DeepCEST 3T: Robust MRI parameter determination and uncertainty quantification with neural networks—application to CEST imaging of the human brain at 3T
Purpose Calculation of sophisticated MR contrasts often requires complex mathematical modeling. Data evaluation is computationally expensive, vulnerable to artifacts, and often sensitive to fit algorithm parameters. In this work, we investigate whether neural networks can provide not only fast model...
Saved in:
Published in | Magnetic resonance in medicine Vol. 84; no. 1; pp. 450 - 466 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
Calculation of sophisticated MR contrasts often requires complex mathematical modeling. Data evaluation is computationally expensive, vulnerable to artifacts, and often sensitive to fit algorithm parameters. In this work, we investigate whether neural networks can provide not only fast model fitting results, but also a quality metric for the predicted values, so called uncertainty quantification, investigated here in the context of multi‐pool Lorentzian fitting of CEST MRI spectra at 3T.
Methods
A deep feed‐forward neural network including a probabilistic output layer allowing for uncertainty quantification was set up to take uncorrected CEST‐spectra as input and predict 3T Lorentzian parameters of a 4‐pool model (water, semisolid MT, amide CEST, NOE CEST), including the B0 inhomogeneity. Networks were trained on data from 3 subjects with and without data augmentation, and applied to untrained data from 1 additional subject and 1 brain tumor patient. Comparison to conventional Lorentzian fitting was performed on different perturbations of input data.
Results
The deepCEST 3T networks provided fast and accurate predictions of all Lorentzian parameters and were robust to input perturbations because of noise or B0 artifacts. The uncertainty quantification detected fluctuations in input data by increase of the uncertainty intervals. The method generalized to unseen brain tumor patient CEST data.
Conclusions
The deepCEST 3T neural network provides fast and robust estimation of CEST parameters, enabling online reconstruction of sophisticated CEST contrast images without the typical computational cost. Moreover, the uncertainty quantification indicates if the predictions are trustworthy, enabling confident interpretation of contrast changes. |
---|---|
AbstractList | Calculation of sophisticated MR contrasts often requires complex mathematical modeling. Data evaluation is computationally expensive, vulnerable to artifacts, and often sensitive to fit algorithm parameters. In this work, we investigate whether neural networks can provide not only fast model fitting results, but also a quality metric for the predicted values, so called uncertainty quantification, investigated here in the context of multi-pool Lorentzian fitting of CEST MRI spectra at 3T.PURPOSECalculation of sophisticated MR contrasts often requires complex mathematical modeling. Data evaluation is computationally expensive, vulnerable to artifacts, and often sensitive to fit algorithm parameters. In this work, we investigate whether neural networks can provide not only fast model fitting results, but also a quality metric for the predicted values, so called uncertainty quantification, investigated here in the context of multi-pool Lorentzian fitting of CEST MRI spectra at 3T.A deep feed-forward neural network including a probabilistic output layer allowing for uncertainty quantification was set up to take uncorrected CEST-spectra as input and predict 3T Lorentzian parameters of a 4-pool model (water, semisolid MT, amide CEST, NOE CEST), including the B0 inhomogeneity. Networks were trained on data from 3 subjects with and without data augmentation, and applied to untrained data from 1 additional subject and 1 brain tumor patient. Comparison to conventional Lorentzian fitting was performed on different perturbations of input data.METHODSA deep feed-forward neural network including a probabilistic output layer allowing for uncertainty quantification was set up to take uncorrected CEST-spectra as input and predict 3T Lorentzian parameters of a 4-pool model (water, semisolid MT, amide CEST, NOE CEST), including the B0 inhomogeneity. Networks were trained on data from 3 subjects with and without data augmentation, and applied to untrained data from 1 additional subject and 1 brain tumor patient. Comparison to conventional Lorentzian fitting was performed on different perturbations of input data.The deepCEST 3T networks provided fast and accurate predictions of all Lorentzian parameters and were robust to input perturbations because of noise or B0 artifacts. The uncertainty quantification detected fluctuations in input data by increase of the uncertainty intervals. The method generalized to unseen brain tumor patient CEST data.RESULTSThe deepCEST 3T networks provided fast and accurate predictions of all Lorentzian parameters and were robust to input perturbations because of noise or B0 artifacts. The uncertainty quantification detected fluctuations in input data by increase of the uncertainty intervals. The method generalized to unseen brain tumor patient CEST data.The deepCEST 3T neural network provides fast and robust estimation of CEST parameters, enabling online reconstruction of sophisticated CEST contrast images without the typical computational cost. Moreover, the uncertainty quantification indicates if the predictions are trustworthy, enabling confident interpretation of contrast changes.CONCLUSIONSThe deepCEST 3T neural network provides fast and robust estimation of CEST parameters, enabling online reconstruction of sophisticated CEST contrast images without the typical computational cost. Moreover, the uncertainty quantification indicates if the predictions are trustworthy, enabling confident interpretation of contrast changes. Calculation of sophisticated MR contrasts often requires complex mathematical modeling. Data evaluation is computationally expensive, vulnerable to artifacts, and often sensitive to fit algorithm parameters. In this work, we investigate whether neural networks can provide not only fast model fitting results, but also a quality metric for the predicted values, so called uncertainty quantification, investigated here in the context of multi-pool Lorentzian fitting of CEST MRI spectra at 3T. A deep feed-forward neural network including a probabilistic output layer allowing for uncertainty quantification was set up to take uncorrected CEST-spectra as input and predict 3T Lorentzian parameters of a 4-pool model (water, semisolid MT, amide CEST, NOE CEST), including the B inhomogeneity. Networks were trained on data from 3 subjects with and without data augmentation, and applied to untrained data from 1 additional subject and 1 brain tumor patient. Comparison to conventional Lorentzian fitting was performed on different perturbations of input data. The deepCEST 3T networks provided fast and accurate predictions of all Lorentzian parameters and were robust to input perturbations because of noise or B artifacts. The uncertainty quantification detected fluctuations in input data by increase of the uncertainty intervals. The method generalized to unseen brain tumor patient CEST data. The deepCEST 3T neural network provides fast and robust estimation of CEST parameters, enabling online reconstruction of sophisticated CEST contrast images without the typical computational cost. Moreover, the uncertainty quantification indicates if the predictions are trustworthy, enabling confident interpretation of contrast changes. PurposeCalculation of sophisticated MR contrasts often requires complex mathematical modeling. Data evaluation is computationally expensive, vulnerable to artifacts, and often sensitive to fit algorithm parameters. In this work, we investigate whether neural networks can provide not only fast model fitting results, but also a quality metric for the predicted values, so called uncertainty quantification, investigated here in the context of multi‐pool Lorentzian fitting of CEST MRI spectra at 3T.MethodsA deep feed‐forward neural network including a probabilistic output layer allowing for uncertainty quantification was set up to take uncorrected CEST‐spectra as input and predict 3T Lorentzian parameters of a 4‐pool model (water, semisolid MT, amide CEST, NOE CEST), including the B0 inhomogeneity. Networks were trained on data from 3 subjects with and without data augmentation, and applied to untrained data from 1 additional subject and 1 brain tumor patient. Comparison to conventional Lorentzian fitting was performed on different perturbations of input data.ResultsThe deepCEST 3T networks provided fast and accurate predictions of all Lorentzian parameters and were robust to input perturbations because of noise or B0 artifacts. The uncertainty quantification detected fluctuations in input data by increase of the uncertainty intervals. The method generalized to unseen brain tumor patient CEST data.ConclusionsThe deepCEST 3T neural network provides fast and robust estimation of CEST parameters, enabling online reconstruction of sophisticated CEST contrast images without the typical computational cost. Moreover, the uncertainty quantification indicates if the predictions are trustworthy, enabling confident interpretation of contrast changes. Purpose Calculation of sophisticated MR contrasts often requires complex mathematical modeling. Data evaluation is computationally expensive, vulnerable to artifacts, and often sensitive to fit algorithm parameters. In this work, we investigate whether neural networks can provide not only fast model fitting results, but also a quality metric for the predicted values, so called uncertainty quantification, investigated here in the context of multi‐pool Lorentzian fitting of CEST MRI spectra at 3T. Methods A deep feed‐forward neural network including a probabilistic output layer allowing for uncertainty quantification was set up to take uncorrected CEST‐spectra as input and predict 3T Lorentzian parameters of a 4‐pool model (water, semisolid MT, amide CEST, NOE CEST), including the B0 inhomogeneity. Networks were trained on data from 3 subjects with and without data augmentation, and applied to untrained data from 1 additional subject and 1 brain tumor patient. Comparison to conventional Lorentzian fitting was performed on different perturbations of input data. Results The deepCEST 3T networks provided fast and accurate predictions of all Lorentzian parameters and were robust to input perturbations because of noise or B0 artifacts. The uncertainty quantification detected fluctuations in input data by increase of the uncertainty intervals. The method generalized to unseen brain tumor patient CEST data. Conclusions The deepCEST 3T neural network provides fast and robust estimation of CEST parameters, enabling online reconstruction of sophisticated CEST contrast images without the typical computational cost. Moreover, the uncertainty quantification indicates if the predictions are trustworthy, enabling confident interpretation of contrast changes. |
Author | Deshmane, Anagha Bender, Benjamin Scheffler, Klaus Prokudin, Sergey Martin, Florian Herz, Kai Lindig, Tobias Glang, Felix Zaiss, Moritz |
Author_xml | – sequence: 1 givenname: Felix orcidid: 0000-0003-3506-4947 surname: Glang fullname: Glang, Felix organization: Max Planck Institute for Biological Cybernetics – sequence: 2 givenname: Anagha orcidid: 0000-0003-0697-0895 surname: Deshmane fullname: Deshmane, Anagha organization: Max Planck Institute for Biological Cybernetics – sequence: 3 givenname: Sergey orcidid: 0000-0001-6501-8234 surname: Prokudin fullname: Prokudin, Sergey organization: Max Planck Institute for Intelligent Systems – sequence: 4 givenname: Florian surname: Martin fullname: Martin, Florian organization: Max Planck Institute for Biological Cybernetics – sequence: 5 givenname: Kai orcidid: 0000-0002-7286-1454 surname: Herz fullname: Herz, Kai organization: Max Planck Institute for Biological Cybernetics – sequence: 6 givenname: Tobias surname: Lindig fullname: Lindig, Tobias organization: Eberhard Karls University Tübingen – sequence: 7 givenname: Benjamin orcidid: 0000-0002-3205-4631 surname: Bender fullname: Bender, Benjamin organization: Eberhard Karls University Tübingen – sequence: 8 givenname: Klaus orcidid: 0000-0001-6316-8773 surname: Scheffler fullname: Scheffler, Klaus organization: Eberhard Karls University Tübingen – sequence: 9 givenname: Moritz orcidid: 0000-0001-9780-3616 surname: Zaiss fullname: Zaiss, Moritz email: moritz.zaiss@tuebingen.mpg.de organization: University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31821616$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1u1DAQxy1URLeFAy-ALHGBQ1o7zie3ailQqSukZTlbk2TcdUns1Ha02hsPwYnH40lw9-NSwcEzkv2bv2f-c0ZOjDVIyGvOLjhj6eXghou04rx8RmY8T9MkzevshMxYmbFE8Do7JWfe3zPG6rrMXpBTwauUF7yYkd8fEcf59bcVFasPdGmbyQe6WN7QERwMGNDR7jEO2kDQ1lAwHZ1Miy6ANmFLHyYwQSvd7p83OqypwclBH1PYWPfD__n5C8axPyLB0t2HeoA7be6oVTSska6nAQxtXJSlEGI7L8lzBb3HV4d8Tr5_ul7NvyS3Xz_fzK9uk1ZUVZnkWKqq7gpA3iAoUbWlEnlZFU0MKh4osqxuWKc4iCJet8AKUSDPWKtqQHFO3u11R2cfJvRBDtq32Pdg0E5epiLN6mhXVkX07RP03k7OxO4iVVZ5nQpRRurNgZqaATs5ujiq28qj6xG43AOts947VLLVYWdOiOP3kjP5uFcZ9yp3e40V759UHEX_xR7UN7rH7f9BuVgu9hV_AVr6s6U |
CitedBy_id | crossref_primary_10_1007_s10334_023_01127_6 crossref_primary_10_1002_mrm_29192 crossref_primary_10_1002_mrm_30460 crossref_primary_10_1002_nbm_4699 crossref_primary_10_1088_1361_6560_ad0284 crossref_primary_10_1002_nbm_4697 crossref_primary_10_1111_cgf_14333 crossref_primary_10_1002_nbm_5221 crossref_primary_10_1002_mrm_29471 crossref_primary_10_3389_fnins_2023_1281809 crossref_primary_10_1002_mrm_28825 crossref_primary_10_1016_j_neuroimage_2021_117986 crossref_primary_10_1088_1361_6560_ac0e78 crossref_primary_10_1016_j_nicl_2022_103121 crossref_primary_10_1088_1361_6560_ac9e3e crossref_primary_10_1016_j_cbpa_2021_06_003 crossref_primary_10_1109_MSP_2023_3236483 crossref_primary_10_1038_s41598_024_72141_4 crossref_primary_10_1002_mrm_29718 crossref_primary_10_1002_nbm_5294 crossref_primary_10_1088_1361_6560_ad027e crossref_primary_10_1002_mrm_30011 crossref_primary_10_1109_TBME_2024_3407092 crossref_primary_10_1002_mrm_28376 crossref_primary_10_1016_j_cmpb_2021_106021 crossref_primary_10_1002_mrm_29429 crossref_primary_10_1088_1361_6560_ada716 crossref_primary_10_1109_JBHI_2023_3325241 crossref_primary_10_3390_tomography10070085 crossref_primary_10_3390_pharmaceutics14020451 crossref_primary_10_1002_hbm_26421 crossref_primary_10_1002_mp_15483 crossref_primary_10_1002_nbm_4710 crossref_primary_10_1002_mrm_29574 crossref_primary_10_1002_mrm_29970 crossref_primary_10_1007_s10916_023_01931_6 crossref_primary_10_1002_nbm_4671 crossref_primary_10_1002_mrm_29214 crossref_primary_10_1002_mrm_28325 crossref_primary_10_1016_j_isci_2024_111209 crossref_primary_10_1038_s41551_021_00809_7 crossref_primary_10_1002_mrm_29520 crossref_primary_10_1002_nbm_4940 crossref_primary_10_1002_mrm_29044 crossref_primary_10_1002_nbm_4662 crossref_primary_10_1002_nbm_5277 crossref_primary_10_1002_mrm_29889 crossref_primary_10_1002_nbm_4669 crossref_primary_10_1002_nbm_4626 crossref_primary_10_1002_nbm_4744 crossref_primary_10_1161_STROKEAHA_122_040830 |
Cites_doi | 10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L 10.1038/s41598-017-00167-y 10.1002/nbm.4133 10.1002/nbm.3833 10.1002/mrm.24560 10.1016/j.jmr.2018.11.002 10.1016/j.neunet.2014.09.003 10.1007/978-3-030-00928-1_74 10.1002/nbm.3879 10.1002/mrm.26100 10.1016/j.neuroimage.2018.06.026 10.1002/mrm.27751 10.1109/CVPR.2018.00355 10.1007/978-3-030-01240-3_33 10.1002/mrm.24474 10.1038/nm907 10.1002/mrm.24641 10.1002/mrm.26749 10.1007/978-3-030-00937-3_1 10.1002/mrm.27569 10.1002/mrm.25581 10.1002/mrm.25795 10.1016/j.neuroimage.2015.02.040 10.1002/1522-2594(200011)44:5<799::AID-MRM18>3.0.CO;2-S 10.1038/nm.2615 10.1002/mrm.27198 10.1016/j.jmr.2019.01.006 10.1038/nature14539 10.1002/mrm.27690 10.1002/nbm.3283 10.1002/mrm.27221 10.1063/1.1143696 10.1002/mrm.1910330404 |
ContentType | Journal Article |
Copyright | 2019 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine 2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine – notice: 2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
DOI | 10.1002/mrm.28117 |
DatabaseName | Wiley Online Library Journals (Open Access) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Biochemistry Abstracts 1 |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 466 |
ExternalDocumentID | 31821616 10_1002_mrm_28117 MRM28117 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: H2020 Health funderid: 667510 – fundername: Max‐Planck‐Gesellschaft – fundername: Deutsche Forschungsgemeinschaft funderid: ZA 814/2‐1 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
ID | FETCH-LOGICAL-c3887-5e7f89d6ae1beaf38c7f35786b578f578a6449b0df1a3686bca0636e140cf9ae3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 16:43:34 EDT 2025 Fri Jul 25 12:07:47 EDT 2025 Mon Jul 21 05:59:27 EDT 2025 Thu Apr 24 23:04:00 EDT 2025 Tue Jul 01 01:21:10 EDT 2025 Wed Jan 22 16:35:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | deepCEST uncertainty quantification probabilistic neural network APT NOE chemical exchange saturation transfer (CEST) |
Language | English |
License | Attribution 2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3887-5e7f89d6ae1beaf38c7f35786b578f578a6449b0df1a3686bca0636e140cf9ae3 |
Notes | Funding information Max Planck Society; German Research Foundation DFG, Grant/Award Numbers: ZA 814/2‐1; European Union’s Horizon 2020 Research and Innovation Program, Grant/Award Numbers: 667510 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6316-8773 0000-0002-7286-1454 0000-0001-9780-3616 0000-0001-6501-8234 0000-0003-0697-0895 0000-0002-3205-4631 0000-0003-3506-4947 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28117 |
PMID | 31821616 |
PQID | 2378592337 |
PQPubID | 1016391 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2324921648 proquest_journals_2378592337 pubmed_primary_31821616 crossref_citationtrail_10_1002_mrm_28117 crossref_primary_10_1002_mrm_28117 wiley_primary_10_1002_mrm_28117_MRM28117 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2020 2020-07-00 20200701 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2015; 521 2019; 32 2000; 44 1995; 33 2016; 75 2018; 80 2019; 300 2013; 70 2012; 18 2017; 30 2015; 28 2019; 82 2019; 81 1997; 10 2015; 61 2017; 77 2018; 179 2015; 112 2003; 9 2018 2017 2016 2018; 11213 2014 2014; 71 2018; 31 2019; 298 1992; 63 2018; 79 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Kingma DP (e_1_2_7_34_1) 2014 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 71 start-page: 164 year: 2014 end-page: 172 article-title: Method for high‐resolution imaging of creatine in vivo using chemical exchange saturation transfer publication-title: Magn Reson Med – volume: 63 start-page: 4450 year: 1992 end-page: 4456 article-title: Fast curve fitting using neural networks publication-title: Rev Sci Instrum – volume: 70 start-page: 556 year: 2013 end-page: 567 article-title: Quantitative Bayesian model‐based analysis of amide proton transfer MRI publication-title: Magn Reson Med – start-page: 265 year: 2016 end-page: 283 – volume: 80 start-page: 2449 year: 2018 end-page: 2463 article-title: Rapid and quantitative chemical exchange saturation transfer (CEST) imaging with magnetic resonance fingerprinting (MRF) publication-title: Magn Reson Med – volume: 11213 start-page: 542 year: 2018 end-page: 559 – volume: 75 start-page: 1630 year: 2016 end-page: 1639 article-title: Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semisolid magnetization transfer reference (EMR) signals: II. Comparison of three EMR models and application to human brain glioma at 3 Tesla publication-title: Magn Reson Med – volume: 79 start-page: 890 year: 2018 end-page: 899 article-title: Oxygen extraction fraction mapping at 3 Tesla using an artificial neural network: a feasibility study publication-title: Magn Reson Med – volume: 75 start-page: 137 year: 2016 end-page: 149 article-title: Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semi‐solid magnetization transfer reference (EMR) signals: application to a rat glioma model at 4.7 Tesla publication-title: Magn Reson Med – start-page: 3 year: 2018 end-page: 11 – volume: 300 start-page: 120 year: 2019 end-page: 134 article-title: Assessment of a clinically feasible Bayesian fitting algorithm using a simplified description of chemical exchange saturation transfer (CEST) imaging publication-title: J Magn Reson – volume: 77 start-page: 196 year: 2017 end-page: 208 article-title: Downfield‐NOE‐suppressed amide‐CEST‐MRI at 7 Tesla provides a unique contrast in human glioblastoma publication-title: Magn Reson Med – volume: 9 start-page: 1085 year: 2003 end-page: 1090 article-title: Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI publication-title: Nat Med – volume: 179 start-page: 144 year: 2018 end-page: 155 article-title: Chemical exchange saturation transfer MRI contrast in the human brain at 9.4 T publication-title: NeuroImage – volume: 112 start-page: 180 year: 2015 end-page: 188 article-title: Relaxation‐compensated CEST‐MRI of the human brain at 7T: unbiased insight into NOE and amide signal changes in human glioblastoma publication-title: NeuroImage – volume: 82 start-page: 622 year: 2019 end-page: 632 article-title: Relaxation‐compensated APT and rNOE CEST‐MRI of human brain tumors at 3 T publication-title: Magn Reson Med – volume: 81 start-page: 3901 year: 2019 end-page: 3914 article-title: DeepCEST: 9.4 T chemical exchange saturation transfer MRI contrast predicted from 3 T data – a proof of concept study publication-title: Magn Reson Med – volume: 61 start-page: 85 year: 2015 end-page: 117 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw – start-page: 1050 year: 2016 end-page: 1059 – volume: 521 start-page: 436 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – start-page: 655 year: 2018 end-page: 663 – volume: 44 start-page: 799 year: 2000 end-page: 802 article-title: Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST) publication-title: Magn Reson Med – volume: 80 start-page: 885 year: 2018 end-page: 894 article-title: MR fingerprinting deep reconstruction network (DRONE) publication-title: Magn Reson Med – start-page: 1183 year: 2017 end-page: 1192 – volume: 7 start-page: 84 year: 2017 article-title: Quantitative chemical exchange saturation transfer (CEST) MRI of glioma using image downsampling expedited adaptive least‐squares (IDEAL) fitting publication-title: Sci Rep – start-page: 5580 year: 2017 end-page: 5590 – start-page: 14126980 year: 2014 article-title: Adam: a method for stochastic optimization publication-title: arXiv – volume: 33 start-page: 475 year: 1995 end-page: 482 article-title: A model for magnetization transfer in tissues publication-title: Magn Reson Med – volume: 31 year: 2018 article-title: Snapshot‐CEST: optimizing spiral‐centric‐reordered gradient echo acquisition for fast and robust 3D CEST MRI at 9.4 T publication-title: NMR Biomed – volume: 10 start-page: 171 year: 1997 end-page: 178 article-title: Software tools for analysis and visualization of fMRI data publication-title: NMR Biomed – volume: 70 start-page: 1070 year: 2013 end-page: 1081 article-title: Quantitative characterization of nuclear overhauser enhancement and amide proton transfer effects in the human brain at 7 Tesla publication-title: Magn Reson Med – volume: 298 start-page: 16 year: 2019 end-page: 22 article-title: Possible artifacts in dynamic CEST MRI due to motion and field alterations publication-title: J Magn Reson – volume: 81 start-page: 2412 year: 2019 end-page: 2423 article-title: 3D gradient echo snapshot CEST MRI with low power saturation for human studies at 3T publication-title: Magn Reson Med – volume: 28 start-page: 529 year: 2015 end-page: 537 article-title: Correction of 1‐inhomogeneities for relaxation‐compensated CEST imaging at 7 T publication-title: NMR Biomed – volume: 18 start-page: 302 year: 2012 end-page: 306 article-title: Magnetic resonance imaging of glutamate publication-title: Nat Med – start-page: 3369 year: 2018 end-page: 3378 – volume: 30 year: 2017 article-title: Diffusion parameter mapping with the combined intravoxel incoherent motion and kurtosis model using artificial neural networks at 3 T publication-title: NMR Biomed – volume: 32 year: 2019 article-title: Adaptive denoising for chemical exchange saturation transfer MR imaging publication-title: NMR Biomed – ident: e_1_2_7_31_1 doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L – ident: e_1_2_7_38_1 doi: 10.1038/s41598-017-00167-y – ident: e_1_2_7_27_1 doi: 10.1002/nbm.4133 – ident: e_1_2_7_18_1 doi: 10.1002/nbm.3833 – ident: e_1_2_7_25_1 – ident: e_1_2_7_22_1 – ident: e_1_2_7_4_1 doi: 10.1002/mrm.24560 – ident: e_1_2_7_13_1 doi: 10.1016/j.jmr.2018.11.002 – ident: e_1_2_7_33_1 – ident: e_1_2_7_16_1 doi: 10.1016/j.neunet.2014.09.003 – ident: e_1_2_7_24_1 doi: 10.1007/978-3-030-00928-1_74 – ident: e_1_2_7_29_1 doi: 10.1002/nbm.3879 – ident: e_1_2_7_35_1 doi: 10.1002/mrm.26100 – ident: e_1_2_7_37_1 doi: 10.1016/j.neuroimage.2018.06.026 – ident: e_1_2_7_28_1 doi: 10.1002/mrm.27751 – ident: e_1_2_7_23_1 doi: 10.1109/CVPR.2018.00355 – ident: e_1_2_7_20_1 doi: 10.1007/978-3-030-01240-3_33 – ident: e_1_2_7_5_1 doi: 10.1002/mrm.24474 – ident: e_1_2_7_9_1 doi: 10.1038/nm907 – ident: e_1_2_7_11_1 doi: 10.1002/mrm.24641 – ident: e_1_2_7_21_1 – ident: e_1_2_7_17_1 doi: 10.1002/mrm.26749 – ident: e_1_2_7_26_1 doi: 10.1007/978-3-030-00937-3_1 – ident: e_1_2_7_30_1 doi: 10.1002/mrm.27569 – ident: e_1_2_7_32_1 – ident: e_1_2_7_7_1 doi: 10.1002/mrm.25581 – ident: e_1_2_7_8_1 doi: 10.1002/mrm.25795 – ident: e_1_2_7_2_1 doi: 10.1016/j.neuroimage.2015.02.040 – ident: e_1_2_7_10_1 doi: 10.1002/1522-2594(200011)44:5<799::AID-MRM18>3.0.CO;2-S – ident: e_1_2_7_12_1 doi: 10.1038/nm.2615 – ident: e_1_2_7_40_1 doi: 10.1002/mrm.27198 – ident: e_1_2_7_6_1 doi: 10.1016/j.jmr.2019.01.006 – ident: e_1_2_7_15_1 doi: 10.1038/nature14539 – ident: e_1_2_7_19_1 doi: 10.1002/mrm.27690 – ident: e_1_2_7_3_1 doi: 10.1002/nbm.3283 – ident: e_1_2_7_39_1 doi: 10.1002/mrm.27221 – ident: e_1_2_7_14_1 doi: 10.1063/1.1143696 – start-page: 14126980 year: 2014 ident: e_1_2_7_34_1 article-title: Adam: a method for stochastic optimization publication-title: arXiv – ident: e_1_2_7_36_1 doi: 10.1002/mrm.1910330404 |
SSID | ssj0009974 |
Score | 2.5526867 |
Snippet | Purpose
Calculation of sophisticated MR contrasts often requires complex mathematical modeling. Data evaluation is computationally expensive, vulnerable to... Calculation of sophisticated MR contrasts often requires complex mathematical modeling. Data evaluation is computationally expensive, vulnerable to artifacts,... PurposeCalculation of sophisticated MR contrasts often requires complex mathematical modeling. Data evaluation is computationally expensive, vulnerable to... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 450 |
SubjectTerms | Algorithms APT Brain Brain - diagnostic imaging Brain cancer Brain Neoplasms - diagnostic imaging Brain tumors chemical exchange saturation transfer (CEST) Computational neuroscience deepCEST Humans Image contrast Image Interpretation, Computer-Assisted Image reconstruction Inhomogeneity Magnetic Resonance Imaging Mathematical models Neural networks Neural Networks, Computer Neuroimaging NOE Parameter estimation Parameter robustness Parameter sensitivity Parameter uncertainty probabilistic neural network Robustness (mathematics) Semisolids Tumors Uncertainty uncertainty quantification |
Title | DeepCEST 3T: Robust MRI parameter determination and uncertainty quantification with neural networks—application to CEST imaging of the human brain at 3T |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28117 https://www.ncbi.nlm.nih.gov/pubmed/31821616 https://www.proquest.com/docview/2378592337 https://www.proquest.com/docview/2324921648 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VSiAuPMproVQD4sAl2904Tzih0qogBaFlK_WAFNmxI6F2k9IkB3rqj-DEz-OXMGMnKeUhIQ4brWxHdhLP-IvnyzcAz9JIa1-ExjMhhxkDEXgqSOee1KWaBTpKjN3Tzd5F-wfB28PwcA1eDt_COH2IccONLcP6azZwqZrtC9HQ1elq6vNnkuR_mavFgGhxIR2Vpk6BOQ7Yz6TBoCo087fHMy-vRb8BzMt41S44ezfh4zBUxzM5mnatmhZnv6g4_ue13IIbPRDFV27m3IY1U23AtawPtW_AVcsNLZo78O21MSc7ux-WKJYvcFGrrmkxW7xBlg1fMZ0G9UCq4ceMstJIy6UjG7Rf8HMnHSXJVfPWL7KOJnVfORZ68_3860-hdGxrtB1-WtkkSliXSEAVbUJBVJzVAmVLw7kLB3u7y519r0_p4BWC3Vlo4jJJdSTNXBlZiqSIS9bbiRQdSvpJwmepmulyLkVExYUkDBUZeg0sylQacQ_Wq7oyDwCTUHLQUkhDMEMXpWJoR0VJzGUynMDz4eHmRa93zmk3jnOn1OzndNdze9cn8HRseuJEPv7UaHOYIXlv503uizgJCSMLqn4yVpOFcthFVqbuuA2rMtJraTKB-25mjb2QR6WaeUSDtfPj793n2SKzfx7-e9NHcN3n7QHLLt6E9fa0M48JQ7VqC674wfstazI_AOhPGe8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIh4XHgXKQgGDOHDJdjfOE3FBfWgLTQ_LVuqliuzYllC7SdtNDu2JH8GJn8cvYcZOUspDQhwSRbYjO47H_jwz_gbgdRop5fNQezokM2PAA08G6dgTyshRoKJEW51uthdN9oMPB-HBErzrzsI4fohe4UaSYedrEnBSSK9fsobOz-ZDn85JXoPrFNGbmPM3p5fkUWnqOJjjgGaaNOh4hUb-ev_q1dXoN4h5FbHaJWf7Lhx2jXWeJkfDppbD4uIXHsf__Zp7cKfFouy9Gzz3YUmXK3Aza63tK3DDuocWiwfwbVPrk42tTzPGZ2_ZtJLNombZdIcRc_icPGqY6vxq6E8zUSqGK6bzN6jP2WkjnFeSyybtLyMqTay-dI7oi-9fvv5kTWd1xWyFn-c2jhKrDEOsymxMQSYpsAUTNTbnIexvb802Jl4b1cErOM1ooY5NkqpI6LHUwvCkiA1R7kQSbwYvgRAtlSNlxoJHmFwIhFGRxp1gYVKh-SNYLqtSPwaWhILsllxoRBqqMJLQHSYlMaWJcABvur-bFy3lOUXeOM4dWbOfY6_nttcH8KoveuJ4Pv5UaK0bInkr6ovc53ESIkzmmP2yz0YhJcuLKHXVUBkiZsSdaTKAVTe0-lpwUsWccYSNtQPk79Xn2TSzD0_-vegLuDWZZbv57s7ex6dw2ydtgXU2XoPl-qzRzxBS1fK5lZwfyQ8dNA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6VIiouCAqUhQID4sAldDfOL5xQ21ULpKqWrdRbZMe2hMQmSzd74MZDcOLxeBJm7CSlAiQOiSJ7IluZjP3ZM_4G4EWeaB2K2AQmZjdjJKJARfkkkNqqcaSTzLg93eIkOTqL3p3H5xvwpj8L4_khhg03tgw3XrOBL7XduyQNXVwsXoV8TPIaXGdnH8dzhdHpJeNu7imY04gHmjzqaYXG4d7w6tXJ6A-EeRWwuhlnehtudVAR33rd3oENU2_DVtE5w7fhhoverFZ34ceBMcv9w49zFPPXOGvUetViMTtGJvZecMAL6j7shRWBstZIE5oPB2i_4pe19EFDvpo3Z5GZLqn52seJr35--_6bsxvbBl2DnxYuzRE2FglKokv5h4rzTqBsqTv34Gx6ON8_CrqkC0EleMCJTWqzXCfSTJSRVmRVapkRJ1F0s3RJQlC5Gms7kSKh4koSykkMLdQqm0sj7sNm3dTmAWAWS3YrCmkICOjKKgZfVJSlXCbjEbzsv35ZdYzknBjjc-m5lMOSFFU6RY3g-SC69DQcfxPa7VVYdpa4KkORZjGhWEHVz4ZqsiF2jMjaNGuWYd5EWjhmI9jxqh9aoTGPaiYJddb9C_9uvixmhXt4-P-iT2Hr9GBafjg-ef8Iboa8lnehwLuw2V6szWMCPK164n7sX_Us-5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepCEST+3T%3A+Robust+MRI+parameter+determination+and+uncertainty+quantification+with+neural+networks%E2%80%94application+to+CEST+imaging+of+the+human+brain+at+3T&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Glang%2C+Felix&rft.au=Deshmane%2C+Anagha&rft.au=Prokudin%2C+Sergey&rft.au=Martin%2C+Florian&rft.date=2020-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=84&rft.issue=1&rft.spage=450&rft.epage=466&rft_id=info:doi/10.1002%2Fmrm.28117&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |