Accelerated vascularization of a novel collagen hydrogel dermal template

Full thickness skin loss is a debilitating problem, most commonly reconstructed using split thickness skin grafts (STSG), which do not reconstitute normal skin thickness and often result in suboptimal functional and esthetic outcomes that diminish a patient's quality of life. To address the min...

Full description

Saved in:
Bibliographic Details
Published inJournal of tissue engineering and regenerative medicine Vol. 16; no. 12; pp. 1173 - 1183
Main Authors Weisel, Adam, Cohen, Rachael, Spector, Jason A., Sapir‐Lekhovitser, Yulia
Format Journal Article
LanguageEnglish
Published England Hindawi Limited 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Full thickness skin loss is a debilitating problem, most commonly reconstructed using split thickness skin grafts (STSG), which do not reconstitute normal skin thickness and often result in suboptimal functional and esthetic outcomes that diminish a patient's quality of life. To address the minimal dermis present in most STSG, engineered dermal templates were developed that can induce tissue ingrowth and the formation of neodermal tissue. However, clinically available dermal templates have many shortcomings including a relatively slow rate and degree of neovascularization (∼2–4 weeks), resulting in multiple dressing changes, prolonged immobilization, and susceptibility to infection. Presented herein is a novel composite hydrogel scaffold that optimizes a unique scaffold microarchitecture with native hydrogel properties and mechanical cues ideal for promoting neovascularization, tissue regeneration, and wound healing. In vitro analysis demonstrated the unique combination of improved mechanical attributes with native hydrogel properties that promotes cell invasion and remodeling within the scaffold. In a novel 2‐stage rat model of full thickness skin loss that closely mimics clinical practice, the composite hydrogel induced rapid cell infiltration and neovascularization, creating a healthy neodermis after only 1 week onto which a skin graft could be placed. The scaffold also elicited a gradual and favorable immune response, resulting in more efficient integration into the host. We have developed a dermal scaffold that utilizes simple but unique collagen hydrogel architectural cues that rapidly induces the formation of stable, functional neodermal tissue, which holds tremendous promise for the treatment of full thickness skin loss.
AbstractList Full thickness skin loss is a debilitating problem, most commonly reconstructed using split thickness skin grafts (STSG), which do not reconstitute normal skin thickness and often result in suboptimal functional and esthetic outcomes that diminish a patient's quality of life. To address the minimal dermis present in most STSG, engineered dermal templates were developed that can induce tissue ingrowth and the formation of neodermal tissue. However, clinically available dermal templates have many shortcomings including a relatively slow rate and degree of neovascularization (∼2–4 weeks), resulting in multiple dressing changes, prolonged immobilization, and susceptibility to infection. Presented herein is a novel composite hydrogel scaffold that optimizes a unique scaffold microarchitecture with native hydrogel properties and mechanical cues ideal for promoting neovascularization, tissue regeneration, and wound healing. In vitro analysis demonstrated the unique combination of improved mechanical attributes with native hydrogel properties that promotes cell invasion and remodeling within the scaffold. In a novel 2‐stage rat model of full thickness skin loss that closely mimics clinical practice, the composite hydrogel induced rapid cell infiltration and neovascularization, creating a healthy neodermis after only 1 week onto which a skin graft could be placed. The scaffold also elicited a gradual and favorable immune response, resulting in more efficient integration into the host. We have developed a dermal scaffold that utilizes simple but unique collagen hydrogel architectural cues that rapidly induces the formation of stable, functional neodermal tissue, which holds tremendous promise for the treatment of full thickness skin loss.
Full thickness skin loss is a debilitating problem, most commonly reconstructed using split thickness skin grafts (STSG), which do not reconstitute normal skin thickness and often result in suboptimal functional and esthetic outcomes that diminish a patient's quality of life. To address the minimal dermis present in most STSG, engineered dermal templates were developed that can induce tissue ingrowth and the formation of neodermal tissue. However, clinically available dermal templates have many shortcomings including a relatively slow rate and degree of neovascularization (∼2–4 weeks), resulting in multiple dressing changes, prolonged immobilization, and susceptibility to infection. Presented herein is a novel composite hydrogel scaffold that optimizes a unique scaffold microarchitecture with native hydrogel properties and mechanical cues ideal for promoting neovascularization, tissue regeneration, and wound healing. In vitro analysis demonstrated the unique combination of improved mechanical attributes with native hydrogel properties that promotes cell invasion and remodeling within the scaffold. In a novel 2‐stage rat model of full thickness skin loss that closely mimics clinical practice, the composite hydrogel induced rapid cell infiltration and neovascularization, creating a healthy neodermis after only 1 week onto which a skin graft could be placed. The scaffold also elicited a gradual and favorable immune response, resulting in more efficient integration into the host. We have developed a dermal scaffold that utilizes simple but unique collagen hydrogel architectural cues that rapidly induces the formation of stable, functional neodermal tissue, which holds tremendous promise for the treatment of full thickness skin loss.
Author Spector, Jason A.
Cohen, Rachael
Sapir‐Lekhovitser, Yulia
Weisel, Adam
Author_xml – sequence: 1
  givenname: Adam
  orcidid: 0000-0002-9773-1170
  surname: Weisel
  fullname: Weisel, Adam
  organization: FesariusTherapeutics, Inc
– sequence: 2
  givenname: Rachael
  surname: Cohen
  fullname: Cohen, Rachael
  organization: FesariusTherapeutics, Inc
– sequence: 3
  givenname: Jason A.
  surname: Spector
  fullname: Spector, Jason A.
  organization: Cornell University
– sequence: 4
  givenname: Yulia
  surname: Sapir‐Lekhovitser
  fullname: Sapir‐Lekhovitser, Yulia
  email: yulia.lekhovitser@fesariustherapeutics.com
  organization: FesariusTherapeutics, Inc
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36219532$$D View this record in MEDLINE/PubMed
BookMark eNp1kF1LwzAUhoNM3Ide-Aek4I1edMtHk7aXY0wnTASZ1yVNT2dH2sykVeavN3PTC8GrhJcnb855hqjXmAYQuiR4TDCmkxZsPWaMixM0ICmjYYwx7x3vgvKoj4bObXzIBWdnqM8EJSlndIAWU6VAg5UtFMG7dKrT0lafsq1ME5gykEFj3kEHymgt19AEr7vCmrVPCv-p1EEL9Vb71-fotJTawcXxHKGXu_lqtgiXT_cPs-kyVCxJRCgJjbAQKpYkihNRlrngeZ7EQFVESRFzSnNMWKESSBVjRMY0kmUKTAKOuSzYCN0cerfWvHXg2qyunF9BywZM5zIaU5YQykni0es_6MZ0tvHTeSpiiSDC6xih2wOlrHHOQpltbVVLu8sIzvZ6s73ebK_Xs1fHxi6vofglf3x6YHIAPioNu_-bstX8-fG78gvJIoW0
CitedBy_id crossref_primary_10_1111_wrr_13102
crossref_primary_10_1039_D3MA00682D
crossref_primary_10_1039_D3BM01675G
Cites_doi 10.1073/pnas.86.3.933
10.1098/rsif.2009.0403
10.1007/s00018‐016‐2252‐8
10.1111/wrr.12119
10.1073/pnas.1115973108
10.1159/000454919
10.1089/ten.TEB.2014.0086
10.3390/biom10081169
10.1016/j.biomaterials.2010.07.072
10.1586/erd.11.27
10.1016/j.actbio.2019.04.027
10.3390/ijms17121974
10.2147/CCID.S50046
10.1016/j.jcws.2012.03.001
10.1007/978-3-7091-1586-2
10.1186/s12938‐019‐0647‐0
10.1016/S1369‐7021(08)70087‐7
10.1186/s41038‐016‐0027‐y
10.1007/s11095‐011‐0378‐9
10.1098/rsif.2006.0179
10.1533/9780857091383.2.184
10.1080/23320885.2022.2047052
10.1039/C4TB00614C
10.1097/00000658‐198110000‐00005
10.1063/5.0038364
10.1001/archopthalmol.2011.1178
10.1002/adhm.201500005
10.1073/pnas.48.2.138
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/term.3356
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Biochemistry Abstracts 1
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1932-7005
EndPage 1183
ExternalDocumentID 10_1002_term_3356
36219532
TERM3356
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Privately Funded
GroupedDBID ---
05W
0R~
1OC
24P
31~
33P
4.4
53G
5GY
7X7
8-1
8FI
8FJ
8UM
A00
AAESR
AAHHS
AAJEY
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABUWG
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACMXC
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AENEX
AEQDE
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AHMBA
AIACR
AIURR
AIWBW
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BBNVY
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMXJE
BRXPI
CCPQU
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
FUBAC
FYUFA
G-S
GODZA
H13
HCIFZ
HMCUK
HVGLF
HZ~
KBYEO
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
M7P
ML0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY.
MY~
O66
O9-
OIG
P2P
P2W
P4E
PIMPY
PQQKQ
RHX
RNS
ROL
SUPJJ
SV3
UKHRP
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WVDHM
WYJ
XV2
ZZTAW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3886-a124066c7a14786ffb65bb87e2c421d7522b013dc8e9c331a724af9e3ae075ad3
ISSN 1932-6254
IngestDate Fri Aug 16 01:35:41 EDT 2024
Thu Oct 10 22:39:36 EDT 2024
Fri Aug 23 00:21:00 EDT 2024
Sat Sep 28 08:20:40 EDT 2024
Sat Aug 24 00:53:43 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords full-thickness skin loss
dermis regeneration
wound healing
hydrogel composite scaffold
Language English
License 2022 John Wiley & Sons Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3886-a124066c7a14786ffb65bb87e2c421d7522b013dc8e9c331a724af9e3ae075ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9773-1170
OpenAccessLink https://doi.org/10.1002/term.3356
PMID 36219532
PQID 2743861665
PQPubID 1016361
PageCount 11
ParticipantIDs proquest_miscellaneous_2723812518
proquest_journals_2743861665
crossref_primary_10_1002_term_3356
pubmed_primary_36219532
wiley_primary_10_1002_term_3356_TERM3356
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Hoboken
PublicationTitle Journal of tissue engineering and regenerative medicine
PublicationTitleAlternate J Tissue Eng Regen Med
PublicationYear 2022
Publisher Hindawi Limited
Publisher_xml – name: Hindawi Limited
References 2019; 91
2010; 31
2021; 5
2015; 5
1989; 86
2011
2009
2019; 18
2016; 73
2006; 3
2004
2008; 11
2008; 4
2020; 10
2016; 17
2011; 3
2012; 12
2015; 7
2016; 58
2011; 8
2014; 22
2014; 20
2016; 4
2012; 130
1981; 194
2014; 4
2011; 108
2020
2017; 32
2022; 9
1962; 48
2007; 4
2013
2011; 28
2010; 7
2014; 32
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
Braza M. E. (e_1_2_10_5_1) 2020
Kamran A. (e_1_2_10_18_1) 2012; 12
e_1_2_10_4_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
ISO (e_1_2_10_16_1) 2009
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
Integra LifeSciences (e_1_2_10_15_1) 2004
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Chitturi R. T. (e_1_2_10_9_1) 2015; 7
Furman J. (e_1_2_10_13_1) 2006; 3
Ahearne M. (e_1_2_10_2_1) 2008; 4
e_1_2_10_29_1
Nasalpure A. V. (e_1_2_10_23_1) 2017; 32
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 48
  start-page: 138
  issue: 2
  year: 1962
  end-page: 147
  article-title: An estimate of the number of histocompatibility loci in the rat
  publication-title: Proceedings of the National Academy of Sciences
– volume: 91
  start-page: 144
  year: 2019
  end-page: 158
  article-title: Microstructured hydrogel scaffolds containing differential density interfaces promote rapid cellular invasion and vascularization
  publication-title: Acta Biomaterialia
– year: 2009
– volume: 108
  start-page: 20976
  issue: 52
  year: 2011
  end-page: 20981
  article-title: Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing
  publication-title: Proceedings of the National Academy of Sciences
– volume: 17
  issue: 12
  year: 2016
  article-title: Future prospects for scaffolding methods and biomaterials in skin tissue engineering: A review
  publication-title: International Journal of Molecular Sciences
– volume: 5
  issue: 011504
  year: 2021
  article-title: Recent advances on polymeric hydrogels as wound dressings
  publication-title: APL Bioengineering
– volume: 31
  start-page: 8596
  issue: 33
  year: 2010
  end-page: 8607
  article-title: Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro
  publication-title: Biomaterials
– volume: 12
  issue: e20
  year: 2012
  article-title: A comparison of survival and secondary contracture in expanded versus conventional full‐thickness skin grafts: An experimental study in rats
  publication-title: Eplasty
– volume: 4
  start-page: 301
  issue: 7
  year: 2014
  end-page: 311
  article-title: Fibroblasts and myofibroblasts in wound healing
  publication-title: Clinical, Cosmetic and Investigational Dermatology
– volume: 10
  issue: 8
  year: 2020
  article-title: Advanced hydrogels as wound dressings
  publication-title: Biomolecules
– volume: 28
  start-page: 1422
  issue: 6
  year: 2011
  end-page: 1430
  article-title: Influence of physical properties of biomaterials on cellular behavior
  publication-title: Pharmaceutical Research
– volume: 20
  start-page: 683
  issue: 6
  year: 2014
  end-page: 696
  article-title: Review of collagen I hydrogels for bioengineered tissue microenvironments: Characterization of mechanics, structure, and transport
  publication-title: Tissue Engineering Part B
– volume: 73
  start-page: 3453
  issue: 18
  year: 2016
  end-page: 3472
  article-title: Methodologies in creating skin substitutes
  publication-title: Cellular and Molecular Life Sciences
– volume: 130
  start-page: 217
  issue: 2
  year: 2012
  end-page: 219
  article-title: Integra bilayer matrix wound dressing closure of large periorbital traumatic wound
  publication-title: Archives of Ophthalmology
– volume: 7
  start-page: 75
  issue: 3
  year: 2015
  end-page: 80
  article-title: The role of myofibroblasts in wound healing, contraction and its clinical implications in cleft palate repair
  publication-title: Journal of International Oral Health
– volume: 32
  start-page: 69
  issue: 2
  year: 2017
  end-page: 80
  article-title: Tissue engineering of skin: A review
  publication-title: Trends in Biomaterials and Artificial Organs
– volume: 3
  issue: 1
  year: 2006
  article-title: Successful management and surgical closure of chronic and pathological wounds using integra
  publication-title: Journal of Burns and Wounds
– volume: 9
  start-page: 75
  issue: 1
  year: 2022
  end-page: 83
  article-title: Single‐stage extremity reconstruction through the use of dermal matrices: The power of Integra bilayer wound matrix in the face of medical comorbidities, patient preference and non‐compliance
  publication-title: Case Reports in Plastic Surgery Hand Surgery
– volume: 8
  start-page: 607
  issue: 5
  year: 2011
  end-page: 626
  article-title: Design properties of hydrogel tissue‐engineering scaffolds
  publication-title: Expert Review of Medical Devices
– start-page: 184
  year: 2011
  end-page: 227
– volume: 22
  start-page: 14
  issue: 1
  year: 2014
  end-page: 22
  article-title: The use of dermal substitutes in burn surgery: Acute phase
  publication-title: Wound Repair and Regeneration
– volume: 18
  start-page: 24
  issue: 1
  year: 2019
  article-title: Processing of collagen based biomaterials and the resulting materials properties
  publication-title: BioMedical Engineering Online
– volume: 11
  start-page: 26
  issue: 5
  year: 2008
  end-page: 35
  article-title: Biomaterials for tissue engineering of skin
  publication-title: Materials Today
– volume: 3
  start-page: 55
  issue: 3
  year: 2011
  end-page: 59
  article-title: Split‐thickness skin grafts remain the gold standard for the closure of large acute and chronic wounds
  publication-title: Journal of the American College of Certified Wound Specialists
– volume: 58
  start-page: 81
  issue: 1–2
  year: 2016
  end-page: 94
  article-title: Skin wound healing: An update on the current knowledge and concepts
  publication-title: European Surgical Research
– volume: 4
  start-page: 413
  issue: 14
  year: 2007
  end-page: 437
  article-title: Tissue engineering of replacement skin: The crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration
  publication-title: Journal of The Royal Society Interface
– volume: 32
  start-page: 5256
  issue: 2
  year: 2014
  end-page: 5264
  article-title: A simple material model to generate epidermal and dermal layers in vitro for skin regeneration
  publication-title: Journal of Materials Chemistry B
– volume: 86
  start-page: 933
  issue: 3
  year: 1989
  end-page: 937
  article-title: Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin
  publication-title: Proceedings of the National Academy of Sciences
– year: 2020
– year: 2004
– volume: 7
  start-page: 229
  issue: 43
  year: 2010
  end-page: 258
  article-title: A review of tissue‐engineered skin bioconstructs available for skin reconstruction
  publication-title: Journal of The Royal Society Interface
– volume: 194
  start-page: 413
  issue: 4
  year: 1981
  end-page: 428
  article-title: Successful use of a physiologically acceptable Artificial skin in the treatment of extensive burn injury
  publication-title: Annals of Surgery
– volume: 4
  issue: 3
  year: 2016
  article-title: Skin tissue engineering advances in severe burns: Review and therapeutic applications
  publication-title: Burns & Trauma
– volume: 5
  start-page: 108
  issue: 1
  year: 2015
  end-page: 118
  article-title: Photocrosslinkable gelatin hydrogel for epidermal tissue engineering
  publication-title: Advanced Healthcare Materials
– volume: 4
  start-page: 1
  issue: 12
  year: 2008
  end-page: 16
  article-title: Mechanical characterisation of hydrogels for tissue engineering applications
  publication-title: Topics in Tissue Engineering
– year: 2013
– volume-title: Integra bilayer matrix wound dressing‐ indication for use
  year: 2004
  ident: e_1_2_10_15_1
  contributor:
    fullname: Integra LifeSciences
– volume: 12
  issue: 20
  year: 2012
  ident: e_1_2_10_18_1
  article-title: A comparison of survival and secondary contracture in expanded versus conventional full‐thickness skin grafts: An experimental study in rats
  publication-title: Eplasty
  contributor:
    fullname: Kamran A.
– ident: e_1_2_10_35_1
  doi: 10.1073/pnas.86.3.933
– ident: e_1_2_10_28_1
  doi: 10.1098/rsif.2009.0403
– volume: 4
  start-page: 1
  issue: 12
  year: 2008
  ident: e_1_2_10_2_1
  article-title: Mechanical characterisation of hydrogels for tissue engineering applications
  publication-title: Topics in Tissue Engineering
  contributor:
    fullname: Ahearne M.
– ident: e_1_2_10_24_1
  doi: 10.1007/s00018‐016‐2252‐8
– ident: e_1_2_10_27_1
  doi: 10.1111/wrr.12119
– ident: e_1_2_10_31_1
  doi: 10.1073/pnas.1115973108
– ident: e_1_2_10_30_1
  doi: 10.1159/000454919
– ident: e_1_2_10_3_1
  doi: 10.1089/ten.TEB.2014.0086
– volume: 7
  start-page: 75
  issue: 3
  year: 2015
  ident: e_1_2_10_9_1
  article-title: The role of myofibroblasts in wound healing, contraction and its clinical implications in cleft palate repair
  publication-title: Journal of International Oral Health
  contributor:
    fullname: Chitturi R. T.
– ident: e_1_2_10_32_1
  doi: 10.3390/biom10081169
– ident: e_1_2_10_11_1
  doi: 10.1016/j.biomaterials.2010.07.072
– ident: e_1_2_10_37_1
  doi: 10.1586/erd.11.27
– ident: e_1_2_10_7_1
  doi: 10.1016/j.actbio.2019.04.027
– volume-title: Split‐thickness skin grafts
  year: 2020
  ident: e_1_2_10_5_1
  contributor:
    fullname: Braza M. E.
– ident: e_1_2_10_8_1
  doi: 10.3390/ijms17121974
– ident: e_1_2_10_12_1
  doi: 10.2147/CCID.S50046
– ident: e_1_2_10_29_1
  doi: 10.1016/j.jcws.2012.03.001
– ident: e_1_2_10_17_1
  doi: 10.1007/978-3-7091-1586-2
– ident: e_1_2_10_22_1
  doi: 10.1186/s12938‐019‐0647‐0
– ident: e_1_2_10_20_1
  doi: 10.1016/S1369‐7021(08)70087‐7
– volume: 32
  start-page: 69
  issue: 2
  year: 2017
  ident: e_1_2_10_23_1
  article-title: Tissue engineering of skin: A review
  publication-title: Trends in Biomaterials and Artificial Organs
  contributor:
    fullname: Nasalpure A. V.
– ident: e_1_2_10_10_1
  doi: 10.1186/s41038‐016‐0027‐y
– ident: e_1_2_10_19_1
  doi: 10.1007/s11095‐011‐0378‐9
– volume-title: ISO 10993‐5: Biological evaluation of medical devices ‐‐ Part 5: Tests for in vitro cytotoxicity
  year: 2009
  ident: e_1_2_10_16_1
  contributor:
    fullname: ISO
– ident: e_1_2_10_21_1
  doi: 10.1098/rsif.2006.0179
– ident: e_1_2_10_14_1
  doi: 10.1533/9780857091383.2.184
– ident: e_1_2_10_26_1
  doi: 10.1080/23320885.2022.2047052
– ident: e_1_2_10_34_1
  doi: 10.1039/C4TB00614C
– ident: e_1_2_10_6_1
  doi: 10.1097/00000658‐198110000‐00005
– ident: e_1_2_10_25_1
  doi: 10.1063/5.0038364
– volume: 3
  start-page: 4
  issue: 1
  year: 2006
  ident: e_1_2_10_13_1
  article-title: Successful management and surgical closure of chronic and pathological wounds using integra
  publication-title: Journal of Burns and Wounds
  contributor:
    fullname: Furman J.
– ident: e_1_2_10_33_1
  doi: 10.1001/archopthalmol.2011.1178
– ident: e_1_2_10_36_1
  doi: 10.1002/adhm.201500005
– ident: e_1_2_10_4_1
  doi: 10.1073/pnas.48.2.138
SSID ssj0055653
Score 2.3823898
Snippet Full thickness skin loss is a debilitating problem, most commonly reconstructed using split thickness skin grafts (STSG), which do not reconstitute normal skin...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1173
SubjectTerms Animals
Collagen
Collagen - pharmacology
Computer architecture
Dermis
dermis regeneration
full‐thickness skin loss
hydrogel composite scaffold
Hydrogels
Hydrogels - pharmacology
Immobilization
Immune response
Quality of Life
Rats
Regeneration (physiology)
Regenerative medicine
Scaffolds
Skin
Skin grafts
Skin Transplantation - methods
Thickness
Tissue engineering
Tissues
Vascularization
Wound Healing
Title Accelerated vascularization of a novel collagen hydrogel dermal template
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fterm.3356
https://www.ncbi.nlm.nih.gov/pubmed/36219532
https://www.proquest.com/docview/2743861665
https://search.proquest.com/docview/2723812518
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPiDuBgQLiAalqSezYSR4jNFRNjAe0ie0p8nWrKMnUpZPg1_BTOY5za1ekwUsUOU3c5nz1-Y7P8WeE3kUS8zgSBMISYUW1IU4RxKipwYynJjSBqVMxR1_Y_CQ6PKWno9HvQdXSuhIz-WvnupL_sSq0gV3tKtl_sGz3UGiAc7AvHMHCcLyVjTMpwWtYsQc1aUtKm3WVbt1jUV5rq_8BtoaHTC5-qlV5Di3KjsfLidWlWvJqsxqoZ6hVbZSJ7iULXTW6Pq-1quuio-3c_Ddt92-qRxzFf3QZjnYRyFfeV-nXOfsmaWDLde1eiNmsu8QvF6uuFOOz_n5RXi-qK4ews_VywYcTFhgPij_cGAuUcQphl5tH0H1bHAR0Y2BmQwDiwTAbhm7_k8ZlQ5BEdroDJy9rfdyMELpDcnvLFXYFik7MGef21tzeegft4TildIz2suzw4Kz19hQIMXGVC-5HtepVAf7Q9bvJeW4EMptxUU1sjh-g-429_czB6yEa6eIRujfQqXyM5gOg-VtA80vjc78Gmt8CzW-B5jug-S3QnqCTTwfHH-fTZguOqSRJwqY8tIyPyZiHUZwwYwSjQiSxxjLCoYqBvduJdCUTnUpCQh7jiJtUE66Bi3JFnqJxURb6OfJZmpqYGkwUUREXdtcnTCQTJlWUiCD10Nv2JeWXTmklv2EGD-23ry9v_ohXOQYWnLCQMeqhN91lGCZt7osXulzbz1huCmQ-8dAz99q7XoDD2WQy9tD72g5_7z6HEPPInry4zZd9ie72-N9H42q11q-AwlbidYOiP6H9noU
link.rule.ids 315,786,790,27955,27956
linkProvider BACON (Base de Connaissance Nationale)
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+vascularization+of+a+novel+collagen+hydrogel+dermal+template&rft.jtitle=Journal+of+tissue+engineering+and+regenerative+medicine&rft.au=Weisel%2C+Adam&rft.au=Cohen%2C+Rachael&rft.au=Spector%2C+Jason+A.&rft.au=Sapir%E2%80%90Lekhovitser%2C+Yulia&rft.date=2022-12-01&rft.issn=1932-6254&rft.eissn=1932-7005&rft.volume=16&rft.issue=12&rft.spage=1173&rft.epage=1183&rft_id=info:doi/10.1002%2Fterm.3356&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_term_3356
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6254&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6254&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6254&client=summon