The boundary element method applied to a moving free boundary problem

In this paper a boundary problem is considered for which the boundary is to be determined as part of the solution. A time‐dependent problem involving linear diffusion in two spatial dimensions which results in a moving free boundary is posed. The fundamental solution is introduced and Green’s Theore...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in engineering Vol. 46; no. 8; pp. 1335 - 1346
Main Authors Quinn, Dennis W., Oxley, Mark E., Vosika, Donald C.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 20.11.1999
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper a boundary problem is considered for which the boundary is to be determined as part of the solution. A time‐dependent problem involving linear diffusion in two spatial dimensions which results in a moving free boundary is posed. The fundamental solution is introduced and Green’s Theorem is used to yield a non‐linear system of integral equations for the unknown solution and the location of the boundary. The boundary element method is used to obtain a numerical solution to this system of integral equations which in turn is used to obtain the solution of the original problem. Graphical results for a two‐dimensional problem are presented. Published in 1999 by John Wiley & Sons, Ltd.
AbstractList The possibility of using the boundary element method to solve moving free boundary value problems is demonstrated. The problem examined relates to contaminant transport in a porous medium. The technique extends to higher dimensions and to some problems with nonlinearities included in the boundary conditions. (AIAA)
In this paper a boundary problem is considered for which the boundary is to be determined as part of the solution. A time‐dependent problem involving linear diffusion in two spatial dimensions which results in a moving free boundary is posed. The fundamental solution is introduced and Green’s Theorem is used to yield a non‐linear system of integral equations for the unknown solution and the location of the boundary. The boundary element method is used to obtain a numerical solution to this system of integral equations which in turn is used to obtain the solution of the original problem. Graphical results for a two‐dimensional problem are presented. Published in 1999 by John Wiley & Sons, Ltd.
Author Oxley, Mark E.
Vosika, Donald C.
Quinn, Dennis W.
Author_xml – sequence: 1
  givenname: Dennis W.
  surname: Quinn
  fullname: Quinn, Dennis W.
  email: dennis.quinn@afit.af.mil
  organization: Department of Mathematics and Statistics, Graduate School of Engineering, Air Force Institute of Technology, 2950 P Street, Wright Patterson AFB, OH 45433-7765, U.S.A
– sequence: 2
  givenname: Mark E.
  surname: Oxley
  fullname: Oxley, Mark E.
  organization: Department of Mathematics and Statistics, Graduate School of Engineering, Air Force Institute of Technology, 2950 P Street, Wright Patterson AFB, OH 45433-7765, U.S.A
– sequence: 3
  givenname: Donald C.
  surname: Vosika
  fullname: Vosika, Donald C.
  organization: Department of Mathematics and Statistics, Graduate School of Engineering, Air Force Institute of Technology, 2950 P Street, Wright Patterson AFB, OH 45433-7765, U.S.A
BookMark eNqF0N9r1EAQwPFFKnit_g95kvYh15ndbDZ7inDGaz2pPdCKiA_DXjKx0fw4s7lq_3sTUoug4NPCMvPZ5XsoDpq2YSGWCHMEkKfH79fp-gTBmhAkmGO01iJKOIniRfIcldKLxXL9Krx8uzLavFBzmKebZzK0D8TsfutAzAbLhtom-Egcev8VAFGDmonV1TUH23bf5K67Dbjimps-qLm_bvPA7XZVyXnQt4EL6vambL4ERcd_LOy6djvsPBYPC1d5fnJ3HokPZ6ur9HV4sTlfp8uLMFNJYsItK1mwcgkUkdRcaAtaYaztNstygwWYIkeHuU2s5jhykGs2yrg8AptDptWReDq5w7vf9-x7qkufcVW5htu9J2lQJzHaYfDTNJh1rfcdF7Trynr4MSHQGJZoDEtjIhoT0e-wFMWU0BiWaAhLU1hSBJRuSNJof57sH2XFt3_B_3f_yd7dDHo46aXv-ee97rpvFA8tNH28PCcZv3kXYXRGL9UvMp6cxw
Cites_doi 10.1007/978-3-642-48860-3
10.2514/3.6038
10.1002/cpa.3160090102
10.1016/S0955-7997(96)00034-3
10.1002/nme.1620350111
10.1002/nme.1620110410
10.1016/0955-7997(95)00047-X
ContentType Journal Article
Copyright Published in 1999 by John Wiley & Sons, Ltd.
Copyright_xml – notice: Published in 1999 by John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9
DatabaseName Istex
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 1346
ExternalDocumentID 10_1002__SICI_1097_0207_19991120_46_8_1335__AID_NME757_3_0_CO_2_9
NME757
ark_67375_WNG_26JR414F_B
Genre article
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABDEX
ABIJN
ABJNI
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWS
RX1
SUPJJ
TN5
UB1
V2E
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~A~
~IA
~WT
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c3887-be32fe3a80f425ef590531659bccd71f07fd1a1d9895e64a0d5e737ad409d0c53
IEDL.DBID DR2
ISSN 0029-5981
IngestDate Wed Dec 04 15:15:25 EST 2024
Fri Dec 06 00:44:01 EST 2024
Sat Aug 24 01:05:04 EDT 2024
Wed Oct 30 10:05:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3887-be32fe3a80f425ef590531659bccd71f07fd1a1d9895e64a0d5e737ad409d0c53
Notes This article is a U.S. Government work and is in the public domain in the U.S.A.
ArticleID:NME757
istex:C413D4672E3B92F76BDD5795E9E02A579700E9F8
ark:/67375/WNG-26JR414F-B
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 27158619
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_27158619
crossref_primary_10_1002__SICI_1097_0207_19991120_46_8_1335__AID_NME757_3_0_CO_2_9
wiley_primary_10_1002_SICI_1097_0207_19991120_46_8_1335_AID_NME757_3_0_CO_2_9_NME757
istex_primary_ark_67375_WNG_26JR414F_B
PublicationCentury 1900
PublicationDate 1999-11-20
20 November 1999
19991120
PublicationDateYYYYMMDD 1999-11-20
PublicationDate_xml – month: 11
  year: 1999
  text: 1999-11-20
  day: 20
PublicationDecade 1990
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 1999
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Rizzo FJ, Shippy DJ. A method of solution for certain problems of transient heat conduction. AIAA Journal 1971; 8:2004-2009.
Tikhanov AN, Samarski AA. Partial Differential Equations of Mathematical Physics. Holden-Day: San Francisco, 1964.
Wrobel LC, Brebbia CA. Computational Methods for Free and Moving Boundary Problems in Heat and Fluid Flow. Elsevier Applied Science: London, 1993.
Crank J. Free and Moving Boundary Problems. Clarendon Press: New York, 1984.
Meyer GH. An alternating direction method for multi-dimensional parabolic free surface problems. International Journal for Numerical Methods in Engineering 1977; 11:741-752.
Walker SP. Diffusion problems using transient discrete source superposition. International Journal for Numerical Methods in engineering 1992; 35:165-178.
Ames WF. Nonlinear Partial Differential Equations, vol. I. Academic Press: New York, 1967.
Mikhlin SG. Integral Equations. The Macmillan Company: New York, 1964.
Cryer CW. The Interrelations Between Moving Boundary Problems and Free Boundary Problems. Academic Press: New York, 1978.
Brebbia CA, Telles JCF. Boundary Element Techniques, Theory and Applications in Engineering. Springer: Berlin, 1984.
Zhu S, Satravaha P. Solving nonlinear time dependent diffusion equations with the dual reciprocity method in laplace space. Engineering Analysis with Boundary Elements 1996; 18:19-27.
Kolodner IJ. Free boundary problem for the heat equation with applications to problems of change of phase. Communications on Pure Applied Mathematics 1956; 9:1-31.
Friedman A. Partial Differential Equations of Parabolic Type. Prentice-Hall: Englewood Cliffs, NJ, 1964.
Bannerjee PK, Butterfield R. Boundary Element Methods in Engineering Science, McGraw-Hill: New York, 1981.
Sarler B. Stefan's work on solid-liquid phase changes. Engineering Analysis with Boundary Elements 1995; 16:83-92.
1988; 2
1971; 8
1996; 18
1982; 2
1995; 16
1964
1956; 9
1984
1967; I
1992; 35
1977; 11
1993
1981
1978
1988
1977
Cryer (10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB13) 1977
Walker (10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB8) 1992; 35
Rizzo (10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB5) 1971; 8
Mikhlin (10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB18) 1964
Meyer (10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB17) 1977; 11
Wrobel (10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB10) 1993
Tarzia (10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB9) 1988
Sarler (10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB15) 1995; 16
Friedman (10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB7) 1964
Cryer (10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB14) 1978
Wrobel (10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB4) 1988; 2
Ames (10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB11) 1967; I
Crank (10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB12) 1984
Zhu (10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB6) 1996; 18
Kolodner (10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB16) 1956; 9
Bannerjee (10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB2) 1982; 2
Bannerjee (10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB1) 1981
Brebbia (10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB3) 1984
Tikhanov (10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB19) 1964
References_xml – year: 1984
– year: 1981
– year: 1964
– volume: 18
  start-page: 19
  year: 1996
  end-page: 27
  article-title: Solving nonlinear time dependent diffusion equations with the dual reciprocity method in laplace space
  publication-title: Engineering Analysis with Boundary Elements
– volume: 2
  start-page: 3
  year: 1988
  end-page: 13
– year: 1988
– volume: 9
  start-page: 1
  year: 1956
  end-page: 31
  article-title: Free boundary problem for the heat equation with applications to problems of change of phase
  publication-title: Communications on Pure Applied Mathematics
– volume: 8
  start-page: 2004
  year: 1971
  end-page: 2009
  article-title: A method of solution for certain problems of transient heat conduction
  publication-title: AIAA Journal
– volume: 35
  start-page: 165
  year: 1992
  end-page: 178
  article-title: Diffusion problems using transient discrete source superposition
  publication-title: International Journal for Numerical Methods in engineering
– volume: 16
  start-page: 83
  year: 1995
  end-page: 92
  article-title: Stefan's work on solid–liquid phase changes
  publication-title: Engineering Analysis with Boundary Elements
– year: 1978
– volume: 11
  start-page: 741
  year: 1977
  end-page: 752
  article-title: An alternating direction method for multi‐dimensional parabolic free surface problems
  publication-title: International Journal for Numerical Methods in Engineering
– year: 1977
– year: 1993
– volume: 2
  year: 1982
– volume: I
  year: 1967
– year: 1977
  ident: 10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB13
  contributor:
    fullname: Cryer
– volume-title: Boundary Element Techniques, Theory and Applications in Engineering
  year: 1984
  ident: 10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB3
  doi: 10.1007/978-3-642-48860-3
  contributor:
    fullname: Brebbia
– volume-title: Integral Equations
  year: 1964
  ident: 10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB18
  contributor:
    fullname: Mikhlin
– volume-title: Boundary Element Methods in Engineering Science
  year: 1981
  ident: 10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB1
  contributor:
    fullname: Bannerjee
– volume-title: Partial Differential Equations of Mathematical Physics
  year: 1964
  ident: 10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB19
  contributor:
    fullname: Tikhanov
– volume: 8
  start-page: 2004
  year: 1971
  ident: 10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB5
  publication-title: AIAA Journal
  doi: 10.2514/3.6038
  contributor:
    fullname: Rizzo
– year: 1988
  ident: 10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB9
  contributor:
    fullname: Tarzia
– volume-title: Computational Methods for Free and Moving Boundary Problems in Heat and Fluid Flow
  year: 1993
  ident: 10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB10
  contributor:
    fullname: Wrobel
– volume-title: Free and Moving Boundary Problems
  year: 1984
  ident: 10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB12
  contributor:
    fullname: Crank
– volume: 2
  volume-title: Developments in Boundary Element Methods
  year: 1982
  ident: 10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB2
  contributor:
    fullname: Bannerjee
– volume: I
  volume-title: Nonlinear Partial Differential Equations
  year: 1967
  ident: 10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB11
  contributor:
    fullname: Ames
– volume-title: The Interrelations Between Moving Boundary Problems and Free Boundary Problems
  year: 1978
  ident: 10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB14
  contributor:
    fullname: Cryer
– volume: 9
  start-page: 1
  year: 1956
  ident: 10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB16
  publication-title: Communications on Pure Applied Mathematics
  doi: 10.1002/cpa.3160090102
  contributor:
    fullname: Kolodner
– volume: 18
  start-page: 19
  year: 1996
  ident: 10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB6
  publication-title: Engineering Analysis with Boundary Elements
  doi: 10.1016/S0955-7997(96)00034-3
  contributor:
    fullname: Zhu
– volume-title: Partial Differential Equations of Parabolic Type
  year: 1964
  ident: 10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB7
  contributor:
    fullname: Friedman
– volume: 35
  start-page: 165
  year: 1992
  ident: 10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB8
  publication-title: International Journal for Numerical Methods in engineering
  doi: 10.1002/nme.1620350111
  contributor:
    fullname: Walker
– volume: 11
  start-page: 741
  year: 1977
  ident: 10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB17
  publication-title: International Journal for Numerical Methods in Engineering
  doi: 10.1002/nme.1620110410
  contributor:
    fullname: Meyer
– volume: 2
  start-page: 3
  volume-title: Boundary Elements X
  year: 1988
  ident: 10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB4
  contributor:
    fullname: Wrobel
– volume: 16
  start-page: 83
  year: 1995
  ident: 10.1002/(SICI)1097-0207(19991120)46:8<1335::AID-NME757>3.0.CO;2-9-BIB15
  publication-title: Engineering Analysis with Boundary Elements
  doi: 10.1016/0955-7997(95)00047-X
  contributor:
    fullname: Sarler
SSID ssj0011503
Score 1.638239
Snippet In this paper a boundary problem is considered for which the boundary is to be determined as part of the solution. A time‐dependent problem involving linear...
The possibility of using the boundary element method to solve moving free boundary value problems is demonstrated. The problem examined relates to contaminant...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 1335
SubjectTerms boundary element method
contaminant transport
diffusion equation
free boundary
moving boundary
Title The boundary element method applied to a moving free boundary problem
URI https://api.istex.fr/ark:/67375/WNG-26JR414F-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F%28SICI%291097-0207%2819991120%2946%3A8%3C1335%3A%3AAID-NME757%3E3.0.CO%3B2-9
https://search.proquest.com/docview/27158619
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1LbxMxELaqIiE4UCggQnnsgaD2sOl6_dyAkNI0oanUVAqt2ttovWtfKpIqDwm48Ff4qYz31RSQOCGkPexaWo81Ho-_scefCXkTJYZhsOP3DGUUcqpMmHDDw0Q47WJuE5oV2RZjeXTOjy_F5Qb5Xp-FKfkhmgU3PzIKf-0HeGoW-zekoQjAPo36IwyY_SZqiLBHeWojD3hoHGExl9jJus36GIYJfMWnNzoMxycDJVSbDVgn6vRP2-wgDv0BQMqUTwk8nDT0Ux4ssTpFRCSa3iW9Sv7-rpe910jereXucdnV773EbvdG2odS1juUdGv-u-O78sstcLsOkYs5brhFftTaKVNbrjqrpelk334hjvyP6ntIHlT4OeiVBv-IbNjpNtmqsHRQearFNrm_RrSIXycNO-3iMRng2AhMcZ_U_GtgywT6oLxLO0irqpazIA0-F-stgZvbtR-qO3iekPPh4Kx_FFbXSYQZ867UWBY7y1IdOXRU1onEOyApEpNluaIuUi6nKc0TnQgreRrlwiqm0hxD4DzKBHtKNqezqX3mD7o7ibO8MVI7tG-mM22VSWOKBp5nUrfIpO5kuC5ZQ6Dkh44BvNqrjX9UOtQqBy5Bg1c2ACoaSkUDgwj6pxBD0iJvC3NpakznVz4tTwm4GH-EWB5POOVDOGiR17U9AToLvwOUTu1stYBYUaExZG6Rs8I2fmvc39v2x6ZVJc__TbU75F5BlkEp-vQXZHM5X9mXCAWX5lUxXn8CMT83Zg
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1LbxMxELZKK0E5UCighlf3QFB72HS9Xr8CQkrThKQ0qRRS0dtoveu9VCQoDwk48Vf4p4z3kaaAxAkh7WHX0nqs8Xj8jT3-TMjLQBuGwY7bMxSBH1FpfB2ZyNc8U1kYWU2TPNtiKHoX0eklv9wg36uzMAU_xGrBzY2M3F-7Ae4WpI-uWUMRgX3ot_sYMbtdVB9xj3TcRg7x0DDA4khgL6s6a2McxvEVn1b_xB8OOpLLOuuwRtBon9fZcejrW2QLXQZ1SWEnoxUBlYNLrEoS4VrR26RVNuDowAk_XIk-qAQfRqKp3jiRzea1uLeFsNco6sYMuOU688sNeLsOkvNZrrtDflT6KZJbrhrLhWkk336hjvyfCrxP7pUQ2msVNv-AbNjJLtkp4bRXOqv5Lrm7xrWIX4MVQe38Ieng8PBMfqXU7Ktnixx6r7hO24vLqhZTL_Y-5UsuXjazaz-U1_A8Ihfdzrjd88sbJfyEOW9qLAszy2IVZOirbMa180GCa5MkqaRZILOUxjTVSnMrojhIuZVMxilGwWmQcPaYbE6mE7vnzrpnAid6Y4TK0MSZSpSVJg4p2niaCFUjo6qX4XNBHAIFRXQI4NRe7v2j0qFSOUQCFDhlA6CioVA0MAigfQ4h6Bp5ldvLqsZ4duUy8ySHj8N3EIrTUUSjLhzXyH5lUID-wm0CxRM7Xc4hlJQrjJprZJwbx2-N-3vb_ti0suTJv6l2n9zpjQdncNYfvn9KtnPuDErRxT8jm4vZ0j5HZLgwL_LB-xPyyDuH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1LbxMxELZKK1VwoFBAhFf3QFF72HS9fgeElKYJTaEpSlvR22gf9qUiqfKQgAt_hZ_KeB9pCkicENIedi2txxqPx9_Y48-EvIxMyjDY8XuGMgo5VWloeMpDI5x2MbeGZkW2xUAenvOjC3GxQr7XZ2FKfojFgpsfGYW_9gP8Knd716ShCMBO-50-Bsx-EzVE2KM8tZEHPDSOsJhL7GS9zToYhgl8xafdPwgHx10l1DbrsmbU7Jxss_04NLfIGpf4i0dVwwX_lEdLrM4REUbTddKuGrC344XvLkTv1IJ3uWzpN15kq3Ut7m0p7DWKujEBrvm-_HID3S5j5GKS622QH7V6ytyWy-Z8ljazb78wR_5H_d0jdysAHbRLi79PVuxok2xUYDqoXNV0k9xZYlrEr-MFPe30Aeni4AjS4kKpydfAlhn0QXmZdpBUVc3GQRJ8LhZcAjexSz9Ul_A8JOe97lnnMKzukwgz5n1palnsLEt05NBTWSeM90BSmDTLckVdpFxOE5obbYSVPIlyYRVTSY4xcB5lgj0iq6PxyD72J92dxGk-TaV2aOBMZ9qqNIkpWnieSd0gw7qT4aqkDYGSIDoG8Gqvdv5R6VCrHLgEDV7ZAKhoKBUNDCLonEAMpkFeFeayqDGZXPq8PCXg0-AdxPJoyCnvwX6DbNX2BOgt_BZQMrLj-RRiRYXGmLlBzgrb-K1xf2_bH5tWlTz5N9VukfWPBz340B-8f0puF8QZlKJ_f0ZWZ5O5fY6wcJa-KIbuT8_YOjY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+boundary+element+method+applied+to+a+moving+free+boundary+problem&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Quinn%2C+Dennis+W.&rft.au=Oxley%2C+Mark+E.&rft.au=Vosika%2C+Donald+C.&rft.date=1999-11-20&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=46&rft.issue=8&rft.spage=1335&rft.epage=1346&rft_id=info:doi/10.1002%2F%28SICI%291097-0207%2819991120%2946%3A8%3C1335%3A%3AAID-NME757%3E3.0.CO%3B2-9&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_26JR414F_B
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon