Modeling of Ethylene Polymerization Kinetics over Supported Chromium Oxide Catalysts
Silica supported chromium oxide catalysts have been used for many years to manufacture polyethylene and they still account for more than 50% of world production of high‐density polyethylene. Along with its commercial success, the catalytic mechanism and polymerization kinetics of silica supported ch...
Saved in:
Published in | Macromolecular theory and simulations Vol. 13; no. 2; pp. 169 - 177 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
01.02.2004
WILEY‐VCH Verlag Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Silica supported chromium oxide catalysts have been used for many years to manufacture polyethylene and they still account for more than 50% of world production of high‐density polyethylene. Along with its commercial success, the catalytic mechanism and polymerization kinetics of silica supported chromium oxide catalysts have been the subject of intense research. However, there is a lack of modeling effort for the quantitative prediction of polymerization rate and polymer molecular weight properties. The chromium oxide catalyzed ethylene polymerization is often characterized by the presence of an induction period followed by a steady increase in polymerization rate. The molecular weight distribution is also quite broad. In this paper, a two‐site kinetic model is developed for the modeling of ethylene polymerization over supported chromium oxide catalyst. To model the induction period, it is proposed that divalent chromium sites are deactivated by catalyst poison and the reactivation of the deactivated chromium sites is slow and rate controlling. To model the molecular weight distribution broadening, each active chromium site is assumed to have different monomer chain transfer ability. The experimental data of semibatch liquid slurry polymerization of ethylene is compared with the model simulations and a quite satisfactory agreement has been obtained for the polymerization conditions employed.
Polymerization rates at different reaction temperatures: symbols – data, lines – model simulations. |
---|---|
AbstractList | Silica supported chromium oxide catalysts have been used for many years to manufacture polyethylene and they still account for more than 50% of world production of high‐density polyethylene. Along with its commercial success, the catalytic mechanism and polymerization kinetics of silica supported chromium oxide catalysts have been the subject of intense research. However, there is a lack of modeling effort for the quantitative prediction of polymerization rate and polymer molecular weight properties. The chromium oxide catalyzed ethylene polymerization is often characterized by the presence of an induction period followed by a steady increase in polymerization rate. The molecular weight distribution is also quite broad. In this paper, a two‐site kinetic model is developed for the modeling of ethylene polymerization over supported chromium oxide catalyst. To model the induction period, it is proposed that divalent chromium sites are deactivated by catalyst poison and the reactivation of the deactivated chromium sites is slow and rate controlling. To model the molecular weight distribution broadening, each active chromium site is assumed to have different monomer chain transfer ability. The experimental data of semibatch liquid slurry polymerization of ethylene is compared with the model simulations and a quite satisfactory agreement has been obtained for the polymerization conditions employed.
Polymerization rates at different reaction temperatures: symbols – data, lines – model simulations. Silica supported chromium oxide catalysts have been used for many years to manufacture polyethylene and they still account for more than 50% of world production of high-density polyethylene. Along with its commercial success, the catalytic mechanism and polymerization kinetics of silica supported chromium oxide catalysts have been the subject of intense research. However, there is a lack of modeling effort for the quantitative prediction of polymerization rate and polymer molecular weight properties. The chromium oxide catalyzed ethylene polymerization is often characterized by the presence of an induction period followed by a steady increase in polymerization rate. The molecular weight distribution is also quite broad. In this paper, a two-site kinetic model is developed for the modeling of ethylene polymerization over supported chromium oxide catalyst. To model the induction period, it is proposed that divalent chromium sites are deactivated by catalyst poison and the reactivation of the deactivated chromium sites is slow and rate controlling. To model the molecular weight distribution broadening, each active chromium site is assumed to have different monomer chain transfer ability. The experimental data of semibatch liquid slurry polymerization of ethylene is compared with the model simulations and a quite satisfactory agreement has been obtained for the polymerization conditions employed. Silica supported chromium oxide catalysts have been used for many years to manufacture polyethylene and they still account for more than 50% of world production of high‐density polyethylene. Along with its commercial success, the catalytic mechanism and polymerization kinetics of silica supported chromium oxide catalysts have been the subject of intense research. However, there is a lack of modeling effort for the quantitative prediction of polymerization rate and polymer molecular weight properties. The chromium oxide catalyzed ethylene polymerization is often characterized by the presence of an induction period followed by a steady increase in polymerization rate. The molecular weight distribution is also quite broad. In this paper, a two‐site kinetic model is developed for the modeling of ethylene polymerization over supported chromium oxide catalyst. To model the induction period, it is proposed that divalent chromium sites are deactivated by catalyst poison and the reactivation of the deactivated chromium sites is slow and rate controlling. To model the molecular weight distribution broadening, each active chromium site is assumed to have different monomer chain transfer ability. The experimental data of semibatch liquid slurry polymerization of ethylene is compared with the model simulations and a quite satisfactory agreement has been obtained for the polymerization conditions employed. Polymerization rates at different reaction temperatures: symbols – data, lines – model simulations. image Polymerization rates at different reaction temperatures: symbols – data, lines – model simulations. |
Author | Choi, Kyu Yong Yoon, Won Jung Tang, Shihua |
Author_xml | – sequence: 1 givenname: Kyu Yong surname: Choi fullname: Choi, Kyu Yong email: choi@eng.umd.edu organization: Department of Chemical Engineering, University of Maryland, College Park, MD 20742, USA – sequence: 2 givenname: Shihua surname: Tang fullname: Tang, Shihua organization: Department of Chemical Engineering, University of Maryland, College Park, MD 20742, USA – sequence: 3 givenname: Won Jung surname: Yoon fullname: Yoon, Won Jung organization: Department of Chemical Engineering, University of Maryland, College Park, MD 20742, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15540861$$DView record in Pascal Francis |
BookMark | eNqFkM1LHDEYh0NR8PPqOZeCl9nmY2YyOcpirbhqwS16C9nknRrNTLZJtjr96zvblaUIpae8h-f5EZ4DtNOHHhA6oWRCCWGfOp3ThBHCCSFUfED7tGK04JLKnfEmjBWUl-UeOkjpaUSkFGwfza-DBe_67zi0-Dw_Dh56wF-DHzqI7pfOLvT4yvWQnUk4_ISI71bLZYgZLJ4-xtC5VYdvX50FPNVZ-yHldIR2W-0THL-9h-jb5_P59Esxu724nJ7NCsObRhRyYQ21408sl7o1FbQLIqi1lSEUTAmyqS0zTcvkom5Zw0oQmgC1C0tNYxnlh-h0s7uM4ccKUladSwa81z2EVVKU1bUoaSmaEf34hupktG-j7o1Lahldp-OgaFWVpKnXk-WGMzGkFKFVxuU_FXLUzitK1Dq2WsdW29ijNnmnbZf_JciN8OI8DP-h1fXZ_O5vt9i4LmV43bo6PqtacFGp-5sLdfMw5-RqJtQ9_w0l_KUb |
CitedBy_id | crossref_primary_10_1016_j_jcat_2018_01_014 crossref_primary_10_1134_S0965545X0812002X crossref_primary_10_1039_C6RA21914D crossref_primary_10_1016_j_molcata_2014_08_005 |
Cites_doi | 10.1016/0032-3861(95)95305-K 10.1021/jp971753j 10.1016/0021-9517(86)90272-1 10.1023/A:1009084922459 10.1021/ie00081a001 10.1016/0021-9517(82)90178-6 10.1016/S0360-0564(08)60258-8 10.1021/j100161a059 10.1016/0021-9517(83)90121-5 |
ContentType | Journal Article |
Copyright | Copyright © 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2004 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2004 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW 7SR 7U5 8FD JG9 L7M |
DOI | 10.1002/mats.200300017 |
DatabaseName | Istex CrossRef Pascal-Francis Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Applied Sciences |
EISSN | 1521-3919 |
EndPage | 177 |
ExternalDocumentID | 15540861 10_1002_mats_200300017 MATS200300017 ark_67375_WNG_NXT30KL7_W |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AEUQT AFPWT RWB RWI WRC AAYXX AEYWJ CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW 7SR 7U5 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3887-9bdc1d009d39afc5efb071dd5c01ec4e986d2c8f29b6f2824e7a0e1dbd1c8d213 |
IEDL.DBID | DR2 |
ISSN | 1022-1344 |
IngestDate | Fri Jul 11 05:57:58 EDT 2025 Mon Jul 21 09:13:26 EDT 2025 Tue Jul 01 00:57:33 EDT 2025 Thu Apr 24 22:56:58 EDT 2025 Wed Jan 22 16:51:25 EST 2025 Fri Apr 25 07:46:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Kinetic model Polyethylene Chromium oxide Theoretical study Olefin polymer Complex catalyst polymerization Modeling Silica Supported catalyst |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3887-9bdc1d009d39afc5efb071dd5c01ec4e986d2c8f29b6f2824e7a0e1dbd1c8d213 |
Notes | istex:FF8CE4B5E89883F77D86AC894AF36C604E8C8C02 ArticleID:MATS200300017 ark:/67375/WNG-NXT30KL7-W On leave from Kyungwon University, Department of Chemical and Bioengineering, Seongnam City, Kyunggi‐do, 461‐701 Korea. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1266741478 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1266741478 pascalfrancis_primary_15540861 crossref_citationtrail_10_1002_mats_200300017 crossref_primary_10_1002_mats_200300017 wiley_primary_10_1002_mats_200300017_MATS200300017 istex_primary_ark_67375_WNG_NXT30KL7_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2004 |
PublicationDateYYYYMMDD | 2004-02-01 |
PublicationDate_xml | – month: 02 year: 2004 text: February 2004 |
PublicationDecade | 2000 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Macromolecular theory and simulations |
PublicationTitleAlternate | Macromol. Theory Simul |
PublicationYear | 2004 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley |
References | M. P. McDaniel, M. M. Johnson, J. Catal. 1986, 101, 446. J. B. P. Soares, A. E. Hamielec, Polymer 1995, 36, 2257. M. P. McDaniel, Ind. Eng. Chem. Res. 1988, 27, 1559. M. P. McDaniel, S. J. Martin, J. Phys. Chem. 1991, 95, 3289. M. P. McDaniel, Adv. Catal. 1985, 33, 47. M. P. McDaniel, M. B. Welch, J. Catal. 1983, 82, 98. P. C. Thüne, J. Loos, A. M. de Jong, P. J. Lemstra, J. W. Niemantsverdriet, Top. Catal. 2000, 13, 67. R. Merryfield, M. McDaniel, G. Parks, J. Catal. 1982, 77, 348. P. C. Thüne, C. P. J. Verhagen, M. J. G. van den Boer, J. W. Niemantsverdriet, J. Phys. Chem. B 1997, 101, 8559. 1997 1996 1983; 82 1985; 33 1986; 101 2000; 13 1995; 36 1988; 27 1997; 101 1982; 77 1991; 95 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_2_2 e_1_2_6_10_2 e_1_2_6_1_2 e_1_2_6_11_2 |
References_xml | – reference: M. P. McDaniel, M. B. Welch, J. Catal. 1983, 82, 98. – reference: M. P. McDaniel, M. M. Johnson, J. Catal. 1986, 101, 446. – reference: P. C. Thüne, J. Loos, A. M. de Jong, P. J. Lemstra, J. W. Niemantsverdriet, Top. Catal. 2000, 13, 67. – reference: P. C. Thüne, C. P. J. Verhagen, M. J. G. van den Boer, J. W. Niemantsverdriet, J. Phys. Chem. B 1997, 101, 8559. – reference: J. B. P. Soares, A. E. Hamielec, Polymer 1995, 36, 2257. – reference: M. P. McDaniel, S. J. Martin, J. Phys. Chem. 1991, 95, 3289. – reference: M. P. McDaniel, Adv. Catal. 1985, 33, 47. – reference: M. P. McDaniel, Ind. Eng. Chem. Res. 1988, 27, 1559. – reference: R. Merryfield, M. McDaniel, G. Parks, J. Catal. 1982, 77, 348. – year: 1997 – year: 1996 – volume: 101 start-page: 8559 year: 1997 publication-title: J. Phys. Chem. B – volume: 13 start-page: 67 year: 2000 publication-title: Top. Catal. – volume: 36 start-page: 2257 year: 1995 publication-title: Polymer – volume: 27 start-page: 1559 year: 1988 publication-title: Ind. Eng. Chem. Res. – volume: 101 start-page: 446 year: 1986 publication-title: J. Catal. – volume: 82 start-page: 98 year: 1983 publication-title: J. Catal. – volume: 95 start-page: 3289 year: 1991 publication-title: J. Phys. Chem. – volume: 33 start-page: 47 year: 1985 publication-title: Adv. Catal. – volume: 77 start-page: 348 year: 1982 publication-title: J. Catal. – ident: e_1_2_6_5_2 – ident: e_1_2_6_11_2 doi: 10.1016/0032-3861(95)95305-K – ident: e_1_2_6_2_2 – ident: e_1_2_6_8_2 doi: 10.1021/jp971753j – ident: e_1_2_6_4_2 doi: 10.1016/0021-9517(86)90272-1 – ident: e_1_2_6_7_2 doi: 10.1023/A:1009084922459 – ident: e_1_2_6_1_2 doi: 10.1021/ie00081a001 – ident: e_1_2_6_9_2 doi: 10.1016/0021-9517(82)90178-6 – ident: e_1_2_6_3_2 doi: 10.1016/S0360-0564(08)60258-8 – ident: e_1_2_6_10_2 doi: 10.1021/j100161a059 – ident: e_1_2_6_6_2 doi: 10.1016/0021-9517(83)90121-5 |
SSID | ssj0009972 |
Score | 1.6704451 |
Snippet | Silica supported chromium oxide catalysts have been used for many years to manufacture polyethylene and they still account for more than 50% of world... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 169 |
SubjectTerms | Applied sciences Catalysis Catalysts Chromium Chromium oxides Ethylene ethylene polymerization Exact sciences and technology kinetic model Mathematical models modeling multi-site model Organic polymers Physicochemistry of polymers Polymerization Preparation, kinetics, thermodynamics, mechanism and catalysts Reaction kinetics |
Title | Modeling of Ethylene Polymerization Kinetics over Supported Chromium Oxide Catalysts |
URI | https://api.istex.fr/ark:/67375/WNG-NXT30KL7-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmats.200300017 https://www.proquest.com/docview/1266741478 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEB5C-tC-tE0P6h5BgdI-ObEs-XoMSw6aZBvSDdk3ocsQkuyWeBeS_vrOyGtvtlAKzaNBsq0ZHd9Io-8D-MwTV9dC5LHLMTaRuXexRpQQl6kwBOdLGTQjT4b54bn8Ns7GD27xt_wQ_YYbjYwwX9MA16bZWZKGIqALdNsicL7gJEwJW4SKzpb8UXQrNBx3YsTFhZQda2OS7qxWX1mVnpCB7yhLUjdoqLpVuFiBoA-BbFiJ9l-A7trQJqBcbc9nZtv--oPe8TGNfAnPFzCV7bb9agPW_OQVPB106nCvYUQianSVnU1rtofextXLs9Pp9T0dAbV3O9kRfp9ooBnliTISEKXUXseIkffmcn7Dvt9dOs8GtIV038yaN3C-vzcaHMYLhYbYCpqdKuMsd2hnJypd28zXBiGLc5lNuLfSV2XuUlvWaWXyGoM76QudeO6M47Z0KRdvYX0ynfh3wLKEQq0S4ZivpEvzKpcInjJdZCSIYmQEcechZRf05aSica1a4uVUka1Ub6sIvvblf7bEHX8t-SU4vC-mb68o3a3I1MXwQA3HI5EcHRfqIoLNlR6xfC9iMgwNeQRbXRdR6A46etETP503iiMOQuwmizKCNDj8Hz-lTnZHP_qn9_9T6QM8a9OMKPfmI6zPbuf-EyKomdkMo-Q37mQRkQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeygXKC81QFsjITiljWPndaxWLQv7AEGq9mbFj0hV213U3ZVafj0zzibLIlVIcIxkR_aMH9_Y4-8DeMcjW9dCpKFNMTaRqbNhhSghzGOhCc7n0mtGjsZp_1R-Pk_abEJ6C9PwQ3QHbjQz_HpNE5wOpA9XrKGI6DzftvCkLw9hk2S9fVT1bcUgRe9C_YUnxlxcSNnyNkbx4Xr9tX1pk0x8S3mS1QxNVTcaF2sg9Hco6_eikyeg2140KSiXB4u5PjA__yB4_K9ubsPjJVJlR83QegoP3OQZbPVagbjnUJKOGr1mZ9OaHaPDcQNz7Ov06o5ugZrnnWyADSAmaEapoow0RCm71zIi5b2-WFyzL7cX1rEenSLdzeazF3B6clz2-uFSpCE0ghaoQlvDLRraiqKqTeJqjajF2sRE3Bnpijy1scnruNBpjfGddFkVOW615Sa3MRcvYWMynbgdYElE0VaOiMwV0sZpkUrET0mVJaSJomUAYesiZZYM5iSkcaUa7uVYka1UZ6sAPnTlfzTcHfeWfO893hWrbi4p4y1L1Nn4oxqflyIaDDN1FsDe2pBY_RdhGUaHPIC37RhR6A66fakmbrqYKY5QCOGbzPIAYu_xvzRKjY7K793Xq3-ptA9b_XI0VMNP48FreNRkHVEqzhvYmN8s3C4Cqrne81PmFwDcFaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+of+Ethylene+Polymerization+Kinetics+over+Supported+Chromium+Oxide+Catalysts&rft.jtitle=Macromolecular+theory+and+simulations&rft.au=Choi%2C+Kyu+Yong&rft.au=Tang%2C+Shihua&rft.au=Yoon%2C+Won+Jung&rft.date=2004-02-01&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1022-1344&rft.eissn=1521-3919&rft.volume=13&rft.issue=2&rft.spage=169&rft.epage=177&rft_id=info:doi/10.1002%2Fmats.200300017&rft.externalDBID=10.1002%252Fmats.200300017&rft.externalDocID=MATS200300017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1344&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1344&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1344&client=summon |