DeepCEST 3T: Robust MRI parameter determination and uncertainty quantification with neural networks—application to CEST imaging of the human brain at 3T

Purpose Calculation of sophisticated MR contrasts often requires complex mathematical modeling. Data evaluation is computationally expensive, vulnerable to artifacts, and often sensitive to fit algorithm parameters. In this work, we investigate whether neural networks can provide not only fast model...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 84; no. 1; pp. 450 - 466
Main Authors Glang, Felix, Deshmane, Anagha, Prokudin, Sergey, Martin, Florian, Herz, Kai, Lindig, Tobias, Bender, Benjamin, Scheffler, Klaus, Zaiss, Moritz
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Calculation of sophisticated MR contrasts often requires complex mathematical modeling. Data evaluation is computationally expensive, vulnerable to artifacts, and often sensitive to fit algorithm parameters. In this work, we investigate whether neural networks can provide not only fast model fitting results, but also a quality metric for the predicted values, so called uncertainty quantification, investigated here in the context of multi‐pool Lorentzian fitting of CEST MRI spectra at 3T. Methods A deep feed‐forward neural network including a probabilistic output layer allowing for uncertainty quantification was set up to take uncorrected CEST‐spectra as input and predict 3T Lorentzian parameters of a 4‐pool model (water, semisolid MT, amide CEST, NOE CEST), including the B0 inhomogeneity. Networks were trained on data from 3 subjects with and without data augmentation, and applied to untrained data from 1 additional subject and 1 brain tumor patient. Comparison to conventional Lorentzian fitting was performed on different perturbations of input data. Results The deepCEST 3T networks provided fast and accurate predictions of all Lorentzian parameters and were robust to input perturbations because of noise or B0 artifacts. The uncertainty quantification detected fluctuations in input data by increase of the uncertainty intervals. The method generalized to unseen brain tumor patient CEST data. Conclusions The deepCEST 3T neural network provides fast and robust estimation of CEST parameters, enabling online reconstruction of sophisticated CEST contrast images without the typical computational cost. Moreover, the uncertainty quantification indicates if the predictions are trustworthy, enabling confident interpretation of contrast changes.
AbstractList Calculation of sophisticated MR contrasts often requires complex mathematical modeling. Data evaluation is computationally expensive, vulnerable to artifacts, and often sensitive to fit algorithm parameters. In this work, we investigate whether neural networks can provide not only fast model fitting results, but also a quality metric for the predicted values, so called uncertainty quantification, investigated here in the context of multi-pool Lorentzian fitting of CEST MRI spectra at 3T.PURPOSECalculation of sophisticated MR contrasts often requires complex mathematical modeling. Data evaluation is computationally expensive, vulnerable to artifacts, and often sensitive to fit algorithm parameters. In this work, we investigate whether neural networks can provide not only fast model fitting results, but also a quality metric for the predicted values, so called uncertainty quantification, investigated here in the context of multi-pool Lorentzian fitting of CEST MRI spectra at 3T.A deep feed-forward neural network including a probabilistic output layer allowing for uncertainty quantification was set up to take uncorrected CEST-spectra as input and predict 3T Lorentzian parameters of a 4-pool model (water, semisolid MT, amide CEST, NOE CEST), including the B0 inhomogeneity. Networks were trained on data from 3 subjects with and without data augmentation, and applied to untrained data from 1 additional subject and 1 brain tumor patient. Comparison to conventional Lorentzian fitting was performed on different perturbations of input data.METHODSA deep feed-forward neural network including a probabilistic output layer allowing for uncertainty quantification was set up to take uncorrected CEST-spectra as input and predict 3T Lorentzian parameters of a 4-pool model (water, semisolid MT, amide CEST, NOE CEST), including the B0 inhomogeneity. Networks were trained on data from 3 subjects with and without data augmentation, and applied to untrained data from 1 additional subject and 1 brain tumor patient. Comparison to conventional Lorentzian fitting was performed on different perturbations of input data.The deepCEST 3T networks provided fast and accurate predictions of all Lorentzian parameters and were robust to input perturbations because of noise or B0 artifacts. The uncertainty quantification detected fluctuations in input data by increase of the uncertainty intervals. The method generalized to unseen brain tumor patient CEST data.RESULTSThe deepCEST 3T networks provided fast and accurate predictions of all Lorentzian parameters and were robust to input perturbations because of noise or B0 artifacts. The uncertainty quantification detected fluctuations in input data by increase of the uncertainty intervals. The method generalized to unseen brain tumor patient CEST data.The deepCEST 3T neural network provides fast and robust estimation of CEST parameters, enabling online reconstruction of sophisticated CEST contrast images without the typical computational cost. Moreover, the uncertainty quantification indicates if the predictions are trustworthy, enabling confident interpretation of contrast changes.CONCLUSIONSThe deepCEST 3T neural network provides fast and robust estimation of CEST parameters, enabling online reconstruction of sophisticated CEST contrast images without the typical computational cost. Moreover, the uncertainty quantification indicates if the predictions are trustworthy, enabling confident interpretation of contrast changes.
Calculation of sophisticated MR contrasts often requires complex mathematical modeling. Data evaluation is computationally expensive, vulnerable to artifacts, and often sensitive to fit algorithm parameters. In this work, we investigate whether neural networks can provide not only fast model fitting results, but also a quality metric for the predicted values, so called uncertainty quantification, investigated here in the context of multi-pool Lorentzian fitting of CEST MRI spectra at 3T. A deep feed-forward neural network including a probabilistic output layer allowing for uncertainty quantification was set up to take uncorrected CEST-spectra as input and predict 3T Lorentzian parameters of a 4-pool model (water, semisolid MT, amide CEST, NOE CEST), including the B inhomogeneity. Networks were trained on data from 3 subjects with and without data augmentation, and applied to untrained data from 1 additional subject and 1 brain tumor patient. Comparison to conventional Lorentzian fitting was performed on different perturbations of input data. The deepCEST 3T networks provided fast and accurate predictions of all Lorentzian parameters and were robust to input perturbations because of noise or B artifacts. The uncertainty quantification detected fluctuations in input data by increase of the uncertainty intervals. The method generalized to unseen brain tumor patient CEST data. The deepCEST 3T neural network provides fast and robust estimation of CEST parameters, enabling online reconstruction of sophisticated CEST contrast images without the typical computational cost. Moreover, the uncertainty quantification indicates if the predictions are trustworthy, enabling confident interpretation of contrast changes.
PurposeCalculation of sophisticated MR contrasts often requires complex mathematical modeling. Data evaluation is computationally expensive, vulnerable to artifacts, and often sensitive to fit algorithm parameters. In this work, we investigate whether neural networks can provide not only fast model fitting results, but also a quality metric for the predicted values, so called uncertainty quantification, investigated here in the context of multi‐pool Lorentzian fitting of CEST MRI spectra at 3T.MethodsA deep feed‐forward neural network including a probabilistic output layer allowing for uncertainty quantification was set up to take uncorrected CEST‐spectra as input and predict 3T Lorentzian parameters of a 4‐pool model (water, semisolid MT, amide CEST, NOE CEST), including the B0 inhomogeneity. Networks were trained on data from 3 subjects with and without data augmentation, and applied to untrained data from 1 additional subject and 1 brain tumor patient. Comparison to conventional Lorentzian fitting was performed on different perturbations of input data.ResultsThe deepCEST 3T networks provided fast and accurate predictions of all Lorentzian parameters and were robust to input perturbations because of noise or B0 artifacts. The uncertainty quantification detected fluctuations in input data by increase of the uncertainty intervals. The method generalized to unseen brain tumor patient CEST data.ConclusionsThe deepCEST 3T neural network provides fast and robust estimation of CEST parameters, enabling online reconstruction of sophisticated CEST contrast images without the typical computational cost. Moreover, the uncertainty quantification indicates if the predictions are trustworthy, enabling confident interpretation of contrast changes.
Purpose Calculation of sophisticated MR contrasts often requires complex mathematical modeling. Data evaluation is computationally expensive, vulnerable to artifacts, and often sensitive to fit algorithm parameters. In this work, we investigate whether neural networks can provide not only fast model fitting results, but also a quality metric for the predicted values, so called uncertainty quantification, investigated here in the context of multi‐pool Lorentzian fitting of CEST MRI spectra at 3T. Methods A deep feed‐forward neural network including a probabilistic output layer allowing for uncertainty quantification was set up to take uncorrected CEST‐spectra as input and predict 3T Lorentzian parameters of a 4‐pool model (water, semisolid MT, amide CEST, NOE CEST), including the B0 inhomogeneity. Networks were trained on data from 3 subjects with and without data augmentation, and applied to untrained data from 1 additional subject and 1 brain tumor patient. Comparison to conventional Lorentzian fitting was performed on different perturbations of input data. Results The deepCEST 3T networks provided fast and accurate predictions of all Lorentzian parameters and were robust to input perturbations because of noise or B0 artifacts. The uncertainty quantification detected fluctuations in input data by increase of the uncertainty intervals. The method generalized to unseen brain tumor patient CEST data. Conclusions The deepCEST 3T neural network provides fast and robust estimation of CEST parameters, enabling online reconstruction of sophisticated CEST contrast images without the typical computational cost. Moreover, the uncertainty quantification indicates if the predictions are trustworthy, enabling confident interpretation of contrast changes.
Author Deshmane, Anagha
Bender, Benjamin
Scheffler, Klaus
Prokudin, Sergey
Martin, Florian
Herz, Kai
Lindig, Tobias
Glang, Felix
Zaiss, Moritz
Author_xml – sequence: 1
  givenname: Felix
  orcidid: 0000-0003-3506-4947
  surname: Glang
  fullname: Glang, Felix
  organization: Max Planck Institute for Biological Cybernetics
– sequence: 2
  givenname: Anagha
  orcidid: 0000-0003-0697-0895
  surname: Deshmane
  fullname: Deshmane, Anagha
  organization: Max Planck Institute for Biological Cybernetics
– sequence: 3
  givenname: Sergey
  orcidid: 0000-0001-6501-8234
  surname: Prokudin
  fullname: Prokudin, Sergey
  organization: Max Planck Institute for Intelligent Systems
– sequence: 4
  givenname: Florian
  surname: Martin
  fullname: Martin, Florian
  organization: Max Planck Institute for Biological Cybernetics
– sequence: 5
  givenname: Kai
  orcidid: 0000-0002-7286-1454
  surname: Herz
  fullname: Herz, Kai
  organization: Max Planck Institute for Biological Cybernetics
– sequence: 6
  givenname: Tobias
  surname: Lindig
  fullname: Lindig, Tobias
  organization: Eberhard Karls University Tübingen
– sequence: 7
  givenname: Benjamin
  orcidid: 0000-0002-3205-4631
  surname: Bender
  fullname: Bender, Benjamin
  organization: Eberhard Karls University Tübingen
– sequence: 8
  givenname: Klaus
  orcidid: 0000-0001-6316-8773
  surname: Scheffler
  fullname: Scheffler, Klaus
  organization: Eberhard Karls University Tübingen
– sequence: 9
  givenname: Moritz
  orcidid: 0000-0001-9780-3616
  surname: Zaiss
  fullname: Zaiss, Moritz
  email: moritz.zaiss@tuebingen.mpg.de
  organization: University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31821616$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1DAQxy1URLeFAy-ALHGBQ1o7zie3ailQqSukZTlbk2TcdUns1Ha02hsPwYnH40lw9-NSwcEzkv2bv2f-c0ZOjDVIyGvOLjhj6eXghou04rx8RmY8T9MkzevshMxYmbFE8Do7JWfe3zPG6rrMXpBTwauUF7yYkd8fEcf59bcVFasPdGmbyQe6WN7QERwMGNDR7jEO2kDQ1lAwHZ1Miy6ANmFLHyYwQSvd7p83OqypwclBH1PYWPfD__n5C8axPyLB0t2HeoA7be6oVTSska6nAQxtXJSlEGI7L8lzBb3HV4d8Tr5_ul7NvyS3Xz_fzK9uk1ZUVZnkWKqq7gpA3iAoUbWlEnlZFU0MKh4osqxuWKc4iCJet8AKUSDPWKtqQHFO3u11R2cfJvRBDtq32Pdg0E5epiLN6mhXVkX07RP03k7OxO4iVVZ5nQpRRurNgZqaATs5ujiq28qj6xG43AOts947VLLVYWdOiOP3kjP5uFcZ9yp3e40V759UHEX_xR7UN7rH7f9BuVgu9hV_AVr6s6U
CitedBy_id crossref_primary_10_1007_s10334_023_01127_6
crossref_primary_10_1002_mrm_29192
crossref_primary_10_1002_mrm_30460
crossref_primary_10_1002_nbm_4699
crossref_primary_10_1088_1361_6560_ad0284
crossref_primary_10_1002_nbm_4697
crossref_primary_10_1111_cgf_14333
crossref_primary_10_1002_nbm_5221
crossref_primary_10_1002_mrm_29471
crossref_primary_10_3389_fnins_2023_1281809
crossref_primary_10_1002_mrm_28825
crossref_primary_10_1016_j_neuroimage_2021_117986
crossref_primary_10_1088_1361_6560_ac0e78
crossref_primary_10_1016_j_nicl_2022_103121
crossref_primary_10_1088_1361_6560_ac9e3e
crossref_primary_10_1016_j_cbpa_2021_06_003
crossref_primary_10_1109_MSP_2023_3236483
crossref_primary_10_1038_s41598_024_72141_4
crossref_primary_10_1002_mrm_29718
crossref_primary_10_1002_nbm_5294
crossref_primary_10_1088_1361_6560_ad027e
crossref_primary_10_1002_mrm_30011
crossref_primary_10_1109_TBME_2024_3407092
crossref_primary_10_1002_mrm_28376
crossref_primary_10_1016_j_cmpb_2021_106021
crossref_primary_10_1002_mrm_29429
crossref_primary_10_1088_1361_6560_ada716
crossref_primary_10_1109_JBHI_2023_3325241
crossref_primary_10_3390_tomography10070085
crossref_primary_10_3390_pharmaceutics14020451
crossref_primary_10_1002_hbm_26421
crossref_primary_10_1002_mp_15483
crossref_primary_10_1002_nbm_4710
crossref_primary_10_1002_mrm_29574
crossref_primary_10_1002_mrm_29970
crossref_primary_10_1007_s10916_023_01931_6
crossref_primary_10_1002_nbm_4671
crossref_primary_10_1002_mrm_29214
crossref_primary_10_1002_mrm_28325
crossref_primary_10_1016_j_isci_2024_111209
crossref_primary_10_1038_s41551_021_00809_7
crossref_primary_10_1002_mrm_29520
crossref_primary_10_1002_nbm_4940
crossref_primary_10_1002_mrm_29044
crossref_primary_10_1002_nbm_4662
crossref_primary_10_1002_nbm_5277
crossref_primary_10_1002_mrm_29889
crossref_primary_10_1002_nbm_4669
crossref_primary_10_1002_nbm_4626
crossref_primary_10_1002_nbm_4744
crossref_primary_10_1161_STROKEAHA_122_040830
Cites_doi 10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L
10.1038/s41598-017-00167-y
10.1002/nbm.4133
10.1002/nbm.3833
10.1002/mrm.24560
10.1016/j.jmr.2018.11.002
10.1016/j.neunet.2014.09.003
10.1007/978-3-030-00928-1_74
10.1002/nbm.3879
10.1002/mrm.26100
10.1016/j.neuroimage.2018.06.026
10.1002/mrm.27751
10.1109/CVPR.2018.00355
10.1007/978-3-030-01240-3_33
10.1002/mrm.24474
10.1038/nm907
10.1002/mrm.24641
10.1002/mrm.26749
10.1007/978-3-030-00937-3_1
10.1002/mrm.27569
10.1002/mrm.25581
10.1002/mrm.25795
10.1016/j.neuroimage.2015.02.040
10.1002/1522-2594(200011)44:5<799::AID-MRM18>3.0.CO;2-S
10.1038/nm.2615
10.1002/mrm.27198
10.1016/j.jmr.2019.01.006
10.1038/nature14539
10.1002/mrm.27690
10.1002/nbm.3283
10.1002/mrm.27221
10.1063/1.1143696
10.1002/mrm.1910330404
ContentType Journal Article
Copyright 2019 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine
2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine
– notice: 2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.28117
DatabaseName Wiley Online Library Journals (Open Access)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Biochemistry Abstracts 1

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 466
ExternalDocumentID 31821616
10_1002_mrm_28117
MRM28117
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: H2020 Health
  funderid: 667510
– fundername: Max‐Planck‐Gesellschaft
– fundername: Deutsche Forschungsgemeinschaft
  funderid: ZA 814/2‐1
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3887-5e7f89d6ae1beaf38c7f35786b578f578a6449b0df1a3686bca0636e140cf9ae3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 16:43:34 EDT 2025
Fri Jul 25 12:07:47 EDT 2025
Mon Jul 21 05:59:27 EDT 2025
Thu Apr 24 23:04:00 EDT 2025
Tue Jul 01 01:21:10 EDT 2025
Wed Jan 22 16:35:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords deepCEST
uncertainty quantification
probabilistic neural network
APT
NOE
chemical exchange saturation transfer (CEST)
Language English
License Attribution
2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3887-5e7f89d6ae1beaf38c7f35786b578f578a6449b0df1a3686bca0636e140cf9ae3
Notes Funding information
Max Planck Society; German Research Foundation DFG, Grant/Award Numbers: ZA 814/2‐1; European Union’s Horizon 2020 Research and Innovation Program, Grant/Award Numbers: 667510
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6316-8773
0000-0002-7286-1454
0000-0001-9780-3616
0000-0001-6501-8234
0000-0003-0697-0895
0000-0002-3205-4631
0000-0003-3506-4947
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28117
PMID 31821616
PQID 2378592337
PQPubID 1016391
PageCount 17
ParticipantIDs proquest_miscellaneous_2324921648
proquest_journals_2378592337
pubmed_primary_31821616
crossref_citationtrail_10_1002_mrm_28117
crossref_primary_10_1002_mrm_28117
wiley_primary_10_1002_mrm_28117_MRM28117
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2015; 521
2019; 32
2000; 44
1995; 33
2016; 75
2018; 80
2019; 300
2013; 70
2012; 18
2017; 30
2015; 28
2019; 82
2019; 81
1997; 10
2015; 61
2017; 77
2018; 179
2015; 112
2003; 9
2018
2017
2016
2018; 11213
2014
2014; 71
2018; 31
2019; 298
1992; 63
2018; 79
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Kingma DP (e_1_2_7_34_1) 2014
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 71
  start-page: 164
  year: 2014
  end-page: 172
  article-title: Method for high‐resolution imaging of creatine in vivo using chemical exchange saturation transfer
  publication-title: Magn Reson Med
– volume: 63
  start-page: 4450
  year: 1992
  end-page: 4456
  article-title: Fast curve fitting using neural networks
  publication-title: Rev Sci Instrum
– volume: 70
  start-page: 556
  year: 2013
  end-page: 567
  article-title: Quantitative Bayesian model‐based analysis of amide proton transfer MRI
  publication-title: Magn Reson Med
– start-page: 265
  year: 2016
  end-page: 283
– volume: 80
  start-page: 2449
  year: 2018
  end-page: 2463
  article-title: Rapid and quantitative chemical exchange saturation transfer (CEST) imaging with magnetic resonance fingerprinting (MRF)
  publication-title: Magn Reson Med
– volume: 11213
  start-page: 542
  year: 2018
  end-page: 559
– volume: 75
  start-page: 1630
  year: 2016
  end-page: 1639
  article-title: Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semisolid magnetization transfer reference (EMR) signals: II. Comparison of three EMR models and application to human brain glioma at 3 Tesla
  publication-title: Magn Reson Med
– volume: 79
  start-page: 890
  year: 2018
  end-page: 899
  article-title: Oxygen extraction fraction mapping at 3 Tesla using an artificial neural network: a feasibility study
  publication-title: Magn Reson Med
– volume: 75
  start-page: 137
  year: 2016
  end-page: 149
  article-title: Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semi‐solid magnetization transfer reference (EMR) signals: application to a rat glioma model at 4.7 Tesla
  publication-title: Magn Reson Med
– start-page: 3
  year: 2018
  end-page: 11
– volume: 300
  start-page: 120
  year: 2019
  end-page: 134
  article-title: Assessment of a clinically feasible Bayesian fitting algorithm using a simplified description of chemical exchange saturation transfer (CEST) imaging
  publication-title: J Magn Reson
– volume: 77
  start-page: 196
  year: 2017
  end-page: 208
  article-title: Downfield‐NOE‐suppressed amide‐CEST‐MRI at 7 Tesla provides a unique contrast in human glioblastoma
  publication-title: Magn Reson Med
– volume: 9
  start-page: 1085
  year: 2003
  end-page: 1090
  article-title: Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI
  publication-title: Nat Med
– volume: 179
  start-page: 144
  year: 2018
  end-page: 155
  article-title: Chemical exchange saturation transfer MRI contrast in the human brain at 9.4 T
  publication-title: NeuroImage
– volume: 112
  start-page: 180
  year: 2015
  end-page: 188
  article-title: Relaxation‐compensated CEST‐MRI of the human brain at 7T: unbiased insight into NOE and amide signal changes in human glioblastoma
  publication-title: NeuroImage
– volume: 82
  start-page: 622
  year: 2019
  end-page: 632
  article-title: Relaxation‐compensated APT and rNOE CEST‐MRI of human brain tumors at 3 T
  publication-title: Magn Reson Med
– volume: 81
  start-page: 3901
  year: 2019
  end-page: 3914
  article-title: DeepCEST: 9.4 T chemical exchange saturation transfer MRI contrast predicted from 3 T data – a proof of concept study
  publication-title: Magn Reson Med
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw
– start-page: 1050
  year: 2016
  end-page: 1059
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– start-page: 655
  year: 2018
  end-page: 663
– volume: 44
  start-page: 799
  year: 2000
  end-page: 802
  article-title: Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST)
  publication-title: Magn Reson Med
– volume: 80
  start-page: 885
  year: 2018
  end-page: 894
  article-title: MR fingerprinting deep reconstruction network (DRONE)
  publication-title: Magn Reson Med
– start-page: 1183
  year: 2017
  end-page: 1192
– volume: 7
  start-page: 84
  year: 2017
  article-title: Quantitative chemical exchange saturation transfer (CEST) MRI of glioma using image downsampling expedited adaptive least‐squares (IDEAL) fitting
  publication-title: Sci Rep
– start-page: 5580
  year: 2017
  end-page: 5590
– start-page: 14126980
  year: 2014
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv
– volume: 33
  start-page: 475
  year: 1995
  end-page: 482
  article-title: A model for magnetization transfer in tissues
  publication-title: Magn Reson Med
– volume: 31
  year: 2018
  article-title: Snapshot‐CEST: optimizing spiral‐centric‐reordered gradient echo acquisition for fast and robust 3D CEST MRI at 9.4 T
  publication-title: NMR Biomed
– volume: 10
  start-page: 171
  year: 1997
  end-page: 178
  article-title: Software tools for analysis and visualization of fMRI data
  publication-title: NMR Biomed
– volume: 70
  start-page: 1070
  year: 2013
  end-page: 1081
  article-title: Quantitative characterization of nuclear overhauser enhancement and amide proton transfer effects in the human brain at 7 Tesla
  publication-title: Magn Reson Med
– volume: 298
  start-page: 16
  year: 2019
  end-page: 22
  article-title: Possible artifacts in dynamic CEST MRI due to motion and field alterations
  publication-title: J Magn Reson
– volume: 81
  start-page: 2412
  year: 2019
  end-page: 2423
  article-title: 3D gradient echo snapshot CEST MRI with low power saturation for human studies at 3T
  publication-title: Magn Reson Med
– volume: 28
  start-page: 529
  year: 2015
  end-page: 537
  article-title: Correction of 1‐inhomogeneities for relaxation‐compensated CEST imaging at 7 T
  publication-title: NMR Biomed
– volume: 18
  start-page: 302
  year: 2012
  end-page: 306
  article-title: Magnetic resonance imaging of glutamate
  publication-title: Nat Med
– start-page: 3369
  year: 2018
  end-page: 3378
– volume: 30
  year: 2017
  article-title: Diffusion parameter mapping with the combined intravoxel incoherent motion and kurtosis model using artificial neural networks at 3 T
  publication-title: NMR Biomed
– volume: 32
  year: 2019
  article-title: Adaptive denoising for chemical exchange saturation transfer MR imaging
  publication-title: NMR Biomed
– ident: e_1_2_7_31_1
  doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L
– ident: e_1_2_7_38_1
  doi: 10.1038/s41598-017-00167-y
– ident: e_1_2_7_27_1
  doi: 10.1002/nbm.4133
– ident: e_1_2_7_18_1
  doi: 10.1002/nbm.3833
– ident: e_1_2_7_25_1
– ident: e_1_2_7_22_1
– ident: e_1_2_7_4_1
  doi: 10.1002/mrm.24560
– ident: e_1_2_7_13_1
  doi: 10.1016/j.jmr.2018.11.002
– ident: e_1_2_7_33_1
– ident: e_1_2_7_16_1
  doi: 10.1016/j.neunet.2014.09.003
– ident: e_1_2_7_24_1
  doi: 10.1007/978-3-030-00928-1_74
– ident: e_1_2_7_29_1
  doi: 10.1002/nbm.3879
– ident: e_1_2_7_35_1
  doi: 10.1002/mrm.26100
– ident: e_1_2_7_37_1
  doi: 10.1016/j.neuroimage.2018.06.026
– ident: e_1_2_7_28_1
  doi: 10.1002/mrm.27751
– ident: e_1_2_7_23_1
  doi: 10.1109/CVPR.2018.00355
– ident: e_1_2_7_20_1
  doi: 10.1007/978-3-030-01240-3_33
– ident: e_1_2_7_5_1
  doi: 10.1002/mrm.24474
– ident: e_1_2_7_9_1
  doi: 10.1038/nm907
– ident: e_1_2_7_11_1
  doi: 10.1002/mrm.24641
– ident: e_1_2_7_21_1
– ident: e_1_2_7_17_1
  doi: 10.1002/mrm.26749
– ident: e_1_2_7_26_1
  doi: 10.1007/978-3-030-00937-3_1
– ident: e_1_2_7_30_1
  doi: 10.1002/mrm.27569
– ident: e_1_2_7_32_1
– ident: e_1_2_7_7_1
  doi: 10.1002/mrm.25581
– ident: e_1_2_7_8_1
  doi: 10.1002/mrm.25795
– ident: e_1_2_7_2_1
  doi: 10.1016/j.neuroimage.2015.02.040
– ident: e_1_2_7_10_1
  doi: 10.1002/1522-2594(200011)44:5<799::AID-MRM18>3.0.CO;2-S
– ident: e_1_2_7_12_1
  doi: 10.1038/nm.2615
– ident: e_1_2_7_40_1
  doi: 10.1002/mrm.27198
– ident: e_1_2_7_6_1
  doi: 10.1016/j.jmr.2019.01.006
– ident: e_1_2_7_15_1
  doi: 10.1038/nature14539
– ident: e_1_2_7_19_1
  doi: 10.1002/mrm.27690
– ident: e_1_2_7_3_1
  doi: 10.1002/nbm.3283
– ident: e_1_2_7_39_1
  doi: 10.1002/mrm.27221
– ident: e_1_2_7_14_1
  doi: 10.1063/1.1143696
– start-page: 14126980
  year: 2014
  ident: e_1_2_7_34_1
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv
– ident: e_1_2_7_36_1
  doi: 10.1002/mrm.1910330404
SSID ssj0009974
Score 2.5526867
Snippet Purpose Calculation of sophisticated MR contrasts often requires complex mathematical modeling. Data evaluation is computationally expensive, vulnerable to...
Calculation of sophisticated MR contrasts often requires complex mathematical modeling. Data evaluation is computationally expensive, vulnerable to artifacts,...
PurposeCalculation of sophisticated MR contrasts often requires complex mathematical modeling. Data evaluation is computationally expensive, vulnerable to...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 450
SubjectTerms Algorithms
APT
Brain
Brain - diagnostic imaging
Brain cancer
Brain Neoplasms - diagnostic imaging
Brain tumors
chemical exchange saturation transfer (CEST)
Computational neuroscience
deepCEST
Humans
Image contrast
Image Interpretation, Computer-Assisted
Image reconstruction
Inhomogeneity
Magnetic Resonance Imaging
Mathematical models
Neural networks
Neural Networks, Computer
Neuroimaging
NOE
Parameter estimation
Parameter robustness
Parameter sensitivity
Parameter uncertainty
probabilistic neural network
Robustness (mathematics)
Semisolids
Tumors
Uncertainty
uncertainty quantification
Title DeepCEST 3T: Robust MRI parameter determination and uncertainty quantification with neural networks—application to CEST imaging of the human brain at 3T
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28117
https://www.ncbi.nlm.nih.gov/pubmed/31821616
https://www.proquest.com/docview/2378592337
https://www.proquest.com/docview/2324921648
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VSiAuPMproVQD4sAl2904Tzih0qogBaFlK_WAFNmxI6F2k9IkB3rqj-DEz-OXMGMnKeUhIQ4brWxHdhLP-IvnyzcAz9JIa1-ExjMhhxkDEXgqSOee1KWaBTpKjN3Tzd5F-wfB28PwcA1eDt_COH2IccONLcP6azZwqZrtC9HQ1elq6vNnkuR_mavFgGhxIR2Vpk6BOQ7Yz6TBoCo087fHMy-vRb8BzMt41S44ezfh4zBUxzM5mnatmhZnv6g4_ue13IIbPRDFV27m3IY1U23AtawPtW_AVcsNLZo78O21MSc7ux-WKJYvcFGrrmkxW7xBlg1fMZ0G9UCq4ceMstJIy6UjG7Rf8HMnHSXJVfPWL7KOJnVfORZ68_3860-hdGxrtB1-WtkkSliXSEAVbUJBVJzVAmVLw7kLB3u7y519r0_p4BWC3Vlo4jJJdSTNXBlZiqSIS9bbiRQdSvpJwmepmulyLkVExYUkDBUZeg0sylQacQ_Wq7oyDwCTUHLQUkhDMEMXpWJoR0VJzGUynMDz4eHmRa93zmk3jnOn1OzndNdze9cn8HRseuJEPv7UaHOYIXlv503uizgJCSMLqn4yVpOFcthFVqbuuA2rMtJraTKB-25mjb2QR6WaeUSDtfPj793n2SKzfx7-e9NHcN3n7QHLLt6E9fa0M48JQ7VqC674wfstazI_AOhPGe8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIh4XHgXKQgGDOHDJdjfOE3FBfWgLTQ_LVuqliuzYllC7SdtNDu2JH8GJn8cvYcZOUspDQhwSRbYjO47H_jwz_gbgdRop5fNQezokM2PAA08G6dgTyshRoKJEW51uthdN9oMPB-HBErzrzsI4fohe4UaSYedrEnBSSK9fsobOz-ZDn85JXoPrFNGbmPM3p5fkUWnqOJjjgGaaNOh4hUb-ev_q1dXoN4h5FbHaJWf7Lhx2jXWeJkfDppbD4uIXHsf__Zp7cKfFouy9Gzz3YUmXK3Aza63tK3DDuocWiwfwbVPrk42tTzPGZ2_ZtJLNombZdIcRc_icPGqY6vxq6E8zUSqGK6bzN6jP2WkjnFeSyybtLyMqTay-dI7oi-9fvv5kTWd1xWyFn-c2jhKrDEOsymxMQSYpsAUTNTbnIexvb802Jl4b1cErOM1ooY5NkqpI6LHUwvCkiA1R7kQSbwYvgRAtlSNlxoJHmFwIhFGRxp1gYVKh-SNYLqtSPwaWhILsllxoRBqqMJLQHSYlMaWJcABvur-bFy3lOUXeOM4dWbOfY6_nttcH8KoveuJ4Pv5UaK0bInkr6ovc53ESIkzmmP2yz0YhJcuLKHXVUBkiZsSdaTKAVTe0-lpwUsWccYSNtQPk79Xn2TSzD0_-vegLuDWZZbv57s7ex6dw2ydtgXU2XoPl-qzRzxBS1fK5lZwfyQ8dNA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6VIiouCAqUhQID4sAldDfOL5xQ21ULpKqWrdRbZMe2hMQmSzd74MZDcOLxeBJm7CSlAiQOiSJ7IluZjP3ZM_4G4EWeaB2K2AQmZjdjJKJARfkkkNqqcaSTzLg93eIkOTqL3p3H5xvwpj8L4_khhg03tgw3XrOBL7XduyQNXVwsXoV8TPIaXGdnH8dzhdHpJeNu7imY04gHmjzqaYXG4d7w6tXJ6A-EeRWwuhlnehtudVAR33rd3oENU2_DVtE5w7fhhoverFZ34ceBMcv9w49zFPPXOGvUetViMTtGJvZecMAL6j7shRWBstZIE5oPB2i_4pe19EFDvpo3Z5GZLqn52seJr35--_6bsxvbBl2DnxYuzRE2FglKokv5h4rzTqBsqTv34Gx6ON8_CrqkC0EleMCJTWqzXCfSTJSRVmRVapkRJ1F0s3RJQlC5Gms7kSKh4koSykkMLdQqm0sj7sNm3dTmAWAWS3YrCmkICOjKKgZfVJSlXCbjEbzsv35ZdYzknBjjc-m5lMOSFFU6RY3g-SC69DQcfxPa7VVYdpa4KkORZjGhWEHVz4ZqsiF2jMjaNGuWYd5EWjhmI9jxqh9aoTGPaiYJddb9C_9uvixmhXt4-P-iT2Hr9GBafjg-ef8Iboa8lnehwLuw2V6szWMCPK164n7sX_Us-5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepCEST+3T%3A+Robust+MRI+parameter+determination+and+uncertainty+quantification+with+neural+networks%E2%80%94application+to+CEST+imaging+of+the+human+brain+at+3T&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Glang%2C+Felix&rft.au=Deshmane%2C+Anagha&rft.au=Prokudin%2C+Sergey&rft.au=Martin%2C+Florian&rft.date=2020-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=84&rft.issue=1&rft.spage=450&rft.epage=466&rft_id=info:doi/10.1002%2Fmrm.28117&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon