Fire transforms effects of terrestrial subsidies on aquatic ecosystem structure and function

Fire can lead to transitions between forest and grassland ecosystems and trigger positive feedbacks to climate warming by releasing CO2 into the atmosphere. Climate change is projected to increase the prevalence and severity of wildfires. However, fire effects on the fate and impact of terrestrial o...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 30; no. 1; pp. e17058 - n/a
Main Authors Wall, Christopher B., Spiegel, Cody J., Diaz, Evelyn M., Tran, Cindy H., Fabiani, Alexia, Broe, Taryn Y., Perez‐Coronel, Elisabet, Jackrel, Sara L., Mladenov, Natalie, Symons, Celia C., Shurin, Jonathan B.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fire can lead to transitions between forest and grassland ecosystems and trigger positive feedbacks to climate warming by releasing CO2 into the atmosphere. Climate change is projected to increase the prevalence and severity of wildfires. However, fire effects on the fate and impact of terrestrial organic matter (i.e., terrestrial subsidies) in aquatic ecosystems are unclear. Here, we performed a gradient design experiment in freshwater pond mesocosms adding 15 different amounts of burned or unburned plant detritus and tracking the chronology of detritus effects at 10, 31, 59, and 89 days. We show terrestrial subsidies had time‐ and mass‐dependent, non‐linear impacts on ecosystem function that influenced dissolved organic carbon (DOC), ecosystem metabolism (net primary production and respiration), greenhouse gas concentrations (carbon dioxide [CO2], methane [CH4]), and trophic transfer. These impacts were shifted by fire treatment. Burning increased the elemental concentration of detritus (increasing %N, %P, %K), with cascading effects on ecosystem function. Mesocosms receiving burned detritus had lower [DOC] and [CO2] and higher dissolved oxygen (DO) through Day 59. Fire magnified the effects of plant detritus on aquatic ecosystem metabolism by stimulating photosynthesis and respiration at intermediate detritus‐loading through Day 89. The effect of loading on DO was similar for burned and unburned treatments (Day 10); however, burned‐detritus in the highest loading treatments led to sustained hypoxia (through Day 31), and long‐term destabilization of ecosystem metabolism through Day 89. In addition, fire affected trophic transfer by increasing autochthonous nitrogen source utilization and reducing the incorporation of 15N‐labeled detritus into plankton biomass, thereby reducing the flux of terrestrial subsidies to higher trophic levels. Our results indicate fire chemically transforms plant detritus and alters the role of aquatic ecosystems in processing and storing carbon. Wildfire may therefore induce shifts in ecosystem functions that cross the boundary between aquatic and terrestrial habitats. Lakes and rivers receive terrestrial plant detritus from their watersheds, and wildfires accelerate the input while transforming its chemistry. We tested the effects of loading and burning of plant matter on ecosystem metabolism, greenhouse gas emissions, and aquatic invertebrates in experimental ponds. We found that burning stimulated the effect of plant detritus on photosynthesis and respiration but led to lower greenhouse gas (CO2) emissions and reduced transfer of plant‐nitrogen to zooplankton. These results show that fire transforms the structure and function of aquatic ecosystems by changing the chemistry of plants that wind up in lakes, rivers and ultimately the ocean.
AbstractList Fire can lead to transitions between forest and grassland ecosystems and trigger positive feedbacks to climate warming by releasing CO2 into the atmosphere. Climate change is projected to increase the prevalence and severity of wildfires. However, fire effects on the fate and impact of terrestrial organic matter (i.e., terrestrial subsidies) in aquatic ecosystems are unclear. Here, we performed a gradient design experiment in freshwater pond mesocosms adding 15 different amounts of burned or unburned plant detritus and tracking the chronology of detritus effects at 10, 31, 59, and 89 days. We show terrestrial subsidies had time‐ and mass‐dependent, non‐linear impacts on ecosystem function that influenced dissolved organic carbon (DOC), ecosystem metabolism (net primary production and respiration), greenhouse gas concentrations (carbon dioxide [CO2], methane [CH4]), and trophic transfer. These impacts were shifted by fire treatment. Burning increased the elemental concentration of detritus (increasing %N, %P, %K), with cascading effects on ecosystem function. Mesocosms receiving burned detritus had lower [DOC] and [CO2] and higher dissolved oxygen (DO) through Day 59. Fire magnified the effects of plant detritus on aquatic ecosystem metabolism by stimulating photosynthesis and respiration at intermediate detritus‐loading through Day 89. The effect of loading on DO was similar for burned and unburned treatments (Day 10); however, burned‐detritus in the highest loading treatments led to sustained hypoxia (through Day 31), and long‐term destabilization of ecosystem metabolism through Day 89. In addition, fire affected trophic transfer by increasing autochthonous nitrogen source utilization and reducing the incorporation of 15N‐labeled detritus into plankton biomass, thereby reducing the flux of terrestrial subsidies to higher trophic levels. Our results indicate fire chemically transforms plant detritus and alters the role of aquatic ecosystems in processing and storing carbon. Wildfire may therefore induce shifts in ecosystem functions that cross the boundary between aquatic and terrestrial habitats.
Fire can lead to transitions between forest and grassland ecosystems and trigger positive feedbacks to climate warming by releasing CO2 into the atmosphere. Climate change is projected to increase the prevalence and severity of wildfires. However, fire effects on the fate and impact of terrestrial organic matter (i.e., terrestrial subsidies) in aquatic ecosystems are unclear. Here, we performed a gradient design experiment in freshwater pond mesocosms adding 15 different amounts of burned or unburned plant detritus and tracking the chronology of detritus effects at 10, 31, 59, and 89 days. We show terrestrial subsidies had time‐ and mass‐dependent, non‐linear impacts on ecosystem function that influenced dissolved organic carbon (DOC), ecosystem metabolism (net primary production and respiration), greenhouse gas concentrations (carbon dioxide [CO2], methane [CH4]), and trophic transfer. These impacts were shifted by fire treatment. Burning increased the elemental concentration of detritus (increasing %N, %P, %K), with cascading effects on ecosystem function. Mesocosms receiving burned detritus had lower [DOC] and [CO2] and higher dissolved oxygen (DO) through Day 59. Fire magnified the effects of plant detritus on aquatic ecosystem metabolism by stimulating photosynthesis and respiration at intermediate detritus‐loading through Day 89. The effect of loading on DO was similar for burned and unburned treatments (Day 10); however, burned‐detritus in the highest loading treatments led to sustained hypoxia (through Day 31), and long‐term destabilization of ecosystem metabolism through Day 89. In addition, fire affected trophic transfer by increasing autochthonous nitrogen source utilization and reducing the incorporation of 15N‐labeled detritus into plankton biomass, thereby reducing the flux of terrestrial subsidies to higher trophic levels. Our results indicate fire chemically transforms plant detritus and alters the role of aquatic ecosystems in processing and storing carbon. Wildfire may therefore induce shifts in ecosystem functions that cross the boundary between aquatic and terrestrial habitats. Lakes and rivers receive terrestrial plant detritus from their watersheds, and wildfires accelerate the input while transforming its chemistry. We tested the effects of loading and burning of plant matter on ecosystem metabolism, greenhouse gas emissions, and aquatic invertebrates in experimental ponds. We found that burning stimulated the effect of plant detritus on photosynthesis and respiration but led to lower greenhouse gas (CO2) emissions and reduced transfer of plant‐nitrogen to zooplankton. These results show that fire transforms the structure and function of aquatic ecosystems by changing the chemistry of plants that wind up in lakes, rivers and ultimately the ocean.
Fire can lead to transitions between forest and grassland ecosystems and trigger positive feedbacks to climate warming by releasing CO2 into the atmosphere. Climate change is projected to increase the prevalence and severity of wildfires. However, fire effects on the fate and impact of terrestrial organic matter (i.e., terrestrial subsidies) in aquatic ecosystems are unclear. Here, we performed a gradient design experiment in freshwater pond mesocosms adding 15 different amounts of burned or unburned plant detritus and tracking the chronology of detritus effects at 10, 31, 59, and 89 days. We show terrestrial subsidies had time- and mass-dependent, non-linear impacts on ecosystem function that influenced dissolved organic carbon (DOC), ecosystem metabolism (net primary production and respiration), greenhouse gas concentrations (carbon dioxide [CO2 ], methane [CH4 ]), and trophic transfer. These impacts were shifted by fire treatment. Burning increased the elemental concentration of detritus (increasing %N, %P, %K), with cascading effects on ecosystem function. Mesocosms receiving burned detritus had lower [DOC] and [CO2 ] and higher dissolved oxygen (DO) through Day 59. Fire magnified the effects of plant detritus on aquatic ecosystem metabolism by stimulating photosynthesis and respiration at intermediate detritus-loading through Day 89. The effect of loading on DO was similar for burned and unburned treatments (Day 10); however, burned-detritus in the highest loading treatments led to sustained hypoxia (through Day 31), and long-term destabilization of ecosystem metabolism through Day 89. In addition, fire affected trophic transfer by increasing autochthonous nitrogen source utilization and reducing the incorporation of 15 N-labeled detritus into plankton biomass, thereby reducing the flux of terrestrial subsidies to higher trophic levels. Our results indicate fire chemically transforms plant detritus and alters the role of aquatic ecosystems in processing and storing carbon. Wildfire may therefore induce shifts in ecosystem functions that cross the boundary between aquatic and terrestrial habitats.
Fire can lead to transitions between forest and grassland ecosystems and trigger positive feedbacks to climate warming by releasing CO into the atmosphere. Climate change is projected to increase the prevalence and severity of wildfires. However, fire effects on the fate and impact of terrestrial organic matter (i.e., terrestrial subsidies) in aquatic ecosystems are unclear. Here, we performed a gradient design experiment in freshwater pond mesocosms adding 15 different amounts of burned or unburned plant detritus and tracking the chronology of detritus effects at 10, 31, 59, and 89 days. We show terrestrial subsidies had time- and mass-dependent, non-linear impacts on ecosystem function that influenced dissolved organic carbon (DOC), ecosystem metabolism (net primary production and respiration), greenhouse gas concentrations (carbon dioxide [CO ], methane [CH ]), and trophic transfer. These impacts were shifted by fire treatment. Burning increased the elemental concentration of detritus (increasing %N, %P, %K), with cascading effects on ecosystem function. Mesocosms receiving burned detritus had lower [DOC] and [CO ] and higher dissolved oxygen (DO) through Day 59. Fire magnified the effects of plant detritus on aquatic ecosystem metabolism by stimulating photosynthesis and respiration at intermediate detritus-loading through Day 89. The effect of loading on DO was similar for burned and unburned treatments (Day 10); however, burned-detritus in the highest loading treatments led to sustained hypoxia (through Day 31), and long-term destabilization of ecosystem metabolism through Day 89. In addition, fire affected trophic transfer by increasing autochthonous nitrogen source utilization and reducing the incorporation of N-labeled detritus into plankton biomass, thereby reducing the flux of terrestrial subsidies to higher trophic levels. Our results indicate fire chemically transforms plant detritus and alters the role of aquatic ecosystems in processing and storing carbon. Wildfire may therefore induce shifts in ecosystem functions that cross the boundary between aquatic and terrestrial habitats.
Fire can lead to transitions between forest and grassland ecosystems and trigger positive feedbacks to climate warming by releasing CO 2 into the atmosphere. Climate change is projected to increase the prevalence and severity of wildfires. However, fire effects on the fate and impact of terrestrial organic matter (i.e., terrestrial subsidies) in aquatic ecosystems are unclear. Here, we performed a gradient design experiment in freshwater pond mesocosms adding 15 different amounts of burned or unburned plant detritus and tracking the chronology of detritus effects at 10, 31, 59, and 89 days. We show terrestrial subsidies had time‐ and mass‐dependent, non‐linear impacts on ecosystem function that influenced dissolved organic carbon (DOC), ecosystem metabolism (net primary production and respiration), greenhouse gas concentrations (carbon dioxide [CO 2 ], methane [CH 4 ]), and trophic transfer. These impacts were shifted by fire treatment. Burning increased the elemental concentration of detritus (increasing %N, %P, %K), with cascading effects on ecosystem function. Mesocosms receiving burned detritus had lower [DOC] and [CO 2 ] and higher dissolved oxygen (DO) through Day 59. Fire magnified the effects of plant detritus on aquatic ecosystem metabolism by stimulating photosynthesis and respiration at intermediate detritus‐loading through Day 89. The effect of loading on DO was similar for burned and unburned treatments (Day 10); however, burned‐detritus in the highest loading treatments led to sustained hypoxia (through Day 31), and long‐term destabilization of ecosystem metabolism through Day 89. In addition, fire affected trophic transfer by increasing autochthonous nitrogen source utilization and reducing the incorporation of 15 N‐labeled detritus into plankton biomass, thereby reducing the flux of terrestrial subsidies to higher trophic levels. Our results indicate fire chemically transforms plant detritus and alters the role of aquatic ecosystems in processing and storing carbon. Wildfire may therefore induce shifts in ecosystem functions that cross the boundary between aquatic and terrestrial habitats.
Author Tran, Cindy H.
Mladenov, Natalie
Spiegel, Cody J.
Diaz, Evelyn M.
Shurin, Jonathan B.
Jackrel, Sara L.
Wall, Christopher B.
Fabiani, Alexia
Symons, Celia C.
Broe, Taryn Y.
Perez‐Coronel, Elisabet
Author_xml – sequence: 1
  givenname: Christopher B.
  orcidid: 0000-0002-7164-3201
  surname: Wall
  fullname: Wall, Christopher B.
  email: cbwall@ucsd.edu
  organization: University of California
– sequence: 2
  givenname: Cody J.
  orcidid: 0000-0001-5889-0841
  surname: Spiegel
  fullname: Spiegel, Cody J.
  organization: University of California
– sequence: 3
  givenname: Evelyn M.
  surname: Diaz
  fullname: Diaz, Evelyn M.
  organization: University of California
– sequence: 4
  givenname: Cindy H.
  orcidid: 0000-0002-3352-5239
  surname: Tran
  fullname: Tran, Cindy H.
  organization: University of California
– sequence: 5
  givenname: Alexia
  surname: Fabiani
  fullname: Fabiani, Alexia
  organization: University of California
– sequence: 6
  givenname: Taryn Y.
  orcidid: 0009-0007-8776-2890
  surname: Broe
  fullname: Broe, Taryn Y.
  organization: University of California
– sequence: 7
  givenname: Elisabet
  orcidid: 0000-0003-2496-3840
  surname: Perez‐Coronel
  fullname: Perez‐Coronel, Elisabet
  organization: University of California
– sequence: 8
  givenname: Sara L.
  surname: Jackrel
  fullname: Jackrel, Sara L.
  organization: University of California
– sequence: 9
  givenname: Natalie
  orcidid: 0000-0002-6984-2180
  surname: Mladenov
  fullname: Mladenov, Natalie
  organization: San Diego State University
– sequence: 10
  givenname: Celia C.
  orcidid: 0000-0003-4120-0327
  surname: Symons
  fullname: Symons, Celia C.
  organization: University of California
– sequence: 11
  givenname: Jonathan B.
  orcidid: 0000-0001-7870-1972
  surname: Shurin
  fullname: Shurin, Jonathan B.
  organization: University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38273540$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1LxDAQhoMorl8H_4AEvOihaz7abHrUxVVhwYvehJKmE8nSJpo0yP57s656EJzLDMzDw8t7iHadd4DQKSVTmufqVbdTOiOV3EEHlIuqYKUUu5u7KgtKKJ-gwxhXhBDOiNhHEy7ZLP_IAXpZ2AB4DMpF48MQMRgDeozYGzxCCBDHYFWPY2qj7Szkh8PqPanRagzax3UcYcCZSnpMWaVch01yerTeHaM9o_oIJ9_7CD0vbp_m98Xy8e5hfr0sNJdSFlIA7xjLObWRTFSt1KaelYyJsmOKK1Yr0aqOKFGzqhWaAyeiFWwGJatqTvkRuth634J_TzlyM9iooe-VA59iw2qafVSWLKPnf9CVT8HldBtKUlHLssrU5ZbSwccYwDRvwQ4qrBtKmk3lTa68-ao8s2ffxtQO0P2SPx1n4GoLfNge1v-bmrv5zVb5CfeUi-Y
CitedBy_id crossref_primary_10_1111_gcb_17061
Cites_doi 10.3354/meps043001
10.1002/lol2.10194
10.1016/0016‐7037(79)90184‐4
10.1007/s10021‐015‐9848‐y
10.1002/ecs2.2697
10.1088/1748‐9326/ac6a6c
10.1890/14‐1783.1
10.1016/j.foreco.2009.09.002
10.1029/2021wr030699
10.1002/ecy.3013
10.1890/1540‐9295(2005)003[0145:kwtdtl]2.0.co;2
10.4319/lo.2002.47.6.1664
10.1111/j.1461‐0248.2006.00898.x
10.1038/s43017‐022‐00285‐w
10.1038/s41598‐020‐65520‐0
10.1002/2015jg003086
10.1086/683481
10.1038/s41561‐021‐00867‐1
10.1007/s00267‐018‐1036‐3
10.1371/journal.pone.0039508
10.1007/s11104‐019‐04397‐z
10.1007/s40641‐019‐00128‐9
10.1111/gcb.16324
10.1086/683391
10.2136/sssaj2007.0432
10.1073/pnas.1012807108
10.1038/ismej.2015.215
10.1038/s41586‐021‐03352‐2
10.1111/gcb.17061
10.1890/15‐0515.1
10.1126/science.1163886
10.1086/684073
10.1007/bf00006992
10.3354/ame039107
10.4319/lo.2004.49.1.0117
10.1046/j.1365‐2486.2003.00619.x
10.1073/pnas.2100163118
10.1038/s41467‐022‐29013‐0
10.1071/MF09254
10.1071/wf01017
10.1086/683432
10.1111/j.1365‐2486.2011.02543.x
10.1038/s41586‐021‐03805‐8
10.1111/1365‐2745.13403
10.1139/f00-125
10.7717/peerj.6876
10.1111/gcb.14732
10.1186/s42408‐018‐0022‐8
10.1890/13‐1586.1
10.1002/jgrg.20077
10.1038/s41598‐017‐10956‐0
10.1002/ecm.1477
10.1016/s0169‐5347(00)01861‐9
10.1029/2020rg000726
10.1073/pnas.1820601116
10.1016/S0378‐1127(03)00058‐6
10.1038/s41467‐021‐22747‐3
10.1002/2014jg002706
10.1002/ece3.7651
10.1126/sciadv.abh2646
10.1111/fwb.12548
10.1111/ele.13134
10.1016/j.scitotenv.2021.152420
10.1038/s41467‐022‐34105‐y
10.1007/s11273‐010‐9195‐x
10.1111/j.1467‐9868.2010.00749.x
10.1016/0304‐4203(74)90015‐2
10.1111/ddi.13640
10.3389/fmars.2017.00007
10.1139/x08‐071
10.1002/fee.2359
10.1007/s00442-003-1459-1
10.2307/3071875
10.5194/bg‐18‐1619‐2021
10.1021/je60068a029
10.1073/pnas.0904129106
10.1080/20442041.2021.1903287
10.1071/WF17115
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd.
2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd.
– notice: 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
7SN
7UA
C1K
F1W
H97
L.G
7X8
DOI 10.1111/gcb.17058
DatabaseName Wiley Online Library Open Access
Wiley Online Library Open Access
PubMed
CrossRef
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage n/a
ExternalDocumentID 10_1111_gcb_17058
38273540
GCB17058
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: 2018058
– fundername: National Science Foundation
  grantid: 2018058
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
NPM
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7SN
7UA
C1K
F1W
H97
L.G
7X8
ID FETCH-LOGICAL-c3888-86e3d22013cf8265b8cf9742264d2a3a29a6bad0a6925b6c3e306b627e4259313
IEDL.DBID 24P
ISSN 1354-1013
IngestDate Tue Dec 03 22:55:37 EST 2024
Fri Nov 29 01:42:48 EST 2024
Fri Dec 06 03:45:38 EST 2024
Sat Nov 02 12:08:28 EDT 2024
Sat Aug 24 00:54:18 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords trophic transfer
plankton
productivity
dissolved organic carbon
pyrogenic
Language English
License Attribution
2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3888-86e3d22013cf8265b8cf9742264d2a3a29a6bad0a6925b6c3e306b627e4259313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0007-8776-2890
0000-0001-7870-1972
0000-0003-2496-3840
0000-0003-4120-0327
0000-0002-6984-2180
0000-0001-5889-0841
0000-0002-7164-3201
0000-0002-3352-5239
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.17058
PMID 38273540
PQID 2918169845
PQPubID 30327
PageCount 16
ParticipantIDs proquest_miscellaneous_2919741842
proquest_journals_2918169845
crossref_primary_10_1111_gcb_17058
pubmed_primary_38273540
wiley_primary_10_1111_gcb_17058_GCB17058
PublicationCentury 2000
PublicationDate January 2024
2024-Jan
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1976; 21
2015; 34
2017; 7
2017; 4
2010; 18
2019; 10
2008; 38
2019; 15
2020; 447
2012; 18
2020; 10
2022; 812
2022; 28
1974; 2
2010; 61
2002; 47
2004; 138
2021; 597
2000; 15
2019; 63
2002; 83
2000; 57
2013; 118
2011; 73
2019; 25
2021; 118
2003; 9
1988; 43
2019; 116
2021; 592
2014; 95
2005; 39
2009; 324
2001; 10
2019; 7
2021; 7
2021; 6
2019; 5
2015; 18
2004; 49
2015; 96
2006; 9
2015; 120
2016; 10
2016; 121
1992; 229
2020; 101
2018; 21
2003; 178
2020; 108
2018; 27
2021; 91
2021; 15
2011; 108
2009; 73
2021; 12
2021; 11
2015; 60
2022; 3
2023
2022
2022; 60
2010; 259
2021; 18
2021; 19
2019
2022; 13
2022; 58
2005; 3
2012; 7
1979; 43
2022; 17
2009; 106
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
R Core Team (e_1_2_9_64_1) 2022
Fox J. (e_1_2_9_22_1) 2019
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 96
  start-page: 1550
  issue: 6
  year: 2015
  end-page: 1560
  article-title: A test of the subsidy–stability hypothesis: The effects of terrestrial carbon in aquatic ecosystems
  publication-title: Ecology
– volume: 58
  start-page: 1
  issue: 9
  year: 2022
  end-page: 28
  article-title: Wildfire induces changes in receiving waters: A review with considerations for water quality management
  publication-title: Water Resources Research
– volume: 15
  start-page: 5
  issue: 1
  year: 2021
  end-page: 13
  article-title: Fire effects on the persistence of soil organic matter and long‐term carbon storage
  publication-title: Nature Geoscience
– volume: 21
  start-page: 78
  issue: 1
  year: 1976
  end-page: 80
  article-title: Solubility of methane in distilled water and seawater
  publication-title: Journal of Chemical and Engineering Data
– volume: 7
  start-page: 11543
  issue: 1
  year: 2017
  article-title: Under‐ice availability of phytoplankton lipids is key to freshwater zooplankton winter survival
  publication-title: Scientific Reports
– volume: 28
  start-page: 5601
  issue: 19
  year: 2022
  end-page: 5629
  article-title: Anthropogenically driven climate and landscape change effects on inland water carbon dynamics: What have we learned and where are we going?
  publication-title: Global Change Biology
– volume: 597
  start-page: 370
  issue: 7876
  year: 2021
  end-page: 375
  article-title: Widespread phytoplankton blooms triggered by 2019‐2020 Australian wildfires
  publication-title: Nature
– volume: 25
  start-page: 2841
  issue: 9
  year: 2019
  end-page: 2854
  article-title: Do lakes feel the burn? Ecological consequences of increasing exposure of lakes to fire in the continental United States
  publication-title: Global Change Biology
– volume: 101
  issue: 6
  year: 2020
  article-title: Efficiency of crustacean zooplankton in transferring allochthonous carbon in a boreal lake
  publication-title: Ecology
– volume: 17
  issue: 6
  year: 2022
  article-title: Forest fire effects on stream water quality at continental scales: A meta‐analysis
  publication-title: Environmental Research Letters
– volume: 7
  year: 2019
  article-title: Hierarchical generalized additive models in ecology: An introduction with mgcv
  publication-title: PeerJ
– volume: 10
  start-page: 8722
  issue: 1
  year: 2020
  article-title: Wildfires lead to decreased carbon and increased nitrogen concentrations in upland arctic streams
  publication-title: Scientific Reports
– volume: 57
  start-page: 105
  issue: S2
  year: 2000
  end-page: 117
  article-title: Comparative impacts of fire and forest harvesting on water quality in Boreal Shield lakes
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 108
  start-page: 1975
  issue: 5
  year: 2011
  end-page: 1980
  article-title: Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 60
  issue: 3
  year: 2022
  article-title: Global and regional trends and drivers of fire under climate change
  publication-title: Reviews of Geophysics
– volume: 18
  start-page: 587
  issue: 5
  year: 2010
  end-page: 595
  article-title: Aquatic ecosystem responses to fire and flood size in the Okavango Delta: Observations from the seasonal floodplains
  publication-title: Wetlands Ecology and Management
– volume: 178
  start-page: 141
  issue: 1
  year: 2003
  end-page: 153
  article-title: Wildfire effects on stream food webs and nutrient dynamics in Glacier National Park, USA
  publication-title: Forest Ecology and Management
– volume: 10
  issue: 4
  year: 2019
  article-title: Local and landscape drivers of aquatic‐to‐terrestrial subsidies in riparian ecosystems: A worldwide meta‐analysis
  publication-title: Ecosphere
– volume: 34
  start-page: 1443
  issue: 4
  year: 2015
  end-page: 1456
  article-title: Nutrient uptake along a fire gradient in boreal streams of Central Siberia
  publication-title: Freshwater Science
– volume: 120
  start-page: 13
  issue: 1
  year: 2015
  end-page: 28
  article-title: Carbon dioxide evasion from headwater systems strongly contributes to the total export of carbon from a small boreal lake catchment
  publication-title: Journal of Geophysical Research. Biogeosciences
– volume: 108
  start-page: 2047
  issue: 5
  year: 2020
  end-page: 2069
  article-title: Fire as a fundamental ecological process: Research advances and frontiers
  publication-title: The Journal of Ecology
– volume: 95
  start-page: 1236
  issue: 5
  year: 2014
  end-page: 1242
  article-title: Terrestrial carbon is a resource, but not a subsidy, for lake zooplankton
  publication-title: Ecology
– volume: 34
  start-page: 1340
  issue: 4
  year: 2015
  end-page: 1350
  article-title: Fire effects on aquatic ecosystems: An assessment of the current state of the science
  publication-title: Freshwater Science
– volume: 47
  start-page: 1664
  issue: 6
  year: 2002
  end-page: 1675
  article-title: Pathways of organic carbon utilization in small lakes: Results from a whole‐lake C addition and coupled model
  publication-title: Limnology and Oceanography
– volume: 7
  issue: 6
  year: 2012
  article-title: Mass flux calculations show strong allochthonous support of freshwater zooplankton production is unlikely
  publication-title: PLoS ONE
– year: 2022
– volume: 10
  start-page: 1373
  issue: 6
  year: 2016
  end-page: 1382
  article-title: Selective consumption and metabolic allocation of terrestrial and algal carbon determine allochthony in lake bacteria
  publication-title: The ISME Journal
– volume: 96
  start-page: 2870
  issue: 11
  year: 2015
  end-page: 2876
  article-title: Terrestrial organic matter input suppresses biomass production in lake ecosystems
  publication-title: Ecology
– volume: 11
  start-page: 267
  issue: 3
  year: 2021
  end-page: 277
  article-title: Methane dynamics of high‐elevation lakes in the Sierra Nevada California: The role of elevation, temperature, and inorganic nutrients
  publication-title: Inland Waters
– volume: 2
  start-page: 203
  issue: 3
  year: 1974
  end-page: 215
  article-title: Carbon dioxide in water and seawater: The solubility of a non‐ideal gas
  publication-title: Marine Chemistry
– year: 2019
– volume: 34
  start-page: 1510
  issue: 4
  year: 2015
  end-page: 1526
  article-title: Consecutive wildfires affect stream biota in cold‐ and warmwater dryland river networks
  publication-title: Freshwater Science
– volume: 118
  start-page: 963
  issue: 3
  year: 2013
  end-page: 973
  article-title: Differentiating the degradation dynamics of algal and terrestrial carbon within complex natural dissolved organic carbon in temperate lakes
  publication-title: Journal of Geophysical Research. Biogeosciences
– volume: 73
  start-page: 3
  issue: 1
  year: 2011
  end-page: 36
  article-title: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models
  publication-title: Journal of the Royal Statistical Society. Series B, Statistical Methodology
– volume: 13
  start-page: 6454
  issue: 1
  year: 2022
  article-title: Multiple sources of aerobic methane production in aquatic ecosystems include bacterial photosynthesis
  publication-title: Nature Communications
– volume: 7
  issue: 39
  year: 2021
  article-title: Increasing forest fire emissions despite the decline in global burned area
  publication-title: Science Advances
– volume: 39
  start-page: 107
  year: 2005
  end-page: 119
  article-title: Source and supply of terrestrial organic matter affects aquatic microbial metabolism
  publication-title: Aquatic Microbial Ecology: International Journal
– volume: 34
  start-page: 1482
  issue: 4
  year: 2015
  end-page: 1493
  article-title: Long‐term consequences of a wildfire for leaf‐litter breakdown in a Mediterranean stream
  publication-title: Freshwater Science
– volume: 3
  start-page: 217
  issue: 4
  year: 2022
  end-page: 219
  article-title: Monitoring global carbon emissions in 2021
  publication-title: Nature Reviews Earth and Environment
– volume: 63
  start-page: 416
  issue: 3
  year: 2019
  end-page: 432
  article-title: Turbidity responses from timber harvesting, wildfire, and post‐fire logging in the Battle Creek Watershed, Northern California
  publication-title: Environmental Management
– volume: 27
  start-page: 203
  issue: 3
  year: 2018
  end-page: 216
  article-title: Post‐fire water‐quality response in the western United States
  publication-title: International Journal of Wildland Fire
– volume: 9
  start-page: 630
  issue: 4
  year: 2003
  end-page: 641
  article-title: The catchment and climate regulation of CO in boreal lakes
  publication-title: Global Change Biology
– volume: 15
  start-page: 1
  issue: 1
  year: 2019
  end-page: 15
  article-title: Fire severity, time since fire, and site‐level characteristics influence streamwater chemistry at baseflow conditions in catchments of the Sierra Nevada, California, USA
  publication-title: Fire Ecology
– volume: 106
  start-page: 21197
  issue: 50
  year: 2009
  end-page: 21201
  article-title: Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 60
  start-page: 2584
  issue: 12
  year: 2015
  end-page: 2599
  article-title: Extreme water quality degradation following a catastrophic forest fire
  publication-title: Freshwater Biology
– volume: 18
  start-page: 1619
  issue: 5
  year: 2021
  end-page: 1627
  article-title: Technical note: CO is not like CH —Limits of and corrections to the headspace method to analyse CO in fresh water
  publication-title: Biogeosciences
– volume: 43
  start-page: 1
  year: 1988
  end-page: 10
  article-title: Bacterial production in fresh and saltwater ecosystems: A cross‐system overview
  publication-title: Marine Ecology Progress Series
– volume: 19
  start-page: 387
  issue: 7
  year: 2021
  end-page: 395
  article-title: Wildfires and global change
  publication-title: Frontiers in Ecology and the Environment
– volume: 15
  start-page: 238
  issue: 6
  year: 2000
  end-page: 243
  article-title: The role of polyphenols in terrestrial ecosystem nutrient cycling
  publication-title: Trends in Ecology & Evolution
– volume: 73
  start-page: 1393
  issue: 4
  year: 2009
  end-page: 1407
  article-title: Causes of post‐fire runoff and erosion: Water repellency, cover, or soil sealing?
  publication-title: Soil Science Society of America Journal
– volume: 4
  year: 2017
  article-title: Where carbon goes when water flows: Carbon cycling across the aquatic continuum
  publication-title: Frontiers in Marine Science
– volume: 38
  start-page: 2359
  issue: 9
  year: 2008
  end-page: 2371
  article-title: Wildfire impacts on nitrogen concentration and production from headwater streams in southern Alberta's Rocky Mountains
  publication-title: Canadian Journal of Forest Research. Journal Canadien de La Recherche Forestiere
– volume: 324
  start-page: 481
  issue: 5926
  year: 2009
  end-page: 484
  article-title: Fire in the earth system
  publication-title: Science
– volume: 49
  start-page: 117
  issue: 1
  year: 2004
  end-page: 124
  article-title: Competition between biological and photochemical processes in the mineralization of dissolved organic carbon
  publication-title: Limnology and Oceanography
– volume: 812
  year: 2022
  article-title: Ecology and extent of freshwater browning—What we know and what should be studied next in the context of global change
  publication-title: The Science of the Total Environment
– volume: 61
  start-page: 139
  issue: 2
  year: 2010
  end-page: 142
  article-title: Carbonate constants for estuarine waters
  publication-title: Marine and Freshwater Research
– volume: 118
  issue: 21
  year: 2021
  article-title: Permafrost carbon feedbacks threaten global climate goals
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 592
  start-page: 76
  issue: 7852
  year: 2021
  end-page: 79
  article-title: Warming impairs trophic transfer efficiency in a long‐term field experiment
  publication-title: Nature
– volume: 447
  start-page: 447
  issue: 1
  year: 2020
  end-page: 461
  article-title: The multi‐element stoichiometry of wet eucalypt forest is transformed by recent, frequent fire
  publication-title: Plant and Soil
– volume: 91
  year: 2021
  article-title: The stoichiometric signature of high‐frequency fire in forest floor food webs
  publication-title: Ecological Monographs
– volume: 121
  start-page: 233
  issue: 1
  year: 2016
  end-page: 245
  article-title: The effect of lake browning and respiration mode on the burial and fate of carbon and mercury in the sediment of two boreal lakes
  publication-title: Journal of Geophysical Research. Biogeosciences
– volume: 28
  start-page: 2429
  issue: 11
  year: 2022
  end-page: 2442
  article-title: Modelling the spatial extent of post‐fire sedimentation threat to estimate the impacts of fire on waterways and aquatic species
  publication-title: Diversity and Distributions
– volume: 229
  start-page: 73
  issue: 1
  year: 1992
  end-page: 91
  article-title: The influence of humic substances on lacustrine planktonic food chains
  publication-title: Hydrobiologia
– volume: 43
  start-page: 1651
  issue: 10
  year: 1979
  end-page: 1661
  article-title: The thermodynamics of the carbonate system in seawater
  publication-title: Geochimica et Cosmochimica Acta
– volume: 6
  start-page: 182
  issue: 4
  year: 2021
  end-page: 191
  article-title: Lake browning generates a spatiotemporal mismatch between dissolved organic carbon and limiting nutrients
  publication-title: Limnology and Oceanography Letters
– volume: 21
  start-page: 1629
  issue: 11
  year: 2018
  end-page: 1638
  article-title: To replicate, or not to replicate ‐ that is the question: How to tackle nonlinear responses in ecological experiments
  publication-title: Ecology Letters
– volume: 9
  start-page: 558
  issue: 5
  year: 2006
  end-page: 568
  article-title: Differential support of lake food webs by three types of terrestrial organic carbon
  publication-title: Ecology Letters
– volume: 11
  start-page: 8201
  issue: 12
  year: 2021
  end-page: 8214
  article-title: Transfer efficiency of carbon, nutrients, and polyunsaturated fatty acids in planktonic food webs under different environmental conditions
  publication-title: Ecology and Evolution
– volume: 12
  start-page: 2484
  issue: 1
  year: 2021
  article-title: Wildfires increasingly impact western US fluvial networks
  publication-title: Nature Communications
– volume: 18
  start-page: 376
  issue: 3
  year: 2015
  end-page: 389
  article-title: Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: Current knowledge and future challenges
  publication-title: Ecosystems
– year: 2023
  article-title: Life after a fiery death: Fire and plant biomass loading affect dissolved organic matter in experimental ponds
  publication-title: Global Change Biology
– volume: 13
  start-page: 1348
  issue: 1
  year: 2022
  article-title: Wildfires enhance phytoplankton production in tropical oceans
  publication-title: Nature Communications
– year: 2023
– volume: 138
  start-page: 584
  issue: 4
  year: 2004
  end-page: 591
  article-title: Experimental evidence that terrestrial carbon subsidies increase CO₂ flux from lake ecosystems
  publication-title: Oecologia
– volume: 18
  start-page: 7
  issue: 1
  year: 2012
  end-page: 34
  article-title: Effects of biotic disturbances on forest carbon cycling in the United States and Canada
  publication-title: Global Change Biology
– volume: 83
  start-page: 703
  issue: 3
  year: 2002
  end-page: 718
  article-title: Using stable isotopes to estimate trophic position: Models, methods, and assumptions
  publication-title: Ecology
– volume: 3
  start-page: 145
  issue: 3
  year: 2005
  end-page: 152
  article-title: Knowing when to draw the line: Designing more informative ecological experiments
  publication-title: Frontiers in Ecology and the Environment
– volume: 10
  start-page: 185
  issue: 2
  year: 2001
  article-title: Water quality, substratum and biotic responses of five Central Idaho (USA) streams during the first year following the Mortar Creek fire
  publication-title: International Journal of Wildland Fire
– volume: 259
  start-page: 685
  issue: 4
  year: 2010
  end-page: 697
  article-title: Trends in global wildfire potential in a changing climate
  publication-title: Forest Ecology and Management
– volume: 116
  start-page: 17371
  issue: 35
  year: 2019
  end-page: 17376
  article-title: Biomass losses resulting from insect and disease invasions in US forests
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 5
  start-page: 112
  issue: 2
  year: 2019
  end-page: 123
  article-title: Influence of fire on the carbon cycle and climate
  publication-title: Current Climate Change Reports
– ident: e_1_2_9_16_1
  doi: 10.3354/meps043001
– ident: e_1_2_9_75_1
  doi: 10.1002/lol2.10194
– ident: e_1_2_9_51_1
  doi: 10.1016/0016‐7037(79)90184‐4
– ident: e_1_2_9_72_1
  doi: 10.1007/s10021‐015‐9848‐y
– ident: e_1_2_9_40_1
  doi: 10.1002/ecs2.2697
– ident: e_1_2_9_27_1
  doi: 10.1088/1748‐9326/ac6a6c
– ident: e_1_2_9_33_1
  doi: 10.1890/14‐1783.1
– ident: e_1_2_9_47_1
  doi: 10.1016/j.foreco.2009.09.002
– ident: e_1_2_9_56_1
  doi: 10.1029/2021wr030699
– ident: e_1_2_9_17_1
– ident: e_1_2_9_24_1
  doi: 10.1002/ecy.3013
– ident: e_1_2_9_18_1
  doi: 10.1890/1540‐9295(2005)003[0145:kwtdtl]2.0.co;2
– ident: e_1_2_9_14_1
  doi: 10.4319/lo.2002.47.6.1664
– ident: e_1_2_9_15_1
  doi: 10.1111/j.1461‐0248.2006.00898.x
– volume-title: An R companion to applied regression
  year: 2019
  ident: e_1_2_9_22_1
  contributor:
    fullname: Fox J.
– ident: e_1_2_9_48_1
  doi: 10.1038/s43017‐022‐00285‐w
– ident: e_1_2_9_66_1
  doi: 10.1038/s41598‐020‐65520‐0
– ident: e_1_2_9_30_1
  doi: 10.1002/2015jg003086
– ident: e_1_2_9_20_1
  doi: 10.1086/683481
– ident: e_1_2_9_59_1
  doi: 10.1038/s41561‐021‐00867‐1
– ident: e_1_2_9_45_1
  doi: 10.1007/s00267‐018‐1036‐3
– ident: e_1_2_9_8_1
  doi: 10.1371/journal.pone.0039508
– ident: e_1_2_9_10_1
  doi: 10.1007/s11104‐019‐04397‐z
– ident: e_1_2_9_42_1
  doi: 10.1007/s40641‐019‐00128‐9
– ident: e_1_2_9_62_1
  doi: 10.1111/gcb.16324
– ident: e_1_2_9_81_1
  doi: 10.1086/683391
– ident: e_1_2_9_41_1
  doi: 10.2136/sssaj2007.0432
– ident: e_1_2_9_13_1
  doi: 10.1073/pnas.1012807108
– ident: e_1_2_9_25_1
  doi: 10.1038/ismej.2015.215
– ident: e_1_2_9_3_1
  doi: 10.1038/s41586‐021‐03352‐2
– ident: e_1_2_9_74_1
  doi: 10.1111/gcb.17061
– ident: e_1_2_9_34_1
  doi: 10.1890/15‐0515.1
– ident: e_1_2_9_7_1
  doi: 10.1126/science.1163886
– ident: e_1_2_9_4_1
  doi: 10.1086/684073
– ident: e_1_2_9_32_1
  doi: 10.1007/bf00006992
– ident: e_1_2_9_44_1
  doi: 10.3354/ame039107
– ident: e_1_2_9_55_1
  doi: 10.4319/lo.2004.49.1.0117
– ident: e_1_2_9_71_1
  doi: 10.1046/j.1365‐2486.2003.00619.x
– ident: e_1_2_9_54_1
  doi: 10.1073/pnas.2100163118
– ident: e_1_2_9_46_1
  doi: 10.1038/s41467‐022‐29013‐0
– ident: e_1_2_9_52_1
  doi: 10.1071/MF09254
– ident: e_1_2_9_53_1
  doi: 10.1071/wf01017
– ident: e_1_2_9_67_1
  doi: 10.1086/683432
– ident: e_1_2_9_29_1
  doi: 10.1111/j.1365‐2486.2011.02543.x
– ident: e_1_2_9_76_1
  doi: 10.1038/s41586‐021‐03805‐8
– ident: e_1_2_9_50_1
  doi: 10.1111/1365‐2745.13403
– ident: e_1_2_9_12_1
  doi: 10.1139/f00-125
– ident: e_1_2_9_58_1
  doi: 10.7717/peerj.6876
– ident: e_1_2_9_49_1
  doi: 10.1111/gcb.14732
– ident: e_1_2_9_69_1
  doi: 10.1186/s42408‐018‐0022‐8
– ident: e_1_2_9_70_1
– ident: e_1_2_9_36_1
  doi: 10.1890/13‐1586.1
– ident: e_1_2_9_26_1
  doi: 10.1002/jgrg.20077
– ident: e_1_2_9_23_1
  doi: 10.1038/s41598‐017‐10956‐0
– ident: e_1_2_9_11_1
  doi: 10.1002/ecm.1477
– ident: e_1_2_9_28_1
  doi: 10.1016/s0169‐5347(00)01861‐9
– ident: e_1_2_9_31_1
  doi: 10.1029/2020rg000726
– ident: e_1_2_9_21_1
  doi: 10.1073/pnas.1820601116
– ident: e_1_2_9_73_1
  doi: 10.1016/S0378‐1127(03)00058‐6
– ident: e_1_2_9_2_1
  doi: 10.1038/s41467‐021‐22747‐3
– ident: e_1_2_9_37_1
  doi: 10.1002/2014jg002706
– ident: e_1_2_9_35_1
  doi: 10.1002/ece3.7651
– ident: e_1_2_9_77_1
– ident: e_1_2_9_84_1
  doi: 10.1126/sciadv.abh2646
– ident: e_1_2_9_19_1
  doi: 10.1111/fwb.12548
– ident: e_1_2_9_39_1
  doi: 10.1111/ele.13134
– ident: e_1_2_9_6_1
  doi: 10.1016/j.scitotenv.2021.152420
– ident: e_1_2_9_61_1
  doi: 10.1038/s41467‐022‐34105‐y
– volume-title: R: A language and environment for statistical computing
  year: 2022
  ident: e_1_2_9_64_1
  contributor:
    fullname: R Core Team
– ident: e_1_2_9_65_1
  doi: 10.1007/s11273‐010‐9195‐x
– ident: e_1_2_9_82_1
  doi: 10.1111/j.1467‐9868.2010.00749.x
– ident: e_1_2_9_80_1
  doi: 10.1016/0304‐4203(74)90015‐2
– ident: e_1_2_9_78_1
  doi: 10.1111/ddi.13640
– ident: e_1_2_9_79_1
  doi: 10.3389/fmars.2017.00007
– ident: e_1_2_9_5_1
  doi: 10.1139/x08‐071
– ident: e_1_2_9_57_1
  doi: 10.1002/fee.2359
– ident: e_1_2_9_43_1
  doi: 10.1007/s00442-003-1459-1
– ident: e_1_2_9_63_1
  doi: 10.2307/3071875
– ident: e_1_2_9_38_1
  doi: 10.5194/bg‐18‐1619‐2021
– ident: e_1_2_9_83_1
  doi: 10.1021/je60068a029
– ident: e_1_2_9_9_1
  doi: 10.1073/pnas.0904129106
– ident: e_1_2_9_60_1
  doi: 10.1080/20442041.2021.1903287
– ident: e_1_2_9_68_1
  doi: 10.1071/WF17115
SSID ssj0003206
Score 2.4939744
Snippet Fire can lead to transitions between forest and grassland ecosystems and trigger positive feedbacks to climate warming by releasing CO2 into the atmosphere....
Fire can lead to transitions between forest and grassland ecosystems and trigger positive feedbacks to climate warming by releasing CO into the atmosphere....
Fire can lead to transitions between forest and grassland ecosystems and trigger positive feedbacks to climate warming by releasing CO 2 into the atmosphere....
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e17058
SubjectTerms Aquatic ecosystems
Aquatic plants
Carbon dioxide
Climate change
Destabilization
Detritus
Dissolved organic carbon
Dissolved oxygen
Ecological function
Ecosystem structure
Ecosystems
Environmental impact
Fires
Freshwater
Global warming
Grasslands
Greenhouse effect
Greenhouse gases
Hypoxia
Inland water environment
Mesocosms
Metabolism
Net Primary Productivity
Nitrogen isotopes
Organic matter
Photosynthesis
Plankton
Primary production
productivity
pyrogenic
Respiration
Structure-function relationships
Subsidies
Terrestrial environments
Tracking
Transformations (mathematics)
Trophic levels
trophic transfer
Wildfires
Title Fire transforms effects of terrestrial subsidies on aquatic ecosystem structure and function
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.17058
https://www.ncbi.nlm.nih.gov/pubmed/38273540
https://www.proquest.com/docview/2918169845
https://search.proquest.com/docview/2919741842
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58IHgRXV_1RRQRL5XdPNoGT7q6iqCIKHgQSpKmsiCtWj34752kDxURvJSWTBvIZCbfpJlvAHZFzrmNKQuFYnHIY61DrWUSco0tuHwy49n5L6-i8zt-cS_uJ-CwzYWp-SG6DTdnGd5fOwNXuvpm5I9GHzgumGQSphHWRK58AeXXnRtm1BfWHDDB0dcMWEMr5I7xdK_-XIx-IcyfgNWvOKN5mGugIjmqdbsAE7bowUxdPPKjB8unXzlqKNYYadWD4BKBcPnqxcgeGT6NEZX6p0V4GKGLI28tWq1Ic56DlDnBEXaFOtyMJBX6k7E7YEjKgqgXxwduCEaqNfEzqVln3_FTqsiIWxudfpfgbnR6OzwPmwILoWEY-YZJZFlGEQIwk2OYIXRicowvXG5tRhVTVKpIq6yvIkmFjgyzGGDoiMYWLV2yAVuGqaIs7CqQJM_Q3gzPXSKt1Fbrvu5nueQ0FpkQJoCddqTT55pHI23jD1RH6tURwEarg7QxpSqlEkFIJBMuAtjumtEI3J8NVdjy3ctIR8PDaQArte66XliCCA1xaQD7Xpl_d5-eDY_9zdr_RddhliLMqTdlNmAKh99uIkx501t-OuL15IZ-AhM54uM
link.rule.ids 314,780,784,1375,11562,27924,27925,46052,46294,46476,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH8aQwguGxTGsg0wCCEuqVp_JLG0y1ZaCqw7oE7agSmyHWeaNiXb2h7GX8-znXQbCAlxS2Tny-_Dv-e89zPAe1FyblPKYqFYGvNU61hrmcVcYwtOn8x4dv7JYTI-4l-PxfEK7La1MIEfYrng5izD-2tn4G5B-o6VnxrddWQw2QN4iObedwldn77fkkcx6nfW7DPB0dn0WcMr5PJ4lpfen43-gJj3EaufckbrcNK-bMg0Oe8u5rprfv7G4_i_X_MU1hosSvaC8jyDFVt14FHYnfKmAxvD2yI47NZ4gVkHogki7fradyMfyODiDGGvP3sOP0boQ8m8hcMz0iSMkLokKEK3E4hTeTJDh3XmMhhJXRF15QjHDcFQODBLk0Bru8BbqaogbvJ1CvQCjkbD6WAcNzs4xIZhaB1niWUFRYzBTIlxjNCZKTGAccW7BVVMUakSrYqeSiQVOjHMYgSjE5padCWS9dkGrFZ1ZTeBZGWBBm146Sp1pbZa93SvKCWnqSiEMBG8ayWZXwaijrwNcHBscz-2Eey0Ms4bW53lVCLKSWTGRQRvl81oZe7XiapsvfB9pOP54TSCl0E3lk9hGUJABL4RfPQS_vvj88-DfX-w9e9d38Dj8XRykB98Ofy2DU8oYqqwArQDqygK-wox0Vy_9qr_C_brBiM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BFaiXPhZoA5QaVCEuWe36kcTqCRa2tAVUIZA4IEW24yBElVB299D-esZ2spSiSohbIk9enoe_cTyfAT6JknObUhYLxdKYp1rHWsss5hpbcPhkxrPzHx0nB2f827k4n4HPbS1M4IeYTrg5z_Dx2jn4TVH-5eSXRncdF0w2Cy94QqUjzt87ueeOYtRvrNlngmOs6bOGVsgt45le-nAweoQwHwJWP-IMX8NF-65hocl1dzLWXfPnHxrHZ37MG3jVIFGyE0znLczYqgPzYW_K3x1Y3r8vgUOxJgaMOhAdIc6ub70Y2SKDn1cIev3ZIlwMMYKScQuGR6RZLkLqkqAC3T4gzuDJCMPVlVu_SOqKqF-ObtwQTIQDrzQJpLYTvJWqCuKGXmc-S3A23D8dHMTN_g2xYZhYx1liWUERYTBTYhYjdGZKTF9c6W5BFVNUqkSroqcSSYVODLOYv-iEphYDiWR9tgxzVV3Z90CyskB3Nrx0dbpSW617uleUktNUFEKYCDZbReY3gaYjb9Mb7Nvc920Ea62K88ZTRzmViHESmXERwca0GX3M_ThRla0nXkY6lh9OI3gXTGP6FJYhAETYG8G2V_D_H59_Gez6g5Wni36EhR97w_zw6_H3VXhJEVCF6Z81mENN2A8IiMZ63Rv-HeR-BNI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fire+transforms+effects+of+terrestrial+subsidies+on+aquatic+ecosystem+structure+and+function&rft.jtitle=Global+change+biology&rft.au=Wall%2C+Christopher+B.&rft.au=Spiegel%2C+Cody+J.&rft.au=Diaz%2C+Evelyn+M.&rft.au=Tran%2C+Cindy+H.&rft.date=2024-01-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=30&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fgcb.17058&rft.externalDBID=10.1111%252Fgcb.17058&rft.externalDocID=GCB17058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon