UV‐induced DNA damage disrupts the coordination between replication initiation, elongation and completion

Replication initiation, elongation and completion are tightly coordinated to ensure that all sequences replicate precisely once each generation. UV‐induced DNA damage disrupts replication and delays elongation, which may compromise this coordination leading to genome instability and cell death. Here...

Full description

Saved in:
Bibliographic Details
Published inGenes to cells : devoted to molecular & cellular mechanisms Vol. 26; no. 2; pp. 94 - 108
Main Authors Wendel, Brian M., Hollingsworth, Suzanne, Courcelle, Charmain T., Courcelle, Justin
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Replication initiation, elongation and completion are tightly coordinated to ensure that all sequences replicate precisely once each generation. UV‐induced DNA damage disrupts replication and delays elongation, which may compromise this coordination leading to genome instability and cell death. Here, we profiled the Escherichia coli genome as it recovers from UV irradiation to determine how these replicational processes respond. We show that oriC initiations continue to occur, leading to copy number enrichments in this region. At late times, the combination of new oriC initiations and delayed elongating forks converging in the terminus appear to stress or impair the completion reaction, leading to a transient over‐replication in this region of the chromosome. In mutants impaired for restoring elongation, including recA, recF and uvrA, the genome degrades or remains static, suggesting that cell death occurs early after replication is disrupted, leaving partially duplicated genomes. In mutants impaired for completing replication, including recBC, sbcCD xonA and recG, the recovery of elongation and initiation leads to a bottleneck, where the nonterminus region of the genome is amplified and accumulates, indicating that a delayed cell death occurs in these mutants, likely resulting from mis‐segregation of unbalanced or unresolved chromosomes when cells divide. UV damage delays elongation but not initiation, creating transient chromosome imbalances that stress the completion process and lead to copy number imbalances during the recovery period. We show that lethality occurs soon after disruption in mutants impaired for restoring replication, whereas mutants impaired for completing replication undergo a delayed cell death, resulting from amplified and unresolved chromosome imbalances.
AbstractList Abstract Replication initiation, elongation and completion are tightly coordinated to ensure that all sequences replicate precisely once each generation. UV‐induced DNA damage disrupts replication and delays elongation, which may compromise this coordination leading to genome instability and cell death. Here, we profiled the Escherichia coli genome as it recovers from UV irradiation to determine how these replicational processes respond. We show that oriC initiations continue to occur, leading to copy number enrichments in this region. At late times, the combination of new oriC initiations and delayed elongating forks converging in the terminus appear to stress or impair the completion reaction, leading to a transient over‐replication in this region of the chromosome. In mutants impaired for restoring elongation, including recA , recF and uvrA , the genome degrades or remains static, suggesting that cell death occurs early after replication is disrupted, leaving partially duplicated genomes. In mutants impaired for completing replication, including recBC , sbcCD xonA and recG , the recovery of elongation and initiation leads to a bottleneck, where the nonterminus region of the genome is amplified and accumulates, indicating that a delayed cell death occurs in these mutants, likely resulting from mis‐segregation of unbalanced or unresolved chromosomes when cells divide.
Replication initiation, elongation and completion are tightly coordinated to ensure that all sequences replicate precisely once each generation. UV‐induced DNA damage disrupts replication and delays elongation, which may compromise this coordination leading to genome instability and cell death. Here, we profiled the Escherichia coli genome as it recovers from UV irradiation to determine how these replicational processes respond. We show that oriC initiations continue to occur, leading to copy number enrichments in this region. At late times, the combination of new oriC initiations and delayed elongating forks converging in the terminus appear to stress or impair the completion reaction, leading to a transient over‐replication in this region of the chromosome. In mutants impaired for restoring elongation, including recA, recF and uvrA, the genome degrades or remains static, suggesting that cell death occurs early after replication is disrupted, leaving partially duplicated genomes. In mutants impaired for completing replication, including recBC, sbcCD xonA and recG, the recovery of elongation and initiation leads to a bottleneck, where the nonterminus region of the genome is amplified and accumulates, indicating that a delayed cell death occurs in these mutants, likely resulting from mis‐segregation of unbalanced or unresolved chromosomes when cells divide. UV damage delays elongation but not initiation, creating transient chromosome imbalances that stress the completion process and lead to copy number imbalances during the recovery period. We show that lethality occurs soon after disruption in mutants impaired for restoring replication, whereas mutants impaired for completing replication undergo a delayed cell death, resulting from amplified and unresolved chromosome imbalances.
Replication initiation, elongation and completion are tightly coordinated to ensure that all sequences replicate precisely once each generation. UV‐induced DNA damage disrupts replication and delays elongation, which may compromise this coordination leading to genome instability and cell death. Here, we profiled the Escherichia coli genome as it recovers from UV irradiation to determine how these replicational processes respond. We show that oriC initiations continue to occur, leading to copy number enrichments in this region. At late times, the combination of new oriC initiations and delayed elongating forks converging in the terminus appear to stress or impair the completion reaction, leading to a transient over‐replication in this region of the chromosome. In mutants impaired for restoring elongation, including recA, recF and uvrA, the genome degrades or remains static, suggesting that cell death occurs early after replication is disrupted, leaving partially duplicated genomes. In mutants impaired for completing replication, including recBC, sbcCD xonA and recG, the recovery of elongation and initiation leads to a bottleneck, where the nonterminus region of the genome is amplified and accumulates, indicating that a delayed cell death occurs in these mutants, likely resulting from mis‐segregation of unbalanced or unresolved chromosomes when cells divide.
Author Courcelle, Charmain T.
Wendel, Brian M.
Hollingsworth, Suzanne
Courcelle, Justin
Author_xml – sequence: 1
  givenname: Brian M.
  surname: Wendel
  fullname: Wendel, Brian M.
  organization: Cornell University
– sequence: 2
  givenname: Suzanne
  surname: Hollingsworth
  fullname: Hollingsworth, Suzanne
  organization: Portland State University
– sequence: 3
  givenname: Charmain T.
  surname: Courcelle
  fullname: Courcelle, Charmain T.
  organization: Portland State University
– sequence: 4
  givenname: Justin
  orcidid: 0000-0001-7464-0375
  surname: Courcelle
  fullname: Courcelle, Justin
  email: justc@pdx.edu
  organization: Portland State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33382157$$D View this record in MEDLINE/PubMed
BookMark eNp1kctO3TAQhi0E4r7gBapIbFqpATu-ZolOW0BCsAG2keNMTk0TO9iJEDsegWfkSfAh0AUSs5mLvvk1mn8HrTvvAKEDgo9IiuPlaI5IoQqxhrYJFTwvGKPrq5qLvOSl3EI7Md5hTGiB-SbaopSqgnC5jf7d3L48PVvXTAaa7NflSdboXi8ha2wM0zDGbPwLmfE-NNbp0XqX1TA-ALgswNBZM8-ss6N9K39m0Hm3nMfaNWm3HzpYtXtoo9VdhP33vItu_vy-XpzlF1en54uTi9xQpUQOLcUlb1mjSyk446yVUCqBjamVMqUWpWa4BlBSiZZIzGvB6lYKKltSGsrpLvo-6w7B308Qx6q30UDXaQd-ilXBJGNCFIVI6OEn9M5PwaXrEqUE41wymqgfM2WCjzFAWw3B9jo8VgRXKweq5ED15kBiv70rTnUPzX_y4-UJOJ6BB9vB49dK1en1YpZ8BRfRkqI
CitedBy_id crossref_primary_10_3390_genes13030437
crossref_primary_10_1016_j_jbc_2023_103013
crossref_primary_10_1093_nar_gkab1269
crossref_primary_10_1093_nar_gkad263
crossref_primary_10_1111_php_13546
Cites_doi 10.1111/j.1365-2958.2009.06773.x
10.1016/S0021-9258(18)93898-6
10.1101/gad.417607
10.1007/BF00327522
10.1073/pnas.84.19.6805
10.1073/pnas.1309800110
10.1038/nature12312
10.1128/JB.187.20.6953-6961.2005
10.1111/mmi.14242
10.1128/JB.97.3.1134-1141.1969
10.1002/bies.1065
10.1016/0923-2508(91)90026-7
10.1073/pnas.94.8.3714
10.1074/jbc.M311012200
10.1016/0022-2836(70)90022-7
10.1093/genetics/166.4.1631
10.1038/nature13374
10.1128/jb.170.5.2089-2094.1988
10.1126/science.142.3598.1464
10.1002/j.1460-2075.1989.tb08374.x
10.1073/pnas.1415025111
10.1093/nar/gky1253
10.1146/annurev.bi.64.070195.001131
10.1007/BF00330564
10.3390/genes7080040
10.1002/j.1460-2075.1995.tb07233.x
10.1016/0022-2836(84)90141-4
10.1093/nar/27.4.1039
10.1007/BF00260699
10.1128/JB.181.3.916-922.1999
10.1007/BF00272806
10.1073/pnas.91.8.2980
10.1111/j.1365-2958.2009.06909.x
10.1186/1471-2164-15-1039
10.1016/0378-1119(88)90092-3
10.1007/BF00338404
10.1667/RR1033.1
10.1073/pnas.51.2.226
10.1073/pnas.1715960114
10.1146/annurev-biochem-052610-094414
10.1128/jb.172.4.1834-1839.1990
10.1128/JB.106.1.204-212.1971
10.1038/nature01674
10.1128/jb.176.7.1807-1812.1994
10.1074/jbc.M603933200
10.1073/pnas.35.1.1
10.1016/0022-2836(85)90414-0
10.1126/science.1081328
10.1007/BF00326535
10.1073/pnas.87.7.2481
10.1007/s004380051116
10.1128/jb.178.5.1347-1350.1996
10.1093/nar/gky566
10.1073/pnas.86.5.1593
10.1101/gad.13.7.890
10.1128/.61.2.212-238.1997
10.1007/BF00268069
10.1007/978-981-10-6955-0_4
10.1002/j.1460-2075.1992.tb05516.x
10.1128/JB.180.21.5639-5645.1998
10.1534/genetics.110.120691
10.1016/j.dnarep.2015.04.018
10.1111/j.1751-1097.1968.tb05850.x
10.1038/296623a0
10.1038/342095a0
10.1093/genetics/126.1.25
10.1016/j.dnarep.2014.03.023
10.1016/0022-2836(71)90204-X
10.1073/pnas.76.2.580
ContentType Journal Article
Copyright 2020 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd
2020 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
2021 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd
Copyright_xml – notice: 2020 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd
– notice: 2020 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
– notice: 2021 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd
DBID NPM
AAYXX
CITATION
7TK
7TM
8FD
FR3
M7N
P64
RC3
7X8
DOI 10.1111/gtc.12826
DatabaseName PubMed
CrossRef
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

Genetics Abstracts
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2443
EndPage 108
ExternalDocumentID 10_1111_gtc_12826
33382157
GTC12826
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: MCB1916625
– fundername: National Science Foundation
  grantid: MCB1916625
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
18M
1OC
24P
29H
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
7.U
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
F00
F01
F04
F5P
G-S
G.N
GODZA
GX1
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OEB
OIG
OK1
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
Q~Q
R.K
ROL
RX1
SUPJJ
SV3
TEORI
TKC
TR2
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WOQ
WQJ
WRC
WXSBR
WYISQ
X7M
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
NPM
AAYXX
CITATION
7TK
7TM
8FD
FR3
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c3886-ef3095f4da9765454f7e9860ccb88c9a69a40bee8786f1705b64bf7637f19c353
IEDL.DBID DR2
ISSN 1356-9597
IngestDate Fri Aug 16 22:34:08 EDT 2024
Thu Oct 10 17:34:14 EDT 2024
Fri Aug 23 00:39:48 EDT 2024
Sat Sep 28 08:40:14 EDT 2024
Sat Aug 24 01:02:33 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords recF
uvrABC
replication completion
recBCD
replication initiation
Language English
License 2020 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3886-ef3095f4da9765454f7e9860ccb88c9a69a40bee8786f1705b64bf7637f19c353
Notes Communicated by: Hiroyuki Araki
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7464-0375
OpenAccessLink https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1111/gtc.12826
PMID 33382157
PQID 2486455743
PQPubID 1066354
PageCount 15
ParticipantIDs proquest_miscellaneous_2474466226
proquest_journals_2486455743
crossref_primary_10_1111_gtc_12826
pubmed_primary_33382157
wiley_primary_10_1111_gtc_12826_GTC12826
PublicationCentury 2000
PublicationDate February 2021
2021-Feb
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Tokyo
PublicationTitle Genes to cells : devoted to molecular & cellular mechanisms
PublicationTitleAlternate Genes Cells
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 166
1968; 8
2010; 11
1994; 176
1989; 86
1975; 5A
2015; 32
2010; 186
1992; 11
1988; 71
1979; 76
2018; 46
1995; 64
1991; 142
1990; 87
1997; 94
1987; 84
2005; 187
1999; 181
1989; 342
1999; 13
2014; 15
1982; 296
1988; 211
1980; 180
2014; 19
2013; 110
1981
2006; 281
1991; 227
2007; 21
1996; 178
2019; 111
1990; 172
1998; 180
2007; 168
1949; 35
1997; 61
1990; 126
1971; 61
1989; 218
1988; 170
1995; 14
1999; 27
2013; 500
1987; 206
1971; 106
1969; 97
1989; 8
1999; 262
1970; 52
2001; 23
2014; 111
1964; 239
2003; 299
1985; 185
2014; 511
2016; 7
2009; 74
2009; 73
2004; 279
1963; 142
1984; 178
2018; 115
2019; 47
2013; 82
2017
1977; 155
2003; 423
1994; 91
1964; 51
1985; 199
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
Rothman R. H. (e_1_2_6_55_1) 1975; 5
e_1_2_6_62_1
Langmead B. (e_1_2_6_43_1) 2010; 11
e_1_2_6_64_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
Smith C. A. (e_1_2_6_65_1) 1981
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 7
  start-page: 40
  issue: 8
  year: 2016
  article-title: Replication termination: Containing fork fusion‐mediated pathologies in Escherichia coli
  publication-title: Genes (Basel)
– volume: 342
  start-page: 95
  year: 1989
  end-page: 98
  article-title: Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand
  publication-title: Nature
– volume: 115
  start-page: 349
  year: 2018
  end-page: 354
  article-title: SbcC‐SbcD and ExoI process convergent forks to complete chromosome replication
  publication-title: Proceedings of the National Academy of Sciences of the USA
– volume: 168
  start-page: 499
  year: 2007
  end-page: 506
  article-title: RecBCD and RecJ/RecQ initiate DNA degradation on distinct substrates in UV‐irradiated Escherichia coli
  publication-title: Radiation Research
– volume: 13
  start-page: 890
  year: 1999
  end-page: 900
  article-title: Regulation of homologous recombination: Chi inactivates RecBCD enzyme by disassembly of the three subunits
  publication-title: Genes & Development
– volume: 94
  start-page: 3714
  year: 1997
  end-page: 3719
  article-title: recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli
  publication-title: Proceedings of the National Academy of Sciences of the USA
– volume: 218
  start-page: 50
  year: 1989
  end-page: 56
  article-title: Initiation of DNA replication in Escherichia coli after overproduction of the DnaA protein
  publication-title: Molecular and General Genetics
– volume: 46
  start-page: 7701
  year: 2018
  end-page: 7715
  article-title: Chromosomal over‐replication in Escherichia coli recG cells is triggered by replication fork fusion and amplified if replichore symmetry is disturbed
  publication-title: Nucleic Acids Research
– volume: 181
  start-page: 916
  year: 1999
  end-page: 922
  article-title: Recovery of DNA replication in UV‐irradiated Escherichia coli requires both excision repair and recF protein function
  publication-title: Journal of Bacteriology
– volume: 299
  start-page: 1064
  year: 2003
  end-page: 1067
  article-title: DNA damage‐induced replication fork regression and processing in Escherichia coli
  publication-title: Science
– volume: 126
  start-page: 25
  year: 1990
  end-page: 40
  article-title: Genetic dissection of the biochemical activities of RecBCD enzyme
  publication-title: Genetics
– volume: 206
  start-page: 51
  year: 1987
  end-page: 59
  article-title: Overproduction of DnaA protein stimulates initiation of chromosome and minichromosome replication in Escherichia coli
  publication-title: Molecular and General Genetics
– volume: 71
  start-page: 201
  year: 1988
  end-page: 205
  article-title: Escherichia coli sbcC mutants permit stable propagation of DNA replicons containing a long palindrome
  publication-title: Gene
– volume: 74
  start-page: 940
  year: 2009
  end-page: 955
  article-title: Replication fork collisions cause pathological chromosomal amplification in cells lacking RecG DNA translocase
  publication-title: Molecular Microbiology
– volume: 21
  start-page: 668
  year: 2007
  end-page: 681
  article-title: Replication fork stalling and cell cycle arrest in UV‐irradiated Escherichia coli
  publication-title: Genes & Development
– volume: 142
  start-page: 1464
  year: 1963
  end-page: 1466
  article-title: Thymine dimers and inhibition of DNA synthesis by ultraviolet irradiation of cells
  publication-title: Science
– volume: 47
  start-page: 1847
  year: 2019
  end-page: 1860
  article-title: A role for 3’ exonucleases at the final stages of chromosome duplication in Escherichia coli
  publication-title: Nucleic Acids Research
– volume: 51
  start-page: 226
  year: 1964
  end-page: 231
  article-title: The disappearance of thymine dimers from DNA: An error‐correcting mechanism
  publication-title: Proceedings of the National Academy of Sciences of the USA
– volume: 110
  start-page: 13475
  year: 2013
  end-page: 13480
  article-title: Break‐induced replication occurs by conservative DNA synthesis
  publication-title: Proceedings of the National Academy of Sciences of the USA
– volume: 199
  start-page: 133
  year: 1985
  end-page: 140
  article-title: Mechanism of transient inhibition of DNA synthesis in ultraviolet‐irradiated E. coli: Inhibition is independent of recA whilst recovery requires RecA protein itself and an additional, inducible SOS function
  publication-title: Molecular and General Genetics
– volume: 166
  start-page: 1631
  year: 2004
  end-page: 1640
  article-title: RuvAB and RecG are not essential for the recovery of DNA synthesis following UV‐induced DNA damage in Escherichia coli
  publication-title: Genetics
– volume: 187
  start-page: 6953
  year: 2005
  end-page: 6961
  article-title: Nucleotide excision repair or polymerase V‐mediated lesion bypass can act to restore UV‐arrested replication forks in Escherichia coli
  publication-title: Journal of Bacteriology
– volume: 61
  start-page: 212
  year: 1997
  end-page: 238
  article-title: Stable DNA replication: Interplay between DNA replication, homologous recombination, and transcription
  publication-title: Microbiology and Molecular Biology Reviews
– volume: 76
  start-page: 580
  year: 1979
  end-page: 584
  article-title: Nucleotide sequence of the origin of replication of the Escherichia coli K‐12 chromosome
  publication-title: Proceedings of the National Academy of Sciences of the USA
– volume: 32
  start-page: 86
  year: 2015
  end-page: 95
  article-title: RecBCD is required to complete chromosomal replication: Implications for double‐strand break frequencies and repair mechanisms
  publication-title: DNA Repair (Amst)
– volume: 23
  start-page: 463
  year: 2001
  end-page: 470
  article-title: Therefore, what are recombination proteins there for?
  publication-title: BioEssays
– volume: 170
  start-page: 2089
  year: 1988
  end-page: 2094
  article-title: Physical and biochemical characterization of cloned sbcB and xonA mutations from Escherichia coli K‐12
  publication-title: Journal of Bacteriology
– volume: 281
  start-page: 28811
  year: 2006
  end-page: 28821
  article-title: RuvABC is required to resolve holliday junctions that accumulate following replication on damaged templates in Escherichia coli
  publication-title: Journal of Biological Chemistry
– volume: 11
  start-page: 11.7.1
  year: 2010
  end-page: 11.7.14
  article-title: Aligning short sequencing reads with Bowtie
  publication-title: Current Protocols in Bioinformatics
– volume: 178
  start-page: 1347
  year: 1996
  end-page: 1350
  article-title: Kinetics of pyrimidine(6–4)pyrimidone photoproduct repair in Escherichia coli
  publication-title: Journal of Bacteriology
– volume: 82
  start-page: 25
  year: 2013
  end-page: 54
  article-title: Mechanisms for initiating cellular DNA replication
  publication-title: Annual Review of Biochemistry
– volume: 500
  start-page: 608
  year: 2013
  end-page: 611
  article-title: Avoiding chromosome pathology when replication forks collide
  publication-title: Nature
– volume: 84
  start-page: 6805
  year: 1987
  end-page: 6809
  article-title: Recovery from ultraviolet light‐induced inhibition of DNA synthesis requires umuDC gene products in recA718 mutant strains but not in recA+ strains of Escherichia coli
  publication-title: Proceedings of the National Academy of Sciences of the USA
– volume: 227
  start-page: 9
  year: 1991
  end-page: 16
  article-title: Expression of the dnaA gene of Escherichia coli is inducible by DNA damage
  publication-title: Molecular and General Genetics
– volume: 11
  start-page: 4219
  year: 1992
  end-page: 4225
  article-title: DNA damage‐inducible origins of DNA replication in Escherichia coli
  publication-title: EMBO Journal
– volume: 180
  start-page: 617
  year: 1980
  end-page: 620
  article-title: The dnaA gene product is not required during stable chromosome replication in Escherichia coli
  publication-title: Molecular and General Genetics
– volume: 185
  start-page: 431
  year: 1985
  end-page: 443
  article-title: Substrate specificity of the DNA unwinding activity of the RecBC enzyme of Escherichia coli
  publication-title: Journal of Molecular Biology
– volume: 111
  start-page: 1638
  year: 2019
  end-page: 1651
  article-title: RecBCD, SbcCD and ExoI process a substrate created by convergent replisomes to complete DNA replication
  publication-title: Molecular Microbiology
– volume: 91
  start-page: 2980
  year: 1994
  end-page: 2984
  article-title: Reversible inactivation of the Escherichia coli RecBCD enzyme by the recombination hotspot chi in vitro: Evidence for functional inactivation or loss of the RecD subunit
  publication-title: Proceedings of the National Academy of Sciences of the USA
– volume: 180
  start-page: 5639
  year: 1998
  end-page: 5645
  article-title: Interaction of RecBCD enzyme with DNA at double‐strand breaks produced in UV‐irradiated Escherichia coli: Requirement for DNA end processing
  publication-title: Journal of Bacteriology
– volume: 27
  start-page: 1039
  year: 1999
  end-page: 1046
  article-title: DNA cleavage and degradation by the SbcCD protein complex from Escherichia coli
  publication-title: Nucleic Acids Research
– volume: 142
  start-page: 169
  year: 1991
  end-page: 175
  article-title: The tus gene of Escherichia coli: Autoregulation, analysis of flanking sequences and identification of a complementary system in Salmonella typhimurium
  publication-title: Research in Microbiology
– volume: 87
  start-page: 2481
  year: 1990
  end-page: 2485
  article-title: Escherichia coli Tus protein acts to arrest the progression of DNA replication forks in vitro
  publication-title: Proceedings of the National Academy of Sciences of the USA
– volume: 279
  start-page: 3492
  year: 2004
  end-page: 3496
  article-title: RecO Acts with RecF and RecR to Protect and maintain replication forks blocked by UV‐induced DNA damage in Escherichia coli
  publication-title: Journal of Biological Chemistry
– volume: 262
  start-page: 543
  year: 1999
  end-page: 551
  article-title: RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV‐irradiated Escherichia coli
  publication-title: Molecular and General Genetics
– volume: 296
  start-page: 623
  year: 1982
  end-page: 627
  article-title: Enzymatic replication of E. coli chromosomal origin is bidirectional
  publication-title: Nature
– volume: 19
  start-page: 84
  year: 2014
  end-page: 94
  article-title: The contribution of co‐transcriptional RNA:DNA hybrid structures to DNA damage and genome instability
  publication-title: DNA Repair (Amst)
– volume: 511
  start-page: 362
  year: 2014
  end-page: 365
  article-title: BRCA2 prevents R‐loop accumulation and associates with TREX‐2 mRNA export factor PCID2
  publication-title: Nature
– volume: 97
  start-page: 1134
  year: 1969
  end-page: 1141
  article-title: Some properties of excision‐defective recombination‐deficient mutants of Escherichia coli K‐12
  publication-title: Journal of Bacteriology
– start-page: 289
  year: 1981
  end-page: 305
– volume: 186
  start-page: 473
  year: 2010
  end-page: 492
  article-title: RecG protein and single‐strand DNA exonucleases avoid cell lethality associated with PriA helicase activity in Escherichia coli
  publication-title: Genetics
– volume: 8
  start-page: 93
  year: 1968
  end-page: 105
  article-title: Degradation of the DNA of Escherichia coli K12 rec‐ (JC1569b) after irradiation with ultraviolet light
  publication-title: Photochemistry and Photobiology
– volume: 172
  start-page: 1834
  year: 1990
  end-page: 1839
  article-title: Requirement of RecBC enzyme and an elevated level of activated RecA for induced stable DNA replication in Escherichia coli
  publication-title: Journal of Bacteriology
– volume: 5A
  start-page: 283
  year: 1975
  end-page: 291
  article-title: The beginning of an investigation of the role of recF in the pathways of metabolism of ultraviolet‐irradiated DNA in Escherichia coli
  publication-title: Basic Life Sciences
– volume: 86
  start-page: 1593
  year: 1989
  end-page: 1597
  article-title: tus, the trans‐acting gene required for termination of DNA replication in Escherichia coli, encodes a DNA‐binding protein
  publication-title: Proceedings of the National Academy of Sciences of the USA
– volume: 52
  start-page: 143
  year: 1970
  end-page: 164
  article-title: DNA replication in Escherihia coli: Replication in absence of protein synthesis after replication inhibition
  publication-title: Journal of Molecular Biology
– volume: 61
  start-page: 25
  year: 1971
  end-page: 44
  article-title: Exchanges between DNA strands in ultraviolet‐irradiated Escherichia coli
  publication-title: Journal of Molecular Biology
– volume: 176
  start-page: 1807
  year: 1994
  end-page: 1812
  article-title: D‐loops and R‐loops: Alternative mechanisms for the initiation of chromosome replication in Escherichia coli
  publication-title: Journal of Bacteriology
– volume: 64
  start-page: 171
  year: 1995
  end-page: 200
  article-title: DNA polymerase III holoenzyme: Structure and function of a chromosomal replicating machine
  publication-title: Annual Review of Biochemistry
– volume: 155
  start-page: 279
  year: 1977
  end-page: 286
  article-title: The dependence of postreplication repair on uvrB in a recF mutant of Escherichia coli K‐12
  publication-title: Molecular and General Genetics
– volume: 106
  start-page: 204
  year: 1971
  end-page: 212
  article-title: Involvement of recombination genes in growth and viability of Escherichia coli K‐12
  publication-title: Journal of Bacteriology
– volume: 15
  start-page: 1039
  year: 2014
  article-title: Identifying structural variation in haploid microbial genomes from short‐read resequencing data using breseq
  publication-title: BMC Genomics
– volume: 35
  start-page: 1
  year: 1949
  end-page: 10
  article-title: The isolation of biochemically deficient mutants of bacteria by means of penicillin
  publication-title: Proceedings of the National Academy of Sciences of the USA
– volume: 178
  start-page: 227
  year: 1984
  end-page: 236
  article-title: Multiple origin usage for DNA replication in sdrA(rnh) mutants of Escherichia coli K‐12. Initiation in the absence of oriC
  publication-title: Journal of Molecular Biology
– volume: 423
  start-page: 889
  year: 2003
  end-page: 893
  article-title: RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity
  publication-title: Nature
– volume: 14
  start-page: 2385
  year: 1995
  end-page: 2392
  article-title: Escherichia coli RecG and RecA proteins in R‐loop formation
  publication-title: EMBO Journal
– volume: 111
  start-page: 16454
  year: 2014
  end-page: 16459
  article-title: Completion of DNA replication in Escherichia coli
  publication-title: Proceedings of the National Academy of Sciences of the USA
– volume: 211
  start-page: 138
  year: 1988
  end-page: 142
  article-title: Chromosome replication in Escherichia coli induced by oversupply of DnaA
  publication-title: Molecular and General Genetics
– volume: 73
  start-page: 352
  year: 2009
  end-page: 366
  article-title: Pathological replication in cells lacking RecG DNA translocase
  publication-title: Molecular Microbiology
– start-page: 79
  year: 2017
  end-page: 98
– volume: 8
  start-page: 2435
  year: 1989
  end-page: 2441
  article-title: Evidence of a ter specific binding protein essential for the termination reaction of DNA replication in Escherichia coli
  publication-title: EMBO Journal
– volume: 239
  start-page: 2628
  year: 1964
  end-page: 2636
  article-title: The deoxyribonucleases of Escherichia coli. V. On the specificity of exonuclease I (phosphodiesterase)
  publication-title: Journal of Biological Chemistry
– volume: 5
  start-page: 283
  year: 1975
  ident: e_1_2_6_55_1
  article-title: The beginning of an investigation of the role of recF in the pathways of metabolism of ultraviolet‐irradiated DNA in Escherichia coli
  publication-title: Basic Life Sciences
  contributor:
    fullname: Rothman R. H.
– ident: e_1_2_6_57_1
  doi: 10.1111/j.1365-2958.2009.06773.x
– ident: e_1_2_6_44_1
  doi: 10.1016/S0021-9258(18)93898-6
– ident: e_1_2_6_58_1
  doi: 10.1101/gad.417607
– ident: e_1_2_6_38_1
  doi: 10.1007/BF00327522
– ident: e_1_2_6_72_1
  doi: 10.1073/pnas.84.19.6805
– ident: e_1_2_6_27_1
  doi: 10.1073/pnas.1309800110
– ident: e_1_2_6_60_1
  doi: 10.1038/nature12312
– ident: e_1_2_6_14_1
  doi: 10.1128/JB.187.20.6953-6961.2005
– ident: e_1_2_6_28_1
  doi: 10.1111/mmi.14242
– ident: e_1_2_6_34_1
  doi: 10.1128/JB.97.3.1134-1141.1969
– ident: e_1_2_6_18_1
  doi: 10.1002/bies.1065
– ident: e_1_2_6_53_1
  doi: 10.1016/0923-2508(91)90026-7
– ident: e_1_2_6_15_1
  doi: 10.1073/pnas.94.8.3714
– ident: e_1_2_6_9_1
  doi: 10.1074/jbc.M311012200
– ident: e_1_2_6_42_1
  doi: 10.1016/0022-2836(70)90022-7
– ident: e_1_2_6_25_1
  doi: 10.1093/genetics/166.4.1631
– ident: e_1_2_6_6_1
  doi: 10.1038/nature13374
– ident: e_1_2_6_51_1
  doi: 10.1128/jb.170.5.2089-2094.1988
– ident: e_1_2_6_63_1
  doi: 10.1126/science.142.3598.1464
– ident: e_1_2_6_39_1
  doi: 10.1002/j.1460-2075.1989.tb08374.x
– start-page: 289
  volume-title: Measurement of Repair Replication by Equilibrium Sedimentation
  year: 1981
  ident: e_1_2_6_65_1
  contributor:
    fullname: Smith C. A.
– ident: e_1_2_6_71_1
  doi: 10.1073/pnas.1415025111
– ident: e_1_2_6_49_1
  doi: 10.1093/nar/gky1253
– ident: e_1_2_6_37_1
  doi: 10.1146/annurev.bi.64.070195.001131
– ident: e_1_2_6_64_1
  doi: 10.1007/BF00330564
– ident: e_1_2_6_23_1
  doi: 10.3390/genes7080040
– ident: e_1_2_6_32_1
  doi: 10.1002/j.1460-2075.1995.tb07233.x
– ident: e_1_2_6_22_1
  doi: 10.1016/0022-2836(84)90141-4
– ident: e_1_2_6_12_1
  doi: 10.1093/nar/27.4.1039
– ident: e_1_2_6_52_1
  doi: 10.1007/BF00260699
– ident: e_1_2_6_16_1
  doi: 10.1128/JB.181.3.916-922.1999
– ident: e_1_2_6_54_1
  doi: 10.1007/BF00272806
– ident: e_1_2_6_24_1
  doi: 10.1073/pnas.91.8.2980
– ident: e_1_2_6_59_1
  doi: 10.1111/j.1365-2958.2009.06909.x
– ident: e_1_2_6_5_1
  doi: 10.1186/1471-2164-15-1039
– ident: e_1_2_6_8_1
  doi: 10.1016/0378-1119(88)90092-3
– ident: e_1_2_6_73_1
  doi: 10.1007/BF00338404
– ident: e_1_2_6_10_1
  doi: 10.1667/RR1033.1
– ident: e_1_2_6_62_1
  doi: 10.1073/pnas.51.2.226
– ident: e_1_2_6_70_1
  doi: 10.1073/pnas.1715960114
– ident: e_1_2_6_13_1
  doi: 10.1146/annurev-biochem-052610-094414
– ident: e_1_2_6_46_1
  doi: 10.1128/jb.172.4.1834-1839.1990
– ident: e_1_2_6_7_1
  doi: 10.1128/JB.106.1.204-212.1971
– ident: e_1_2_6_68_1
  doi: 10.1038/nature01674
– ident: e_1_2_6_3_1
  doi: 10.1128/jb.176.7.1807-1812.1994
– ident: e_1_2_6_26_1
  doi: 10.1074/jbc.M603933200
– ident: e_1_2_6_21_1
  doi: 10.1073/pnas.35.1.1
– ident: e_1_2_6_66_1
  doi: 10.1016/0022-2836(85)90414-0
– ident: e_1_2_6_17_1
  doi: 10.1126/science.1081328
– ident: e_1_2_6_4_1
  doi: 10.1007/BF00326535
– ident: e_1_2_6_30_1
  doi: 10.1073/pnas.87.7.2481
– ident: e_1_2_6_19_1
  doi: 10.1007/s004380051116
– ident: e_1_2_6_40_1
  doi: 10.1128/jb.178.5.1347-1350.1996
– ident: e_1_2_6_50_1
  doi: 10.1093/nar/gky566
– ident: e_1_2_6_31_1
  doi: 10.1073/pnas.86.5.1593
– ident: e_1_2_6_67_1
  doi: 10.1101/gad.13.7.890
– ident: e_1_2_6_41_1
  doi: 10.1128/.61.2.212-238.1997
– ident: e_1_2_6_11_1
  doi: 10.1007/BF00268069
– ident: e_1_2_6_36_1
  doi: 10.1007/978-981-10-6955-0_4
– volume: 11
  start-page: 11.7.1
  year: 2010
  ident: e_1_2_6_43_1
  article-title: Aligning short sequencing reads with Bowtie
  publication-title: Current Protocols in Bioinformatics
  contributor:
    fullname: Langmead B.
– ident: e_1_2_6_45_1
  doi: 10.1002/j.1460-2075.1992.tb05516.x
– ident: e_1_2_6_69_1
  doi: 10.1128/JB.180.21.5639-5645.1998
– ident: e_1_2_6_56_1
  doi: 10.1534/genetics.110.120691
– ident: e_1_2_6_20_1
  doi: 10.1016/j.dnarep.2015.04.018
– ident: e_1_2_6_33_1
  doi: 10.1111/j.1751-1097.1968.tb05850.x
– ident: e_1_2_6_35_1
  doi: 10.1038/296623a0
– ident: e_1_2_6_48_1
  doi: 10.1038/342095a0
– ident: e_1_2_6_2_1
  doi: 10.1093/genetics/126.1.25
– ident: e_1_2_6_29_1
  doi: 10.1016/j.dnarep.2014.03.023
– ident: e_1_2_6_61_1
  doi: 10.1016/0022-2836(71)90204-X
– ident: e_1_2_6_47_1
  doi: 10.1073/pnas.76.2.580
SSID ssj0013205
Score 2.3886852
Snippet Replication initiation, elongation and completion are tightly coordinated to ensure that all sequences replicate precisely once each generation. UV‐induced DNA...
Replication initiation, elongation and completion are tightly coordinated to ensure that all sequences replicate precisely once each generation. UV-induced DNA...
Abstract Replication initiation, elongation and completion are tightly coordinated to ensure that all sequences replicate precisely once each generation....
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 94
SubjectTerms Apoptosis
Cell death
Chromosomes
Copy number
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA damage
Elongation
Genomes
Genomic instability
Mutants
Nucleotide sequence
RecA protein
recBCD
recF
replication completion
Replication initiation
Ultraviolet radiation
uvrABC
Title UV‐induced DNA damage disrupts the coordination between replication initiation, elongation and completion
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgtc.12826
https://www.ncbi.nlm.nih.gov/pubmed/33382157
https://www.proquest.com/docview/2486455743
https://search.proquest.com/docview/2474466226
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4hJCQupS0tbFmQQRx6IKtd23EccUJQipDggFjEASmyYxutgOxqN3ugpz5Cn5EnYez8CFpVQlyi_Dhx4vGMv_F8GQPsxo6l3AoToXnsR9ykLPLBo4iagdHovMVG-_-dz87FyZCfXsfXC7Df_AtT5YdoJ9y8ZgR77RVc6dkLJb8t8x4aV-rTbQ9Y4ulcRxf0RQQh0BcHLBZRiqi5zirkWTztna_Hon8A5mu8Ggac4xW4aV614pnc9eal7uW__sri-M5v-QgfaiBKDqqe8wkWbPEZlqqlKR9X4W549fT7DzrsKHpDjs4PiFEPaHuIGc2m80k5I4gcST5G33VUTSiSmvJFpraNiZOR5yaF3T1i78fFbXVaFYYEMrv1h19gePzj8vAkqhdmiHImpYisY4jMHDcKwQxCMO4Sm0rRz3MtZZ4qkSre19bKRArn8_VowbVDS5a4QZqzmH2FxWJc2HUgmimjEUQq5xynWiqRUGV1P7VKUdx2YKcRUTap8m9kjd-CrZaFVutAtxFeVqvgLKNcCh7HiJA6sN1eRuXxERFV2PHcl0l8PJv6R6xVQm9rYei8Ix5KOvA9iO7_1Wc_Lw_Dzre3F92AZerZMYH_3YXFcjq3mwhvSr0V-vEzAir3ig
link.rule.ids 315,783,787,1378,27937,27938,46307,46731
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VogouBQqlCwVMxYEDWe3ajuNIvVQt7QLtHqrdqhcU2bFdrQrZajd7gBOP0Gfsk3Ts_KgtQkK9RE7i_Hk8k288n8cAH2LHUm6FidA89iJuUhb54FFETd9odN5io_1856OhGIz519P4dAm2m7kwVX6IdsDNa0aw117B_YD0DS0_K_MuWlcqHsBDVHfm1XLvmN6IIQQCY5_FIkoRN9d5hTyPp7309t_oL4h5G7GGX87-E_jevGzFNDnvLkrdzX_fyeN43695Cqs1FiU7Ved5Bku2WIOVanXKX8_hfHxy9ecSfXaUviF7wx1i1E80P8RM5rPFRTknCB5JPkX3dVKNKZKa9UVmtg2Lk4mnJ4XiJ2J_TIuz6rAqDAl8dut3X8B4__NodxDVazNEOZNSRNYxBGeOG4V4BlEYd4lNpejluZYyT5VIFe9pa2UihfMpe7Tg2qExS1w_zVnM1mG5mBZ2A4hmymjEkco5x6mWSiRUWd1LrVIUtx3YamSUXVQpOLLGdcFWy0KrdWCzkV5Wa-E8o1wKHscIkjrwvj2N-uODIqqw04Wvk_iQNvW3eFlJvX0KQ_8dIVHSgY9Bdv9-fHYw2g2FV_9f9R08GoyODrPDL8Nvr-Ex9WSZQAffhOVytrBvEO2U-m3o1NdoXfuj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VoiIuvMojUMCgHnpgo8T2er3iVCWE8GiEqqbqAWllr-0qKmyiZHOAEz-B38gvYex9KKVCQlxW3qd3PZ7xN57PswD7sWMpt8JEaB57ETcpi3zwKKKmbzQ6b7HRfr3z0USMp_z9WXy2Ba-btTBVfoh2ws1rRrDXXsEXxm0o-XmZd9G4UnENrnOBXdUjomO6EUII_MU-i0WUImyu0wp5Gk976-XB6ArCvAxYw4gzug2fm3etiCYX3XWpu_n3P9I4_ufH3IFbNRIlh1XXuQtbtrgHO9W_Kb_twsX09NePn-ixo-wNGU4OiVFf0fgQM1st14tyRRA6knyOzuusmlEkNeeLLG0bFCczT04KxVfEfpkX59VhVRgS2OzW796H6ejNyWAc1X9miHImpYisYwjNHDcK0QxiMO4Sm0rRy3MtZZ4qkSre09bKRArnE_ZowbVDU5a4fpqzmD2A7WJe2EdANFNGI4pUzjlOtVQiocrqXmqVorjtwMtGRNmiSsCRNY4LtloWWq0De43wsloHVxnlUvA4RojUgRftadQeHxJRhZ2v_TWJD2hT_4iHldDbWhh67wiIkg4cBNH9vfrs7ckgFB7_-6XP4can4Sj7-G7y4QncpJ4pE7jge7BdLtf2KUKdUj8LXfo3g7j6Ug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UV-induced+DNA+damage+disrupts+the+coordination+between+replication+initiation%2C+elongation+and+completion&rft.jtitle=Genes+to+cells+%3A+devoted+to+molecular+%26+cellular+mechanisms&rft.au=Wendel%2C+Brian+M&rft.au=Hollingsworth%2C+Suzanne&rft.au=Courcelle%2C+Charmain+T&rft.au=Courcelle%2C+Justin&rft.date=2021-02-01&rft.eissn=1365-2443&rft.volume=26&rft.issue=2&rft.spage=94&rft_id=info:doi/10.1111%2Fgtc.12826&rft_id=info%3Apmid%2F33382157&rft.externalDocID=33382157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1356-9597&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1356-9597&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1356-9597&client=summon