT6S2o3XCSG3w1XjMLQgdetGB3IfBVJc1UszRhEUIaix3fgeaX3dhUjMoDPgbdWe_9ePpmMh_Zi7_-HvoKH45N-8unj6HQfHjGTyNuSoAPolPOleoFopxQvrVX_Aj16-jw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+JA%E2%80%90pathway+MYC+transcription+factors+regulate+photomorphogenic+responses+by+targeting+HY5+gene+expression&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Ortigosa%2C+Andr%C3%A9s&rft.au=Fonseca%2C+Sandra&rft.au=Franco%E2%80%90Zorrilla%2C+Jos%C3%A9+M.&rft.au=Fern%C3%A1ndez%E2%80%90Calvo%2C+Patricia&rft.date=2020-04-01&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=102&rft.issue=1&rft.spage=138&rft.epage=152&rft_id=info:doi/10.1111%2Ftpj.14618&rft.externalDBID=10.1111%252Ftpj.14618&rft.externalDocID=TPJ14618
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon