UV‐induced DNA damage disrupts the coordination between replication initiation, elongation and completion
Replication initiation, elongation and completion are tightly coordinated to ensure that all sequences replicate precisely once each generation. UV‐induced DNA damage disrupts replication and delays elongation, which may compromise this coordination leading to genome instability and cell death. Here...
Saved in:
Published in | Genes to cells : devoted to molecular & cellular mechanisms Vol. 26; no. 2; pp. 94 - 108 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Replication initiation, elongation and completion are tightly coordinated to ensure that all sequences replicate precisely once each generation. UV‐induced DNA damage disrupts replication and delays elongation, which may compromise this coordination leading to genome instability and cell death. Here, we profiled the Escherichia coli genome as it recovers from UV irradiation to determine how these replicational processes respond. We show that oriC initiations continue to occur, leading to copy number enrichments in this region. At late times, the combination of new oriC initiations and delayed elongating forks converging in the terminus appear to stress or impair the completion reaction, leading to a transient over‐replication in this region of the chromosome. In mutants impaired for restoring elongation, including recA, recF and uvrA, the genome degrades or remains static, suggesting that cell death occurs early after replication is disrupted, leaving partially duplicated genomes. In mutants impaired for completing replication, including recBC, sbcCD xonA and recG, the recovery of elongation and initiation leads to a bottleneck, where the nonterminus region of the genome is amplified and accumulates, indicating that a delayed cell death occurs in these mutants, likely resulting from mis‐segregation of unbalanced or unresolved chromosomes when cells divide.
UV damage delays elongation but not initiation, creating transient chromosome imbalances that stress the completion process and lead to copy number imbalances during the recovery period. We show that lethality occurs soon after disruption in mutants impaired for restoring replication, whereas mutants impaired for completing replication undergo a delayed cell death, resulting from amplified and unresolved chromosome imbalances. |
---|---|
AbstractList | Abstract
Replication initiation, elongation and completion are tightly coordinated to ensure that all sequences replicate precisely once each generation. UV‐induced DNA damage disrupts replication and delays elongation, which may compromise this coordination leading to genome instability and cell death. Here, we profiled the
Escherichia coli
genome as it recovers from UV irradiation to determine how these replicational processes respond. We show that
oriC
initiations continue to occur, leading to copy number enrichments in this region. At late times, the combination of new
oriC
initiations and delayed elongating forks converging in the terminus appear to stress or impair the completion reaction, leading to a transient over‐replication in this region of the chromosome. In mutants impaired for restoring elongation, including
recA
,
recF
and
uvrA
, the genome degrades or remains static, suggesting that cell death occurs early after replication is disrupted, leaving partially duplicated genomes. In mutants impaired for completing replication, including
recBC
,
sbcCD xonA
and
recG
, the recovery of elongation and initiation leads to a bottleneck, where the nonterminus region of the genome is amplified and accumulates, indicating that a delayed cell death occurs in these mutants, likely resulting from mis‐segregation of unbalanced or unresolved chromosomes when cells divide. Replication initiation, elongation and completion are tightly coordinated to ensure that all sequences replicate precisely once each generation. UV‐induced DNA damage disrupts replication and delays elongation, which may compromise this coordination leading to genome instability and cell death. Here, we profiled the Escherichia coli genome as it recovers from UV irradiation to determine how these replicational processes respond. We show that oriC initiations continue to occur, leading to copy number enrichments in this region. At late times, the combination of new oriC initiations and delayed elongating forks converging in the terminus appear to stress or impair the completion reaction, leading to a transient over‐replication in this region of the chromosome. In mutants impaired for restoring elongation, including recA, recF and uvrA, the genome degrades or remains static, suggesting that cell death occurs early after replication is disrupted, leaving partially duplicated genomes. In mutants impaired for completing replication, including recBC, sbcCD xonA and recG, the recovery of elongation and initiation leads to a bottleneck, where the nonterminus region of the genome is amplified and accumulates, indicating that a delayed cell death occurs in these mutants, likely resulting from mis‐segregation of unbalanced or unresolved chromosomes when cells divide. UV damage delays elongation but not initiation, creating transient chromosome imbalances that stress the completion process and lead to copy number imbalances during the recovery period. We show that lethality occurs soon after disruption in mutants impaired for restoring replication, whereas mutants impaired for completing replication undergo a delayed cell death, resulting from amplified and unresolved chromosome imbalances. Replication initiation, elongation and completion are tightly coordinated to ensure that all sequences replicate precisely once each generation. UV‐induced DNA damage disrupts replication and delays elongation, which may compromise this coordination leading to genome instability and cell death. Here, we profiled the Escherichia coli genome as it recovers from UV irradiation to determine how these replicational processes respond. We show that oriC initiations continue to occur, leading to copy number enrichments in this region. At late times, the combination of new oriC initiations and delayed elongating forks converging in the terminus appear to stress or impair the completion reaction, leading to a transient over‐replication in this region of the chromosome. In mutants impaired for restoring elongation, including recA, recF and uvrA, the genome degrades or remains static, suggesting that cell death occurs early after replication is disrupted, leaving partially duplicated genomes. In mutants impaired for completing replication, including recBC, sbcCD xonA and recG, the recovery of elongation and initiation leads to a bottleneck, where the nonterminus region of the genome is amplified and accumulates, indicating that a delayed cell death occurs in these mutants, likely resulting from mis‐segregation of unbalanced or unresolved chromosomes when cells divide. |
Author | Courcelle, Charmain T. Wendel, Brian M. Hollingsworth, Suzanne Courcelle, Justin |
Author_xml | – sequence: 1 givenname: Brian M. surname: Wendel fullname: Wendel, Brian M. organization: Cornell University – sequence: 2 givenname: Suzanne surname: Hollingsworth fullname: Hollingsworth, Suzanne organization: Portland State University – sequence: 3 givenname: Charmain T. surname: Courcelle fullname: Courcelle, Charmain T. organization: Portland State University – sequence: 4 givenname: Justin orcidid: 0000-0001-7464-0375 surname: Courcelle fullname: Courcelle, Justin email: justc@pdx.edu organization: Portland State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33382157$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctO3TAQhi0E4r7gBapIbFqpATu-ZolOW0BCsAG2keNMTk0TO9iJEDsegWfkSfAh0AUSs5mLvvk1mn8HrTvvAKEDgo9IiuPlaI5IoQqxhrYJFTwvGKPrq5qLvOSl3EI7Md5hTGiB-SbaopSqgnC5jf7d3L48PVvXTAaa7NflSdboXi8ha2wM0zDGbPwLmfE-NNbp0XqX1TA-ALgswNBZM8-ss6N9K39m0Hm3nMfaNWm3HzpYtXtoo9VdhP33vItu_vy-XpzlF1en54uTi9xQpUQOLcUlb1mjSyk446yVUCqBjamVMqUWpWa4BlBSiZZIzGvB6lYKKltSGsrpLvo-6w7B308Qx6q30UDXaQd-ilXBJGNCFIVI6OEn9M5PwaXrEqUE41wymqgfM2WCjzFAWw3B9jo8VgRXKweq5ED15kBiv70rTnUPzX_y4-UJOJ6BB9vB49dK1en1YpZ8BRfRkqI |
CitedBy_id | crossref_primary_10_3390_genes13030437 crossref_primary_10_1016_j_jbc_2023_103013 crossref_primary_10_1093_nar_gkab1269 crossref_primary_10_1093_nar_gkad263 crossref_primary_10_1111_php_13546 |
Cites_doi | 10.1111/j.1365-2958.2009.06773.x 10.1016/S0021-9258(18)93898-6 10.1101/gad.417607 10.1007/BF00327522 10.1073/pnas.84.19.6805 10.1073/pnas.1309800110 10.1038/nature12312 10.1128/JB.187.20.6953-6961.2005 10.1111/mmi.14242 10.1128/JB.97.3.1134-1141.1969 10.1002/bies.1065 10.1016/0923-2508(91)90026-7 10.1073/pnas.94.8.3714 10.1074/jbc.M311012200 10.1016/0022-2836(70)90022-7 10.1093/genetics/166.4.1631 10.1038/nature13374 10.1128/jb.170.5.2089-2094.1988 10.1126/science.142.3598.1464 10.1002/j.1460-2075.1989.tb08374.x 10.1073/pnas.1415025111 10.1093/nar/gky1253 10.1146/annurev.bi.64.070195.001131 10.1007/BF00330564 10.3390/genes7080040 10.1002/j.1460-2075.1995.tb07233.x 10.1016/0022-2836(84)90141-4 10.1093/nar/27.4.1039 10.1007/BF00260699 10.1128/JB.181.3.916-922.1999 10.1007/BF00272806 10.1073/pnas.91.8.2980 10.1111/j.1365-2958.2009.06909.x 10.1186/1471-2164-15-1039 10.1016/0378-1119(88)90092-3 10.1007/BF00338404 10.1667/RR1033.1 10.1073/pnas.51.2.226 10.1073/pnas.1715960114 10.1146/annurev-biochem-052610-094414 10.1128/jb.172.4.1834-1839.1990 10.1128/JB.106.1.204-212.1971 10.1038/nature01674 10.1128/jb.176.7.1807-1812.1994 10.1074/jbc.M603933200 10.1073/pnas.35.1.1 10.1016/0022-2836(85)90414-0 10.1126/science.1081328 10.1007/BF00326535 10.1073/pnas.87.7.2481 10.1007/s004380051116 10.1128/jb.178.5.1347-1350.1996 10.1093/nar/gky566 10.1073/pnas.86.5.1593 10.1101/gad.13.7.890 10.1128/.61.2.212-238.1997 10.1007/BF00268069 10.1007/978-981-10-6955-0_4 10.1002/j.1460-2075.1992.tb05516.x 10.1128/JB.180.21.5639-5645.1998 10.1534/genetics.110.120691 10.1016/j.dnarep.2015.04.018 10.1111/j.1751-1097.1968.tb05850.x 10.1038/296623a0 10.1038/342095a0 10.1093/genetics/126.1.25 10.1016/j.dnarep.2014.03.023 10.1016/0022-2836(71)90204-X 10.1073/pnas.76.2.580 |
ContentType | Journal Article |
Copyright | 2020 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd 2020 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd. 2021 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd |
Copyright_xml | – notice: 2020 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd – notice: 2020 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd. – notice: 2021 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd |
DBID | NPM AAYXX CITATION 7TK 7TM 8FD FR3 M7N P64 RC3 7X8 |
DOI | 10.1111/gtc.12826 |
DatabaseName | PubMed CrossRef Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Genetics Abstracts PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1365-2443 |
EndPage | 108 |
ExternalDocumentID | 10_1111_gtc_12826 33382157 GTC12826 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: MCB1916625 – fundername: National Science Foundation grantid: MCB1916625 |
GroupedDBID | --- .3N .55 .GA .Y3 05W 0R~ 10A 18M 1OC 24P 29H 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 7.U 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C1A C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EAD EAP EAS EBC EBD EBS EJD EMB EMK EMOBN ESX F00 F01 F04 F5P G-S G.N GODZA GX1 H.T H.X HF~ HGLYW HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OEB OIG OK1 OVD P2P P2W P2X P4D Q.N Q11 QB0 Q~Q R.K ROL RX1 SUPJJ SV3 TEORI TKC TR2 TUS UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WOQ WQJ WRC WXSBR WYISQ X7M XG1 YFH YUY ZZTAW ~IA ~KM ~WT NPM AAYXX CITATION 7TK 7TM 8FD FR3 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3886-ef3095f4da9765454f7e9860ccb88c9a69a40bee8786f1705b64bf7637f19c353 |
IEDL.DBID | DR2 |
ISSN | 1356-9597 |
IngestDate | Fri Aug 16 22:34:08 EDT 2024 Thu Oct 10 17:34:14 EDT 2024 Fri Aug 23 00:39:48 EDT 2024 Sat Sep 28 08:40:14 EDT 2024 Sat Aug 24 01:02:33 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | recF uvrABC replication completion recBCD replication initiation |
Language | English |
License | 2020 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3886-ef3095f4da9765454f7e9860ccb88c9a69a40bee8786f1705b64bf7637f19c353 |
Notes | Communicated by: Hiroyuki Araki ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7464-0375 |
OpenAccessLink | https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1111/gtc.12826 |
PMID | 33382157 |
PQID | 2486455743 |
PQPubID | 1066354 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2474466226 proquest_journals_2486455743 crossref_primary_10_1111_gtc_12826 pubmed_primary_33382157 wiley_primary_10_1111_gtc_12826_GTC12826 |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-Feb 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Tokyo |
PublicationTitle | Genes to cells : devoted to molecular & cellular mechanisms |
PublicationTitleAlternate | Genes Cells |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 166 1968; 8 2010; 11 1994; 176 1989; 86 1975; 5A 2015; 32 2010; 186 1992; 11 1988; 71 1979; 76 2018; 46 1995; 64 1991; 142 1990; 87 1997; 94 1987; 84 2005; 187 1999; 181 1989; 342 1999; 13 2014; 15 1982; 296 1988; 211 1980; 180 2014; 19 2013; 110 1981 2006; 281 1991; 227 2007; 21 1996; 178 2019; 111 1990; 172 1998; 180 2007; 168 1949; 35 1997; 61 1990; 126 1971; 61 1989; 218 1988; 170 1995; 14 1999; 27 2013; 500 1987; 206 1971; 106 1969; 97 1989; 8 1999; 262 1970; 52 2001; 23 2014; 111 1964; 239 2003; 299 1985; 185 2014; 511 2016; 7 2009; 74 2009; 73 2004; 279 1963; 142 1984; 178 2018; 115 2019; 47 2013; 82 2017 1977; 155 2003; 423 1994; 91 1964; 51 1985; 199 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 Rothman R. H. (e_1_2_6_55_1) 1975; 5 e_1_2_6_62_1 Langmead B. (e_1_2_6_43_1) 2010; 11 e_1_2_6_64_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 Smith C. A. (e_1_2_6_65_1) 1981 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – volume: 7 start-page: 40 issue: 8 year: 2016 article-title: Replication termination: Containing fork fusion‐mediated pathologies in Escherichia coli publication-title: Genes (Basel) – volume: 342 start-page: 95 year: 1989 end-page: 98 article-title: Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand publication-title: Nature – volume: 115 start-page: 349 year: 2018 end-page: 354 article-title: SbcC‐SbcD and ExoI process convergent forks to complete chromosome replication publication-title: Proceedings of the National Academy of Sciences of the USA – volume: 168 start-page: 499 year: 2007 end-page: 506 article-title: RecBCD and RecJ/RecQ initiate DNA degradation on distinct substrates in UV‐irradiated Escherichia coli publication-title: Radiation Research – volume: 13 start-page: 890 year: 1999 end-page: 900 article-title: Regulation of homologous recombination: Chi inactivates RecBCD enzyme by disassembly of the three subunits publication-title: Genes & Development – volume: 94 start-page: 3714 year: 1997 end-page: 3719 article-title: recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli publication-title: Proceedings of the National Academy of Sciences of the USA – volume: 218 start-page: 50 year: 1989 end-page: 56 article-title: Initiation of DNA replication in Escherichia coli after overproduction of the DnaA protein publication-title: Molecular and General Genetics – volume: 46 start-page: 7701 year: 2018 end-page: 7715 article-title: Chromosomal over‐replication in Escherichia coli recG cells is triggered by replication fork fusion and amplified if replichore symmetry is disturbed publication-title: Nucleic Acids Research – volume: 181 start-page: 916 year: 1999 end-page: 922 article-title: Recovery of DNA replication in UV‐irradiated Escherichia coli requires both excision repair and recF protein function publication-title: Journal of Bacteriology – volume: 299 start-page: 1064 year: 2003 end-page: 1067 article-title: DNA damage‐induced replication fork regression and processing in Escherichia coli publication-title: Science – volume: 126 start-page: 25 year: 1990 end-page: 40 article-title: Genetic dissection of the biochemical activities of RecBCD enzyme publication-title: Genetics – volume: 206 start-page: 51 year: 1987 end-page: 59 article-title: Overproduction of DnaA protein stimulates initiation of chromosome and minichromosome replication in Escherichia coli publication-title: Molecular and General Genetics – volume: 71 start-page: 201 year: 1988 end-page: 205 article-title: Escherichia coli sbcC mutants permit stable propagation of DNA replicons containing a long palindrome publication-title: Gene – volume: 74 start-page: 940 year: 2009 end-page: 955 article-title: Replication fork collisions cause pathological chromosomal amplification in cells lacking RecG DNA translocase publication-title: Molecular Microbiology – volume: 21 start-page: 668 year: 2007 end-page: 681 article-title: Replication fork stalling and cell cycle arrest in UV‐irradiated Escherichia coli publication-title: Genes & Development – volume: 142 start-page: 1464 year: 1963 end-page: 1466 article-title: Thymine dimers and inhibition of DNA synthesis by ultraviolet irradiation of cells publication-title: Science – volume: 47 start-page: 1847 year: 2019 end-page: 1860 article-title: A role for 3’ exonucleases at the final stages of chromosome duplication in Escherichia coli publication-title: Nucleic Acids Research – volume: 51 start-page: 226 year: 1964 end-page: 231 article-title: The disappearance of thymine dimers from DNA: An error‐correcting mechanism publication-title: Proceedings of the National Academy of Sciences of the USA – volume: 110 start-page: 13475 year: 2013 end-page: 13480 article-title: Break‐induced replication occurs by conservative DNA synthesis publication-title: Proceedings of the National Academy of Sciences of the USA – volume: 199 start-page: 133 year: 1985 end-page: 140 article-title: Mechanism of transient inhibition of DNA synthesis in ultraviolet‐irradiated E. coli: Inhibition is independent of recA whilst recovery requires RecA protein itself and an additional, inducible SOS function publication-title: Molecular and General Genetics – volume: 166 start-page: 1631 year: 2004 end-page: 1640 article-title: RuvAB and RecG are not essential for the recovery of DNA synthesis following UV‐induced DNA damage in Escherichia coli publication-title: Genetics – volume: 187 start-page: 6953 year: 2005 end-page: 6961 article-title: Nucleotide excision repair or polymerase V‐mediated lesion bypass can act to restore UV‐arrested replication forks in Escherichia coli publication-title: Journal of Bacteriology – volume: 61 start-page: 212 year: 1997 end-page: 238 article-title: Stable DNA replication: Interplay between DNA replication, homologous recombination, and transcription publication-title: Microbiology and Molecular Biology Reviews – volume: 76 start-page: 580 year: 1979 end-page: 584 article-title: Nucleotide sequence of the origin of replication of the Escherichia coli K‐12 chromosome publication-title: Proceedings of the National Academy of Sciences of the USA – volume: 32 start-page: 86 year: 2015 end-page: 95 article-title: RecBCD is required to complete chromosomal replication: Implications for double‐strand break frequencies and repair mechanisms publication-title: DNA Repair (Amst) – volume: 23 start-page: 463 year: 2001 end-page: 470 article-title: Therefore, what are recombination proteins there for? publication-title: BioEssays – volume: 170 start-page: 2089 year: 1988 end-page: 2094 article-title: Physical and biochemical characterization of cloned sbcB and xonA mutations from Escherichia coli K‐12 publication-title: Journal of Bacteriology – volume: 281 start-page: 28811 year: 2006 end-page: 28821 article-title: RuvABC is required to resolve holliday junctions that accumulate following replication on damaged templates in Escherichia coli publication-title: Journal of Biological Chemistry – volume: 11 start-page: 11.7.1 year: 2010 end-page: 11.7.14 article-title: Aligning short sequencing reads with Bowtie publication-title: Current Protocols in Bioinformatics – volume: 178 start-page: 1347 year: 1996 end-page: 1350 article-title: Kinetics of pyrimidine(6–4)pyrimidone photoproduct repair in Escherichia coli publication-title: Journal of Bacteriology – volume: 82 start-page: 25 year: 2013 end-page: 54 article-title: Mechanisms for initiating cellular DNA replication publication-title: Annual Review of Biochemistry – volume: 500 start-page: 608 year: 2013 end-page: 611 article-title: Avoiding chromosome pathology when replication forks collide publication-title: Nature – volume: 84 start-page: 6805 year: 1987 end-page: 6809 article-title: Recovery from ultraviolet light‐induced inhibition of DNA synthesis requires umuDC gene products in recA718 mutant strains but not in recA+ strains of Escherichia coli publication-title: Proceedings of the National Academy of Sciences of the USA – volume: 227 start-page: 9 year: 1991 end-page: 16 article-title: Expression of the dnaA gene of Escherichia coli is inducible by DNA damage publication-title: Molecular and General Genetics – volume: 11 start-page: 4219 year: 1992 end-page: 4225 article-title: DNA damage‐inducible origins of DNA replication in Escherichia coli publication-title: EMBO Journal – volume: 180 start-page: 617 year: 1980 end-page: 620 article-title: The dnaA gene product is not required during stable chromosome replication in Escherichia coli publication-title: Molecular and General Genetics – volume: 185 start-page: 431 year: 1985 end-page: 443 article-title: Substrate specificity of the DNA unwinding activity of the RecBC enzyme of Escherichia coli publication-title: Journal of Molecular Biology – volume: 111 start-page: 1638 year: 2019 end-page: 1651 article-title: RecBCD, SbcCD and ExoI process a substrate created by convergent replisomes to complete DNA replication publication-title: Molecular Microbiology – volume: 91 start-page: 2980 year: 1994 end-page: 2984 article-title: Reversible inactivation of the Escherichia coli RecBCD enzyme by the recombination hotspot chi in vitro: Evidence for functional inactivation or loss of the RecD subunit publication-title: Proceedings of the National Academy of Sciences of the USA – volume: 180 start-page: 5639 year: 1998 end-page: 5645 article-title: Interaction of RecBCD enzyme with DNA at double‐strand breaks produced in UV‐irradiated Escherichia coli: Requirement for DNA end processing publication-title: Journal of Bacteriology – volume: 27 start-page: 1039 year: 1999 end-page: 1046 article-title: DNA cleavage and degradation by the SbcCD protein complex from Escherichia coli publication-title: Nucleic Acids Research – volume: 142 start-page: 169 year: 1991 end-page: 175 article-title: The tus gene of Escherichia coli: Autoregulation, analysis of flanking sequences and identification of a complementary system in Salmonella typhimurium publication-title: Research in Microbiology – volume: 87 start-page: 2481 year: 1990 end-page: 2485 article-title: Escherichia coli Tus protein acts to arrest the progression of DNA replication forks in vitro publication-title: Proceedings of the National Academy of Sciences of the USA – volume: 279 start-page: 3492 year: 2004 end-page: 3496 article-title: RecO Acts with RecF and RecR to Protect and maintain replication forks blocked by UV‐induced DNA damage in Escherichia coli publication-title: Journal of Biological Chemistry – volume: 262 start-page: 543 year: 1999 end-page: 551 article-title: RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV‐irradiated Escherichia coli publication-title: Molecular and General Genetics – volume: 296 start-page: 623 year: 1982 end-page: 627 article-title: Enzymatic replication of E. coli chromosomal origin is bidirectional publication-title: Nature – volume: 19 start-page: 84 year: 2014 end-page: 94 article-title: The contribution of co‐transcriptional RNA:DNA hybrid structures to DNA damage and genome instability publication-title: DNA Repair (Amst) – volume: 511 start-page: 362 year: 2014 end-page: 365 article-title: BRCA2 prevents R‐loop accumulation and associates with TREX‐2 mRNA export factor PCID2 publication-title: Nature – volume: 97 start-page: 1134 year: 1969 end-page: 1141 article-title: Some properties of excision‐defective recombination‐deficient mutants of Escherichia coli K‐12 publication-title: Journal of Bacteriology – start-page: 289 year: 1981 end-page: 305 – volume: 186 start-page: 473 year: 2010 end-page: 492 article-title: RecG protein and single‐strand DNA exonucleases avoid cell lethality associated with PriA helicase activity in Escherichia coli publication-title: Genetics – volume: 8 start-page: 93 year: 1968 end-page: 105 article-title: Degradation of the DNA of Escherichia coli K12 rec‐ (JC1569b) after irradiation with ultraviolet light publication-title: Photochemistry and Photobiology – volume: 172 start-page: 1834 year: 1990 end-page: 1839 article-title: Requirement of RecBC enzyme and an elevated level of activated RecA for induced stable DNA replication in Escherichia coli publication-title: Journal of Bacteriology – volume: 5A start-page: 283 year: 1975 end-page: 291 article-title: The beginning of an investigation of the role of recF in the pathways of metabolism of ultraviolet‐irradiated DNA in Escherichia coli publication-title: Basic Life Sciences – volume: 86 start-page: 1593 year: 1989 end-page: 1597 article-title: tus, the trans‐acting gene required for termination of DNA replication in Escherichia coli, encodes a DNA‐binding protein publication-title: Proceedings of the National Academy of Sciences of the USA – volume: 52 start-page: 143 year: 1970 end-page: 164 article-title: DNA replication in Escherihia coli: Replication in absence of protein synthesis after replication inhibition publication-title: Journal of Molecular Biology – volume: 61 start-page: 25 year: 1971 end-page: 44 article-title: Exchanges between DNA strands in ultraviolet‐irradiated Escherichia coli publication-title: Journal of Molecular Biology – volume: 176 start-page: 1807 year: 1994 end-page: 1812 article-title: D‐loops and R‐loops: Alternative mechanisms for the initiation of chromosome replication in Escherichia coli publication-title: Journal of Bacteriology – volume: 64 start-page: 171 year: 1995 end-page: 200 article-title: DNA polymerase III holoenzyme: Structure and function of a chromosomal replicating machine publication-title: Annual Review of Biochemistry – volume: 155 start-page: 279 year: 1977 end-page: 286 article-title: The dependence of postreplication repair on uvrB in a recF mutant of Escherichia coli K‐12 publication-title: Molecular and General Genetics – volume: 106 start-page: 204 year: 1971 end-page: 212 article-title: Involvement of recombination genes in growth and viability of Escherichia coli K‐12 publication-title: Journal of Bacteriology – volume: 15 start-page: 1039 year: 2014 article-title: Identifying structural variation in haploid microbial genomes from short‐read resequencing data using breseq publication-title: BMC Genomics – volume: 35 start-page: 1 year: 1949 end-page: 10 article-title: The isolation of biochemically deficient mutants of bacteria by means of penicillin publication-title: Proceedings of the National Academy of Sciences of the USA – volume: 178 start-page: 227 year: 1984 end-page: 236 article-title: Multiple origin usage for DNA replication in sdrA(rnh) mutants of Escherichia coli K‐12. Initiation in the absence of oriC publication-title: Journal of Molecular Biology – volume: 423 start-page: 889 year: 2003 end-page: 893 article-title: RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity publication-title: Nature – volume: 14 start-page: 2385 year: 1995 end-page: 2392 article-title: Escherichia coli RecG and RecA proteins in R‐loop formation publication-title: EMBO Journal – volume: 111 start-page: 16454 year: 2014 end-page: 16459 article-title: Completion of DNA replication in Escherichia coli publication-title: Proceedings of the National Academy of Sciences of the USA – volume: 211 start-page: 138 year: 1988 end-page: 142 article-title: Chromosome replication in Escherichia coli induced by oversupply of DnaA publication-title: Molecular and General Genetics – volume: 73 start-page: 352 year: 2009 end-page: 366 article-title: Pathological replication in cells lacking RecG DNA translocase publication-title: Molecular Microbiology – start-page: 79 year: 2017 end-page: 98 – volume: 8 start-page: 2435 year: 1989 end-page: 2441 article-title: Evidence of a ter specific binding protein essential for the termination reaction of DNA replication in Escherichia coli publication-title: EMBO Journal – volume: 239 start-page: 2628 year: 1964 end-page: 2636 article-title: The deoxyribonucleases of Escherichia coli. V. On the specificity of exonuclease I (phosphodiesterase) publication-title: Journal of Biological Chemistry – volume: 5 start-page: 283 year: 1975 ident: e_1_2_6_55_1 article-title: The beginning of an investigation of the role of recF in the pathways of metabolism of ultraviolet‐irradiated DNA in Escherichia coli publication-title: Basic Life Sciences contributor: fullname: Rothman R. H. – ident: e_1_2_6_57_1 doi: 10.1111/j.1365-2958.2009.06773.x – ident: e_1_2_6_44_1 doi: 10.1016/S0021-9258(18)93898-6 – ident: e_1_2_6_58_1 doi: 10.1101/gad.417607 – ident: e_1_2_6_38_1 doi: 10.1007/BF00327522 – ident: e_1_2_6_72_1 doi: 10.1073/pnas.84.19.6805 – ident: e_1_2_6_27_1 doi: 10.1073/pnas.1309800110 – ident: e_1_2_6_60_1 doi: 10.1038/nature12312 – ident: e_1_2_6_14_1 doi: 10.1128/JB.187.20.6953-6961.2005 – ident: e_1_2_6_28_1 doi: 10.1111/mmi.14242 – ident: e_1_2_6_34_1 doi: 10.1128/JB.97.3.1134-1141.1969 – ident: e_1_2_6_18_1 doi: 10.1002/bies.1065 – ident: e_1_2_6_53_1 doi: 10.1016/0923-2508(91)90026-7 – ident: e_1_2_6_15_1 doi: 10.1073/pnas.94.8.3714 – ident: e_1_2_6_9_1 doi: 10.1074/jbc.M311012200 – ident: e_1_2_6_42_1 doi: 10.1016/0022-2836(70)90022-7 – ident: e_1_2_6_25_1 doi: 10.1093/genetics/166.4.1631 – ident: e_1_2_6_6_1 doi: 10.1038/nature13374 – ident: e_1_2_6_51_1 doi: 10.1128/jb.170.5.2089-2094.1988 – ident: e_1_2_6_63_1 doi: 10.1126/science.142.3598.1464 – ident: e_1_2_6_39_1 doi: 10.1002/j.1460-2075.1989.tb08374.x – start-page: 289 volume-title: Measurement of Repair Replication by Equilibrium Sedimentation year: 1981 ident: e_1_2_6_65_1 contributor: fullname: Smith C. A. – ident: e_1_2_6_71_1 doi: 10.1073/pnas.1415025111 – ident: e_1_2_6_49_1 doi: 10.1093/nar/gky1253 – ident: e_1_2_6_37_1 doi: 10.1146/annurev.bi.64.070195.001131 – ident: e_1_2_6_64_1 doi: 10.1007/BF00330564 – ident: e_1_2_6_23_1 doi: 10.3390/genes7080040 – ident: e_1_2_6_32_1 doi: 10.1002/j.1460-2075.1995.tb07233.x – ident: e_1_2_6_22_1 doi: 10.1016/0022-2836(84)90141-4 – ident: e_1_2_6_12_1 doi: 10.1093/nar/27.4.1039 – ident: e_1_2_6_52_1 doi: 10.1007/BF00260699 – ident: e_1_2_6_16_1 doi: 10.1128/JB.181.3.916-922.1999 – ident: e_1_2_6_54_1 doi: 10.1007/BF00272806 – ident: e_1_2_6_24_1 doi: 10.1073/pnas.91.8.2980 – ident: e_1_2_6_59_1 doi: 10.1111/j.1365-2958.2009.06909.x – ident: e_1_2_6_5_1 doi: 10.1186/1471-2164-15-1039 – ident: e_1_2_6_8_1 doi: 10.1016/0378-1119(88)90092-3 – ident: e_1_2_6_73_1 doi: 10.1007/BF00338404 – ident: e_1_2_6_10_1 doi: 10.1667/RR1033.1 – ident: e_1_2_6_62_1 doi: 10.1073/pnas.51.2.226 – ident: e_1_2_6_70_1 doi: 10.1073/pnas.1715960114 – ident: e_1_2_6_13_1 doi: 10.1146/annurev-biochem-052610-094414 – ident: e_1_2_6_46_1 doi: 10.1128/jb.172.4.1834-1839.1990 – ident: e_1_2_6_7_1 doi: 10.1128/JB.106.1.204-212.1971 – ident: e_1_2_6_68_1 doi: 10.1038/nature01674 – ident: e_1_2_6_3_1 doi: 10.1128/jb.176.7.1807-1812.1994 – ident: e_1_2_6_26_1 doi: 10.1074/jbc.M603933200 – ident: e_1_2_6_21_1 doi: 10.1073/pnas.35.1.1 – ident: e_1_2_6_66_1 doi: 10.1016/0022-2836(85)90414-0 – ident: e_1_2_6_17_1 doi: 10.1126/science.1081328 – ident: e_1_2_6_4_1 doi: 10.1007/BF00326535 – ident: e_1_2_6_30_1 doi: 10.1073/pnas.87.7.2481 – ident: e_1_2_6_19_1 doi: 10.1007/s004380051116 – ident: e_1_2_6_40_1 doi: 10.1128/jb.178.5.1347-1350.1996 – ident: e_1_2_6_50_1 doi: 10.1093/nar/gky566 – ident: e_1_2_6_31_1 doi: 10.1073/pnas.86.5.1593 – ident: e_1_2_6_67_1 doi: 10.1101/gad.13.7.890 – ident: e_1_2_6_41_1 doi: 10.1128/.61.2.212-238.1997 – ident: e_1_2_6_11_1 doi: 10.1007/BF00268069 – ident: e_1_2_6_36_1 doi: 10.1007/978-981-10-6955-0_4 – volume: 11 start-page: 11.7.1 year: 2010 ident: e_1_2_6_43_1 article-title: Aligning short sequencing reads with Bowtie publication-title: Current Protocols in Bioinformatics contributor: fullname: Langmead B. – ident: e_1_2_6_45_1 doi: 10.1002/j.1460-2075.1992.tb05516.x – ident: e_1_2_6_69_1 doi: 10.1128/JB.180.21.5639-5645.1998 – ident: e_1_2_6_56_1 doi: 10.1534/genetics.110.120691 – ident: e_1_2_6_20_1 doi: 10.1016/j.dnarep.2015.04.018 – ident: e_1_2_6_33_1 doi: 10.1111/j.1751-1097.1968.tb05850.x – ident: e_1_2_6_35_1 doi: 10.1038/296623a0 – ident: e_1_2_6_48_1 doi: 10.1038/342095a0 – ident: e_1_2_6_2_1 doi: 10.1093/genetics/126.1.25 – ident: e_1_2_6_29_1 doi: 10.1016/j.dnarep.2014.03.023 – ident: e_1_2_6_61_1 doi: 10.1016/0022-2836(71)90204-X – ident: e_1_2_6_47_1 doi: 10.1073/pnas.76.2.580 |
SSID | ssj0013205 |
Score | 2.3886852 |
Snippet | Replication initiation, elongation and completion are tightly coordinated to ensure that all sequences replicate precisely once each generation. UV‐induced DNA... Replication initiation, elongation and completion are tightly coordinated to ensure that all sequences replicate precisely once each generation. UV-induced DNA... Abstract Replication initiation, elongation and completion are tightly coordinated to ensure that all sequences replicate precisely once each generation.... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 94 |
SubjectTerms | Apoptosis Cell death Chromosomes Copy number Deoxyribonucleic acid DNA DNA biosynthesis DNA damage Elongation Genomes Genomic instability Mutants Nucleotide sequence RecA protein recBCD recF replication completion Replication initiation Ultraviolet radiation uvrABC |
Title | UV‐induced DNA damage disrupts the coordination between replication initiation, elongation and completion |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgtc.12826 https://www.ncbi.nlm.nih.gov/pubmed/33382157 https://www.proquest.com/docview/2486455743 https://search.proquest.com/docview/2474466226 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4hJCQupS0tbFmQQRx6IKtd23EccUJQipDggFjEASmyYxutgOxqN3ugpz5Cn5EnYez8CFpVQlyi_Dhx4vGMv_F8GQPsxo6l3AoToXnsR9ykLPLBo4iagdHovMVG-_-dz87FyZCfXsfXC7Df_AtT5YdoJ9y8ZgR77RVc6dkLJb8t8x4aV-rTbQ9Y4ulcRxf0RQQh0BcHLBZRiqi5zirkWTztna_Hon8A5mu8Ggac4xW4aV614pnc9eal7uW__sri-M5v-QgfaiBKDqqe8wkWbPEZlqqlKR9X4W549fT7DzrsKHpDjs4PiFEPaHuIGc2m80k5I4gcST5G33VUTSiSmvJFpraNiZOR5yaF3T1i78fFbXVaFYYEMrv1h19gePzj8vAkqhdmiHImpYisY4jMHDcKwQxCMO4Sm0rRz3MtZZ4qkSre19bKRArn8_VowbVDS5a4QZqzmH2FxWJc2HUgmimjEUQq5xynWiqRUGV1P7VKUdx2YKcRUTap8m9kjd-CrZaFVutAtxFeVqvgLKNcCh7HiJA6sN1eRuXxERFV2PHcl0l8PJv6R6xVQm9rYei8Ix5KOvA9iO7_1Wc_Lw_Dzre3F92AZerZMYH_3YXFcjq3mwhvSr0V-vEzAir3ig |
link.rule.ids | 315,783,787,1378,27937,27938,46307,46731 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VogouBQqlCwVMxYEDWe3ajuNIvVQt7QLtHqrdqhcU2bFdrQrZajd7gBOP0Gfsk3Ts_KgtQkK9RE7i_Hk8k288n8cAH2LHUm6FidA89iJuUhb54FFETd9odN5io_1856OhGIz519P4dAm2m7kwVX6IdsDNa0aw117B_YD0DS0_K_MuWlcqHsBDVHfm1XLvmN6IIQQCY5_FIkoRN9d5hTyPp7309t_oL4h5G7GGX87-E_jevGzFNDnvLkrdzX_fyeN43695Cqs1FiU7Ved5Bku2WIOVanXKX8_hfHxy9ecSfXaUviF7wx1i1E80P8RM5rPFRTknCB5JPkX3dVKNKZKa9UVmtg2Lk4mnJ4XiJ2J_TIuz6rAqDAl8dut3X8B4__NodxDVazNEOZNSRNYxBGeOG4V4BlEYd4lNpejluZYyT5VIFe9pa2UihfMpe7Tg2qExS1w_zVnM1mG5mBZ2A4hmymjEkco5x6mWSiRUWd1LrVIUtx3YamSUXVQpOLLGdcFWy0KrdWCzkV5Wa-E8o1wKHscIkjrwvj2N-uODIqqw04Wvk_iQNvW3eFlJvX0KQ_8dIVHSgY9Bdv9-fHYw2g2FV_9f9R08GoyODrPDL8Nvr-Ex9WSZQAffhOVytrBvEO2U-m3o1NdoXfuj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VoiIuvMojUMCgHnpgo8T2er3iVCWE8GiEqqbqAWllr-0qKmyiZHOAEz-B38gvYex9KKVCQlxW3qd3PZ7xN57PswD7sWMpt8JEaB57ETcpi3zwKKKmbzQ6b7HRfr3z0USMp_z9WXy2Ba-btTBVfoh2ws1rRrDXXsEXxm0o-XmZd9G4UnENrnOBXdUjomO6EUII_MU-i0WUImyu0wp5Gk976-XB6ArCvAxYw4gzug2fm3etiCYX3XWpu_n3P9I4_ufH3IFbNRIlh1XXuQtbtrgHO9W_Kb_twsX09NePn-ixo-wNGU4OiVFf0fgQM1st14tyRRA6knyOzuusmlEkNeeLLG0bFCczT04KxVfEfpkX59VhVRgS2OzW796H6ejNyWAc1X9miHImpYisYwjNHDcK0QxiMO4Sm0rRy3MtZZ4qkSre09bKRArnE_ZowbVDU5a4fpqzmD2A7WJe2EdANFNGI4pUzjlOtVQiocrqXmqVorjtwMtGRNmiSsCRNY4LtloWWq0De43wsloHVxnlUvA4RojUgRftadQeHxJRhZ2v_TWJD2hT_4iHldDbWhh67wiIkg4cBNH9vfrs7ckgFB7_-6XP4can4Sj7-G7y4QncpJ4pE7jge7BdLtf2KUKdUj8LXfo3g7j6Ug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UV-induced+DNA+damage+disrupts+the+coordination+between+replication+initiation%2C+elongation+and+completion&rft.jtitle=Genes+to+cells+%3A+devoted+to+molecular+%26+cellular+mechanisms&rft.au=Wendel%2C+Brian+M&rft.au=Hollingsworth%2C+Suzanne&rft.au=Courcelle%2C+Charmain+T&rft.au=Courcelle%2C+Justin&rft.date=2021-02-01&rft.eissn=1365-2443&rft.volume=26&rft.issue=2&rft.spage=94&rft_id=info:doi/10.1111%2Fgtc.12826&rft_id=info%3Apmid%2F33382157&rft.externalDocID=33382157 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1356-9597&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1356-9597&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1356-9597&client=summon |