From molecules to behavior: Implications for perineuronal net remodeling in learning and memory
Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity. They consist of a heterogeneous mix of ECM components that form lattice‐like structures enwrapping the cell body and proximal dendrites of particular neu...
Saved in:
Published in | Journal of neurochemistry Vol. 168; no. 9; pp. 1854 - 1876 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity. They consist of a heterogeneous mix of ECM components that form lattice‐like structures enwrapping the cell body and proximal dendrites of particular neurons. During development, accumulating research has shown that the closure of various critical periods of plasticity is strongly linked to experience‐driven PNN formation and maturation. PNNs provide an interface for synaptic contacts within the holes of the structure, generally promoting synaptic stabilization and restricting the formation of new synaptic connections in the adult brain. In this way, they impact both synaptic structure and function, ultimately influencing higher cognitive processes. PNNs are highly plastic structures, changing their composition and distribution throughout life and in response to various experiences and memory disorders, thus serving as a substrate for experience‐ and disease‐dependent cognitive function. In this review, we delve into the proposed mechanisms by which PNNs shape plasticity and memory function, highlighting the potential impact of their structural components, overall architecture, and dynamic remodeling on functional outcomes in health and disease.
Perineuronal nets (PNNs) are condensed extracellular matrix structures consisting of multiple components joined together in a lattice‐like fashion around particular neurons. In general, PNNs are thought to restrict plasticity (e.g., closure of critical periods, stabilization of synapses, and refinement of neural activity), subsequently impacting learning and memory processes. PNNs are highly dynamic and continuously fluctuate in composition and distribution throughout life and in response to various contexts, rendering them as a substrate for experience‐ and disease‐dependent cognitive function. |
---|---|
AbstractList | Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity. They consist of a heterogeneous mix of ECM components that form lattice-like structures enwrapping the cell body and proximal dendrites of particular neurons. During development, accumulating research has shown that the closure of various critical periods of plasticity is strongly linked to experience-driven PNN formation and maturation. PNNs provide an interface for synaptic contacts within the holes of the structure, generally promoting synaptic stabilization and restricting the formation of new synaptic connections in the adult brain. In this way, they impact both synaptic structure and function, ultimately influencing higher cognitive processes. PNNs are highly plastic structures, changing their composition and distribution throughout life and in response to various experiences and memory disorders, thus serving as a substrate for experience- and disease-dependent cognitive function. In this review, we delve into the proposed mechanisms by which PNNs shape plasticity and memory function, highlighting the potential impact of their structural components, overall architecture, and dynamic remodeling on functional outcomes in health and disease.Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity. They consist of a heterogeneous mix of ECM components that form lattice-like structures enwrapping the cell body and proximal dendrites of particular neurons. During development, accumulating research has shown that the closure of various critical periods of plasticity is strongly linked to experience-driven PNN formation and maturation. PNNs provide an interface for synaptic contacts within the holes of the structure, generally promoting synaptic stabilization and restricting the formation of new synaptic connections in the adult brain. In this way, they impact both synaptic structure and function, ultimately influencing higher cognitive processes. PNNs are highly plastic structures, changing their composition and distribution throughout life and in response to various experiences and memory disorders, thus serving as a substrate for experience- and disease-dependent cognitive function. In this review, we delve into the proposed mechanisms by which PNNs shape plasticity and memory function, highlighting the potential impact of their structural components, overall architecture, and dynamic remodeling on functional outcomes in health and disease. Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity. They consist of a heterogeneous mix of ECM components that form lattice-like structures enwrapping the cell body and proximal dendrites of particular neurons. During development, accumulating research has shown that the closure of various critical periods of plasticity is strongly linked to experience-driven PNN formation and maturation. PNNs provide an interface for synaptic contacts within the holes of the structure, generally promoting synaptic stabilization and restricting the formation of new synaptic connections in the adult brain. In this way, they impact both synaptic structure and function, ultimately influencing higher cognitive processes. PNNs are highly plastic structures, changing their composition and distribution throughout life and in response to various experiences and memory disorders, thus serving as a substrate for experience- and disease-dependent cognitive function. In this review, we delve into the proposed mechanisms by which PNNs shape plasticity and memory function, highlighting the potential impact of their structural components, overall architecture, and dynamic remodeling on functional outcomes in health and disease. Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity. They consist of a heterogeneous mix of ECM components that form lattice‐like structures enwrapping the cell body and proximal dendrites of particular neurons. During development, accumulating research has shown that the closure of various critical periods of plasticity is strongly linked to experience‐driven PNN formation and maturation. PNNs provide an interface for synaptic contacts within the holes of the structure, generally promoting synaptic stabilization and restricting the formation of new synaptic connections in the adult brain. In this way, they impact both synaptic structure and function, ultimately influencing higher cognitive processes. PNNs are highly plastic structures, changing their composition and distribution throughout life and in response to various experiences and memory disorders, thus serving as a substrate for experience‐ and disease‐dependent cognitive function. In this review, we delve into the proposed mechanisms by which PNNs shape plasticity and memory function, highlighting the potential impact of their structural components, overall architecture, and dynamic remodeling on functional outcomes in health and disease. Perineuronal nets (PNNs) are condensed extracellular matrix structures consisting of multiple components joined together in a lattice‐like fashion around particular neurons. In general, PNNs are thought to restrict plasticity (e.g., closure of critical periods, stabilization of synapses, and refinement of neural activity), subsequently impacting learning and memory processes. PNNs are highly dynamic and continuously fluctuate in composition and distribution throughout life and in response to various contexts, rendering them as a substrate for experience‐ and disease‐dependent cognitive function. Abstract Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity. They consist of a heterogeneous mix of ECM components that form lattice‐like structures enwrapping the cell body and proximal dendrites of particular neurons. During development, accumulating research has shown that the closure of various critical periods of plasticity is strongly linked to experience‐driven PNN formation and maturation. PNNs provide an interface for synaptic contacts within the holes of the structure, generally promoting synaptic stabilization and restricting the formation of new synaptic connections in the adult brain. In this way, they impact both synaptic structure and function, ultimately influencing higher cognitive processes. PNNs are highly plastic structures, changing their composition and distribution throughout life and in response to various experiences and memory disorders, thus serving as a substrate for experience‐ and disease‐dependent cognitive function. In this review, we delve into the proposed mechanisms by which PNNs shape plasticity and memory function, highlighting the potential impact of their structural components, overall architecture, and dynamic remodeling on functional outcomes in health and disease. |
Author | Sanchez, Brenda Lee, Sabrina Cope, Elise C. Kraszewski, Piotr |
Author_xml | – sequence: 1 givenname: Brenda surname: Sanchez fullname: Sanchez, Brenda organization: University of Virginia School of Medicine – sequence: 2 givenname: Piotr surname: Kraszewski fullname: Kraszewski, Piotr organization: University of Virginia School of Medicine – sequence: 3 givenname: Sabrina surname: Lee fullname: Lee, Sabrina organization: University of Virginia School of Medicine – sequence: 4 givenname: Elise C. orcidid: 0000-0001-6239-690X surname: Cope fullname: Cope, Elise C. email: elise.cope@virginia.edu organization: University of Virginia School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38158878$$D View this record in MEDLINE/PubMed |
BookMark | eNp10M1uGyEUBWBUJarttIu-QIXUTbKYBBiGYbqLrDg_ipJNukbA3GmxGHDB08pvH1wnXUQKG5D4dHTvWaCjEAMg9IWSc1rOxTrYcypILT6gOeUtrThtuiM0J4SxqiaczdAi5zUhVHBBP6JZLWkjZSvnSK1SHPEYPdjJQ8bbiA380n9cTN_x7bjxzuqtiyHjISa8geQCTCkG7XGALU4wxh68Cz-xC9iDTmH_1qHHY_lKu0_oeNA-w-eX-wT9WF09LW-q-8fr2-XlfWVrKUU1kLaTpB8M9GCIEZxD05fpSddxqwkIy2gtrRgGaowukJje1G1DmegFMFmfoNND7ibF3xPkrRpdtuC9DhCnrFhHOiLbhrFCv72h6zilslFWNaWMN5wJUdTZQdkUc04wqE1yo047RYnat65K6-pf68V-fUmczAj9f_lacwEXB_DXedi9n6TuHpaHyGduSo3u |
CitedBy_id | crossref_primary_10_3390_biology13030200 crossref_primary_10_1016_j_jchemneu_2024_102418 |
Cites_doi | 10.1074/jbc.m207105200 10.3389/fncel.2021.814287 10.1002/cne.24522 10.1038/s41467‐020‐20241‐w 10.1101/2023.01.24.525313 10.1093/cercor/bhh195 10.1038/nn.3023 10.1016/j.ibror.2018.01.002 10.1073/pnas.1713530115 10.1177/15357597211018688 10.1186/s12868‐021‐00643‐2 10.1016/j.neuropharm.2017.07.009 10.1038/s41583-019-0196-3 10.1523/jneurosci.0291‐20.2020 10.1093/brain/awq145 10.1016/j.bbagen.2020.129804 10.1016/j.celrep.2021.109313 10.1016/j.celrep.2019.05.098 10.1016/j.expneurol.2020.113533 10.1016/j.neuron.2010.05.030 10.1155/2015/367579 10.1101/lm.030197.112 10.1016/j.neuropharm.2020.108425 10.1038/s41380-021-01208-9 10.1523/jneurosci.2980‐06.2006 10.1155/2016/7538208 10.1074/jbc.m111.310029 10.1111/acer.12847 10.1002/cne.23009 10.3390/cells10082055 10.1016/j.neurobiolaging.2008.07.023 10.1523/jneurosci.2387‐19.2020 10.1038/npp.2010.90 10.1016/s0166‐2236(98)01298‐3 10.1155/2016/1305801 10.1016/j.ibror.2018.11.006 10.1038/s41598-020-73173-2 10.1126/scitranslmed.aai8753 10.1073/pnas.1902680116 10.1074/jbc.m113.457903 10.1016/j.neuron.2017.03.022 10.1523/jneurosci.2140‐20.2020 10.1523/jneurosci.5390‐13.2014 10.1016/j.isci.2022.103895 10.1126/science.abf5273 10.1002/hipo.22488 10.1016/j.neuroscience.2020.06.040 10.1016/j.neuroscience.2010.05.022 10.1042/bj3290415 10.1038/s41467-018-06501-w 10.1074/jbc.ra119.010830 10.1126/science.1100135 10.1523/ENEURO.0034‐19.2020 10.1098/rspb.2018.0849 10.1126/sciadv.abg1601 10.1002/hipo.23296 10.1038/nn.2377 10.1016/j.cell.2020.05.050 10.3389/fncel.2019.00197 10.1098/rstb.2014.0046 10.18632/aging.101256 10.1128/mcb.22.21.7417‐7427.2002 10.1016/j.biopsych.2019.02.021 10.1523/jneurosci.0434‐21.2021 10.1126/science.1174146 10.1038/s41380‐023‐02085‐0 10.1016/j.neuroscience.2013.08.061 10.1523/jneurosci.2406‐12.2012 10.1016/j.brainres.2007.02.066 10.1371/journal.pone.0006780 10.1016/j.neurobiolaging.2023.07.010 10.1074/jbc.271.8.4403 10.1016/j.bbadis.2011.08.009 10.1523/jneurosci.19‐24‐10778.1999 10.1038/nrc1391 10.1007/s00401-012-1042-0 10.1002/1096‐9861(20001225)428:4<616::aid‐cne3>3.0.co;2‐k 10.1523/JNEUROSCI.2351-16.2016 10.1007/s10827‐023‐00849‐9 10.1172/JCI137221 10.3389/fnsyn.2021.637549 10.1016/j.brainresbull.2014.12.005 10.1126/science.1072699 10.1111/j.1750‐3639.2011.00557.x 10.1016/j.nbd.2004.04.011 10.1016/j.ceca.2021.102358 10.3390/cells10081862 10.1016/j.brainres.2012.05.024 10.1016/j.carbpol.2018.08.120 10.1523/jneurosci.6267‐11.2013 10.1073/pnas.1310158110 10.1016/s0169‐328x(02)00132‐8 10.1111/j.1471-4159.2010.06878.x 10.3390/biom11081235 10.1523/JNEUROSCI.3592-14.2015 10.1016/j.mcn.2003.12.001 10.1073/pnas.2301312120 10.1002/dneu.20361 10.1523/jneurosci.3275‐12.2013 10.1007/s00429‐016‐1224‐y 10.1038/srep46024 10.1186/s12915-022-01419-8 10.1016/j.brainresbull.2017.03.003 10.1074/jbc.m600544200 10.1101/lm.050245.119 10.3389/fncel.2014.00244 10.1016/j.str.2004.05.021 10.1093/cercor/bhz141 10.1523/ENEURO.0112‐16.2016 10.1016/j.jbc.2022.102176 10.1126/science.ade6530 10.1016/j.neures.2020.11.005 10.1523/JNEUROSCI.2974-09.2009 10.3389/fcell.2021.730550 10.1016/0301‐0082(96)00014‐7 10.1016/s0006‐8993(00)02173‐9 10.1111/j.1460‐9568.2011.07690.x 10.1126/science.1178310 10.1007/s00018-019-03180-8 10.1371/journal.pone.0093121 10.1016/j.neuron.2017.06.028 10.1093/cercor/bhx258 10.1016/j.expneurol.2014.11.013 10.1038/s41598-017-04007-x 10.1002/hipo.22804 10.1038/nature17623 10.1016/j.neuroscience.2017.04.041 10.1016/s0006‐8993(99)01784‐9 10.1006/mcne.2000.0922 10.1007/s10735‐019‐09818‐y 10.1073/pnas.1817222116 10.1002/cne.20822 10.1111/j.1460‐9568.2008.06108.x 10.1016/j.neuroscience.2010.08.032 10.1016/j.isci.2023.106342 10.1038/s41398-022-02226-z 10.1038/s41593-020-0687-6 10.1523/jneurosci.2504‐16.2016 10.1016/j.neulet.2013.02.064 10.1128/MCB.21.17.5970‐5978.2001 10.1126/science.abl6773 10.1016/j.immuni.2017.06.006 10.1016/s0306‐4522(99)00071‐8 10.1155/2018/5735789 10.1038/s41467‐022‐35068‐w 10.3389/fnint.2018.00003 10.1523/jneurosci.5425‐06.2007 10.21203/rs.3.rs‐2501039/v1 10.1016/j.neurobiolaging.2017.08.002 10.1073/pnas.1310272111 10.1038/ncomms2491 10.1007/pl00000690 10.1038/s41380‐021‐01174‐2 10.1016/j.neuroscience.2014.07.049 10.3390/biom10111499 10.1111/jnc.15037 10.1016/j.neuron.2017.06.007 10.1523/jneurosci.4158‐08.2009 10.1038/nm.4354 10.1038/s41467‐018‐07113‐0 10.1046/j.1471‐4159.1995.65031035.x 10.1111/acer.14810 10.1038/nn1899 10.1002/cne.23965 10.1038/nature12866 10.3389/fpsyt.2023.1122423 10.1074/jbc.272.50.31377 10.1038/s41598-022-10947-w 10.1016/j.ebiom.2020.102919 10.1007/s12035‐019‐1526‐1 10.1073/pnas.1313385111 10.1038/s41598‐021‐04079‐w 10.1523/jneurosci.0683‐05.2005 10.1007/s00401‐005‐1060‐2 10.1038/s41380-022-01634-3 10.1016/j.exger.2012.01.007 10.3389/fncel.2018.00149 10.1111/j.1440-1827.2010.02547.x 10.1016/j.celrep.2019.09.044 10.1002/cne.23701 10.1073/pnas.1102962108 10.1523/JNEUROSCI.0245‐16.2016 10.1371/journal.pone.0016666 10.1038/nn.2338 10.1523/jneurosci.1122‐18.2018 10.1371/journal.pone.0168256 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry. 2023 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry. 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry. – notice: 2023 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN NPM AAYXX CITATION 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 |
DOI | 10.1111/jnc.16036 |
DatabaseName | Wiley_OA刊 Wiley-Blackwell Backfiles (Open access) PubMed CrossRef Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Virology and AIDS Abstracts Technology Research Database Toxicology Abstracts AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley_OA刊 url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1471-4159 |
EndPage | 1876 |
ExternalDocumentID | 10_1111_jnc_16036 38158878 JNC16036 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Institute of Mental Health funderid: R01MH133744‐01 – fundername: Owens Family Foundation – fundername: NIMH NIH HHS grantid: R01MH133744-01 |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29L 2WC 31~ 33P 36B 3SF 4.4 41~ 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAYJJ AAZKR ABCQN ABCUV ABEML ABIVO ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FUBAC FZ0 G-S G.N GAKWD GODZA GX1 H.X HF~ HGLYW HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TWZ UB1 V8K VH1 W8V W99 WBKPD WIH WIJ WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ X7M XG1 XJT YFH YNH YOC YUY ZGI ZXP ZZTAW ~IA ~KM ~WT NPM AAYXX CITATION 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 |
ID | FETCH-LOGICAL-c3886-f07980dfbedeb0b644e5d0220994ca0e6c2138c6ff1bba0df0bdb375126d6e283 |
IEDL.DBID | DR2 |
ISSN | 0022-3042 1471-4159 |
IngestDate | Sat Oct 26 02:02:05 EDT 2024 Thu Oct 10 21:07:53 EDT 2024 Fri Aug 23 02:16:12 EDT 2024 Tue Oct 29 09:32:08 EDT 2024 Fri Oct 04 09:52:02 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | memory cognition remodeling enzyme extracellular matrix perineuronal nets |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2023 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3886-f07980dfbedeb0b644e5d0220994ca0e6c2138c6ff1bba0df0bdb375126d6e283 |
Notes | Matrix Metalloproteases . This article is part of the special issue ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6239-690X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjnc.16036 |
PMID | 38158878 |
PQID | 3112454266 |
PQPubID | 31528 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_2909087522 proquest_journals_3112454266 crossref_primary_10_1111_jnc_16036 pubmed_primary_38158878 wiley_primary_10_1111_jnc_16036_JNC16036 |
PublicationCentury | 2000 |
PublicationDate | September 2024 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Journal of neurochemistry |
PublicationTitleAlternate | J Neurochem |
PublicationYear | 2024 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2022; 298 2018; 285 2013; 4 2012; 520 2021; 167 1997; 272 2004; 25 2019; 13 2015; 265 2018; 202 2002; 277 2004; 4 2022; 25 2016; 2016 2020; 442 2022; 20 2020; 10 2012; 15 2012; 125 1999; 842 2016; 36 2022; 27 2009; 12 2014; 523 2018; 9 2014; 369 2018; 4 2020; 295 2019; 20 2010; 114 2008; 27 2006; 26 2019; 27 1998; 329 2019; 29 2013; 110 2006; 281 2007; 67 2012; 22 2018; 38 2023; 51 2010; 31 2012; 1465 2018; 28 2019; 6 2010; 35 2005; 110 2013; 504 2019; 30 2020; 40 2010; 169 2004; 306 2007; 10 2011; 6 2012; 32 2014; 277 2016; 11 2001; 21 2016; 3 2017; 59 2000; 864 2015; 111 2018; 115 2022; 12 2015; 2015 2020; 27 2022; 13 2022; 15 2021; 131 2020; 155 2021; 373 2011; 1812 2020; 23 2010; 170 2018; 12 2005; 15 2012; 47 2014; 34 2015; 35 2021; 27 2017; 7 2021; 26 2021; 21 2015; 39 2023; 380 2019; 50 2021; 22 2018; 526 2019; 56 2013; 20 2017; 46 2013; 288 2006; 494 2020; 58 2017; 355 2017; 9 2022; 377 2005; 25 2010; 60 2010; 67 2021; 36 2020; 7 2021; 31 2014; 2 2023; 131 2023; 28 2017; 37 2000 2023; 26 1999; 19 2000; 57 2002; 100 1995; 65 2018; 136 2019; 116 2001; 17 2014; 9 1999; 92 2014; 8 2021; 41 2017; 125 2009; 325 2007; 27 2009; 326 2021; 9 2021; 7 2023; 14 2023; 120 2019; 76 2013; 544 2020; 182 2002; 298 2017; 23 2022; 46 2021; 184 2011; 33 2016; 524 2021; 94 2014; 111 1998; 21 2009; 29 2017; 95 2017; 94 2021; 13 2015; 25 2018; 2018 2021; 10 2011; 108 2021; 12 2007; 1150 2021; 11 2013; 33 2023 2021; 1865 2019; 85 2004; 16 2021; 336 2004; 12 2002; 22 2000; 428 2010; 133 1996; 271 2013; 253 2016; 532 2009; 4 2017; 222 1996; 49 e_1_2_12_6_1 e_1_2_12_130_1 e_1_2_12_172_1 Végh M. J. (e_1_2_12_177_1) 2014; 2 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_111_1 e_1_2_12_157_1 e_1_2_12_138_1 e_1_2_12_115_1 e_1_2_12_153_1 e_1_2_12_134_1 e_1_2_12_176_1 e_1_2_12_108_1 e_1_2_12_20_1 e_1_2_12_66_1 e_1_2_12_43_1 e_1_2_12_85_1 e_1_2_12_24_1 e_1_2_12_47_1 e_1_2_12_89_1 e_1_2_12_62_1 e_1_2_12_81_1 e_1_2_12_161_1 e_1_2_12_184_1 e_1_2_12_180_1 e_1_2_12_100_1 e_1_2_12_123_1 e_1_2_12_146_1 e_1_2_12_169_1 e_1_2_12_28_1 e_1_2_12_104_1 e_1_2_12_127_1 e_1_2_12_142_1 e_1_2_12_165_1 e_1_2_12_188_1 e_1_2_12_31_1 e_1_2_12_77_1 e_1_2_12_54_1 e_1_2_12_96_1 e_1_2_12_139_1 e_1_2_12_35_1 e_1_2_12_58_1 e_1_2_12_12_1 e_1_2_12_73_1 e_1_2_12_50_1 e_1_2_12_92_1 e_1_2_12_3_1 e_1_2_12_152_1 e_1_2_12_171_1 e_1_2_12_18_1 e_1_2_12_110_1 e_1_2_12_137_1 e_1_2_12_179_1 e_1_2_12_114_1 e_1_2_12_133_1 e_1_2_12_156_1 e_1_2_12_175_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_86_1 e_1_2_12_107_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_67_1 Nicholson C. (e_1_2_12_122_1) 2000 e_1_2_12_40_1 e_1_2_12_82_1 e_1_2_12_160_1 e_1_2_12_141_1 e_1_2_12_183_1 e_1_2_12_168_1 e_1_2_12_29_1 e_1_2_12_149_1 e_1_2_12_126_1 e_1_2_12_164_1 e_1_2_12_103_1 e_1_2_12_145_1 e_1_2_12_187_1 e_1_2_12_119_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_74_1 e_1_2_12_97_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_78_1 e_1_2_12_13_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_70_1 e_1_2_12_93_1 e_1_2_12_4_1 e_1_2_12_174_1 e_1_2_12_151_1 e_1_2_12_19_1 e_1_2_12_170_1 e_1_2_12_38_1 e_1_2_12_136_1 e_1_2_12_159_1 e_1_2_12_132_1 e_1_2_12_178_1 e_1_2_12_113_1 e_1_2_12_155_1 e_1_2_12_41_1 e_1_2_12_87_1 e_1_2_12_106_1 e_1_2_12_129_1 e_1_2_12_22_1 e_1_2_12_64_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_68_1 e_1_2_12_83_1 e_1_2_12_60_1 e_1_2_12_140_1 e_1_2_12_163_1 e_1_2_12_182_1 e_1_2_12_49_1 e_1_2_12_121_1 e_1_2_12_148_1 e_1_2_12_102_1 e_1_2_12_125_1 e_1_2_12_144_1 e_1_2_12_167_1 e_1_2_12_186_1 e_1_2_12_52_1 e_1_2_12_98_1 e_1_2_12_118_1 e_1_2_12_33_1 e_1_2_12_75_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_79_1 e_1_2_12_14_1 e_1_2_12_90_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_94_1 e_1_2_12_71_1 e_1_2_12_150_1 e_1_2_12_173_1 e_1_2_12_5_1 e_1_2_12_16_1 e_1_2_12_112_1 e_1_2_12_135_1 e_1_2_12_158_1 e_1_2_12_39_1 e_1_2_12_116_1 e_1_2_12_131_1 e_1_2_12_154_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_88_1 e_1_2_12_109_1 e_1_2_12_128_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_80_1 e_1_2_12_61_1 e_1_2_12_84_1 e_1_2_12_185_1 e_1_2_12_162_1 e_1_2_12_181_1 e_1_2_12_27_1 e_1_2_12_101_1 e_1_2_12_147_1 e_1_2_12_120_1 e_1_2_12_105_1 e_1_2_12_143_1 e_1_2_12_189_1 e_1_2_12_124_1 e_1_2_12_166_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_76_1 e_1_2_12_99_1 e_1_2_12_117_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_15_1 e_1_2_12_91_1 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_95_1 e_1_2_12_9_1 |
References_xml | – volume: 32 start-page: 18009 issue: 50 year: 2012 end-page: 18017 article-title: Perisynaptic chondroitin sulfate proteoglycans restrict structural plasticity in an integrin‐dependent manner publication-title: The Journal of Neuroscience – volume: 108 start-page: 9747 issue: 24 year: 2011 end-page: 9752 article-title: Elucidating glycosaminoglycan–protein–protein interactions using carbohydrate microarray and computational approaches publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 22 start-page: 7417 issue: 21 year: 2002 end-page: 7427 article-title: Brevican‐deficient mice display impaired hippocampal CA1 long‐term potentiation but show no obvious deficits in learning and memory publication-title: Molecular and Cellular Biology – volume: 65 start-page: 1035 issue: 3 year: 1995 end-page: 1045 article-title: Microglial cathepsin B: An immunological examination of cellular and secreted species publication-title: Journal of Neurochemistry – volume: 277 start-page: 43707 issue: 46 year: 2002 end-page: 43716 article-title: Specific molecular interactions of oversulfated chondroitin sulfate E with various heparin‐binding growth factors publication-title: Journal of Biological Chemistry – volume: 41 start-page: 5779 issue: 27 year: 2021 end-page: 5790 article-title: Regulation of perineuronal nets in the adult cortex by the activity of the cortical network publication-title: The Journal of Neuroscience – volume: 325 start-page: 1258 issue: 5945 year: 2009 end-page: 1261 article-title: Perineuronal nets protect fear memories from erasure publication-title: Science – volume: 9 start-page: 4724 issue: 1 year: 2018 article-title: Perineuronal nets decrease membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsy publication-title: Nature Communications – volume: 35 start-page: 2120 issue: 10 year: 2010 end-page: 2133 article-title: Extracellular matrix plasticity and GABAergic inhibition of prefrontal cortex pyramidal cells facilitates relapse to heroin seeking publication-title: Neuropsychopharmacology – volume: 36 issue: 1 year: 2021 article-title: Microglia enable mature perineuronal nets disassembly upon anesthetic ketamine exposure or 60‐Hz light entrainment in the healthy brain publication-title: Cell Reports – volume: 428 start-page: 616 issue: 4 year: 2000 end-page: 629 article-title: Postnatal development of perineuronal nets in wild‐type mice and in a mutant deficient in tenascin‐R publication-title: The Journal of Comparative Neurology – volume: 38 start-page: 10102 issue: 47 year: 2018 end-page: 10113 article-title: Aggrecan directs extracellular matrix‐mediated neuronal plasticity publication-title: The Journal of Neuroscience – volume: 6 issue: 1 year: 2011 article-title: Experience‐dependent plasticity and modulation of growth regulatory molecules at central synapses publication-title: PLoS One – volume: 842 start-page: 15 issue: 1 year: 1999 end-page: 29 article-title: Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations publication-title: Brain Research – volume: 20 start-page: 267 issue: 5 year: 2013 end-page: 273 article-title: Disruption of the perineuronal net in the hippocampus or medial prefrontal cortex impairs fear conditioning publication-title: Learning & Memory – volume: 380 start-page: 543 issue: 6644 year: 2023 end-page: 551 article-title: A shift in the mechanisms controlling hippocampal engram formation during brain maturation publication-title: Science – volume: 114 start-page: 1447 issue: 5 year: 2010 end-page: 1459 article-title: In vitro modeling of perineuronal nets: Hyaluronan synthase and link protein are necessary for their formation and integrity publication-title: Journal of Neurochemistry – volume: 222 start-page: 393 issue: 1 year: 2017 end-page: 415 article-title: The extracellular matrix glycoprotein tenascin‐C and matrix metalloproteinases modify cerebellar structural plasticity by exposure to an enriched environment publication-title: Brain Structure & Function – volume: 295 start-page: 955 issue: 4 year: 2020 end-page: 968 article-title: The protein tyrosine phosphatase RPTPζ/phosphacan is critical for perineuronal net structure publication-title: Journal of Biological Chemistry – volume: 1812 start-page: 1616 issue: 12 year: 2011 end-page: 1629 article-title: Proteoglycan degradation by the ADAMTS family of proteinases publication-title: Biochimica et Biophysica Acta – volume: 115 start-page: 607 issue: 3 year: 2018 end-page: 612 article-title: Removal of perineuronal nets disrupts recall of a remote fear memory publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 46 start-page: 957 issue: 6 year: 2017 end-page: 967 article-title: Reactive astrocytes: Production, function, and therapeutic potential publication-title: Immunity – volume: 373 start-page: 77 issue: 6550 year: 2021 end-page: 81 article-title: Astrocytes close the mouse critical period for visual plasticity publication-title: Science – volume: 9 issue: 421 year: 2017 article-title: Hippocampal extracellular matrix alterations contribute to cognitive impairment associated with a chronic depressive‐like state in rats publication-title: Science Translational Medicine – volume: 25 start-page: 1073 issue: 10 year: 2015 end-page: 1188 article-title: Hippocampal sharp wave‐ripple: A cognitive biomarker for episodic memory and planning publication-title: Hippocampus – volume: 169 start-page: 1347 issue: 3 year: 2010 end-page: 1363 article-title: Neurons associated with aggrecan‐based perineuronal nets are protected against tau pathology in subcortical regions in Alzheimer's disease publication-title: Neuroscience – volume: 285 issue: 1883 year: 2018 article-title: Timing of perineuronal net development in the zebra finch song control system correlates with developmental song learning publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 27 start-page: 222 issue: 6 year: 2020 end-page: 235 article-title: ChABC infusions into medial prefrontal cortex, but not posterior parietal cortex, improve the performance of rats tested on a novel, challenging delay in the touchscreen TUNL task publication-title: Learning & Memory – volume: 125 start-page: 166 year: 2017 end-page: 180 article-title: Cerebellar perineuronal nets in cocaine‐induced pavlovian memory: Site matters publication-title: Neuropharmacology – volume: 20 start-page: 218 issue: 1 year: 2022 article-title: Parvalbumin interneuron‐derived tissue‐type plasminogen activator shapes perineuronal net structure publication-title: BMC Biology – volume: 281 start-page: 17789 issue: 26 year: 2006 end-page: 17800 article-title: Composition of perineuronal net extracellular matrix in rat brain: A different disaccharide composition for the net‐associated proteoglycans publication-title: Journal of Biological Chemistry – volume: 1150 start-page: 200 year: 2007 end-page: 206 article-title: Perineuronal nets protect against amyloid beta‐protein neurotoxicity in cultured cortical neurons publication-title: Brain Research – volume: 95 start-page: 639 issue: 3 year: 2017 end-page: 655.e10 article-title: Activity‐dependent gating of parvalbumin interneuron function by the perineuronal net protein Brevican publication-title: Neuron – volume: 11 start-page: 1235 issue: 8 year: 2021 article-title: Perineuronal nets and metal cation concentrations in the microenvironments of fast‐spiking, parvalbumin‐expressing GABAergic interneurons: Relevance to neurodevelopment and neurodevelopmental disorders publication-title: Biomolecules – volume: 19 start-page: 10778 issue: 24 year: 1999 end-page: 10788 article-title: The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar publication-title: The Journal of Neuroscience – volume: 2016 start-page: 1 year: 2016 end-page: 8 article-title: Caught in the net: Perineuronal nets and addiction publication-title: Neural Plasticity – volume: 133 start-page: 2331 issue: 8 year: 2010 end-page: 2347 article-title: Animals lacking link protein have attenuated perineuronal nets and persistent plasticity publication-title: Brain – volume: 524 start-page: 1309 issue: 7 year: 2016 end-page: 1336 article-title: Extracellular matrix protein expression is brain region dependent publication-title: Journal of Comparative Neurology – volume: 33 start-page: 7057 issue: 16 year: 2013 end-page: 7065 article-title: Depletion of perineuronal nets enhances recognition memory and long‐term depression in the perirhinal cortex publication-title: The Journal of Neuroscience – volume: 1865 issue: 2 year: 2021 article-title: Hyaluronan degradation and release of a hyaluronan‐aggrecan complex from perineuronal nets in the aged mouse brain publication-title: Biochimica et Biophysica Acta—General Subjects – volume: 377 start-page: 80 issue: 6601 year: 2022 end-page: 86 article-title: Microglia‐mediated degradation of perineuronal nets promotes pain publication-title: Science – volume: 29 start-page: 7731 issue: 24 year: 2009 end-page: 7742 article-title: Versican V2 assembles the extracellular matrix surrounding the nodes of Ranvier in the CNS publication-title: The Journal of Neuroscience – volume: 12 start-page: 897 issue: 7 year: 2009 end-page: 904 article-title: Brain extracellular matrix affects AMPA receptor lateral mobility and short‐term synaptic plasticity publication-title: Nature Neuroscience – volume: 494 start-page: 559 issue: 4 year: 2006 end-page: 577 article-title: Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components publication-title: Journal of Comparative Neurology – volume: 12 start-page: 1145 issue: 9 year: 2009 end-page: 1151 article-title: Chondroitinase ABC treatment opens a window of opportunity for task‐specific rehabilitation publication-title: Nature Neuroscience – volume: 12 start-page: 1495 issue: 8 year: 2004 end-page: 1506 article-title: Structural basis for interactions between tenascins and Lectican C‐type lectin domains publication-title: Structure – volume: 1465 start-page: 34 year: 2012 end-page: 47 article-title: Neonatal conductive hearing loss disrupts the development of the Cat‐315 epitope on perineuronal nets in the rat superior olivary complex publication-title: Brain Research – volume: 544 start-page: 25 year: 2013 end-page: 30 article-title: ADAMTS1, ADAMTS5, ADAMTS9 and aggrecanase‐generated proteoglycan fragments are induced following spinal cord injury in mouse publication-title: Neuroscience Letters – volume: 442 start-page: 69 year: 2020 end-page: 86 article-title: Neurocan contributes to perineuronal net development publication-title: Neuroscience – volume: 2018 start-page: 1 year: 2018 end-page: 13 article-title: Proteolytic remodeling of perineuronal nets: Effects on synaptic plasticity and neuronal population dynamics publication-title: Neural Plasticity – volume: 116 start-page: 7071 issue: 14 year: 2019 end-page: 7076 article-title: Structural maturation of cortical perineuronal nets and their perforating synapses revealed by superresolution imaging publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 184 year: 2021 article-title: NPY‐Y1 receptor signaling controls spatial learning and perineuronal net expression publication-title: Neuropharmacology – volume: 92 start-page: 791 issue: 3 year: 1999 end-page: 805 article-title: Cortical areas abundant in extracellular matrix chondroitin sulphate proteoglycans are less affected by cytoskeletal changes in Alzheimer's disease publication-title: Neuroscience – volume: 59 start-page: 197 year: 2017 end-page: 209 article-title: Antibody recognizing 4‐sulfated chondroitin sulfate proteoglycans restores memory in tauopathy‐induced neurodegeneration publication-title: Neurobiology of Aging – volume: 40 start-page: 5008 issue: 26 year: 2020 end-page: 5018 article-title: Perineuronal nets regulate the inhibitory perisomatic input onto parvalbumin interneurons and γ activity in the prefrontal cortex publication-title: The Journal of Neuroscience – volume: 13 start-page: 7537 issue: 1 year: 2022 article-title: The estrous cycle modulates early‐life adversity effects on mouse avoidance behavior through progesterone signaling publication-title: Nature Communications – volume: 182 start-page: 388 issue: 2 year: 2020 end-page: 403.e15 article-title: Microglial remodeling of the extracellular matrix promotes synapse plasticity publication-title: Cell – volume: 12 start-page: 480 issue: 1 year: 2022 article-title: Perineuronal nets affect memory and learning after synapse withdrawal publication-title: Translational Psychiatry – volume: 12 start-page: 253 issue: 1 year: 2021 article-title: Perineuronal nets stabilize the grid cell network publication-title: Nature Communications – volume: 35 start-page: 4190 issue: 10 year: 2015 end-page: 4202 article-title: Removal of perineuronal nets in the medial prefrontal cortex impairs the acquisition and reconsolidation of a cocaine‐induced conditioned place preference memory publication-title: The Journal of Neuroscience – volume: 49 start-page: 145 issue: 2 year: 1996 end-page: 161 article-title: The extracellular matrix molecule tenascin‐C: Expression in vivo and functional characterization in vitro publication-title: Progress in Neurobiology – volume: 864 start-page: 142 issue: 1 year: 2000 end-page: 145 article-title: Morphology of perineuronal nets in tenascin‐R and parvalbumin single and double knockout mice publication-title: Brain Research – volume: 532 start-page: 195 issue: 7598 year: 2016 end-page: 200 article-title: Astrocyte scar formation aids central nervous system axon regeneration publication-title: Nature – volume: 9 start-page: 4163 issue: 1 year: 2018 article-title: A hippocampal circuit linking dorsal CA2 to ventral CA1 critical for social memory dynamics publication-title: Nature Communications – volume: 523 start-page: 629 issue: 4 year: 2014 end-page: 648 article-title: Cell‐specific and developmental expression of lectican‐cleaving proteases in mouse hippocampus and neocortex publication-title: Journal of Comparative Neurology – volume: 31 start-page: 1254 issue: 7 year: 2010 end-page: 1256 article-title: Perineuronal nets are largely unaffected in Alzheimer model Tg2576 mice publication-title: Neurobiology of Aging – volume: 21 start-page: 510 issue: 12 year: 1998 end-page: 515 article-title: Perineuronal nets: Past and present publication-title: Trends in Neurosciences – volume: 28 start-page: 2946 year: 2023 end-page: 2963 article-title: Acan downregulation in parvalbumin GABAergic cells reduces spontaneous recovery of fear memories publication-title: Molecular Psychiatry – volume: 27 start-page: 3192 issue: 8 year: 2022 end-page: 3203 article-title: The extracellular matrix and perineuronal nets in memory publication-title: Molecular Psychiatry – volume: 2016 start-page: 1 year: 2016 end-page: 13 article-title: Chondroitin 6‐sulfation regulates perineuronal net formation by controlling the stability of aggrecan publication-title: Neural Plasticity – start-page: 129 year: 2000 end-page: 154 – volume: 7 issue: 1 year: 2017 article-title: Chondroitin sulfate is required for onset and offset of critical period plasticity in visual cortex publication-title: Scientific Reports – volume: 58 year: 2020 article-title: Microglia facilitate loss of perineuronal nets in the Alzheimer's disease brain publication-title: eBioMedicine – volume: 29 start-page: 1099 issue: 5 year: 2019 end-page: 1112.e4 article-title: Maturation of PNN and ErbB4 signaling in area CA2 during adolescence underlies the emergence of PV interneuron plasticity and social memory publication-title: Cell Reports – volume: 28 start-page: 3951 issue: 11 year: 2018 end-page: 3964 article-title: Genetic reduction of matrix metalloproteinase‐9 promotes formation of perineuronal nets around parvalbumin‐expressing interneurons and normalizes auditory cortex responses in developing Fmr1 knock‐out mice publication-title: Cerebral Cortex – volume: 125 start-page: 215 issue: 2 year: 2012 end-page: 229 article-title: Neurochemical mapping of the human hippocampus reveals perisynaptic matrix around functional synapses in Alzheimer's disease publication-title: Acta Neuropathologica – volume: 40 start-page: 4418 issue: 22 year: 2020 end-page: 4431 article-title: Venlafaxine stimulates an MMP‐9‐dependent increase in excitatory/inhibitory balance in a stress model of depression publication-title: The Journal of Neuroscience – volume: 116 start-page: 27063 issue: 52 year: 2019 end-page: 27073 article-title: Perineuronal nets protect long‐term memory by limiting activity‐dependent inhibition from parvalbumin interneurons publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 100 start-page: 103 issue: 1–2 year: 2002 end-page: 117 article-title: Matrix metalloproteases and their inhibitors are produced by overlapping populations of activated astrocytes publication-title: Molecular Brain Research – volume: 136 start-page: 101 year: 2018 end-page: 108 article-title: Crosstalk between glia, extracellular matrix and neurons publication-title: Brain Research Bulletin – volume: 37 start-page: 1269 issue: 5 year: 2017 end-page: 1283 article-title: Removal of perineuronal nets unlocks juvenile plasticity through network mechanisms of decreased inhibition and increased gamma activity publication-title: The Journal of Neuroscience – volume: 111 start-page: 20 year: 2015 end-page: 26 article-title: Differential regulation of perineuronal nets in the brain and spinal cord with exercise training publication-title: Brain Research Bulletin – volume: 272 start-page: 31377 issue: 50 year: 1997 end-page: 31381 article-title: Developmental regulation of the Sulfation profile of chondroitin sulfate chains in the chicken embryo brain publication-title: Journal of Biological Chemistry – volume: 9 year: 2021 article-title: Assessment of possible contributions of hyaluronan and proteoglycan binding link protein 4 to differential perineuronal net formation at the calyx of held publication-title: Frontiers in Cell and Developmental Biology – volume: 60 start-page: 477 issue: 7 year: 2010 end-page: 496 article-title: Matrix metalloproteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non‐neoplastic diseases publication-title: Pathology International – volume: 30 start-page: 969 issue: 3 year: 2019 end-page: 988 article-title: Deletion of Fmr1 from forebrain excitatory neurons triggers abnormal cellular, EEG, and behavioral phenotypes in the auditory cortex of a mouse model of fragile X syndrome publication-title: Cerebral Cortex – volume: 31 start-page: 375 issue: 4 year: 2021 end-page: 388 article-title: Adult‐born granule cell mossy fibers preferentially target parvalbumin‐positive interneurons surrounded by perineuronal nets publication-title: Hippocampus – volume: 26 issue: 4 year: 2023 article-title: Selective dysfunction of fast‐spiking inhibitory interneurons and disruption of perineuronal nets in a tauopathy mouse model publication-title: iScience – volume: 11 issue: 12 year: 2016 article-title: Impact of environmental enrichment on perineuronal nets in the prefrontal cortex following early and late abstinence from sucrose self‐administration in rats publication-title: PLoS One – volume: 253 start-page: 368 year: 2013 end-page: 379 article-title: Spatio‐temporal differences in perineuronal net expression in the mouse hippocampus, with reference to parvalbumin publication-title: Neuroscience – volume: 336 year: 2021 article-title: Voluntary wheel running preserves lumbar perineuronal nets, enhances motor functions and prevents hyperreflexia after spinal cord injury publication-title: Experimental Neurology – volume: 504 start-page: 272 issue: 7479 year: 2013 end-page: 276 article-title: Parvalbumin‐expressing basket‐cell network plasticity induced by experience regulates adult learning publication-title: Nature – volume: 12 start-page: 149 year: 2018 article-title: Increased excitability and reduced excitatory synaptic input into fast‐spiking CA2 interneurons after enzymatic attenuation of extracellular matrix publication-title: Frontiers in Cellular Neuroscience – volume: 9 issue: 3 year: 2014 article-title: Enriched housing enhances recovery of limb placement ability and reduces aggrecan‐containing perineuronal nets in the rat somatosensory cortex after experimental stroke publication-title: PLoS One – volume: 34 start-page: 6647 issue: 19 year: 2014 end-page: 6658 article-title: Depletion of perineuronal nets in the amygdala to enhance the erasure of drug memories publication-title: The Journal of Neuroscience – volume: 28 start-page: 42 issue: 1 year: 2018 end-page: 52 article-title: Disruption of perineuronal nets increases the frequency of sharp wave ripple events publication-title: Hippocampus – volume: 4 start-page: 22 year: 2018 end-page: 37 article-title: Expression of aggrecan components in perineuronal nets in the mouse cerebral cortex publication-title: IBRO Reports – volume: 22 start-page: 547 issue: 4 year: 2012 end-page: 561 article-title: Involvement of perineuronal and perisynaptic extracellular matrix in Alzheimer's disease neuropathology publication-title: Brain Pathology – volume: 26 start-page: 5658 issue: 10 year: 2021 end-page: 5668 article-title: Chondroitin 6‐sulphate is required for neuroplasticity and memory in ageing publication-title: Molecular Psychiatry – volume: 369 issue: 1654 year: 2014 article-title: Tenascin‐R promotes assembly of the extracellular matrix of perineuronal nets via clustering of aggrecan publication-title: Philosophical Transactions of the Royal Society B – volume: 2015 year: 2015 article-title: Hyaluronan synthase: The mechanism of initiation at the reducing end and a pendulum model for polysaccharide translocation to the cell exterior publication-title: International Journal of Cell Biology – volume: 25 start-page: 7150 issue: 31 year: 2005 end-page: 7158 article-title: Degradation of chondroitin sulfate proteoglycans induces sprouting of intact Purkinje axons in the cerebellum of the adult rat publication-title: The Journal of Neuroscience – volume: 15 start-page: 950 issue: 7 year: 2005 end-page: 962 article-title: Structural and functional aberrations in the cerebral cortex of tenascin‐C deficient mice publication-title: Cerebral Cortex – volume: 131 start-page: 52 year: 2023 end-page: 58 article-title: Extracellular matrix proteoglycans support aged hippocampus networks: A potential cellular‐level mechanism of brain reserve publication-title: Neurobiology of Aging – volume: 41 start-page: 1274 issue: 6 year: 2021 end-page: 1287 article-title: Microglia elimination increases neural circuit connectivity and activity in adult mouse cortex publication-title: The Journal of Neuroscience – volume: 10 issue: 1 year: 2020 article-title: From stress to depression: Development of extracellular matrix‐dependent cognitive impairment following social stress publication-title: Scientific Reports – volume: 27 start-page: 1373 issue: 6 year: 2008 end-page: 1390 article-title: Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin‐R in the rat spinal cord publication-title: European Journal of Neuroscience – volume: 15 year: 2022 article-title: How stress influences the dynamic plasticity of the brain's extracellular matrix publication-title: Frontiers in Cellular Neuroscience – volume: 520 start-page: 1721 issue: 8 year: 2012 end-page: 1736 article-title: Bral2 is indispensable for the proper localization of brevican and the structural integrity of the perineuronal net in the brainstem and cerebellum publication-title: Journal of Comparative Neurology – volume: 27 start-page: 3725 issue: 13 year: 2019 end-page: 3732.e5 article-title: Spiny and non‐spiny parvalbumin‐positive hippocampal interneurons show different plastic properties publication-title: Cell Reports – volume: 8 start-page: 244 year: 2014 article-title: Fast oscillatory activity in the anterior cingulate cortex: Dopaminergic modulation and effect of perineuronal net loss publication-title: Frontiers in cellular neuroscience – volume: 7 issue: 35 year: 2021 article-title: Microglial dyshomeostasis drives perineuronal net and synaptic loss in a CSF1R +/− mouse model of ALSP, which can be rescued via CSF1R inhibitors publication-title: Science Advances – volume: 13 year: 2021 article-title: Poly I:C activated microglia disrupt perineuronal nets and modulate synaptic balance in primary hippocampal neurons in vitro publication-title: Frontiers in Synaptic Neuroscience – volume: 271 start-page: 4403 issue: 8 year: 1996 end-page: 4409 article-title: Expression of rat cathepsin S in phagocytic cells publication-title: Journal of Biological Chemistry – volume: 47 start-page: 337 issue: 4 year: 2012 end-page: 341 article-title: A rich environmental experience reactivates visual cortex plasticity in aged rats publication-title: Experimental Gerontology – volume: 25 start-page: 515 issue: 3 year: 2004 end-page: 523 article-title: Enhanced cortical and hippocampal neuronal excitability in mice deficient in the extracellular matrix glycoprotein tenascin‐R publication-title: Molecular and Cellular Neuroscience – volume: 23 start-page: 818 issue: 7 year: 2017 end-page: 828 article-title: Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin–N‐cadherin pathway after spinal cord injury publication-title: Nature Medicine – volume: 94 year: 2021 article-title: The aging mouse brain: Cognition, connectivity and calcium publication-title: Cell Calcium – volume: 25 issue: 3 year: 2022 article-title: Altered inhibitory function in hippocampal CA2 contributes in social memory deficits in Alzheimer's mouse model publication-title: iScience – volume: 355 start-page: 161 year: 2017 end-page: 174 article-title: Sensory experience‐dependent formation of perineuronal nets and expression of Cat‐315 immunoreactive components in the mouse somatosensory cortex publication-title: Neuroscience – volume: 46 start-page: 759 issue: 5 year: 2022 end-page: 769 article-title: Impact of adolescent intermittent ethanol exposure on interneurons and their surrounding perineuronal nets in adulthood publication-title: Alcoholism: Clinical and Experimental Research – volume: 277 start-page: 734 year: 2014 end-page: 746 article-title: Aging somatosensory cortex displays increased density of WFA‐binding perineuronal nets associated with GAD‐negative neurons publication-title: Neuroscience – volume: 36 start-page: 11459 issue: 45 year: 2016 end-page: 11468 article-title: Casting a wide net: Role of perineuronal nets in neural plasticity publication-title: The Journal of Neuroscience – volume: 33 start-page: 2187 issue: 12 year: 2011 end-page: 2202 article-title: Chondroitin sulfate proteoglycans regulate astrocyte‐dependent synaptogenesis and modulate synaptic activity in primary embryonic hippocampal neurons publication-title: European Journal of Neuroscience – volume: 22 start-page: 39 issue: 1 year: 2021 article-title: MMP9 modulation improves specific neurobehavioral deficits in a mouse model of Alzheimer's disease publication-title: BMC Neuroscience – volume: 4 issue: 8 year: 2009 article-title: Enrichment from birth accelerates the functional and cellular development of a motor control area in the mouse publication-title: PLoS One – volume: 298 start-page: 1248 issue: 5596 year: 2002 end-page: 1251 article-title: Reactivation of ocular dominance plasticity in the adult visual cortex publication-title: Science – volume: 95 start-page: 169 issue: 1 year: 2017 end-page: 179.e3 article-title: Perineuronal nets in the adult sensory cortex are necessary for fear learning publication-title: Neuron – volume: 21 start-page: 5970 issue: 17 year: 2001 end-page: 5978 article-title: Neurocan is dispensable for brain development publication-title: Molecular and Cellular Biology – volume: 26 start-page: 10856 issue: 42 year: 2006 end-page: 10867 article-title: Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury publication-title: The Journal of Neuroscience – volume: 51 start-page: 283 issue: 2 year: 2023 end-page: 298 article-title: Responses in fast‐spiking interneuron firing rates to parameter variations associated with degradation of perineuronal nets publication-title: Journal of Computational Neuroscience – volume: 155 start-page: 538 issue: 5 year: 2020 end-page: 558 article-title: Acute pharmacological inhibition of matrix metalloproteinase‐9 activity during development restores perineuronal net formation and normalizes auditory processing in KO mice publication-title: Journal of Neurochemistry – volume: 288 start-page: 27384 issue: 38 year: 2013 end-page: 27395 article-title: Semaphorin 3A binds to the perineuronal nets via chondroitin sulfate type E motifs in rodent brains publication-title: Journal of Biological Chemistry – volume: 131 issue: 16 year: 2021 article-title: Perineuronal net degradation rescues CA2 plasticity in a mouse model of Rett syndrome publication-title: The Journal of Clinical Investigation – volume: 27 start-page: 3520 issue: 8 year: 2021 end-page: 3531 article-title: Atypical perineuronal nets in the CA2 region interfere with social memory in a mouse model of social dysfunction publication-title: Molecular Psychiatry – volume: 39 start-page: 1930 issue: 10 year: 2015 end-page: 1938 article-title: Repeated binge drinking increases perineuronal nets in the insular cortex publication-title: Alcoholism, Clinical and Experimental Research – volume: 16 start-page: 604 issue: 3 year: 2004 end-page: 616 article-title: Destruction of extracellular matrix proteoglycans is pervasive in simian retroviral neuroinfection publication-title: Neurobiology of Disease – volume: 120 issue: 24 year: 2023 article-title: Chondroitin 4‐ O ‐sulfation regulates hippocampal perineuronal nets and social memory publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 7 issue: 1 year: 2017 article-title: Activation of perineuronal net‐expressing excitatory neurons during associative memory encoding and retrieval publication-title: Scientific Reports – volume: 306 start-page: 487 issue: 5695 year: 2004 end-page: 491 article-title: Cleavage of ProBDNF by TPA/plasmin is essential for long‐term hippocampal plasticity publication-title: Science – volume: 526 start-page: 2647 issue: 16 year: 2018 end-page: 2664 article-title: Early life trauma increases threat response of peri‐weaning rats, reduction of axo‐somatic synapses formed by parvalbumin cells and perineuronal net in the basolateral nucleus of amygdala publication-title: Journal of Comparative Neurology – volume: 4 start-page: 1484 year: 2013 article-title: Extracellular matrix inhibits structural and functional plasticity of dendritic spines in the adult visual cortex publication-title: Nature Communications – volume: 2 start-page: 76 issue: 1 year: 2014 article-title: Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer's disease publication-title: Acta Neuropathologica Communications – volume: 10 start-page: 679 issue: 6 year: 2007 end-page: 681 article-title: Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition publication-title: Nature Neuroscience – volume: 288 start-page: 20978 issue: 29 year: 2013 end-page: 20991 article-title: Matrix metalloproteinase (MMP) 9 transcription in mouse brain induced by fear learning publication-title: Journal of Biological Chemistry – volume: 170 start-page: 1314 issue: 4 year: 2010 end-page: 1327 article-title: Perineuronal net formation and structure in aggrecan knockout mice publication-title: Neuroscience – volume: 4 start-page: 528 issue: 7 year: 2004 end-page: 539 article-title: Hyaluronan: from extracellular glue to pericellular cue publication-title: Nature Reviews Cancer – volume: 298 issue: 8 year: 2022 article-title: Transcriptional profiling reveals roles of intercellular Fgf9 signaling in astrocyte maturation and synaptic refinement during brainstem development publication-title: Journal of Biological Chemistry – volume: 14 year: 2023 article-title: Sexually dimorphic role for insular perineuronal nets in aversion‐resistant alcohol consumption publication-title: Frontiers in Psychiatry – volume: 29 start-page: 12878 issue: 41 year: 2009 end-page: 12885 article-title: Modulation of perineuronal nets and parvalbumin with developmental song learning publication-title: The Journal of Neuroscience – volume: 9 start-page: 1607 issue: 6 year: 2017 end-page: 1622 article-title: Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory publication-title: Aging – volume: 56 start-page: 6436 issue: 9 year: 2019 end-page: 6450 article-title: Perineuronal nets restrict the induction of long‐term depression in the mouse hippocampal CA1 region publication-title: Molecular Neurobiology – volume: 3 issue: 4 year: 2016 article-title: Perineuronal nets enhance the excitability of fast‐spiking neurons publication-title: eNeuro – volume: 36 start-page: 6312 issue: 23 year: 2016 end-page: 6320 article-title: Perineuronal nets suppress plasticity of excitatory synapses on CA2 pyramidal neurons publication-title: The Journal of Neuroscience – volume: 6 start-page: 1 year: 2019 end-page: 17 article-title: Layer‐specific expression of extracellular matrix molecules in the mouse somatosensory and piriform cortices publication-title: IBRO Reports – volume: 50 start-page: 203 issue: 3 year: 2019 end-page: 216 article-title: Quantitative changes in perineuronal nets in development and posttraumatic condition publication-title: Journal of Molecular Histology – volume: 17 start-page: 226 issue: 1 year: 2001 end-page: 240 article-title: Reduced Perisomatic inhibition, increased excitatory transmission, and impaired long‐term potentiation in mice deficient for the extracellular matrix glycoprotein tenascin‐R publication-title: Molecular and Cellular Neuroscience – volume: 23 start-page: 1183 issue: 10 year: 2020 end-page: 1193 article-title: Synergy between amyloid‐β and tau in Alzheimer's disease publication-title: Nature Neuroscience – volume: 110 start-page: 393 issue: 4 year: 2005 end-page: 401 article-title: Loss of perineuronal net N‐acetylgalactosamine in Alzheimer's disease publication-title: Acta Neuropathologica – volume: 15 start-page: 414 issue: 3 year: 2012 end-page: 422 article-title: Persistent cortical plasticity by upregulation of chondroitin 6‐sulfation publication-title: Nature Neuroscience – volume: 94 start-page: 731 issue: 4 year: 2017 end-page: 743 article-title: Synaptic plasticity, engrams, and network oscillations in amygdala circuits for storage and retrieval of emotional memories publication-title: Neuron – volume: 20 start-page: 451 issue: 8 year: 2019 end-page: 465 article-title: The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function publication-title: Nature Reviews Neuroscience – volume: 33 start-page: 7742 issue: 18 year: 2013 end-page: 7755 article-title: Primary hippocampal neurons, which lack four crucial extracellular matrix molecules, display abnormalities of synaptic structure and function and severe deficits in perineuronal net formation publication-title: The Journal of Neuroscience – volume: 67 start-page: 116 issue: 1 year: 2010 end-page: 128 article-title: The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L‐type Ca channels publication-title: Neuron – volume: 111 start-page: 2800 issue: 7 year: 2014 end-page: 2805 article-title: Enhanced cognitive flexibility in reversal learning induced by removal of the extracellular matrix in auditory cortex publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 57 start-page: 276 issue: 2 year: 2000 end-page: 289 article-title: Lecticans: Organizers of the brain extracellular matrix publication-title: Cellular and Molecular Life Sciences – volume: 167 start-page: 17 year: 2021 end-page: 29 article-title: Glia as sculptors of synaptic plasticity publication-title: Neuroscience Research – volume: 12 start-page: 7016 issue: 1 year: 2022 article-title: Neurogenesis mediated plasticity is associated with reduced neuronal activity in CA1 during context fear memory retrieval publication-title: Scientific Reports – volume: 10 start-page: 1862 issue: 8 year: 2021 article-title: Microglia depletion‐induced remodeling of extracellular matrix and excitatory synapses in the hippocampus of adult mice publication-title: Cell – volume: 10 start-page: 1499 issue: 11 year: 2020 article-title: Reconsideration of the semaphorin‐3A binding motif found in chondroitin sulfate using Galnac4s‐6st‐Knockout mice publication-title: Biomolecules – volume: 265 start-page: 48 year: 2015 end-page: 58 article-title: Perineuronal net digestion with chondroitinase restores memory in mice with tau pathology publication-title: Experimental Neurology – volume: 10 start-page: 2055 issue: 8 year: 2021 article-title: Extracellular metalloproteinases in the plasticity of excitatory and inhibitory synapses publication-title: Cell – volume: 67 start-page: 570 issue: 5 year: 2007 end-page: 588 article-title: Activity‐dependent formation and functions of chondroitin sulfate‐rich extracellular matrix of perineuronal nets publication-title: Developmental Neurobiology – volume: 326 start-page: 592 issue: 5952 year: 2009 end-page: 596 article-title: PTPσ is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration publication-title: Science – year: 2023 article-title: Perineuronal nets support astrocytic ion and glutamate homeostasis at tripartite synapses publication-title: Research Square – year: 2023 – volume: 21 start-page: 273 issue: 4 year: 2021 end-page: 281 article-title: Perineuronal net dynamics in the pathophysiology of epilepsy publication-title: Epilepsy Currents – volume: 27 start-page: 5405 issue: 20 year: 2007 end-page: 5413 article-title: Sensory deprivation alters aggrecan and perineuronal net expression in the mouse barrel cortex publication-title: The Journal of Neuroscience – volume: 85 start-page: 1011 issue: 12 year: 2019 end-page: 1020 article-title: Perineuronal nets, inhibitory interneurons, and anxiety‐related ventral hippocampal neuronal oscillations are altered by early life adversity publication-title: Biological Psychiatry – volume: 13 start-page: 197 year: 2019 article-title: Chronic stress modulates interneuronal plasticity: Effects on PSA‐NCAM and perineuronal nets in cortical and extracortical regions publication-title: Frontiers in Cellular Neuroscience – volume: 202 start-page: 211 year: 2018 end-page: 218 article-title: A holistic approach to unravelling chondroitin sulfation: Correlations between surface charge, structure and binding to growth factors publication-title: Carbohydrate Polymers – volume: 329 start-page: 415 issue: 2 year: 1998 end-page: 424 article-title: Conserved basic residues in the C‐type lectin and short complement repeat domains of the G3 region of proteoglycans publication-title: Biochemical Journal – volume: 7 issue: 4 year: 2020 article-title: Circadian rhythms of perineuronal net composition publication-title: eNeuro – volume: 76 start-page: 3207 issue: 16 year: 2019 end-page: 3228 article-title: MMPs in learning and memory and neuropsychiatric disorders publication-title: Cellular and Molecular Life Sciences – volume: 12 start-page: 3 year: 2018 article-title: Structural variation of chondroitin sulfate chains contributes to the molecular heterogeneity of perineuronal nets publication-title: Frontiers in Integrative Neuroscience – volume: 12 start-page: 114 issue: 1 year: 2022 article-title: Cortical diurnal rhythms remain intact with microglial depletion publication-title: Scientific Reports – volume: 111 start-page: 1150 issue: 3 year: 2014 end-page: 1155 article-title: Environmental enrichment extends ocular dominance plasticity into adulthood and protects from stroke‐induced impairments of plasticity publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 110 start-page: 12456 issue: 30 year: 2013 end-page: 12461 article-title: Very long‐term memories may be stored in the pattern of holes in the perineuronal net publication-title: Proceedings of the National Academy of Sciences of the United States of America – ident: e_1_2_12_46_1 doi: 10.1074/jbc.m207105200 – ident: e_1_2_12_89_1 doi: 10.3389/fncel.2021.814287 – ident: e_1_2_12_147_1 doi: 10.1002/cne.24522 – ident: e_1_2_12_37_1 doi: 10.1038/s41467‐020‐20241‐w – ident: e_1_2_12_101_1 doi: 10.1101/2023.01.24.525313 – ident: e_1_2_12_81_1 doi: 10.1093/cercor/bhh195 – ident: e_1_2_12_109_1 doi: 10.1038/nn.3023 – volume: 2 start-page: 76 issue: 1 year: 2014 ident: e_1_2_12_177_1 article-title: Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer's disease publication-title: Acta Neuropathologica Communications contributor: fullname: Végh M. J. – ident: e_1_2_12_173_1 doi: 10.1016/j.ibror.2018.01.002 – ident: e_1_2_12_170_1 doi: 10.1073/pnas.1713530115 – ident: e_1_2_12_35_1 doi: 10.1177/15357597211018688 – ident: e_1_2_12_137_1 doi: 10.1186/s12868‐021‐00643‐2 – ident: e_1_2_12_28_1 doi: 10.1016/j.neuropharm.2017.07.009 – ident: e_1_2_12_58_1 doi: 10.1038/s41583-019-0196-3 – ident: e_1_2_12_29_1 doi: 10.1523/jneurosci.0291‐20.2020 – ident: e_1_2_12_32_1 doi: 10.1093/brain/awq145 – ident: e_1_2_12_165_1 doi: 10.1016/j.bbagen.2020.129804 – ident: e_1_2_12_178_1 doi: 10.1016/j.celrep.2021.109313 – ident: e_1_2_12_59_1 doi: 10.1016/j.celrep.2019.05.098 – ident: e_1_2_12_145_1 doi: 10.1016/j.expneurol.2020.113533 – ident: e_1_2_12_85_1 doi: 10.1016/j.neuron.2010.05.030 – ident: e_1_2_12_180_1 doi: 10.1155/2015/367579 – ident: e_1_2_12_80_1 doi: 10.1101/lm.030197.112 – ident: e_1_2_12_16_1 doi: 10.1016/j.neuropharm.2020.108425 – ident: e_1_2_12_187_1 doi: 10.1038/s41380-021-01208-9 – ident: e_1_2_12_11_1 doi: 10.1523/jneurosci.2980‐06.2006 – ident: e_1_2_12_156_1 doi: 10.1155/2016/7538208 – ident: e_1_2_12_49_1 doi: 10.1074/jbc.m111.310029 – ident: e_1_2_12_36_1 doi: 10.1111/acer.12847 – ident: e_1_2_12_13_1 doi: 10.1002/cne.23009 – ident: e_1_2_12_182_1 doi: 10.3390/cells10082055 – ident: e_1_2_12_115_1 doi: 10.1016/j.neurobiolaging.2008.07.023 – ident: e_1_2_12_2_1 doi: 10.1523/jneurosci.2387‐19.2020 – ident: e_1_2_12_176_1 doi: 10.1038/npp.2010.90 – ident: e_1_2_12_34_1 doi: 10.1016/s0166‐2236(98)01298‐3 – ident: e_1_2_12_108_1 doi: 10.1155/2016/1305801 – ident: e_1_2_12_174_1 doi: 10.1016/j.ibror.2018.11.006 – ident: e_1_2_12_86_1 doi: 10.1038/s41598-020-73173-2 – ident: e_1_2_12_136_1 doi: 10.1126/scitranslmed.aai8753 – ident: e_1_2_12_151_1 doi: 10.1073/pnas.1902680116 – ident: e_1_2_12_64_1 doi: 10.1074/jbc.m113.457903 – ident: e_1_2_12_17_1 doi: 10.1016/j.neuron.2017.03.022 – ident: e_1_2_12_98_1 doi: 10.1523/jneurosci.2140‐20.2020 – ident: e_1_2_12_183_1 doi: 10.1523/jneurosci.5390‐13.2014 – ident: e_1_2_12_134_1 doi: 10.1016/j.isci.2022.103895 – ident: e_1_2_12_135_1 doi: 10.1126/science.abf5273 – ident: e_1_2_12_27_1 doi: 10.1002/hipo.22488 – ident: e_1_2_12_149_1 doi: 10.1016/j.neuroscience.2020.06.040 – ident: e_1_2_12_112_1 doi: 10.1016/j.neuroscience.2010.05.022 – ident: e_1_2_12_22_1 doi: 10.1042/bj3290415 – ident: e_1_2_12_107_1 doi: 10.1038/s41467-018-06501-w – ident: e_1_2_12_54_1 doi: 10.1074/jbc.ra119.010830 – ident: e_1_2_12_125_1 doi: 10.1126/science.1100135 – ident: e_1_2_12_126_1 doi: 10.1523/ENEURO.0034‐19.2020 – ident: e_1_2_12_39_1 doi: 10.1098/rspb.2018.0849 – ident: e_1_2_12_5_1 doi: 10.1126/sciadv.abg1601 – ident: e_1_2_12_21_1 doi: 10.1002/hipo.23296 – ident: e_1_2_12_65_1 doi: 10.1038/nn.2377 – ident: e_1_2_12_121_1 doi: 10.1016/j.cell.2020.05.050 – ident: e_1_2_12_127_1 doi: 10.3389/fncel.2019.00197 – ident: e_1_2_12_114_1 doi: 10.1098/rstb.2014.0046 – ident: e_1_2_12_61_1 doi: 10.18632/aging.101256 – ident: e_1_2_12_19_1 doi: 10.1128/mcb.22.21.7417‐7427.2002 – ident: e_1_2_12_118_1 doi: 10.1016/j.biopsych.2019.02.021 – ident: e_1_2_12_48_1 doi: 10.1523/jneurosci.0434‐21.2021 – ident: e_1_2_12_68_1 doi: 10.1126/science.1174146 – ident: e_1_2_12_91_1 doi: 10.1038/s41380‐023‐02085‐0 – ident: e_1_2_12_184_1 doi: 10.1016/j.neuroscience.2013.08.061 – ident: e_1_2_12_124_1 doi: 10.1523/jneurosci.2406‐12.2012 – ident: e_1_2_12_111_1 doi: 10.1016/j.brainres.2007.02.066 – ident: e_1_2_12_154_1 doi: 10.1371/journal.pone.0006780 – ident: e_1_2_12_69_1 doi: 10.1016/j.neurobiolaging.2023.07.010 – ident: e_1_2_12_128_1 doi: 10.1074/jbc.271.8.4403 – ident: e_1_2_12_162_1 doi: 10.1016/j.bbadis.2011.08.009 – ident: e_1_2_12_104_1 doi: 10.1523/jneurosci.19‐24‐10778.1999 – ident: e_1_2_12_171_1 doi: 10.1038/nrc1391 – ident: e_1_2_12_92_1 doi: 10.1007/s00401-012-1042-0 – ident: e_1_2_12_23_1 doi: 10.1002/1096‐9861(20001225)428:4<616::aid‐cne3>3.0.co;2‐k – ident: e_1_2_12_160_1 doi: 10.1523/JNEUROSCI.2351-16.2016 – ident: e_1_2_12_72_1 doi: 10.1007/s10827‐023‐00849‐9 – ident: e_1_2_12_30_1 doi: 10.1172/JCI137221 – ident: e_1_2_12_179_1 doi: 10.3389/fnsyn.2021.637549 – ident: e_1_2_12_158_1 doi: 10.1016/j.brainresbull.2014.12.005 – ident: e_1_2_12_130_1 doi: 10.1126/science.1072699 – ident: e_1_2_12_113_1 doi: 10.1111/j.1750‐3639.2011.00557.x – ident: e_1_2_12_106_1 doi: 10.1016/j.nbd.2004.04.011 – ident: e_1_2_12_132_1 doi: 10.1016/j.ceca.2021.102358 – ident: e_1_2_12_164_1 doi: 10.3390/cells10081862 – ident: e_1_2_12_119_1 doi: 10.1016/j.brainres.2012.05.024 – ident: e_1_2_12_14_1 doi: 10.1016/j.carbpol.2018.08.120 – ident: e_1_2_12_139_1 doi: 10.1523/jneurosci.6267‐11.2013 – ident: e_1_2_12_172_1 doi: 10.1073/pnas.1310158110 – ident: e_1_2_12_117_1 doi: 10.1016/s0169‐328x(02)00132‐8 – ident: e_1_2_12_88_1 doi: 10.1111/j.1471-4159.2010.06878.x – ident: e_1_2_12_25_1 doi: 10.3390/biom11081235 – ident: e_1_2_12_157_1 doi: 10.1523/JNEUROSCI.3592-14.2015 – ident: e_1_2_12_71_1 doi: 10.1016/j.mcn.2003.12.001 – ident: e_1_2_12_79_1 doi: 10.1073/pnas.2301312120 – ident: e_1_2_12_50_1 doi: 10.1002/dneu.20361 – ident: e_1_2_12_66_1 doi: 10.1523/jneurosci.3275‐12.2013 – ident: e_1_2_12_161_1 doi: 10.1007/s00429‐016‐1224‐y – ident: e_1_2_12_116_1 doi: 10.1038/srep46024 – ident: e_1_2_12_94_1 doi: 10.1186/s12915-022-01419-8 – ident: e_1_2_12_159_1 doi: 10.1016/j.brainresbull.2017.03.003 – ident: e_1_2_12_45_1 doi: 10.1074/jbc.m600544200 – ident: e_1_2_12_4_1 doi: 10.1101/lm.050245.119 – ident: e_1_2_12_163_1 doi: 10.3389/fncel.2014.00244 – ident: e_1_2_12_100_1 doi: 10.1016/j.str.2004.05.021 – ident: e_1_2_12_99_1 doi: 10.1093/cercor/bhz141 – ident: e_1_2_12_7_1 doi: 10.1523/ENEURO.0112‐16.2016 – ident: e_1_2_12_20_1 doi: 10.1016/j.jbc.2022.102176 – ident: e_1_2_12_133_1 doi: 10.1126/science.ade6530 – ident: e_1_2_12_146_1 doi: 10.1016/j.neures.2020.11.005 – ident: e_1_2_12_8_1 doi: 10.1523/JNEUROSCI.2974-09.2009 – ident: e_1_2_12_123_1 doi: 10.3389/fcell.2021.730550 – ident: e_1_2_12_12_1 doi: 10.1016/0301‐0082(96)00014‐7 – ident: e_1_2_12_76_1 doi: 10.1016/s0006‐8993(00)02173‐9 – ident: e_1_2_12_131_1 doi: 10.1111/j.1460‐9568.2011.07690.x – ident: e_1_2_12_150_1 doi: 10.1126/science.1178310 – ident: e_1_2_12_15_1 doi: 10.1007/s00018-019-03180-8 – ident: e_1_2_12_102_1 doi: 10.1371/journal.pone.0093121 – ident: e_1_2_12_56_1 doi: 10.1016/j.neuron.2017.06.028 – ident: e_1_2_12_181_1 doi: 10.1093/cercor/bhx258 – ident: e_1_2_12_186_1 doi: 10.1016/j.expneurol.2014.11.013 – ident: e_1_2_12_78_1 doi: 10.1038/s41598-017-04007-x – ident: e_1_2_12_166_1 doi: 10.1002/hipo.22804 – ident: e_1_2_12_3_1 doi: 10.1038/nature17623 – ident: e_1_2_12_175_1 doi: 10.1016/j.neuroscience.2017.04.041 – ident: e_1_2_12_75_1 doi: 10.1016/s0006‐8993(99)01784‐9 – ident: e_1_2_12_143_1 doi: 10.1006/mcne.2000.0922 – ident: e_1_2_12_97_1 doi: 10.1007/s10735‐019‐09818‐y – ident: e_1_2_12_153_1 doi: 10.1073/pnas.1817222116 – ident: e_1_2_12_33_1 doi: 10.1002/cne.20822 – ident: e_1_2_12_63_1 doi: 10.1111/j.1460‐9568.2008.06108.x – ident: e_1_2_12_67_1 doi: 10.1016/j.neuroscience.2010.08.032 – ident: e_1_2_12_87_1 doi: 10.1016/j.isci.2023.106342 – ident: e_1_2_12_141_1 doi: 10.1038/s41398-022-02226-z – ident: e_1_2_12_26_1 doi: 10.1038/s41593-020-0687-6 – ident: e_1_2_12_93_1 doi: 10.1523/jneurosci.2504‐16.2016 – ident: e_1_2_12_47_1 doi: 10.1016/j.neulet.2013.02.064 – ident: e_1_2_12_189_1 doi: 10.1128/MCB.21.17.5970‐5978.2001 – ident: e_1_2_12_167_1 doi: 10.1126/science.abl6773 – ident: e_1_2_12_96_1 doi: 10.1016/j.immuni.2017.06.006 – ident: e_1_2_12_24_1 doi: 10.1016/s0306‐4522(99)00071‐8 – ident: e_1_2_12_18_1 doi: 10.1155/2018/5735789 – ident: e_1_2_12_90_1 doi: 10.1038/s41467‐022‐35068‐w – ident: e_1_2_12_110_1 doi: 10.3389/fnint.2018.00003 – ident: e_1_2_12_105_1 doi: 10.1523/jneurosci.5425‐06.2007 – ident: e_1_2_12_169_1 doi: 10.21203/rs.3.rs‐2501039/v1 – ident: e_1_2_12_188_1 doi: 10.1016/j.neurobiolaging.2017.08.002 – ident: e_1_2_12_73_1 doi: 10.1073/pnas.1310272111 – ident: e_1_2_12_44_1 doi: 10.1038/ncomms2491 – ident: e_1_2_12_185_1 doi: 10.1007/pl00000690 – ident: e_1_2_12_38_1 doi: 10.1038/s41380‐021‐01174‐2 – ident: e_1_2_12_82_1 doi: 10.1016/j.neuroscience.2014.07.049 – ident: e_1_2_12_120_1 doi: 10.3390/biom10111499 – ident: e_1_2_12_129_1 doi: 10.1111/jnc.15037 – ident: e_1_2_12_9_1 doi: 10.1016/j.neuron.2017.06.007 – ident: e_1_2_12_53_1 doi: 10.1523/jneurosci.4158‐08.2009 – ident: e_1_2_12_74_1 doi: 10.1038/nm.4354 – ident: e_1_2_12_168_1 doi: 10.1038/s41467‐018‐07113‐0 – ident: e_1_2_12_142_1 doi: 10.1046/j.1471‐4159.1995.65031035.x – ident: e_1_2_12_42_1 doi: 10.1111/acer.14810 – ident: e_1_2_12_144_1 doi: 10.1038/nn1899 – ident: e_1_2_12_43_1 doi: 10.1002/cne.23965 – ident: e_1_2_12_52_1 doi: 10.1038/nature12866 – ident: e_1_2_12_103_1 doi: 10.3389/fpsyt.2023.1122423 – ident: e_1_2_12_84_1 doi: 10.1074/jbc.272.50.31377 – ident: e_1_2_12_55_1 doi: 10.1038/s41598-022-10947-w – ident: e_1_2_12_41_1 doi: 10.1016/j.ebiom.2020.102919 – ident: e_1_2_12_83_1 doi: 10.1007/s12035‐019‐1526‐1 – ident: e_1_2_12_70_1 doi: 10.1073/pnas.1313385111 – ident: e_1_2_12_10_1 doi: 10.1038/s41598‐021‐04079‐w – ident: e_1_2_12_40_1 doi: 10.1523/jneurosci.0683‐05.2005 – ident: e_1_2_12_6_1 doi: 10.1007/s00401‐005‐1060‐2 – ident: e_1_2_12_57_1 doi: 10.1038/s41380-022-01634-3 – ident: e_1_2_12_148_1 doi: 10.1016/j.exger.2012.01.007 – ident: e_1_2_12_77_1 doi: 10.3389/fncel.2018.00149 – start-page: 129 volume-title: Progress in brain research year: 2000 ident: e_1_2_12_122_1 contributor: fullname: Nicholson C. – ident: e_1_2_12_152_1 doi: 10.1111/j.1440-1827.2010.02547.x – ident: e_1_2_12_51_1 doi: 10.1016/j.celrep.2019.09.044 – ident: e_1_2_12_95_1 doi: 10.1002/cne.23701 – ident: e_1_2_12_138_1 doi: 10.1073/pnas.1102962108 – ident: e_1_2_12_31_1 doi: 10.1523/JNEUROSCI.0245‐16.2016 – ident: e_1_2_12_60_1 doi: 10.1371/journal.pone.0016666 – ident: e_1_2_12_62_1 doi: 10.1038/nn.2338 – ident: e_1_2_12_140_1 doi: 10.1523/jneurosci.1122‐18.2018 – ident: e_1_2_12_155_1 doi: 10.1371/journal.pone.0168256 |
SSID | ssj0016461 |
Score | 2.5294416 |
SecondaryResourceType | review_article |
Snippet | Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity. They consist... Abstract Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity.... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1854 |
SubjectTerms | Cell body Central nervous system cognition Cognitive ability Developmental plasticity Extracellular matrix Functional anatomy Functional plasticity Memory Neural plasticity Perineuronal nets Plastic memory Plastic properties Plasticity remodeling enzyme Shape memory Structure-function relationships Substrates Synapses Synaptic plasticity Synaptogenesis |
Title | From molecules to behavior: Implications for perineuronal net remodeling in learning and memory |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjnc.16036 https://www.ncbi.nlm.nih.gov/pubmed/38158878 https://www.proquest.com/docview/3112454266 https://www.proquest.com/docview/2909087522 |
Volume | 168 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1RLvRSymdDAZkKIS6LvHHsJO0JLayAA6oQSBwqRbE9W1XVele72QP8esbOh4AKqeIWKY6ceGbsZ-fNG4BDLLlGLSmQpKENitSaYg5tT-aGp6n1AumBIHutLu6Sq3t5vwQ_2lyYWh-iO3DzkRHmax_gpZ4_D3KKH18j2ctt90Xq6VxnN510lJfN6ndK4eSZjapQYPG0T75ci_4BmC_xalhwhqvwq33Vmmfy92RR6RPz-ErF8Z3f8hk-NUCUndaeswZL6NZh49TRJnz8wI5YoIaGM_d1WBm0ZeE2oBjOJmM2rqvq4pxVE9am-n9nl8_46YzgMJuG7MLFzON95rBiMwy1d2jBZH8ca2pW_Gals2zsSb8Pm3A3PL8dXPSaKg09I7JM9UY8zTNuRxotaq4JX6G0Pn83zxNTclQm7ovMqNGor3VJDbm2WqQENJRVSOhmC5bdxOEXYDxLYhRGKWttIrOS0B8Z1hrBUaASKoJvrb2KaS3GUXSbGGeKMIQR7LaWLJp4nBeCYGUiPRqJ4KC7TSPnf4-UDieLeRHnPPf6_nEcwXbtAV0vhGskTcdZBMfBjm93X1xdD8LFzv83_QofY8JKNXVtF5ar2QL3COtUeh8-xMnP_eDaTzrZ-s4 |
link.rule.ids | 315,783,787,1378,11576,27938,27939,46066,46308,46490,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcigXPloogRYMQojLVt44dhLUS7Ww2payB9RKvSArtmerCq232s0eyq9n7HyoBSEhbpHiyIk9z36ezLwBeIcVN2gkAUlaOqBIYwhz6AaytDzPXRBIjwGyUzU5z04u5MUGHHa5MI0-RO9wC8iI63UAeHBI30Y5ASgUSVb34D7BXYT6BZ--9eJRQThr2GuFk222ukIxjqd79O5u9AfFvMtY45YzfgTfu5dtIk1-HKxrc2B__qbj-L9f8xgetlyUHTXG8wQ20G_DzpGnc_j8hr1nMTo0ut23YWvUVYbbAT1eLuZs3hTWxRWrF6zL9v_Ijm-FqDNixOw6Jhiul4HyM481W2Isv0N7JrvyrC1bcckq79g8xP3ePIXz8eez0WTQFmoYWFEUajDjeVlwNzPo0HBDFAulCym8ZZnZiqOy6VAUVs1mQ2MqasiNMyInrqGcQiI4z2DTLzw-B8aLLEVhlXLOZbKoiACKvHBWcBSohErgbTdh-rrR49D9OcZbHYcwgb1uKnULyZUWxCwzGQhJAm_62zRy4Q9J5XGxXum05GWQ-E_TBHYbE-h7IWojaUUuEvgQJ_Lv3euT6ShevPj3pq9ha3L29VSfHk-_vIQHKVGnJpJtDzbr5Rr3ifrU5lW08F_x_P4R |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qBe2LH60fq1WjiPhyJbfZZHf1qVw92iqHiIU-CGGTzIqUyx13ew_1r3eS_aBVBPFtYbNkNzOT_JL9zW8AXmPFDRpJgSQtbVCkMRRz6EaytDzPXRBIjwTZmTo-y07P5fkWvO9zYVp9iOHALURGnK9DgC9dfTXIKX5CjWR1A25mSvDA5zr6MmhHBd2s8SAVTq7ZyQpFGk__6PXF6A-EeR2wxhVnehe-9e_aEk0uDjaNObA_f5Nx_M-PuQd3OiTKDlvXuQ9b6Hdh79DTLnx-yd6wyA2Nh-67cHvS14XbAz1dLeZs3pbVxTVrFqzP9X_HTq4Q1BnhYbaM6YWbVQD8zGPDVhiL79CKyX541hWt-M4q79g8sH4vH8DZ9MPXyfGoK9MwsqIo1KjmeVlwVxt0aLghgIXShQTessxsxVHZdCwKq-p6bExFDblxRuSENJRTSPDmIWz7hcfHwHiRpSisUs65TBYVwT-RF84KjgKVUAm86u2ll60ahx52Md7qOIQJ7PeW1F1ArrUgXJnJAEcSeDncppEL_0cqj4vNWqclL4PAf5om8Kj1gKEXAjaS5uMigbfRjn_vXp_OJvHiyb83fQG3Ph9N9aeT2censJMSbmppbPuw3aw2-IxwT2OeR__-Bf6w_MA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+molecules+to+behavior%3A+Implications+for+perineuronal+net+remodeling+in+learning+and+memory&rft.jtitle=Journal+of+neurochemistry&rft.au=Sanchez%2C+Brenda&rft.au=Kraszewski%2C+Piotr&rft.au=Lee%2C+Sabrina&rft.au=Cope%2C+Elise+C&rft.date=2024-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-3042&rft.eissn=1471-4159&rft.volume=168&rft.issue=9&rft.spage=1854&rft.epage=1876&rft_id=info:doi/10.1111%2Fjnc.16036&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon |