From molecules to behavior: Implications for perineuronal net remodeling in learning and memory

Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity. They consist of a heterogeneous mix of ECM components that form lattice‐like structures enwrapping the cell body and proximal dendrites of particular neu...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurochemistry Vol. 168; no. 9; pp. 1854 - 1876
Main Authors Sanchez, Brenda, Kraszewski, Piotr, Lee, Sabrina, Cope, Elise C.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity. They consist of a heterogeneous mix of ECM components that form lattice‐like structures enwrapping the cell body and proximal dendrites of particular neurons. During development, accumulating research has shown that the closure of various critical periods of plasticity is strongly linked to experience‐driven PNN formation and maturation. PNNs provide an interface for synaptic contacts within the holes of the structure, generally promoting synaptic stabilization and restricting the formation of new synaptic connections in the adult brain. In this way, they impact both synaptic structure and function, ultimately influencing higher cognitive processes. PNNs are highly plastic structures, changing their composition and distribution throughout life and in response to various experiences and memory disorders, thus serving as a substrate for experience‐ and disease‐dependent cognitive function. In this review, we delve into the proposed mechanisms by which PNNs shape plasticity and memory function, highlighting the potential impact of their structural components, overall architecture, and dynamic remodeling on functional outcomes in health and disease. Perineuronal nets (PNNs) are condensed extracellular matrix structures consisting of multiple components joined together in a lattice‐like fashion around particular neurons. In general, PNNs are thought to restrict plasticity (e.g., closure of critical periods, stabilization of synapses, and refinement of neural activity), subsequently impacting learning and memory processes. PNNs are highly dynamic and continuously fluctuate in composition and distribution throughout life and in response to various contexts, rendering them as a substrate for experience‐ and disease‐dependent cognitive function.
AbstractList Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity. They consist of a heterogeneous mix of ECM components that form lattice-like structures enwrapping the cell body and proximal dendrites of particular neurons. During development, accumulating research has shown that the closure of various critical periods of plasticity is strongly linked to experience-driven PNN formation and maturation. PNNs provide an interface for synaptic contacts within the holes of the structure, generally promoting synaptic stabilization and restricting the formation of new synaptic connections in the adult brain. In this way, they impact both synaptic structure and function, ultimately influencing higher cognitive processes. PNNs are highly plastic structures, changing their composition and distribution throughout life and in response to various experiences and memory disorders, thus serving as a substrate for experience- and disease-dependent cognitive function. In this review, we delve into the proposed mechanisms by which PNNs shape plasticity and memory function, highlighting the potential impact of their structural components, overall architecture, and dynamic remodeling on functional outcomes in health and disease.Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity. They consist of a heterogeneous mix of ECM components that form lattice-like structures enwrapping the cell body and proximal dendrites of particular neurons. During development, accumulating research has shown that the closure of various critical periods of plasticity is strongly linked to experience-driven PNN formation and maturation. PNNs provide an interface for synaptic contacts within the holes of the structure, generally promoting synaptic stabilization and restricting the formation of new synaptic connections in the adult brain. In this way, they impact both synaptic structure and function, ultimately influencing higher cognitive processes. PNNs are highly plastic structures, changing their composition and distribution throughout life and in response to various experiences and memory disorders, thus serving as a substrate for experience- and disease-dependent cognitive function. In this review, we delve into the proposed mechanisms by which PNNs shape plasticity and memory function, highlighting the potential impact of their structural components, overall architecture, and dynamic remodeling on functional outcomes in health and disease.
Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity. They consist of a heterogeneous mix of ECM components that form lattice-like structures enwrapping the cell body and proximal dendrites of particular neurons. During development, accumulating research has shown that the closure of various critical periods of plasticity is strongly linked to experience-driven PNN formation and maturation. PNNs provide an interface for synaptic contacts within the holes of the structure, generally promoting synaptic stabilization and restricting the formation of new synaptic connections in the adult brain. In this way, they impact both synaptic structure and function, ultimately influencing higher cognitive processes. PNNs are highly plastic structures, changing their composition and distribution throughout life and in response to various experiences and memory disorders, thus serving as a substrate for experience- and disease-dependent cognitive function. In this review, we delve into the proposed mechanisms by which PNNs shape plasticity and memory function, highlighting the potential impact of their structural components, overall architecture, and dynamic remodeling on functional outcomes in health and disease.
Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity. They consist of a heterogeneous mix of ECM components that form lattice‐like structures enwrapping the cell body and proximal dendrites of particular neurons. During development, accumulating research has shown that the closure of various critical periods of plasticity is strongly linked to experience‐driven PNN formation and maturation. PNNs provide an interface for synaptic contacts within the holes of the structure, generally promoting synaptic stabilization and restricting the formation of new synaptic connections in the adult brain. In this way, they impact both synaptic structure and function, ultimately influencing higher cognitive processes. PNNs are highly plastic structures, changing their composition and distribution throughout life and in response to various experiences and memory disorders, thus serving as a substrate for experience‐ and disease‐dependent cognitive function. In this review, we delve into the proposed mechanisms by which PNNs shape plasticity and memory function, highlighting the potential impact of their structural components, overall architecture, and dynamic remodeling on functional outcomes in health and disease. Perineuronal nets (PNNs) are condensed extracellular matrix structures consisting of multiple components joined together in a lattice‐like fashion around particular neurons. In general, PNNs are thought to restrict plasticity (e.g., closure of critical periods, stabilization of synapses, and refinement of neural activity), subsequently impacting learning and memory processes. PNNs are highly dynamic and continuously fluctuate in composition and distribution throughout life and in response to various contexts, rendering them as a substrate for experience‐ and disease‐dependent cognitive function.
Abstract Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity. They consist of a heterogeneous mix of ECM components that form lattice‐like structures enwrapping the cell body and proximal dendrites of particular neurons. During development, accumulating research has shown that the closure of various critical periods of plasticity is strongly linked to experience‐driven PNN formation and maturation. PNNs provide an interface for synaptic contacts within the holes of the structure, generally promoting synaptic stabilization and restricting the formation of new synaptic connections in the adult brain. In this way, they impact both synaptic structure and function, ultimately influencing higher cognitive processes. PNNs are highly plastic structures, changing their composition and distribution throughout life and in response to various experiences and memory disorders, thus serving as a substrate for experience‐ and disease‐dependent cognitive function. In this review, we delve into the proposed mechanisms by which PNNs shape plasticity and memory function, highlighting the potential impact of their structural components, overall architecture, and dynamic remodeling on functional outcomes in health and disease.
Author Sanchez, Brenda
Lee, Sabrina
Cope, Elise C.
Kraszewski, Piotr
Author_xml – sequence: 1
  givenname: Brenda
  surname: Sanchez
  fullname: Sanchez, Brenda
  organization: University of Virginia School of Medicine
– sequence: 2
  givenname: Piotr
  surname: Kraszewski
  fullname: Kraszewski, Piotr
  organization: University of Virginia School of Medicine
– sequence: 3
  givenname: Sabrina
  surname: Lee
  fullname: Lee, Sabrina
  organization: University of Virginia School of Medicine
– sequence: 4
  givenname: Elise C.
  orcidid: 0000-0001-6239-690X
  surname: Cope
  fullname: Cope, Elise C.
  email: elise.cope@virginia.edu
  organization: University of Virginia School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38158878$$D View this record in MEDLINE/PubMed
BookMark eNp10M1uGyEUBWBUJarttIu-QIXUTbKYBBiGYbqLrDg_ipJNukbA3GmxGHDB08pvH1wnXUQKG5D4dHTvWaCjEAMg9IWSc1rOxTrYcypILT6gOeUtrThtuiM0J4SxqiaczdAi5zUhVHBBP6JZLWkjZSvnSK1SHPEYPdjJQ8bbiA380n9cTN_x7bjxzuqtiyHjISa8geQCTCkG7XGALU4wxh68Cz-xC9iDTmH_1qHHY_lKu0_oeNA-w-eX-wT9WF09LW-q-8fr2-XlfWVrKUU1kLaTpB8M9GCIEZxD05fpSddxqwkIy2gtrRgGaowukJje1G1DmegFMFmfoNND7ibF3xPkrRpdtuC9DhCnrFhHOiLbhrFCv72h6zilslFWNaWMN5wJUdTZQdkUc04wqE1yo047RYnat65K6-pf68V-fUmczAj9f_lacwEXB_DXedi9n6TuHpaHyGduSo3u
CitedBy_id crossref_primary_10_3390_biology13030200
crossref_primary_10_1016_j_jchemneu_2024_102418
Cites_doi 10.1074/jbc.m207105200
10.3389/fncel.2021.814287
10.1002/cne.24522
10.1038/s41467‐020‐20241‐w
10.1101/2023.01.24.525313
10.1093/cercor/bhh195
10.1038/nn.3023
10.1016/j.ibror.2018.01.002
10.1073/pnas.1713530115
10.1177/15357597211018688
10.1186/s12868‐021‐00643‐2
10.1016/j.neuropharm.2017.07.009
10.1038/s41583-019-0196-3
10.1523/jneurosci.0291‐20.2020
10.1093/brain/awq145
10.1016/j.bbagen.2020.129804
10.1016/j.celrep.2021.109313
10.1016/j.celrep.2019.05.098
10.1016/j.expneurol.2020.113533
10.1016/j.neuron.2010.05.030
10.1155/2015/367579
10.1101/lm.030197.112
10.1016/j.neuropharm.2020.108425
10.1038/s41380-021-01208-9
10.1523/jneurosci.2980‐06.2006
10.1155/2016/7538208
10.1074/jbc.m111.310029
10.1111/acer.12847
10.1002/cne.23009
10.3390/cells10082055
10.1016/j.neurobiolaging.2008.07.023
10.1523/jneurosci.2387‐19.2020
10.1038/npp.2010.90
10.1016/s0166‐2236(98)01298‐3
10.1155/2016/1305801
10.1016/j.ibror.2018.11.006
10.1038/s41598-020-73173-2
10.1126/scitranslmed.aai8753
10.1073/pnas.1902680116
10.1074/jbc.m113.457903
10.1016/j.neuron.2017.03.022
10.1523/jneurosci.2140‐20.2020
10.1523/jneurosci.5390‐13.2014
10.1016/j.isci.2022.103895
10.1126/science.abf5273
10.1002/hipo.22488
10.1016/j.neuroscience.2020.06.040
10.1016/j.neuroscience.2010.05.022
10.1042/bj3290415
10.1038/s41467-018-06501-w
10.1074/jbc.ra119.010830
10.1126/science.1100135
10.1523/ENEURO.0034‐19.2020
10.1098/rspb.2018.0849
10.1126/sciadv.abg1601
10.1002/hipo.23296
10.1038/nn.2377
10.1016/j.cell.2020.05.050
10.3389/fncel.2019.00197
10.1098/rstb.2014.0046
10.18632/aging.101256
10.1128/mcb.22.21.7417‐7427.2002
10.1016/j.biopsych.2019.02.021
10.1523/jneurosci.0434‐21.2021
10.1126/science.1174146
10.1038/s41380‐023‐02085‐0
10.1016/j.neuroscience.2013.08.061
10.1523/jneurosci.2406‐12.2012
10.1016/j.brainres.2007.02.066
10.1371/journal.pone.0006780
10.1016/j.neurobiolaging.2023.07.010
10.1074/jbc.271.8.4403
10.1016/j.bbadis.2011.08.009
10.1523/jneurosci.19‐24‐10778.1999
10.1038/nrc1391
10.1007/s00401-012-1042-0
10.1002/1096‐9861(20001225)428:4<616::aid‐cne3>3.0.co;2‐k
10.1523/JNEUROSCI.2351-16.2016
10.1007/s10827‐023‐00849‐9
10.1172/JCI137221
10.3389/fnsyn.2021.637549
10.1016/j.brainresbull.2014.12.005
10.1126/science.1072699
10.1111/j.1750‐3639.2011.00557.x
10.1016/j.nbd.2004.04.011
10.1016/j.ceca.2021.102358
10.3390/cells10081862
10.1016/j.brainres.2012.05.024
10.1016/j.carbpol.2018.08.120
10.1523/jneurosci.6267‐11.2013
10.1073/pnas.1310158110
10.1016/s0169‐328x(02)00132‐8
10.1111/j.1471-4159.2010.06878.x
10.3390/biom11081235
10.1523/JNEUROSCI.3592-14.2015
10.1016/j.mcn.2003.12.001
10.1073/pnas.2301312120
10.1002/dneu.20361
10.1523/jneurosci.3275‐12.2013
10.1007/s00429‐016‐1224‐y
10.1038/srep46024
10.1186/s12915-022-01419-8
10.1016/j.brainresbull.2017.03.003
10.1074/jbc.m600544200
10.1101/lm.050245.119
10.3389/fncel.2014.00244
10.1016/j.str.2004.05.021
10.1093/cercor/bhz141
10.1523/ENEURO.0112‐16.2016
10.1016/j.jbc.2022.102176
10.1126/science.ade6530
10.1016/j.neures.2020.11.005
10.1523/JNEUROSCI.2974-09.2009
10.3389/fcell.2021.730550
10.1016/0301‐0082(96)00014‐7
10.1016/s0006‐8993(00)02173‐9
10.1111/j.1460‐9568.2011.07690.x
10.1126/science.1178310
10.1007/s00018-019-03180-8
10.1371/journal.pone.0093121
10.1016/j.neuron.2017.06.028
10.1093/cercor/bhx258
10.1016/j.expneurol.2014.11.013
10.1038/s41598-017-04007-x
10.1002/hipo.22804
10.1038/nature17623
10.1016/j.neuroscience.2017.04.041
10.1016/s0006‐8993(99)01784‐9
10.1006/mcne.2000.0922
10.1007/s10735‐019‐09818‐y
10.1073/pnas.1817222116
10.1002/cne.20822
10.1111/j.1460‐9568.2008.06108.x
10.1016/j.neuroscience.2010.08.032
10.1016/j.isci.2023.106342
10.1038/s41398-022-02226-z
10.1038/s41593-020-0687-6
10.1523/jneurosci.2504‐16.2016
10.1016/j.neulet.2013.02.064
10.1128/MCB.21.17.5970‐5978.2001
10.1126/science.abl6773
10.1016/j.immuni.2017.06.006
10.1016/s0306‐4522(99)00071‐8
10.1155/2018/5735789
10.1038/s41467‐022‐35068‐w
10.3389/fnint.2018.00003
10.1523/jneurosci.5425‐06.2007
10.21203/rs.3.rs‐2501039/v1
10.1016/j.neurobiolaging.2017.08.002
10.1073/pnas.1310272111
10.1038/ncomms2491
10.1007/pl00000690
10.1038/s41380‐021‐01174‐2
10.1016/j.neuroscience.2014.07.049
10.3390/biom10111499
10.1111/jnc.15037
10.1016/j.neuron.2017.06.007
10.1523/jneurosci.4158‐08.2009
10.1038/nm.4354
10.1038/s41467‐018‐07113‐0
10.1046/j.1471‐4159.1995.65031035.x
10.1111/acer.14810
10.1038/nn1899
10.1002/cne.23965
10.1038/nature12866
10.3389/fpsyt.2023.1122423
10.1074/jbc.272.50.31377
10.1038/s41598-022-10947-w
10.1016/j.ebiom.2020.102919
10.1007/s12035‐019‐1526‐1
10.1073/pnas.1313385111
10.1038/s41598‐021‐04079‐w
10.1523/jneurosci.0683‐05.2005
10.1007/s00401‐005‐1060‐2
10.1038/s41380-022-01634-3
10.1016/j.exger.2012.01.007
10.3389/fncel.2018.00149
10.1111/j.1440-1827.2010.02547.x
10.1016/j.celrep.2019.09.044
10.1002/cne.23701
10.1073/pnas.1102962108
10.1523/JNEUROSCI.0245‐16.2016
10.1371/journal.pone.0016666
10.1038/nn.2338
10.1523/jneurosci.1122‐18.2018
10.1371/journal.pone.0168256
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.
2023 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.
2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.
– notice: 2023 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
DOI 10.1111/jnc.16036
DatabaseName Wiley_OA刊
Wiley-Blackwell Backfiles (Open access)
PubMed
CrossRef
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Toxicology Abstracts
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Virology and AIDS Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley_OA刊
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1471-4159
EndPage 1876
ExternalDocumentID 10_1111_jnc_16036
38158878
JNC16036
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Institute of Mental Health
  funderid: R01MH133744‐01
– fundername: Owens Family Foundation
– fundername: NIMH NIH HHS
  grantid: R01MH133744-01
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29L
2WC
31~
33P
36B
3SF
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
GX1
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UB1
V8K
VH1
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
X7M
XG1
XJT
YFH
YNH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
NPM
AAYXX
CITATION
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
ID FETCH-LOGICAL-c3886-f07980dfbedeb0b644e5d0220994ca0e6c2138c6ff1bba0df0bdb375126d6e283
IEDL.DBID DR2
ISSN 0022-3042
1471-4159
IngestDate Sat Oct 26 02:02:05 EDT 2024
Thu Oct 10 21:07:53 EDT 2024
Fri Aug 23 02:16:12 EDT 2024
Tue Oct 29 09:32:08 EDT 2024
Fri Oct 04 09:52:02 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords memory
cognition
remodeling enzyme
extracellular matrix
perineuronal nets
Language English
License Attribution-NonCommercial-NoDerivs
2023 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3886-f07980dfbedeb0b644e5d0220994ca0e6c2138c6ff1bba0df0bdb375126d6e283
Notes Matrix Metalloproteases
.
This article is part of the special issue
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6239-690X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjnc.16036
PMID 38158878
PQID 3112454266
PQPubID 31528
PageCount 23
ParticipantIDs proquest_miscellaneous_2909087522
proquest_journals_3112454266
crossref_primary_10_1111_jnc_16036
pubmed_primary_38158878
wiley_primary_10_1111_jnc_16036_JNC16036
PublicationCentury 2000
PublicationDate September 2024
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Journal of neurochemistry
PublicationTitleAlternate J Neurochem
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2022; 298
2018; 285
2013; 4
2012; 520
2021; 167
1997; 272
2004; 25
2019; 13
2015; 265
2018; 202
2002; 277
2004; 4
2022; 25
2016; 2016
2020; 442
2022; 20
2020; 10
2012; 15
2012; 125
1999; 842
2016; 36
2022; 27
2009; 12
2014; 523
2018; 9
2014; 369
2018; 4
2020; 295
2019; 20
2010; 114
2008; 27
2006; 26
2019; 27
1998; 329
2019; 29
2013; 110
2006; 281
2007; 67
2012; 22
2018; 38
2023; 51
2010; 31
2012; 1465
2018; 28
2019; 6
2010; 35
2005; 110
2013; 504
2019; 30
2020; 40
2010; 169
2004; 306
2007; 10
2011; 6
2012; 32
2014; 277
2016; 11
2001; 21
2016; 3
2017; 59
2000; 864
2015; 111
2018; 115
2022; 12
2015; 2015
2020; 27
2022; 13
2022; 15
2021; 131
2020; 155
2021; 373
2011; 1812
2020; 23
2010; 170
2018; 12
2005; 15
2012; 47
2014; 34
2015; 35
2021; 27
2017; 7
2021; 26
2021; 21
2015; 39
2023; 380
2019; 50
2021; 22
2018; 526
2019; 56
2013; 20
2017; 46
2013; 288
2006; 494
2020; 58
2017; 355
2017; 9
2022; 377
2005; 25
2010; 60
2010; 67
2021; 36
2020; 7
2021; 31
2014; 2
2023; 131
2023; 28
2017; 37
2000
2023; 26
1999; 19
2000; 57
2002; 100
1995; 65
2018; 136
2019; 116
2001; 17
2014; 9
1999; 92
2014; 8
2021; 41
2017; 125
2009; 325
2007; 27
2009; 326
2021; 9
2021; 7
2023; 14
2023; 120
2019; 76
2013; 544
2020; 182
2002; 298
2017; 23
2022; 46
2021; 184
2011; 33
2016; 524
2021; 94
2014; 111
1998; 21
2009; 29
2017; 95
2017; 94
2021; 13
2015; 25
2018; 2018
2021; 10
2011; 108
2021; 12
2007; 1150
2021; 11
2013; 33
2023
2021; 1865
2019; 85
2004; 16
2021; 336
2004; 12
2002; 22
2000; 428
2010; 133
1996; 271
2013; 253
2016; 532
2009; 4
2017; 222
1996; 49
e_1_2_12_6_1
e_1_2_12_130_1
e_1_2_12_172_1
Végh M. J. (e_1_2_12_177_1) 2014; 2
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_111_1
e_1_2_12_157_1
e_1_2_12_138_1
e_1_2_12_115_1
e_1_2_12_153_1
e_1_2_12_134_1
e_1_2_12_176_1
e_1_2_12_108_1
e_1_2_12_20_1
e_1_2_12_66_1
e_1_2_12_43_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_47_1
e_1_2_12_89_1
e_1_2_12_62_1
e_1_2_12_81_1
e_1_2_12_161_1
e_1_2_12_184_1
e_1_2_12_180_1
e_1_2_12_100_1
e_1_2_12_123_1
e_1_2_12_146_1
e_1_2_12_169_1
e_1_2_12_28_1
e_1_2_12_104_1
e_1_2_12_127_1
e_1_2_12_142_1
e_1_2_12_165_1
e_1_2_12_188_1
e_1_2_12_31_1
e_1_2_12_77_1
e_1_2_12_54_1
e_1_2_12_96_1
e_1_2_12_139_1
e_1_2_12_35_1
e_1_2_12_58_1
e_1_2_12_12_1
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_92_1
e_1_2_12_3_1
e_1_2_12_152_1
e_1_2_12_171_1
e_1_2_12_18_1
e_1_2_12_110_1
e_1_2_12_137_1
e_1_2_12_179_1
e_1_2_12_114_1
e_1_2_12_133_1
e_1_2_12_156_1
e_1_2_12_175_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_107_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
Nicholson C. (e_1_2_12_122_1) 2000
e_1_2_12_40_1
e_1_2_12_82_1
e_1_2_12_160_1
e_1_2_12_141_1
e_1_2_12_183_1
e_1_2_12_168_1
e_1_2_12_29_1
e_1_2_12_149_1
e_1_2_12_126_1
e_1_2_12_164_1
e_1_2_12_103_1
e_1_2_12_145_1
e_1_2_12_187_1
e_1_2_12_119_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_74_1
e_1_2_12_97_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_78_1
e_1_2_12_13_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_4_1
e_1_2_12_174_1
e_1_2_12_151_1
e_1_2_12_19_1
e_1_2_12_170_1
e_1_2_12_38_1
e_1_2_12_136_1
e_1_2_12_159_1
e_1_2_12_132_1
e_1_2_12_178_1
e_1_2_12_113_1
e_1_2_12_155_1
e_1_2_12_41_1
e_1_2_12_87_1
e_1_2_12_106_1
e_1_2_12_129_1
e_1_2_12_22_1
e_1_2_12_64_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_68_1
e_1_2_12_83_1
e_1_2_12_60_1
e_1_2_12_140_1
e_1_2_12_163_1
e_1_2_12_182_1
e_1_2_12_49_1
e_1_2_12_121_1
e_1_2_12_148_1
e_1_2_12_102_1
e_1_2_12_125_1
e_1_2_12_144_1
e_1_2_12_167_1
e_1_2_12_186_1
e_1_2_12_52_1
e_1_2_12_98_1
e_1_2_12_118_1
e_1_2_12_33_1
e_1_2_12_75_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_79_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_94_1
e_1_2_12_71_1
e_1_2_12_150_1
e_1_2_12_173_1
e_1_2_12_5_1
e_1_2_12_16_1
e_1_2_12_112_1
e_1_2_12_135_1
e_1_2_12_158_1
e_1_2_12_39_1
e_1_2_12_116_1
e_1_2_12_131_1
e_1_2_12_154_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_109_1
e_1_2_12_128_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_80_1
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_185_1
e_1_2_12_162_1
e_1_2_12_181_1
e_1_2_12_27_1
e_1_2_12_101_1
e_1_2_12_147_1
e_1_2_12_120_1
e_1_2_12_105_1
e_1_2_12_143_1
e_1_2_12_189_1
e_1_2_12_124_1
e_1_2_12_166_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_99_1
e_1_2_12_117_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_15_1
e_1_2_12_91_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_95_1
e_1_2_12_9_1
References_xml – volume: 32
  start-page: 18009
  issue: 50
  year: 2012
  end-page: 18017
  article-title: Perisynaptic chondroitin sulfate proteoglycans restrict structural plasticity in an integrin‐dependent manner
  publication-title: The Journal of Neuroscience
– volume: 108
  start-page: 9747
  issue: 24
  year: 2011
  end-page: 9752
  article-title: Elucidating glycosaminoglycan–protein–protein interactions using carbohydrate microarray and computational approaches
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 22
  start-page: 7417
  issue: 21
  year: 2002
  end-page: 7427
  article-title: Brevican‐deficient mice display impaired hippocampal CA1 long‐term potentiation but show no obvious deficits in learning and memory
  publication-title: Molecular and Cellular Biology
– volume: 65
  start-page: 1035
  issue: 3
  year: 1995
  end-page: 1045
  article-title: Microglial cathepsin B: An immunological examination of cellular and secreted species
  publication-title: Journal of Neurochemistry
– volume: 277
  start-page: 43707
  issue: 46
  year: 2002
  end-page: 43716
  article-title: Specific molecular interactions of oversulfated chondroitin sulfate E with various heparin‐binding growth factors
  publication-title: Journal of Biological Chemistry
– volume: 41
  start-page: 5779
  issue: 27
  year: 2021
  end-page: 5790
  article-title: Regulation of perineuronal nets in the adult cortex by the activity of the cortical network
  publication-title: The Journal of Neuroscience
– volume: 325
  start-page: 1258
  issue: 5945
  year: 2009
  end-page: 1261
  article-title: Perineuronal nets protect fear memories from erasure
  publication-title: Science
– volume: 9
  start-page: 4724
  issue: 1
  year: 2018
  article-title: Perineuronal nets decrease membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsy
  publication-title: Nature Communications
– volume: 35
  start-page: 2120
  issue: 10
  year: 2010
  end-page: 2133
  article-title: Extracellular matrix plasticity and GABAergic inhibition of prefrontal cortex pyramidal cells facilitates relapse to heroin seeking
  publication-title: Neuropsychopharmacology
– volume: 36
  issue: 1
  year: 2021
  article-title: Microglia enable mature perineuronal nets disassembly upon anesthetic ketamine exposure or 60‐Hz light entrainment in the healthy brain
  publication-title: Cell Reports
– volume: 428
  start-page: 616
  issue: 4
  year: 2000
  end-page: 629
  article-title: Postnatal development of perineuronal nets in wild‐type mice and in a mutant deficient in tenascin‐R
  publication-title: The Journal of Comparative Neurology
– volume: 38
  start-page: 10102
  issue: 47
  year: 2018
  end-page: 10113
  article-title: Aggrecan directs extracellular matrix‐mediated neuronal plasticity
  publication-title: The Journal of Neuroscience
– volume: 6
  issue: 1
  year: 2011
  article-title: Experience‐dependent plasticity and modulation of growth regulatory molecules at central synapses
  publication-title: PLoS One
– volume: 842
  start-page: 15
  issue: 1
  year: 1999
  end-page: 29
  article-title: Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations
  publication-title: Brain Research
– volume: 20
  start-page: 267
  issue: 5
  year: 2013
  end-page: 273
  article-title: Disruption of the perineuronal net in the hippocampus or medial prefrontal cortex impairs fear conditioning
  publication-title: Learning & Memory
– volume: 380
  start-page: 543
  issue: 6644
  year: 2023
  end-page: 551
  article-title: A shift in the mechanisms controlling hippocampal engram formation during brain maturation
  publication-title: Science
– volume: 114
  start-page: 1447
  issue: 5
  year: 2010
  end-page: 1459
  article-title: In vitro modeling of perineuronal nets: Hyaluronan synthase and link protein are necessary for their formation and integrity
  publication-title: Journal of Neurochemistry
– volume: 222
  start-page: 393
  issue: 1
  year: 2017
  end-page: 415
  article-title: The extracellular matrix glycoprotein tenascin‐C and matrix metalloproteinases modify cerebellar structural plasticity by exposure to an enriched environment
  publication-title: Brain Structure & Function
– volume: 295
  start-page: 955
  issue: 4
  year: 2020
  end-page: 968
  article-title: The protein tyrosine phosphatase RPTPζ/phosphacan is critical for perineuronal net structure
  publication-title: Journal of Biological Chemistry
– volume: 1812
  start-page: 1616
  issue: 12
  year: 2011
  end-page: 1629
  article-title: Proteoglycan degradation by the ADAMTS family of proteinases
  publication-title: Biochimica et Biophysica Acta
– volume: 115
  start-page: 607
  issue: 3
  year: 2018
  end-page: 612
  article-title: Removal of perineuronal nets disrupts recall of a remote fear memory
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 46
  start-page: 957
  issue: 6
  year: 2017
  end-page: 967
  article-title: Reactive astrocytes: Production, function, and therapeutic potential
  publication-title: Immunity
– volume: 373
  start-page: 77
  issue: 6550
  year: 2021
  end-page: 81
  article-title: Astrocytes close the mouse critical period for visual plasticity
  publication-title: Science
– volume: 9
  issue: 421
  year: 2017
  article-title: Hippocampal extracellular matrix alterations contribute to cognitive impairment associated with a chronic depressive‐like state in rats
  publication-title: Science Translational Medicine
– volume: 25
  start-page: 1073
  issue: 10
  year: 2015
  end-page: 1188
  article-title: Hippocampal sharp wave‐ripple: A cognitive biomarker for episodic memory and planning
  publication-title: Hippocampus
– volume: 169
  start-page: 1347
  issue: 3
  year: 2010
  end-page: 1363
  article-title: Neurons associated with aggrecan‐based perineuronal nets are protected against tau pathology in subcortical regions in Alzheimer's disease
  publication-title: Neuroscience
– volume: 285
  issue: 1883
  year: 2018
  article-title: Timing of perineuronal net development in the zebra finch song control system correlates with developmental song learning
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 27
  start-page: 222
  issue: 6
  year: 2020
  end-page: 235
  article-title: ChABC infusions into medial prefrontal cortex, but not posterior parietal cortex, improve the performance of rats tested on a novel, challenging delay in the touchscreen TUNL task
  publication-title: Learning & Memory
– volume: 125
  start-page: 166
  year: 2017
  end-page: 180
  article-title: Cerebellar perineuronal nets in cocaine‐induced pavlovian memory: Site matters
  publication-title: Neuropharmacology
– volume: 20
  start-page: 218
  issue: 1
  year: 2022
  article-title: Parvalbumin interneuron‐derived tissue‐type plasminogen activator shapes perineuronal net structure
  publication-title: BMC Biology
– volume: 281
  start-page: 17789
  issue: 26
  year: 2006
  end-page: 17800
  article-title: Composition of perineuronal net extracellular matrix in rat brain: A different disaccharide composition for the net‐associated proteoglycans
  publication-title: Journal of Biological Chemistry
– volume: 1150
  start-page: 200
  year: 2007
  end-page: 206
  article-title: Perineuronal nets protect against amyloid beta‐protein neurotoxicity in cultured cortical neurons
  publication-title: Brain Research
– volume: 95
  start-page: 639
  issue: 3
  year: 2017
  end-page: 655.e10
  article-title: Activity‐dependent gating of parvalbumin interneuron function by the perineuronal net protein Brevican
  publication-title: Neuron
– volume: 11
  start-page: 1235
  issue: 8
  year: 2021
  article-title: Perineuronal nets and metal cation concentrations in the microenvironments of fast‐spiking, parvalbumin‐expressing GABAergic interneurons: Relevance to neurodevelopment and neurodevelopmental disorders
  publication-title: Biomolecules
– volume: 19
  start-page: 10778
  issue: 24
  year: 1999
  end-page: 10788
  article-title: The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar
  publication-title: The Journal of Neuroscience
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 8
  article-title: Caught in the net: Perineuronal nets and addiction
  publication-title: Neural Plasticity
– volume: 133
  start-page: 2331
  issue: 8
  year: 2010
  end-page: 2347
  article-title: Animals lacking link protein have attenuated perineuronal nets and persistent plasticity
  publication-title: Brain
– volume: 524
  start-page: 1309
  issue: 7
  year: 2016
  end-page: 1336
  article-title: Extracellular matrix protein expression is brain region dependent
  publication-title: Journal of Comparative Neurology
– volume: 33
  start-page: 7057
  issue: 16
  year: 2013
  end-page: 7065
  article-title: Depletion of perineuronal nets enhances recognition memory and long‐term depression in the perirhinal cortex
  publication-title: The Journal of Neuroscience
– volume: 1865
  issue: 2
  year: 2021
  article-title: Hyaluronan degradation and release of a hyaluronan‐aggrecan complex from perineuronal nets in the aged mouse brain
  publication-title: Biochimica et Biophysica Acta—General Subjects
– volume: 377
  start-page: 80
  issue: 6601
  year: 2022
  end-page: 86
  article-title: Microglia‐mediated degradation of perineuronal nets promotes pain
  publication-title: Science
– volume: 29
  start-page: 7731
  issue: 24
  year: 2009
  end-page: 7742
  article-title: Versican V2 assembles the extracellular matrix surrounding the nodes of Ranvier in the CNS
  publication-title: The Journal of Neuroscience
– volume: 12
  start-page: 897
  issue: 7
  year: 2009
  end-page: 904
  article-title: Brain extracellular matrix affects AMPA receptor lateral mobility and short‐term synaptic plasticity
  publication-title: Nature Neuroscience
– volume: 494
  start-page: 559
  issue: 4
  year: 2006
  end-page: 577
  article-title: Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components
  publication-title: Journal of Comparative Neurology
– volume: 12
  start-page: 1145
  issue: 9
  year: 2009
  end-page: 1151
  article-title: Chondroitinase ABC treatment opens a window of opportunity for task‐specific rehabilitation
  publication-title: Nature Neuroscience
– volume: 12
  start-page: 1495
  issue: 8
  year: 2004
  end-page: 1506
  article-title: Structural basis for interactions between tenascins and Lectican C‐type lectin domains
  publication-title: Structure
– volume: 1465
  start-page: 34
  year: 2012
  end-page: 47
  article-title: Neonatal conductive hearing loss disrupts the development of the Cat‐315 epitope on perineuronal nets in the rat superior olivary complex
  publication-title: Brain Research
– volume: 544
  start-page: 25
  year: 2013
  end-page: 30
  article-title: ADAMTS1, ADAMTS5, ADAMTS9 and aggrecanase‐generated proteoglycan fragments are induced following spinal cord injury in mouse
  publication-title: Neuroscience Letters
– volume: 442
  start-page: 69
  year: 2020
  end-page: 86
  article-title: Neurocan contributes to perineuronal net development
  publication-title: Neuroscience
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 13
  article-title: Proteolytic remodeling of perineuronal nets: Effects on synaptic plasticity and neuronal population dynamics
  publication-title: Neural Plasticity
– volume: 116
  start-page: 7071
  issue: 14
  year: 2019
  end-page: 7076
  article-title: Structural maturation of cortical perineuronal nets and their perforating synapses revealed by superresolution imaging
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 184
  year: 2021
  article-title: NPY‐Y1 receptor signaling controls spatial learning and perineuronal net expression
  publication-title: Neuropharmacology
– volume: 92
  start-page: 791
  issue: 3
  year: 1999
  end-page: 805
  article-title: Cortical areas abundant in extracellular matrix chondroitin sulphate proteoglycans are less affected by cytoskeletal changes in Alzheimer's disease
  publication-title: Neuroscience
– volume: 59
  start-page: 197
  year: 2017
  end-page: 209
  article-title: Antibody recognizing 4‐sulfated chondroitin sulfate proteoglycans restores memory in tauopathy‐induced neurodegeneration
  publication-title: Neurobiology of Aging
– volume: 40
  start-page: 5008
  issue: 26
  year: 2020
  end-page: 5018
  article-title: Perineuronal nets regulate the inhibitory perisomatic input onto parvalbumin interneurons and γ activity in the prefrontal cortex
  publication-title: The Journal of Neuroscience
– volume: 13
  start-page: 7537
  issue: 1
  year: 2022
  article-title: The estrous cycle modulates early‐life adversity effects on mouse avoidance behavior through progesterone signaling
  publication-title: Nature Communications
– volume: 182
  start-page: 388
  issue: 2
  year: 2020
  end-page: 403.e15
  article-title: Microglial remodeling of the extracellular matrix promotes synapse plasticity
  publication-title: Cell
– volume: 12
  start-page: 480
  issue: 1
  year: 2022
  article-title: Perineuronal nets affect memory and learning after synapse withdrawal
  publication-title: Translational Psychiatry
– volume: 12
  start-page: 253
  issue: 1
  year: 2021
  article-title: Perineuronal nets stabilize the grid cell network
  publication-title: Nature Communications
– volume: 35
  start-page: 4190
  issue: 10
  year: 2015
  end-page: 4202
  article-title: Removal of perineuronal nets in the medial prefrontal cortex impairs the acquisition and reconsolidation of a cocaine‐induced conditioned place preference memory
  publication-title: The Journal of Neuroscience
– volume: 49
  start-page: 145
  issue: 2
  year: 1996
  end-page: 161
  article-title: The extracellular matrix molecule tenascin‐C: Expression in vivo and functional characterization in vitro
  publication-title: Progress in Neurobiology
– volume: 864
  start-page: 142
  issue: 1
  year: 2000
  end-page: 145
  article-title: Morphology of perineuronal nets in tenascin‐R and parvalbumin single and double knockout mice
  publication-title: Brain Research
– volume: 532
  start-page: 195
  issue: 7598
  year: 2016
  end-page: 200
  article-title: Astrocyte scar formation aids central nervous system axon regeneration
  publication-title: Nature
– volume: 9
  start-page: 4163
  issue: 1
  year: 2018
  article-title: A hippocampal circuit linking dorsal CA2 to ventral CA1 critical for social memory dynamics
  publication-title: Nature Communications
– volume: 523
  start-page: 629
  issue: 4
  year: 2014
  end-page: 648
  article-title: Cell‐specific and developmental expression of lectican‐cleaving proteases in mouse hippocampus and neocortex
  publication-title: Journal of Comparative Neurology
– volume: 31
  start-page: 1254
  issue: 7
  year: 2010
  end-page: 1256
  article-title: Perineuronal nets are largely unaffected in Alzheimer model Tg2576 mice
  publication-title: Neurobiology of Aging
– volume: 21
  start-page: 510
  issue: 12
  year: 1998
  end-page: 515
  article-title: Perineuronal nets: Past and present
  publication-title: Trends in Neurosciences
– volume: 28
  start-page: 2946
  year: 2023
  end-page: 2963
  article-title: Acan downregulation in parvalbumin GABAergic cells reduces spontaneous recovery of fear memories
  publication-title: Molecular Psychiatry
– volume: 27
  start-page: 3192
  issue: 8
  year: 2022
  end-page: 3203
  article-title: The extracellular matrix and perineuronal nets in memory
  publication-title: Molecular Psychiatry
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 13
  article-title: Chondroitin 6‐sulfation regulates perineuronal net formation by controlling the stability of aggrecan
  publication-title: Neural Plasticity
– start-page: 129
  year: 2000
  end-page: 154
– volume: 7
  issue: 1
  year: 2017
  article-title: Chondroitin sulfate is required for onset and offset of critical period plasticity in visual cortex
  publication-title: Scientific Reports
– volume: 58
  year: 2020
  article-title: Microglia facilitate loss of perineuronal nets in the Alzheimer's disease brain
  publication-title: eBioMedicine
– volume: 29
  start-page: 1099
  issue: 5
  year: 2019
  end-page: 1112.e4
  article-title: Maturation of PNN and ErbB4 signaling in area CA2 during adolescence underlies the emergence of PV interneuron plasticity and social memory
  publication-title: Cell Reports
– volume: 28
  start-page: 3951
  issue: 11
  year: 2018
  end-page: 3964
  article-title: Genetic reduction of matrix metalloproteinase‐9 promotes formation of perineuronal nets around parvalbumin‐expressing interneurons and normalizes auditory cortex responses in developing Fmr1 knock‐out mice
  publication-title: Cerebral Cortex
– volume: 125
  start-page: 215
  issue: 2
  year: 2012
  end-page: 229
  article-title: Neurochemical mapping of the human hippocampus reveals perisynaptic matrix around functional synapses in Alzheimer's disease
  publication-title: Acta Neuropathologica
– volume: 40
  start-page: 4418
  issue: 22
  year: 2020
  end-page: 4431
  article-title: Venlafaxine stimulates an MMP‐9‐dependent increase in excitatory/inhibitory balance in a stress model of depression
  publication-title: The Journal of Neuroscience
– volume: 116
  start-page: 27063
  issue: 52
  year: 2019
  end-page: 27073
  article-title: Perineuronal nets protect long‐term memory by limiting activity‐dependent inhibition from parvalbumin interneurons
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 100
  start-page: 103
  issue: 1–2
  year: 2002
  end-page: 117
  article-title: Matrix metalloproteases and their inhibitors are produced by overlapping populations of activated astrocytes
  publication-title: Molecular Brain Research
– volume: 136
  start-page: 101
  year: 2018
  end-page: 108
  article-title: Crosstalk between glia, extracellular matrix and neurons
  publication-title: Brain Research Bulletin
– volume: 37
  start-page: 1269
  issue: 5
  year: 2017
  end-page: 1283
  article-title: Removal of perineuronal nets unlocks juvenile plasticity through network mechanisms of decreased inhibition and increased gamma activity
  publication-title: The Journal of Neuroscience
– volume: 111
  start-page: 20
  year: 2015
  end-page: 26
  article-title: Differential regulation of perineuronal nets in the brain and spinal cord with exercise training
  publication-title: Brain Research Bulletin
– volume: 272
  start-page: 31377
  issue: 50
  year: 1997
  end-page: 31381
  article-title: Developmental regulation of the Sulfation profile of chondroitin sulfate chains in the chicken embryo brain
  publication-title: Journal of Biological Chemistry
– volume: 9
  year: 2021
  article-title: Assessment of possible contributions of hyaluronan and proteoglycan binding link protein 4 to differential perineuronal net formation at the calyx of held
  publication-title: Frontiers in Cell and Developmental Biology
– volume: 60
  start-page: 477
  issue: 7
  year: 2010
  end-page: 496
  article-title: Matrix metalloproteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non‐neoplastic diseases
  publication-title: Pathology International
– volume: 30
  start-page: 969
  issue: 3
  year: 2019
  end-page: 988
  article-title: Deletion of Fmr1 from forebrain excitatory neurons triggers abnormal cellular, EEG, and behavioral phenotypes in the auditory cortex of a mouse model of fragile X syndrome
  publication-title: Cerebral Cortex
– volume: 31
  start-page: 375
  issue: 4
  year: 2021
  end-page: 388
  article-title: Adult‐born granule cell mossy fibers preferentially target parvalbumin‐positive interneurons surrounded by perineuronal nets
  publication-title: Hippocampus
– volume: 26
  issue: 4
  year: 2023
  article-title: Selective dysfunction of fast‐spiking inhibitory interneurons and disruption of perineuronal nets in a tauopathy mouse model
  publication-title: iScience
– volume: 11
  issue: 12
  year: 2016
  article-title: Impact of environmental enrichment on perineuronal nets in the prefrontal cortex following early and late abstinence from sucrose self‐administration in rats
  publication-title: PLoS One
– volume: 253
  start-page: 368
  year: 2013
  end-page: 379
  article-title: Spatio‐temporal differences in perineuronal net expression in the mouse hippocampus, with reference to parvalbumin
  publication-title: Neuroscience
– volume: 336
  year: 2021
  article-title: Voluntary wheel running preserves lumbar perineuronal nets, enhances motor functions and prevents hyperreflexia after spinal cord injury
  publication-title: Experimental Neurology
– volume: 504
  start-page: 272
  issue: 7479
  year: 2013
  end-page: 276
  article-title: Parvalbumin‐expressing basket‐cell network plasticity induced by experience regulates adult learning
  publication-title: Nature
– volume: 12
  start-page: 149
  year: 2018
  article-title: Increased excitability and reduced excitatory synaptic input into fast‐spiking CA2 interneurons after enzymatic attenuation of extracellular matrix
  publication-title: Frontiers in Cellular Neuroscience
– volume: 9
  issue: 3
  year: 2014
  article-title: Enriched housing enhances recovery of limb placement ability and reduces aggrecan‐containing perineuronal nets in the rat somatosensory cortex after experimental stroke
  publication-title: PLoS One
– volume: 34
  start-page: 6647
  issue: 19
  year: 2014
  end-page: 6658
  article-title: Depletion of perineuronal nets in the amygdala to enhance the erasure of drug memories
  publication-title: The Journal of Neuroscience
– volume: 28
  start-page: 42
  issue: 1
  year: 2018
  end-page: 52
  article-title: Disruption of perineuronal nets increases the frequency of sharp wave ripple events
  publication-title: Hippocampus
– volume: 4
  start-page: 22
  year: 2018
  end-page: 37
  article-title: Expression of aggrecan components in perineuronal nets in the mouse cerebral cortex
  publication-title: IBRO Reports
– volume: 22
  start-page: 547
  issue: 4
  year: 2012
  end-page: 561
  article-title: Involvement of perineuronal and perisynaptic extracellular matrix in Alzheimer's disease neuropathology
  publication-title: Brain Pathology
– volume: 26
  start-page: 5658
  issue: 10
  year: 2021
  end-page: 5668
  article-title: Chondroitin 6‐sulphate is required for neuroplasticity and memory in ageing
  publication-title: Molecular Psychiatry
– volume: 369
  issue: 1654
  year: 2014
  article-title: Tenascin‐R promotes assembly of the extracellular matrix of perineuronal nets via clustering of aggrecan
  publication-title: Philosophical Transactions of the Royal Society B
– volume: 2015
  year: 2015
  article-title: Hyaluronan synthase: The mechanism of initiation at the reducing end and a pendulum model for polysaccharide translocation to the cell exterior
  publication-title: International Journal of Cell Biology
– volume: 25
  start-page: 7150
  issue: 31
  year: 2005
  end-page: 7158
  article-title: Degradation of chondroitin sulfate proteoglycans induces sprouting of intact Purkinje axons in the cerebellum of the adult rat
  publication-title: The Journal of Neuroscience
– volume: 15
  start-page: 950
  issue: 7
  year: 2005
  end-page: 962
  article-title: Structural and functional aberrations in the cerebral cortex of tenascin‐C deficient mice
  publication-title: Cerebral Cortex
– volume: 131
  start-page: 52
  year: 2023
  end-page: 58
  article-title: Extracellular matrix proteoglycans support aged hippocampus networks: A potential cellular‐level mechanism of brain reserve
  publication-title: Neurobiology of Aging
– volume: 41
  start-page: 1274
  issue: 6
  year: 2021
  end-page: 1287
  article-title: Microglia elimination increases neural circuit connectivity and activity in adult mouse cortex
  publication-title: The Journal of Neuroscience
– volume: 10
  issue: 1
  year: 2020
  article-title: From stress to depression: Development of extracellular matrix‐dependent cognitive impairment following social stress
  publication-title: Scientific Reports
– volume: 27
  start-page: 1373
  issue: 6
  year: 2008
  end-page: 1390
  article-title: Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin‐R in the rat spinal cord
  publication-title: European Journal of Neuroscience
– volume: 15
  year: 2022
  article-title: How stress influences the dynamic plasticity of the brain's extracellular matrix
  publication-title: Frontiers in Cellular Neuroscience
– volume: 520
  start-page: 1721
  issue: 8
  year: 2012
  end-page: 1736
  article-title: Bral2 is indispensable for the proper localization of brevican and the structural integrity of the perineuronal net in the brainstem and cerebellum
  publication-title: Journal of Comparative Neurology
– volume: 27
  start-page: 3725
  issue: 13
  year: 2019
  end-page: 3732.e5
  article-title: Spiny and non‐spiny parvalbumin‐positive hippocampal interneurons show different plastic properties
  publication-title: Cell Reports
– volume: 8
  start-page: 244
  year: 2014
  article-title: Fast oscillatory activity in the anterior cingulate cortex: Dopaminergic modulation and effect of perineuronal net loss
  publication-title: Frontiers in cellular neuroscience
– volume: 7
  issue: 35
  year: 2021
  article-title: Microglial dyshomeostasis drives perineuronal net and synaptic loss in a CSF1R +/− mouse model of ALSP, which can be rescued via CSF1R inhibitors
  publication-title: Science Advances
– volume: 13
  year: 2021
  article-title: Poly I:C activated microglia disrupt perineuronal nets and modulate synaptic balance in primary hippocampal neurons in vitro
  publication-title: Frontiers in Synaptic Neuroscience
– volume: 271
  start-page: 4403
  issue: 8
  year: 1996
  end-page: 4409
  article-title: Expression of rat cathepsin S in phagocytic cells
  publication-title: Journal of Biological Chemistry
– volume: 47
  start-page: 337
  issue: 4
  year: 2012
  end-page: 341
  article-title: A rich environmental experience reactivates visual cortex plasticity in aged rats
  publication-title: Experimental Gerontology
– volume: 25
  start-page: 515
  issue: 3
  year: 2004
  end-page: 523
  article-title: Enhanced cortical and hippocampal neuronal excitability in mice deficient in the extracellular matrix glycoprotein tenascin‐R
  publication-title: Molecular and Cellular Neuroscience
– volume: 23
  start-page: 818
  issue: 7
  year: 2017
  end-page: 828
  article-title: Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin–N‐cadherin pathway after spinal cord injury
  publication-title: Nature Medicine
– volume: 94
  year: 2021
  article-title: The aging mouse brain: Cognition, connectivity and calcium
  publication-title: Cell Calcium
– volume: 25
  issue: 3
  year: 2022
  article-title: Altered inhibitory function in hippocampal CA2 contributes in social memory deficits in Alzheimer's mouse model
  publication-title: iScience
– volume: 355
  start-page: 161
  year: 2017
  end-page: 174
  article-title: Sensory experience‐dependent formation of perineuronal nets and expression of Cat‐315 immunoreactive components in the mouse somatosensory cortex
  publication-title: Neuroscience
– volume: 46
  start-page: 759
  issue: 5
  year: 2022
  end-page: 769
  article-title: Impact of adolescent intermittent ethanol exposure on interneurons and their surrounding perineuronal nets in adulthood
  publication-title: Alcoholism: Clinical and Experimental Research
– volume: 277
  start-page: 734
  year: 2014
  end-page: 746
  article-title: Aging somatosensory cortex displays increased density of WFA‐binding perineuronal nets associated with GAD‐negative neurons
  publication-title: Neuroscience
– volume: 36
  start-page: 11459
  issue: 45
  year: 2016
  end-page: 11468
  article-title: Casting a wide net: Role of perineuronal nets in neural plasticity
  publication-title: The Journal of Neuroscience
– volume: 33
  start-page: 2187
  issue: 12
  year: 2011
  end-page: 2202
  article-title: Chondroitin sulfate proteoglycans regulate astrocyte‐dependent synaptogenesis and modulate synaptic activity in primary embryonic hippocampal neurons
  publication-title: European Journal of Neuroscience
– volume: 22
  start-page: 39
  issue: 1
  year: 2021
  article-title: MMP9 modulation improves specific neurobehavioral deficits in a mouse model of Alzheimer's disease
  publication-title: BMC Neuroscience
– volume: 4
  issue: 8
  year: 2009
  article-title: Enrichment from birth accelerates the functional and cellular development of a motor control area in the mouse
  publication-title: PLoS One
– volume: 298
  start-page: 1248
  issue: 5596
  year: 2002
  end-page: 1251
  article-title: Reactivation of ocular dominance plasticity in the adult visual cortex
  publication-title: Science
– volume: 95
  start-page: 169
  issue: 1
  year: 2017
  end-page: 179.e3
  article-title: Perineuronal nets in the adult sensory cortex are necessary for fear learning
  publication-title: Neuron
– volume: 21
  start-page: 5970
  issue: 17
  year: 2001
  end-page: 5978
  article-title: Neurocan is dispensable for brain development
  publication-title: Molecular and Cellular Biology
– volume: 26
  start-page: 10856
  issue: 42
  year: 2006
  end-page: 10867
  article-title: Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury
  publication-title: The Journal of Neuroscience
– volume: 51
  start-page: 283
  issue: 2
  year: 2023
  end-page: 298
  article-title: Responses in fast‐spiking interneuron firing rates to parameter variations associated with degradation of perineuronal nets
  publication-title: Journal of Computational Neuroscience
– volume: 155
  start-page: 538
  issue: 5
  year: 2020
  end-page: 558
  article-title: Acute pharmacological inhibition of matrix metalloproteinase‐9 activity during development restores perineuronal net formation and normalizes auditory processing in KO mice
  publication-title: Journal of Neurochemistry
– volume: 288
  start-page: 27384
  issue: 38
  year: 2013
  end-page: 27395
  article-title: Semaphorin 3A binds to the perineuronal nets via chondroitin sulfate type E motifs in rodent brains
  publication-title: Journal of Biological Chemistry
– volume: 131
  issue: 16
  year: 2021
  article-title: Perineuronal net degradation rescues CA2 plasticity in a mouse model of Rett syndrome
  publication-title: The Journal of Clinical Investigation
– volume: 27
  start-page: 3520
  issue: 8
  year: 2021
  end-page: 3531
  article-title: Atypical perineuronal nets in the CA2 region interfere with social memory in a mouse model of social dysfunction
  publication-title: Molecular Psychiatry
– volume: 39
  start-page: 1930
  issue: 10
  year: 2015
  end-page: 1938
  article-title: Repeated binge drinking increases perineuronal nets in the insular cortex
  publication-title: Alcoholism, Clinical and Experimental Research
– volume: 16
  start-page: 604
  issue: 3
  year: 2004
  end-page: 616
  article-title: Destruction of extracellular matrix proteoglycans is pervasive in simian retroviral neuroinfection
  publication-title: Neurobiology of Disease
– volume: 120
  issue: 24
  year: 2023
  article-title: Chondroitin 4‐ O ‐sulfation regulates hippocampal perineuronal nets and social memory
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 7
  issue: 1
  year: 2017
  article-title: Activation of perineuronal net‐expressing excitatory neurons during associative memory encoding and retrieval
  publication-title: Scientific Reports
– volume: 306
  start-page: 487
  issue: 5695
  year: 2004
  end-page: 491
  article-title: Cleavage of ProBDNF by TPA/plasmin is essential for long‐term hippocampal plasticity
  publication-title: Science
– volume: 526
  start-page: 2647
  issue: 16
  year: 2018
  end-page: 2664
  article-title: Early life trauma increases threat response of peri‐weaning rats, reduction of axo‐somatic synapses formed by parvalbumin cells and perineuronal net in the basolateral nucleus of amygdala
  publication-title: Journal of Comparative Neurology
– volume: 4
  start-page: 1484
  year: 2013
  article-title: Extracellular matrix inhibits structural and functional plasticity of dendritic spines in the adult visual cortex
  publication-title: Nature Communications
– volume: 2
  start-page: 76
  issue: 1
  year: 2014
  article-title: Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer's disease
  publication-title: Acta Neuropathologica Communications
– volume: 10
  start-page: 679
  issue: 6
  year: 2007
  end-page: 681
  article-title: Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition
  publication-title: Nature Neuroscience
– volume: 288
  start-page: 20978
  issue: 29
  year: 2013
  end-page: 20991
  article-title: Matrix metalloproteinase (MMP) 9 transcription in mouse brain induced by fear learning
  publication-title: Journal of Biological Chemistry
– volume: 170
  start-page: 1314
  issue: 4
  year: 2010
  end-page: 1327
  article-title: Perineuronal net formation and structure in aggrecan knockout mice
  publication-title: Neuroscience
– volume: 4
  start-page: 528
  issue: 7
  year: 2004
  end-page: 539
  article-title: Hyaluronan: from extracellular glue to pericellular cue
  publication-title: Nature Reviews Cancer
– volume: 298
  issue: 8
  year: 2022
  article-title: Transcriptional profiling reveals roles of intercellular Fgf9 signaling in astrocyte maturation and synaptic refinement during brainstem development
  publication-title: Journal of Biological Chemistry
– volume: 14
  year: 2023
  article-title: Sexually dimorphic role for insular perineuronal nets in aversion‐resistant alcohol consumption
  publication-title: Frontiers in Psychiatry
– volume: 29
  start-page: 12878
  issue: 41
  year: 2009
  end-page: 12885
  article-title: Modulation of perineuronal nets and parvalbumin with developmental song learning
  publication-title: The Journal of Neuroscience
– volume: 9
  start-page: 1607
  issue: 6
  year: 2017
  end-page: 1622
  article-title: Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory
  publication-title: Aging
– volume: 56
  start-page: 6436
  issue: 9
  year: 2019
  end-page: 6450
  article-title: Perineuronal nets restrict the induction of long‐term depression in the mouse hippocampal CA1 region
  publication-title: Molecular Neurobiology
– volume: 3
  issue: 4
  year: 2016
  article-title: Perineuronal nets enhance the excitability of fast‐spiking neurons
  publication-title: eNeuro
– volume: 36
  start-page: 6312
  issue: 23
  year: 2016
  end-page: 6320
  article-title: Perineuronal nets suppress plasticity of excitatory synapses on CA2 pyramidal neurons
  publication-title: The Journal of Neuroscience
– volume: 6
  start-page: 1
  year: 2019
  end-page: 17
  article-title: Layer‐specific expression of extracellular matrix molecules in the mouse somatosensory and piriform cortices
  publication-title: IBRO Reports
– volume: 50
  start-page: 203
  issue: 3
  year: 2019
  end-page: 216
  article-title: Quantitative changes in perineuronal nets in development and posttraumatic condition
  publication-title: Journal of Molecular Histology
– volume: 17
  start-page: 226
  issue: 1
  year: 2001
  end-page: 240
  article-title: Reduced Perisomatic inhibition, increased excitatory transmission, and impaired long‐term potentiation in mice deficient for the extracellular matrix glycoprotein tenascin‐R
  publication-title: Molecular and Cellular Neuroscience
– volume: 23
  start-page: 1183
  issue: 10
  year: 2020
  end-page: 1193
  article-title: Synergy between amyloid‐β and tau in Alzheimer's disease
  publication-title: Nature Neuroscience
– volume: 110
  start-page: 393
  issue: 4
  year: 2005
  end-page: 401
  article-title: Loss of perineuronal net N‐acetylgalactosamine in Alzheimer's disease
  publication-title: Acta Neuropathologica
– volume: 15
  start-page: 414
  issue: 3
  year: 2012
  end-page: 422
  article-title: Persistent cortical plasticity by upregulation of chondroitin 6‐sulfation
  publication-title: Nature Neuroscience
– volume: 94
  start-page: 731
  issue: 4
  year: 2017
  end-page: 743
  article-title: Synaptic plasticity, engrams, and network oscillations in amygdala circuits for storage and retrieval of emotional memories
  publication-title: Neuron
– volume: 20
  start-page: 451
  issue: 8
  year: 2019
  end-page: 465
  article-title: The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function
  publication-title: Nature Reviews Neuroscience
– volume: 33
  start-page: 7742
  issue: 18
  year: 2013
  end-page: 7755
  article-title: Primary hippocampal neurons, which lack four crucial extracellular matrix molecules, display abnormalities of synaptic structure and function and severe deficits in perineuronal net formation
  publication-title: The Journal of Neuroscience
– volume: 67
  start-page: 116
  issue: 1
  year: 2010
  end-page: 128
  article-title: The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L‐type Ca channels
  publication-title: Neuron
– volume: 111
  start-page: 2800
  issue: 7
  year: 2014
  end-page: 2805
  article-title: Enhanced cognitive flexibility in reversal learning induced by removal of the extracellular matrix in auditory cortex
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 57
  start-page: 276
  issue: 2
  year: 2000
  end-page: 289
  article-title: Lecticans: Organizers of the brain extracellular matrix
  publication-title: Cellular and Molecular Life Sciences
– volume: 167
  start-page: 17
  year: 2021
  end-page: 29
  article-title: Glia as sculptors of synaptic plasticity
  publication-title: Neuroscience Research
– volume: 12
  start-page: 7016
  issue: 1
  year: 2022
  article-title: Neurogenesis mediated plasticity is associated with reduced neuronal activity in CA1 during context fear memory retrieval
  publication-title: Scientific Reports
– volume: 10
  start-page: 1862
  issue: 8
  year: 2021
  article-title: Microglia depletion‐induced remodeling of extracellular matrix and excitatory synapses in the hippocampus of adult mice
  publication-title: Cell
– volume: 10
  start-page: 1499
  issue: 11
  year: 2020
  article-title: Reconsideration of the semaphorin‐3A binding motif found in chondroitin sulfate using Galnac4s‐6st‐Knockout mice
  publication-title: Biomolecules
– volume: 265
  start-page: 48
  year: 2015
  end-page: 58
  article-title: Perineuronal net digestion with chondroitinase restores memory in mice with tau pathology
  publication-title: Experimental Neurology
– volume: 10
  start-page: 2055
  issue: 8
  year: 2021
  article-title: Extracellular metalloproteinases in the plasticity of excitatory and inhibitory synapses
  publication-title: Cell
– volume: 67
  start-page: 570
  issue: 5
  year: 2007
  end-page: 588
  article-title: Activity‐dependent formation and functions of chondroitin sulfate‐rich extracellular matrix of perineuronal nets
  publication-title: Developmental Neurobiology
– volume: 326
  start-page: 592
  issue: 5952
  year: 2009
  end-page: 596
  article-title: PTPσ is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration
  publication-title: Science
– year: 2023
  article-title: Perineuronal nets support astrocytic ion and glutamate homeostasis at tripartite synapses
  publication-title: Research Square
– year: 2023
– volume: 21
  start-page: 273
  issue: 4
  year: 2021
  end-page: 281
  article-title: Perineuronal net dynamics in the pathophysiology of epilepsy
  publication-title: Epilepsy Currents
– volume: 27
  start-page: 5405
  issue: 20
  year: 2007
  end-page: 5413
  article-title: Sensory deprivation alters aggrecan and perineuronal net expression in the mouse barrel cortex
  publication-title: The Journal of Neuroscience
– volume: 85
  start-page: 1011
  issue: 12
  year: 2019
  end-page: 1020
  article-title: Perineuronal nets, inhibitory interneurons, and anxiety‐related ventral hippocampal neuronal oscillations are altered by early life adversity
  publication-title: Biological Psychiatry
– volume: 13
  start-page: 197
  year: 2019
  article-title: Chronic stress modulates interneuronal plasticity: Effects on PSA‐NCAM and perineuronal nets in cortical and extracortical regions
  publication-title: Frontiers in Cellular Neuroscience
– volume: 202
  start-page: 211
  year: 2018
  end-page: 218
  article-title: A holistic approach to unravelling chondroitin sulfation: Correlations between surface charge, structure and binding to growth factors
  publication-title: Carbohydrate Polymers
– volume: 329
  start-page: 415
  issue: 2
  year: 1998
  end-page: 424
  article-title: Conserved basic residues in the C‐type lectin and short complement repeat domains of the G3 region of proteoglycans
  publication-title: Biochemical Journal
– volume: 7
  issue: 4
  year: 2020
  article-title: Circadian rhythms of perineuronal net composition
  publication-title: eNeuro
– volume: 76
  start-page: 3207
  issue: 16
  year: 2019
  end-page: 3228
  article-title: MMPs in learning and memory and neuropsychiatric disorders
  publication-title: Cellular and Molecular Life Sciences
– volume: 12
  start-page: 3
  year: 2018
  article-title: Structural variation of chondroitin sulfate chains contributes to the molecular heterogeneity of perineuronal nets
  publication-title: Frontiers in Integrative Neuroscience
– volume: 12
  start-page: 114
  issue: 1
  year: 2022
  article-title: Cortical diurnal rhythms remain intact with microglial depletion
  publication-title: Scientific Reports
– volume: 111
  start-page: 1150
  issue: 3
  year: 2014
  end-page: 1155
  article-title: Environmental enrichment extends ocular dominance plasticity into adulthood and protects from stroke‐induced impairments of plasticity
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 110
  start-page: 12456
  issue: 30
  year: 2013
  end-page: 12461
  article-title: Very long‐term memories may be stored in the pattern of holes in the perineuronal net
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– ident: e_1_2_12_46_1
  doi: 10.1074/jbc.m207105200
– ident: e_1_2_12_89_1
  doi: 10.3389/fncel.2021.814287
– ident: e_1_2_12_147_1
  doi: 10.1002/cne.24522
– ident: e_1_2_12_37_1
  doi: 10.1038/s41467‐020‐20241‐w
– ident: e_1_2_12_101_1
  doi: 10.1101/2023.01.24.525313
– ident: e_1_2_12_81_1
  doi: 10.1093/cercor/bhh195
– ident: e_1_2_12_109_1
  doi: 10.1038/nn.3023
– volume: 2
  start-page: 76
  issue: 1
  year: 2014
  ident: e_1_2_12_177_1
  article-title: Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer's disease
  publication-title: Acta Neuropathologica Communications
  contributor:
    fullname: Végh M. J.
– ident: e_1_2_12_173_1
  doi: 10.1016/j.ibror.2018.01.002
– ident: e_1_2_12_170_1
  doi: 10.1073/pnas.1713530115
– ident: e_1_2_12_35_1
  doi: 10.1177/15357597211018688
– ident: e_1_2_12_137_1
  doi: 10.1186/s12868‐021‐00643‐2
– ident: e_1_2_12_28_1
  doi: 10.1016/j.neuropharm.2017.07.009
– ident: e_1_2_12_58_1
  doi: 10.1038/s41583-019-0196-3
– ident: e_1_2_12_29_1
  doi: 10.1523/jneurosci.0291‐20.2020
– ident: e_1_2_12_32_1
  doi: 10.1093/brain/awq145
– ident: e_1_2_12_165_1
  doi: 10.1016/j.bbagen.2020.129804
– ident: e_1_2_12_178_1
  doi: 10.1016/j.celrep.2021.109313
– ident: e_1_2_12_59_1
  doi: 10.1016/j.celrep.2019.05.098
– ident: e_1_2_12_145_1
  doi: 10.1016/j.expneurol.2020.113533
– ident: e_1_2_12_85_1
  doi: 10.1016/j.neuron.2010.05.030
– ident: e_1_2_12_180_1
  doi: 10.1155/2015/367579
– ident: e_1_2_12_80_1
  doi: 10.1101/lm.030197.112
– ident: e_1_2_12_16_1
  doi: 10.1016/j.neuropharm.2020.108425
– ident: e_1_2_12_187_1
  doi: 10.1038/s41380-021-01208-9
– ident: e_1_2_12_11_1
  doi: 10.1523/jneurosci.2980‐06.2006
– ident: e_1_2_12_156_1
  doi: 10.1155/2016/7538208
– ident: e_1_2_12_49_1
  doi: 10.1074/jbc.m111.310029
– ident: e_1_2_12_36_1
  doi: 10.1111/acer.12847
– ident: e_1_2_12_13_1
  doi: 10.1002/cne.23009
– ident: e_1_2_12_182_1
  doi: 10.3390/cells10082055
– ident: e_1_2_12_115_1
  doi: 10.1016/j.neurobiolaging.2008.07.023
– ident: e_1_2_12_2_1
  doi: 10.1523/jneurosci.2387‐19.2020
– ident: e_1_2_12_176_1
  doi: 10.1038/npp.2010.90
– ident: e_1_2_12_34_1
  doi: 10.1016/s0166‐2236(98)01298‐3
– ident: e_1_2_12_108_1
  doi: 10.1155/2016/1305801
– ident: e_1_2_12_174_1
  doi: 10.1016/j.ibror.2018.11.006
– ident: e_1_2_12_86_1
  doi: 10.1038/s41598-020-73173-2
– ident: e_1_2_12_136_1
  doi: 10.1126/scitranslmed.aai8753
– ident: e_1_2_12_151_1
  doi: 10.1073/pnas.1902680116
– ident: e_1_2_12_64_1
  doi: 10.1074/jbc.m113.457903
– ident: e_1_2_12_17_1
  doi: 10.1016/j.neuron.2017.03.022
– ident: e_1_2_12_98_1
  doi: 10.1523/jneurosci.2140‐20.2020
– ident: e_1_2_12_183_1
  doi: 10.1523/jneurosci.5390‐13.2014
– ident: e_1_2_12_134_1
  doi: 10.1016/j.isci.2022.103895
– ident: e_1_2_12_135_1
  doi: 10.1126/science.abf5273
– ident: e_1_2_12_27_1
  doi: 10.1002/hipo.22488
– ident: e_1_2_12_149_1
  doi: 10.1016/j.neuroscience.2020.06.040
– ident: e_1_2_12_112_1
  doi: 10.1016/j.neuroscience.2010.05.022
– ident: e_1_2_12_22_1
  doi: 10.1042/bj3290415
– ident: e_1_2_12_107_1
  doi: 10.1038/s41467-018-06501-w
– ident: e_1_2_12_54_1
  doi: 10.1074/jbc.ra119.010830
– ident: e_1_2_12_125_1
  doi: 10.1126/science.1100135
– ident: e_1_2_12_126_1
  doi: 10.1523/ENEURO.0034‐19.2020
– ident: e_1_2_12_39_1
  doi: 10.1098/rspb.2018.0849
– ident: e_1_2_12_5_1
  doi: 10.1126/sciadv.abg1601
– ident: e_1_2_12_21_1
  doi: 10.1002/hipo.23296
– ident: e_1_2_12_65_1
  doi: 10.1038/nn.2377
– ident: e_1_2_12_121_1
  doi: 10.1016/j.cell.2020.05.050
– ident: e_1_2_12_127_1
  doi: 10.3389/fncel.2019.00197
– ident: e_1_2_12_114_1
  doi: 10.1098/rstb.2014.0046
– ident: e_1_2_12_61_1
  doi: 10.18632/aging.101256
– ident: e_1_2_12_19_1
  doi: 10.1128/mcb.22.21.7417‐7427.2002
– ident: e_1_2_12_118_1
  doi: 10.1016/j.biopsych.2019.02.021
– ident: e_1_2_12_48_1
  doi: 10.1523/jneurosci.0434‐21.2021
– ident: e_1_2_12_68_1
  doi: 10.1126/science.1174146
– ident: e_1_2_12_91_1
  doi: 10.1038/s41380‐023‐02085‐0
– ident: e_1_2_12_184_1
  doi: 10.1016/j.neuroscience.2013.08.061
– ident: e_1_2_12_124_1
  doi: 10.1523/jneurosci.2406‐12.2012
– ident: e_1_2_12_111_1
  doi: 10.1016/j.brainres.2007.02.066
– ident: e_1_2_12_154_1
  doi: 10.1371/journal.pone.0006780
– ident: e_1_2_12_69_1
  doi: 10.1016/j.neurobiolaging.2023.07.010
– ident: e_1_2_12_128_1
  doi: 10.1074/jbc.271.8.4403
– ident: e_1_2_12_162_1
  doi: 10.1016/j.bbadis.2011.08.009
– ident: e_1_2_12_104_1
  doi: 10.1523/jneurosci.19‐24‐10778.1999
– ident: e_1_2_12_171_1
  doi: 10.1038/nrc1391
– ident: e_1_2_12_92_1
  doi: 10.1007/s00401-012-1042-0
– ident: e_1_2_12_23_1
  doi: 10.1002/1096‐9861(20001225)428:4<616::aid‐cne3>3.0.co;2‐k
– ident: e_1_2_12_160_1
  doi: 10.1523/JNEUROSCI.2351-16.2016
– ident: e_1_2_12_72_1
  doi: 10.1007/s10827‐023‐00849‐9
– ident: e_1_2_12_30_1
  doi: 10.1172/JCI137221
– ident: e_1_2_12_179_1
  doi: 10.3389/fnsyn.2021.637549
– ident: e_1_2_12_158_1
  doi: 10.1016/j.brainresbull.2014.12.005
– ident: e_1_2_12_130_1
  doi: 10.1126/science.1072699
– ident: e_1_2_12_113_1
  doi: 10.1111/j.1750‐3639.2011.00557.x
– ident: e_1_2_12_106_1
  doi: 10.1016/j.nbd.2004.04.011
– ident: e_1_2_12_132_1
  doi: 10.1016/j.ceca.2021.102358
– ident: e_1_2_12_164_1
  doi: 10.3390/cells10081862
– ident: e_1_2_12_119_1
  doi: 10.1016/j.brainres.2012.05.024
– ident: e_1_2_12_14_1
  doi: 10.1016/j.carbpol.2018.08.120
– ident: e_1_2_12_139_1
  doi: 10.1523/jneurosci.6267‐11.2013
– ident: e_1_2_12_172_1
  doi: 10.1073/pnas.1310158110
– ident: e_1_2_12_117_1
  doi: 10.1016/s0169‐328x(02)00132‐8
– ident: e_1_2_12_88_1
  doi: 10.1111/j.1471-4159.2010.06878.x
– ident: e_1_2_12_25_1
  doi: 10.3390/biom11081235
– ident: e_1_2_12_157_1
  doi: 10.1523/JNEUROSCI.3592-14.2015
– ident: e_1_2_12_71_1
  doi: 10.1016/j.mcn.2003.12.001
– ident: e_1_2_12_79_1
  doi: 10.1073/pnas.2301312120
– ident: e_1_2_12_50_1
  doi: 10.1002/dneu.20361
– ident: e_1_2_12_66_1
  doi: 10.1523/jneurosci.3275‐12.2013
– ident: e_1_2_12_161_1
  doi: 10.1007/s00429‐016‐1224‐y
– ident: e_1_2_12_116_1
  doi: 10.1038/srep46024
– ident: e_1_2_12_94_1
  doi: 10.1186/s12915-022-01419-8
– ident: e_1_2_12_159_1
  doi: 10.1016/j.brainresbull.2017.03.003
– ident: e_1_2_12_45_1
  doi: 10.1074/jbc.m600544200
– ident: e_1_2_12_4_1
  doi: 10.1101/lm.050245.119
– ident: e_1_2_12_163_1
  doi: 10.3389/fncel.2014.00244
– ident: e_1_2_12_100_1
  doi: 10.1016/j.str.2004.05.021
– ident: e_1_2_12_99_1
  doi: 10.1093/cercor/bhz141
– ident: e_1_2_12_7_1
  doi: 10.1523/ENEURO.0112‐16.2016
– ident: e_1_2_12_20_1
  doi: 10.1016/j.jbc.2022.102176
– ident: e_1_2_12_133_1
  doi: 10.1126/science.ade6530
– ident: e_1_2_12_146_1
  doi: 10.1016/j.neures.2020.11.005
– ident: e_1_2_12_8_1
  doi: 10.1523/JNEUROSCI.2974-09.2009
– ident: e_1_2_12_123_1
  doi: 10.3389/fcell.2021.730550
– ident: e_1_2_12_12_1
  doi: 10.1016/0301‐0082(96)00014‐7
– ident: e_1_2_12_76_1
  doi: 10.1016/s0006‐8993(00)02173‐9
– ident: e_1_2_12_131_1
  doi: 10.1111/j.1460‐9568.2011.07690.x
– ident: e_1_2_12_150_1
  doi: 10.1126/science.1178310
– ident: e_1_2_12_15_1
  doi: 10.1007/s00018-019-03180-8
– ident: e_1_2_12_102_1
  doi: 10.1371/journal.pone.0093121
– ident: e_1_2_12_56_1
  doi: 10.1016/j.neuron.2017.06.028
– ident: e_1_2_12_181_1
  doi: 10.1093/cercor/bhx258
– ident: e_1_2_12_186_1
  doi: 10.1016/j.expneurol.2014.11.013
– ident: e_1_2_12_78_1
  doi: 10.1038/s41598-017-04007-x
– ident: e_1_2_12_166_1
  doi: 10.1002/hipo.22804
– ident: e_1_2_12_3_1
  doi: 10.1038/nature17623
– ident: e_1_2_12_175_1
  doi: 10.1016/j.neuroscience.2017.04.041
– ident: e_1_2_12_75_1
  doi: 10.1016/s0006‐8993(99)01784‐9
– ident: e_1_2_12_143_1
  doi: 10.1006/mcne.2000.0922
– ident: e_1_2_12_97_1
  doi: 10.1007/s10735‐019‐09818‐y
– ident: e_1_2_12_153_1
  doi: 10.1073/pnas.1817222116
– ident: e_1_2_12_33_1
  doi: 10.1002/cne.20822
– ident: e_1_2_12_63_1
  doi: 10.1111/j.1460‐9568.2008.06108.x
– ident: e_1_2_12_67_1
  doi: 10.1016/j.neuroscience.2010.08.032
– ident: e_1_2_12_87_1
  doi: 10.1016/j.isci.2023.106342
– ident: e_1_2_12_141_1
  doi: 10.1038/s41398-022-02226-z
– ident: e_1_2_12_26_1
  doi: 10.1038/s41593-020-0687-6
– ident: e_1_2_12_93_1
  doi: 10.1523/jneurosci.2504‐16.2016
– ident: e_1_2_12_47_1
  doi: 10.1016/j.neulet.2013.02.064
– ident: e_1_2_12_189_1
  doi: 10.1128/MCB.21.17.5970‐5978.2001
– ident: e_1_2_12_167_1
  doi: 10.1126/science.abl6773
– ident: e_1_2_12_96_1
  doi: 10.1016/j.immuni.2017.06.006
– ident: e_1_2_12_24_1
  doi: 10.1016/s0306‐4522(99)00071‐8
– ident: e_1_2_12_18_1
  doi: 10.1155/2018/5735789
– ident: e_1_2_12_90_1
  doi: 10.1038/s41467‐022‐35068‐w
– ident: e_1_2_12_110_1
  doi: 10.3389/fnint.2018.00003
– ident: e_1_2_12_105_1
  doi: 10.1523/jneurosci.5425‐06.2007
– ident: e_1_2_12_169_1
  doi: 10.21203/rs.3.rs‐2501039/v1
– ident: e_1_2_12_188_1
  doi: 10.1016/j.neurobiolaging.2017.08.002
– ident: e_1_2_12_73_1
  doi: 10.1073/pnas.1310272111
– ident: e_1_2_12_44_1
  doi: 10.1038/ncomms2491
– ident: e_1_2_12_185_1
  doi: 10.1007/pl00000690
– ident: e_1_2_12_38_1
  doi: 10.1038/s41380‐021‐01174‐2
– ident: e_1_2_12_82_1
  doi: 10.1016/j.neuroscience.2014.07.049
– ident: e_1_2_12_120_1
  doi: 10.3390/biom10111499
– ident: e_1_2_12_129_1
  doi: 10.1111/jnc.15037
– ident: e_1_2_12_9_1
  doi: 10.1016/j.neuron.2017.06.007
– ident: e_1_2_12_53_1
  doi: 10.1523/jneurosci.4158‐08.2009
– ident: e_1_2_12_74_1
  doi: 10.1038/nm.4354
– ident: e_1_2_12_168_1
  doi: 10.1038/s41467‐018‐07113‐0
– ident: e_1_2_12_142_1
  doi: 10.1046/j.1471‐4159.1995.65031035.x
– ident: e_1_2_12_42_1
  doi: 10.1111/acer.14810
– ident: e_1_2_12_144_1
  doi: 10.1038/nn1899
– ident: e_1_2_12_43_1
  doi: 10.1002/cne.23965
– ident: e_1_2_12_52_1
  doi: 10.1038/nature12866
– ident: e_1_2_12_103_1
  doi: 10.3389/fpsyt.2023.1122423
– ident: e_1_2_12_84_1
  doi: 10.1074/jbc.272.50.31377
– ident: e_1_2_12_55_1
  doi: 10.1038/s41598-022-10947-w
– ident: e_1_2_12_41_1
  doi: 10.1016/j.ebiom.2020.102919
– ident: e_1_2_12_83_1
  doi: 10.1007/s12035‐019‐1526‐1
– ident: e_1_2_12_70_1
  doi: 10.1073/pnas.1313385111
– ident: e_1_2_12_10_1
  doi: 10.1038/s41598‐021‐04079‐w
– ident: e_1_2_12_40_1
  doi: 10.1523/jneurosci.0683‐05.2005
– ident: e_1_2_12_6_1
  doi: 10.1007/s00401‐005‐1060‐2
– ident: e_1_2_12_57_1
  doi: 10.1038/s41380-022-01634-3
– ident: e_1_2_12_148_1
  doi: 10.1016/j.exger.2012.01.007
– ident: e_1_2_12_77_1
  doi: 10.3389/fncel.2018.00149
– start-page: 129
  volume-title: Progress in brain research
  year: 2000
  ident: e_1_2_12_122_1
  contributor:
    fullname: Nicholson C.
– ident: e_1_2_12_152_1
  doi: 10.1111/j.1440-1827.2010.02547.x
– ident: e_1_2_12_51_1
  doi: 10.1016/j.celrep.2019.09.044
– ident: e_1_2_12_95_1
  doi: 10.1002/cne.23701
– ident: e_1_2_12_138_1
  doi: 10.1073/pnas.1102962108
– ident: e_1_2_12_31_1
  doi: 10.1523/JNEUROSCI.0245‐16.2016
– ident: e_1_2_12_60_1
  doi: 10.1371/journal.pone.0016666
– ident: e_1_2_12_62_1
  doi: 10.1038/nn.2338
– ident: e_1_2_12_140_1
  doi: 10.1523/jneurosci.1122‐18.2018
– ident: e_1_2_12_155_1
  doi: 10.1371/journal.pone.0168256
SSID ssj0016461
Score 2.5294416
SecondaryResourceType review_article
Snippet Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity. They consist...
Abstract Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity....
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1854
SubjectTerms Cell body
Central nervous system
cognition
Cognitive ability
Developmental plasticity
Extracellular matrix
Functional anatomy
Functional plasticity
Memory
Neural plasticity
Perineuronal nets
Plastic memory
Plastic properties
Plasticity
remodeling enzyme
Shape memory
Structure-function relationships
Substrates
Synapses
Synaptic plasticity
Synaptogenesis
Title From molecules to behavior: Implications for perineuronal net remodeling in learning and memory
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjnc.16036
https://www.ncbi.nlm.nih.gov/pubmed/38158878
https://www.proquest.com/docview/3112454266
https://www.proquest.com/docview/2909087522
Volume 168
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1RLvRSymdDAZkKIS6LvHHsJO0JLayAA6oQSBwqRbE9W1XVele72QP8esbOh4AKqeIWKY6ceGbsZ-fNG4BDLLlGLSmQpKENitSaYg5tT-aGp6n1AumBIHutLu6Sq3t5vwQ_2lyYWh-iO3DzkRHmax_gpZ4_D3KKH18j2ctt90Xq6VxnN510lJfN6ndK4eSZjapQYPG0T75ci_4BmC_xalhwhqvwq33Vmmfy92RR6RPz-ErF8Z3f8hk-NUCUndaeswZL6NZh49TRJnz8wI5YoIaGM_d1WBm0ZeE2oBjOJmM2rqvq4pxVE9am-n9nl8_46YzgMJuG7MLFzON95rBiMwy1d2jBZH8ca2pW_Gals2zsSb8Pm3A3PL8dXPSaKg09I7JM9UY8zTNuRxotaq4JX6G0Pn83zxNTclQm7ovMqNGor3VJDbm2WqQENJRVSOhmC5bdxOEXYDxLYhRGKWttIrOS0B8Z1hrBUaASKoJvrb2KaS3GUXSbGGeKMIQR7LaWLJp4nBeCYGUiPRqJ4KC7TSPnf4-UDieLeRHnPPf6_nEcwXbtAV0vhGskTcdZBMfBjm93X1xdD8LFzv83_QofY8JKNXVtF5ar2QL3COtUeh8-xMnP_eDaTzrZ-s4
link.rule.ids 315,783,787,1378,11576,27938,27939,46066,46308,46490,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcigXPloogRYMQojLVt44dhLUS7Ww2payB9RKvSArtmerCq232s0eyq9n7HyoBSEhbpHiyIk9z36ezLwBeIcVN2gkAUlaOqBIYwhz6AaytDzPXRBIjwGyUzU5z04u5MUGHHa5MI0-RO9wC8iI63UAeHBI30Y5ASgUSVb34D7BXYT6BZ--9eJRQThr2GuFk222ukIxjqd79O5u9AfFvMtY45YzfgTfu5dtIk1-HKxrc2B__qbj-L9f8xgetlyUHTXG8wQ20G_DzpGnc_j8hr1nMTo0ut23YWvUVYbbAT1eLuZs3hTWxRWrF6zL9v_Ijm-FqDNixOw6Jhiul4HyM481W2Isv0N7JrvyrC1bcckq79g8xP3ePIXz8eez0WTQFmoYWFEUajDjeVlwNzPo0HBDFAulCym8ZZnZiqOy6VAUVs1mQ2MqasiNMyInrqGcQiI4z2DTLzw-B8aLLEVhlXLOZbKoiACKvHBWcBSohErgbTdh-rrR49D9OcZbHYcwgb1uKnULyZUWxCwzGQhJAm_62zRy4Q9J5XGxXum05GWQ-E_TBHYbE-h7IWojaUUuEvgQJ_Lv3euT6ShevPj3pq9ha3L29VSfHk-_vIQHKVGnJpJtDzbr5Rr3ifrU5lW08F_x_P4R
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qBe2LH60fq1WjiPhyJbfZZHf1qVw92iqHiIU-CGGTzIqUyx13ew_1r3eS_aBVBPFtYbNkNzOT_JL9zW8AXmPFDRpJgSQtbVCkMRRz6EaytDzPXRBIjwTZmTo-y07P5fkWvO9zYVp9iOHALURGnK9DgC9dfTXIKX5CjWR1A25mSvDA5zr6MmhHBd2s8SAVTq7ZyQpFGk__6PXF6A-EeR2wxhVnehe-9e_aEk0uDjaNObA_f5Nx_M-PuQd3OiTKDlvXuQ9b6Hdh79DTLnx-yd6wyA2Nh-67cHvS14XbAz1dLeZs3pbVxTVrFqzP9X_HTq4Q1BnhYbaM6YWbVQD8zGPDVhiL79CKyX541hWt-M4q79g8sH4vH8DZ9MPXyfGoK9MwsqIo1KjmeVlwVxt0aLghgIXShQTessxsxVHZdCwKq-p6bExFDblxRuSENJRTSPDmIWz7hcfHwHiRpSisUs65TBYVwT-RF84KjgKVUAm86u2ll60ahx52Md7qOIQJ7PeW1F1ArrUgXJnJAEcSeDncppEL_0cqj4vNWqclL4PAf5om8Kj1gKEXAjaS5uMigbfRjn_vXp_OJvHiyb83fQG3Ph9N9aeT2censJMSbmppbPuw3aw2-IxwT2OeR__-Bf6w_MA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+molecules+to+behavior%3A+Implications+for+perineuronal+net+remodeling+in+learning+and+memory&rft.jtitle=Journal+of+neurochemistry&rft.au=Sanchez%2C+Brenda&rft.au=Kraszewski%2C+Piotr&rft.au=Lee%2C+Sabrina&rft.au=Cope%2C+Elise+C&rft.date=2024-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-3042&rft.eissn=1471-4159&rft.volume=168&rft.issue=9&rft.spage=1854&rft.epage=1876&rft_id=info:doi/10.1111%2Fjnc.16036&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon