Organization of radial glia reveals growth pattern in the telencephalon of a percomorph fish Astatotilapia burtoni
In the brain of teleost fish, radial glial cells are the main astroglial cell type. To understand how radial glia structures are adapting to continuous growth of the brain, we studied the astroglial cells in the telencephalon of the cichlid fish Astatotilapia burtoni in small fry to large specimens....
Saved in:
Published in | Journal of comparative neurology (1911) Vol. 529; no. 10; pp. 2813 - 2823 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.07.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the brain of teleost fish, radial glial cells are the main astroglial cell type. To understand how radial glia structures are adapting to continuous growth of the brain, we studied the astroglial cells in the telencephalon of the cichlid fish Astatotilapia burtoni in small fry to large specimens. These animals grow to a standard length of 10–12 cm in this fish species, corresponding to a more than 100‐fold increase in brain volume. Focusing on the telencephalon where glial cells are arranged radially in the everted (dorsal) pallium, immunocytochemistry for glial markers revealed an aberrant pattern of radial glial fibers in the central division of the dorsal pallium (DC, i.e., DC4 and DC5). The main glial processes curved around these nuclei, especially in the posterior part of the telencephalon. This was verified in tissue‐cleared brains stained for glial markers. We further analyzed the growth of radial glia by immunocytochemically applied stem cell (proliferating cell nuclear antigen [PCNA], Sox2) and differentiation marker (doublecortin) and found that these markers were expressed at the ventricular surface consistent with a stacking growth pattern. In addition, we detected doublecortin and Sox2 positive cells in deeper nuclei of DC areas. Our data suggest that radial glial cells give rise to migrating cells providing new neurons and glia to deeper pallial regions. This results in expansion of the central pallial areas and displacement of existing radial glial. In summary, we show that radial glial cells can adapt to morphological growth processes in the adult fish brain and contribute to this growth.
The orientation of radial glia in the dorsal telencephalon of teleost fish follows a morphogenetic process called eversion. We studied the radial glia in the cichlid fish Astatotilapia burtoni and found that glial processes get increasingly displaced by central pallial areas during growth. New cells are added to the growing brain subventricularly consistent with a stacking growth pattern (Cell Addition I). In addition, our data suggest that radial glial cells give rise to migrating astroglial cells providing new neurons and glia to deeper pallial regions (Cell Addition II). |
---|---|
AbstractList | In the brain of teleost fish, radial glial cells are the main astroglial cell type. To understand how radial glia structures are adapting to continuous growth of the brain, we studied the astroglial cells in the telencephalon of the cichlid fish Astatotilapia burtoni in small fry to large specimens. These animals grow to a standard length of 10–12 cm in this fish species, corresponding to a more than 100‐fold increase in brain volume. Focusing on the telencephalon where glial cells are arranged radially in the everted (dorsal) pallium, immunocytochemistry for glial markers revealed an aberrant pattern of radial glial fibers in the central division of the dorsal pallium (DC, i.e., DC4 and DC5). The main glial processes curved around these nuclei, especially in the posterior part of the telencephalon. This was verified in tissue‐cleared brains stained for glial markers. We further analyzed the growth of radial glia by immunocytochemically applied stem cell (proliferating cell nuclear antigen [PCNA], Sox2) and differentiation marker (doublecortin) and found that these markers were expressed at the ventricular surface consistent with a stacking growth pattern. In addition, we detected doublecortin and Sox2 positive cells in deeper nuclei of DC areas. Our data suggest that radial glial cells give rise to migrating cells providing new neurons and glia to deeper pallial regions. This results in expansion of the central pallial areas and displacement of existing radial glial. In summary, we show that radial glial cells can adapt to morphological growth processes in the adult fish brain and contribute to this growth.
The orientation of radial glia in the dorsal telencephalon of teleost fish follows a morphogenetic process called eversion. We studied the radial glia in the cichlid fish Astatotilapia burtoni and found that glial processes get increasingly displaced by central pallial areas during growth. New cells are added to the growing brain subventricularly consistent with a stacking growth pattern (Cell Addition I). In addition, our data suggest that radial glial cells give rise to migrating astroglial cells providing new neurons and glia to deeper pallial regions (Cell Addition II). In the brain of teleost fish, radial glial cells are the main astroglial cell type. To understand how radial glia structures are adapting to continuous growth of the brain, we studied the astroglial cells in the telencephalon of the cichlid fish Astatotilapia burtoni in small fry to large specimens. These animals grow to a standard length of 10–12 cm in this fish species, corresponding to a more than 100‐fold increase in brain volume. Focusing on the telencephalon where glial cells are arranged radially in the everted (dorsal) pallium, immunocytochemistry for glial markers revealed an aberrant pattern of radial glial fibers in the central division of the dorsal pallium (DC, i.e., DC4 and DC5). The main glial processes curved around these nuclei, especially in the posterior part of the telencephalon. This was verified in tissue‐cleared brains stained for glial markers. We further analyzed the growth of radial glia by immunocytochemically applied stem cell (proliferating cell nuclear antigen [PCNA], Sox2) and differentiation marker (doublecortin) and found that these markers were expressed at the ventricular surface consistent with a stacking growth pattern. In addition, we detected doublecortin and Sox2 positive cells in deeper nuclei of DC areas. Our data suggest that radial glial cells give rise to migrating cells providing new neurons and glia to deeper pallial regions. This results in expansion of the central pallial areas and displacement of existing radial glial. In summary, we show that radial glial cells can adapt to morphological growth processes in the adult fish brain and contribute to this growth. |
ArticleNumber | cne.25126 |
Author | Mack, Andreas F. DeOliveira‐Mello, Laura Mattheus, Ulrich Neckel, Peter H. |
Author_xml | – sequence: 1 givenname: Andreas F. orcidid: 0000-0001-7591-4374 surname: Mack fullname: Mack, Andreas F. email: an.mack@uni-tuebingen.de organization: University of Tübingen – sequence: 2 givenname: Laura orcidid: 0000-0001-8154-3354 surname: DeOliveira‐Mello fullname: DeOliveira‐Mello, Laura organization: University of Salamanca – sequence: 3 givenname: Ulrich surname: Mattheus fullname: Mattheus, Ulrich organization: University of Tübingen – sequence: 4 givenname: Peter H. orcidid: 0000-0003-1976-0512 surname: Neckel fullname: Neckel, Peter H. organization: University of Tübingen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33580516$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kcFO3DAQhq1qUXeBHvoClaVe2kPAdhKvfVytgFZCcIGz5ZjJxiuvndoOiD49LqE9VOI0h_nm06_5j9HCBw8IfabkjBLCzo2HM9ZSxj-gFSWSV1JwukCrsqOVlHy9RMcp7QkhUtbiI1rWdStIS_kKxdu4097-1tkGj0OPo36w2uGdsxpHeATtEt7F8JQHPOqcIXpsPc4D4AwOvIFx0G4-1XiEaMIhxHHAvU0D3qSsc8jW6bHouinm4O0pOuqLFT69zRN0f3lxt_1RXd9e_dxuritTC8ErQUrEbg3cMEmEYawTLQXZdLTvWmJE3XPRyVZoQxmjayM1YaJutOFN03ED9Qn6NnvHGH5NkLI62GTAOe0hTEmxRsjytYaQgn79D92HKfqSTrGWNQ1tiZCF-j5TJoaUIvRqjPag47OiRP0pQpUi1GsRhf3yZpy6Azz8I_9-vgDnM_BkHTy_b1Lbm4tZ-QIyPJPq |
CitedBy_id | crossref_primary_10_3389_fnmol_2022_855786 crossref_primary_10_3390_ijms23031188 crossref_primary_10_3390_ijms23031334 crossref_primary_10_3390_biology11020248 |
Cites_doi | 10.1016/j.cell.2008.01.033 10.1002/cne.24374 10.1016/j.neuroscience.2012.09.022 10.1002/cne.20824 10.1016/j.abb.2007.03.036 10.1159/000351994 10.1016/j.brainres.2010.12.089 10.1021/acschemneuro.7b00496 10.1038/s41598-019-41521-6 10.1098/rstb.2006.2015 10.1101/cshperspect.a019018 10.1016/j.exer.2017.05.012 10.1002/glia.22990 10.1002/cne.23733 10.1002/cne.22481 10.1016/j.cub.2017.09.052 10.1126/science.aat0473 10.1016/j.physbeh.2010.04.003 10.1002/neu.480210804 10.1007/s00429-020-02038-1 10.1016/S0166-2236(02)02156-2 10.1002/cne.24092 10.1038/293141a0 10.1111/ede.12308 10.1016/B978-0-12-418669-9.00002-7 10.1242/dev.185595 10.1002/cne.23065 10.1111/j.1749-6632.1969.tb20432.x 10.1002/0471733849 10.1159/000235613 10.1007/s00429-010-0285-6 10.1523/JNEUROSCI.3222-16.2017 10.1073/pnas.1010442107 10.1016/j.cell.2019.05.050 10.1038/srep34331 10.1002/cne.22757 10.1242/dev.071878 10.1016/j.neuron.2016.09.005 10.1126/science.183.4123.425 10.1016/j.cub.2019.05.026 10.1016/j.brainres.2019.146350 10.1002/glia.22856 10.1002/glia.23849 10.1002/dvdy.22455 10.1038/nature25975 10.1016/j.brainresbull.2007.10.058 10.1002/cne.21604 10.1111/j.1460-9568.2004.03813.x 10.1002/bies.20615 10.1002/cne.20571 10.1002/glia.20971 10.1159/000229013 10.1002/cne.23100 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Wiley Periodicals LLC. 2021 The Authors. The Journal of Comparative Neurology published by Wiley Periodicals LLC. 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC. – notice: 2021 The Authors. The Journal of Comparative Neurology published by Wiley Periodicals LLC. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QR 7TK 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/cne.25126 |
DatabaseName | Wiley Online Library Open Access Wiley Online Library Free Content Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley-Blackwell Titles (Open access) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1096-9861 |
EndPage | 2823 |
ExternalDocumentID | 10_1002_cne_25126 33580516 CNE25126 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Banco de Santander. Spain |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABIVO ABJNI ABOCM ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AELAQ AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XV2 YQT ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QR 7TK 8FD FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c3886-80805b7e6c2908c22b851e94b1fb50c83f68b958ac12217c9a02834ac644b6ce3 |
IEDL.DBID | DR2 |
ISSN | 0021-9967 |
IngestDate | Fri Aug 16 10:02:15 EDT 2024 Thu Oct 10 19:33:26 EDT 2024 Fri Aug 23 00:35:34 EDT 2024 Sat Sep 28 08:25:59 EDT 2024 Sat Aug 24 01:03:23 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Sox2 doublecortin radial glia cell proliferation pallium tissue clearing telencephalon astrocyte |
Language | English |
License | Attribution-NonCommercial 2021 The Authors. The Journal of Comparative Neurology published by Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3886-80805b7e6c2908c22b851e94b1fb50c83f68b958ac12217c9a02834ac644b6ce3 |
Notes | Funding information Banco de Santander. Spain ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7591-4374 0000-0001-8154-3354 0000-0003-1976-0512 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcne.25126 |
PMID | 33580516 |
PQID | 2524415089 |
PQPubID | 1006438 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2489251400 proquest_journals_2524415089 crossref_primary_10_1002_cne_25126 pubmed_primary_33580516 wiley_primary_10_1002_cne_25126_CNE25126 |
PublicationCentury | 2000 |
PublicationDate | July 1, 2021 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 1, 2021 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: New York |
PublicationTitle | Journal of comparative neurology (1911) |
PublicationTitleAlternate | J Comp Neurol |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2018; 362 2019; 1722 2010; 58 2012; 520 2010; 107 2018; 526 2019; 13 2007; 463 2008; 507 2010; 101 2005; 21 2006; 494 2008; 75 1969; 167 1974; 183 2007; 29 2018; 9 2010; 518 2017; 37 2010; 239 2019; 21 2019; 29 2017; 161 1968; 10 2017; 525 2011; 215 2019; 9 2015; 523 2017; 27 2020; 225 2005 2013; 140 2020; 147 2016; 91 2012; 226 2008; 363 2011; 1381 2002; 25 2016; 6 1990; 21 1981; 293 2009; 74 2017; 11 2005; 488 2015; 63 2018; 555 2016; 64 2013; 82 2020; 68 2016 2018; 11 2008; 132 2016; 8 2019; 178 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 Olivera‐Pasilio V. (e_1_2_9_48_1) 2017; 11 e_1_2_9_41_1 e_1_2_9_20_1 Garcia‐Pradas L. (e_1_2_9_23_1) 2018; 11 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_4_1 e_1_2_9_2_1 Rahmann H. (e_1_2_9_49_1) 1968; 10 e_1_2_9_26_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 Baeuml S. W. (e_1_2_9_6_1) 2019; 13 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 526 start-page: 899 issue: 5 year: 2018 end-page: 919 article-title: Comparative expression patterns of Sox2 and Sox19 genes in the forebrain of developing and adult turbot ( ) publication-title: Journal of Comparative Neurology – start-page: 27 year: 2016 end-page: 157 – volume: 63 start-page: 1406 issue: 8 year: 2015 end-page: 1428 article-title: Radial glia and neural progenitors in the adult zebrafish central nervous system publication-title: Glia – year: 2005 – volume: 225 start-page: 817 year: 2020 end-page: 839 article-title: Characterization of neurogenic niches in the telencephalon of juvenile and adult sharks publication-title: Brain Structure & Function. – volume: 494 start-page: 620 issue: 4 year: 2006 end-page: 634 article-title: A phylotypic stage in vertebrate brain development: GABA cell patterns in zebrafish compared with mouse publication-title: Journal of Comparative Neurology – volume: 525 start-page: 610 issue: 3 year: 2017 end-page: 638 article-title: Localization of glutamatergic, GABAergic, and cholinergic neurons in the brain of the African cichlid fish, publication-title: Journal of Comparative Neurology – volume: 29 start-page: 745 issue: 8 year: 2007 end-page: 757 article-title: Adult neurogenesis in non‐mammalian vertebrates publication-title: Bioessays – volume: 161 start-page: 174 year: 2017 end-page: 192 article-title: Sox2 regulates Muller glia reprogramming and proliferation in the regenerating zebrafish retina via Lin28 and Ascl1a publication-title: Experimental Eye Research – volume: 183 start-page: 425 year: 1974 end-page: 427 article-title: Neurons in rhesus monkey visual cortex: Systematic relation between time of origin and eventual disposition publication-title: Science – volume: 215 start-page: 141 issue: 3–4 year: 2011 end-page: 157 article-title: The development and general morphology of the telencephalon of actinopterygian fishes: Synopsis, documentation and commentary publication-title: Brain Structure & Function – volume: 74 start-page: 110 issue: 2 year: 2009 end-page: 120 article-title: Cytoarchitecture of a cichlid fish telencephalon publication-title: Brain Behavior and Evolution – volume: 518 start-page: 4277 issue: 21 year: 2010 end-page: 4287 article-title: Astroglial structures in the zebrafish brain publication-title: Journal of Comparative Neurology – volume: 64 start-page: 1170 issue: 7 year: 2016 end-page: 1189 article-title: Gfap‐positive radial glial cells are an essential progenitor population for later‐born neurons and glia in the zebrafish spinal cord publication-title: Glia – volume: 1722 year: 2019 article-title: Sox2 expression in the visual system of two teleost species publication-title: Brain Research – volume: 11 start-page: 1 issue: 437 year: 2017 end-page: 23 article-title: Cell proliferation, migration, and neurogenesis in the adult brain of the pulse type weakly electric fish, Gymnotus omarorum publication-title: Frontiers in Neuroscience – volume: 362 start-page: 181 issue: 6411 year: 2018 end-page: 185 article-title: Glia as architects of central nervous system formation and function publication-title: Science – volume: 1381 start-page: 95 year: 2011 end-page: 105 article-title: The dorsal pallium in zebrafish, (Cyprinidae, Teleostei) publication-title: Brain Research – volume: 132 start-page: 645 issue: 4 year: 2008 end-page: 660 article-title: Mechanisms and functional implications of adult neurogenesis publication-title: Cell – volume: 13 start-page: 1 issue: 19 year: 2019 end-page: 29 article-title: Adult islet1 expression outlines ventralized derivatives along Zebrafish Neuraxis publication-title: Frontiers in Neuroanatomy – volume: 523 start-page: 1202 issue: 8 year: 2015 end-page: 1221 article-title: Comprehensive expression map of transcription regulators in the adult zebrafish telencephalon reveals distinct neurogenic niches publication-title: Journal of Comparative Neurology – volume: 463 start-page: 218 issue: 2 year: 2007 end-page: 230 article-title: Expression, characterization, and gene knockdown of zebrafish doublecortin‐like protein kinase publication-title: Archives of Biochemistry and Biophysics – volume: 167 start-page: 31 year: 1969 end-page: 64 article-title: A survey of the structure of the forebrain in higher bony fishes (Osteichthyes) publication-title: Annals of the New York Academy of Sciences – volume: 74 start-page: 56 issue: 1 year: 2009 end-page: 76 article-title: Stalking the everted telencephalon: Comparisons of forebrain organization in basal ray‐finned fishes and teleosts publication-title: Brain, Behavior and Evolution – volume: 27 start-page: 3288 issue: 21 year: 2017 end-page: 3301.e3283 article-title: Life‐long neurogenic activity of individual neural stem cells and continuous growth establish an outside‐in architecture in the teleost pallium publication-title: Current Biology – volume: 520 start-page: 3471 year: 2012 end-page: 3491 article-title: Characterization of cell proliferation throughout the brain of the African cichlid fish Astatotilapia burtoni and its regulation by social status publication-title: The Journal of Comparative Neurology – volume: 147 issue: 1 year: 2020 article-title: Single cell sequencing of radial glia progeny reveals the diversity of newborn neurons in the adult zebrafish brain publication-title: Development – volume: 555 start-page: 377 year: 2018 end-page: 381 article-title: Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults publication-title: Nature – volume: 10 start-page: 279 year: 1968 end-page: 284 article-title: Autoradiographische Untersuchungen zum DNA‐Stoffwechsel Mitose‐Häufigkeit im ZNS von Brachydanio rerio HAM. BUCH. Cyprinidae, Pisces publication-title: Journal für Hirnforschung – volume: 178 start-page: 27 issue: 1 year: 2019 end-page: 43.e19 article-title: Glia accumulate evidence that actions are futile and suppress unsuccessful behavior publication-title: Cell – volume: 58 start-page: 870 issue: 7 year: 2010 end-page: 888 article-title: Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon publication-title: Glia – volume: 91 start-page: 1219 issue: 6 year: 2016 end-page: 1227 article-title: Transformation of the radial glia scaffold demarcates two stages of human cerebral cortex development publication-title: Neuron – volume: 21 start-page: 1180 year: 1990 end-page: 1188 article-title: Social control of neuronal soma size publication-title: Journal of Neurobiology – volume: 11 start-page: 1 issue: 367 year: 2018 end-page: 12 article-title: Glial cells in the fish retinal nerve fiber layer form tight junctions, separating and surrounding axons publication-title: Frontiers in Molecular Neuroscience – volume: 239 start-page: 3336 issue: 12 year: 2010 end-page: 3349 article-title: Expression of the transcription factor Olig2 in proliferating cells in the adult Zebrafish telencephalon publication-title: Developmental Dynamics – volume: 9 start-page: 1951 issue: 8 year: 2018 end-page: 1962 article-title: : A model system for analyzing the neurobiology of behavior publication-title: ACS Chemical Neuroscience – volume: 520 start-page: 2275 issue: 10 year: 2012 end-page: 2316 article-title: The cellular composition of neurogenic periventricular zones in the adult zebrafish forebrain publication-title: Journal of Comparative Neurology – volume: 226 start-page: 367 year: 2012 end-page: 381 article-title: Cell proliferation pattern in adult zebrafish forebrain is sexually dimorphic publication-title: Neuroscience – volume: 6 start-page: 34331 year: 2016 article-title: Large‐scale tissue clearing (PACT): Technical evaluation and new perspectives in immunofluorescence, histology, and ultrastructure publication-title: Scientific Reports – volume: 140 start-page: 1445 issue: 7 year: 2013 end-page: 1456 article-title: SOX2 maintains the quiescent progenitor cell state of postnatal retinal Müller glia publication-title: Development – volume: 21 start-page: 330 issue: 6 year: 2019 end-page: 341 article-title: Morphological evolution of the vertebrate forebrain: From mechanical to cellular processes publication-title: Evolution & Development – volume: 101 start-page: 32 issue: 1 year: 2010 end-page: 39 article-title: Forebrain cell proliferation, behavior, and physiology of zebrafish, , kept in enriched or barren environments publication-title: Physiology and Behavior – volume: 8 start-page: 1 issue: 7 year: 2016 end-page: 21 article-title: Adult neurogenesis in fish publication-title: Cold Spring Harbor Perspectives in Biology – volume: 107 start-page: 21176 issue: 49 year: 2010 end-page: 21180 article-title: Female genomic response to mate information publication-title: Proceedings of the National Academy of Sciences – volume: 520 start-page: 633 issue: 3 year: 2012 end-page: 655 article-title: Subdivisions of the adult zebrafish subpallium by molecular marker analysis publication-title: Journal of Comparative Neurology – volume: 21 start-page: 1 issue: 1 year: 2005 end-page: 14 article-title: Doublecortin expression levels in adult brain reflect neurogenesis publication-title: European Journal of Neuroscience – volume: 507 start-page: 1245 issue: 2 year: 2008 end-page: 1257 article-title: Early teleostean basal ganglia development visualized by Zebrafish Dlx2a, Lhx6, Lhx7, Tbr2 (eomesa), and GAD67 gene expression publication-title: Journal of Comparative Neurology – volume: 488 start-page: 290 issue: 3 year: 2005 end-page: 319 article-title: Proliferation, migration, neuronal differentiation, and long‐term survival of new cells in the adult zebrafish brain publication-title: Journal of Comparative Neurology – volume: 75 start-page: 191 issue: 2–4 year: 2008 end-page: 205 article-title: Forebrain evolution in bony fishes publication-title: Brain Research Bulletin – volume: 363 start-page: 101 issue: 1489 year: 2008 end-page: 122 article-title: Proliferation, neurogenesis and regeneration in the non‐mammalian vertebrate brain publication-title: Philosophical Transactions of the Royal Society B‐Biological Sciences – volume: 9 start-page: 5083 issue: 1 year: 2019 article-title: Male dominance status regulates odor‐evoked processing in the forebrain of a cichlid fish publication-title: Scientific Reports – volume: 293 start-page: 141 year: 1981 end-page: 142 article-title: Genesis of rods in teleost fish retina publication-title: Nature – volume: 25 start-page: 235 issue: 5 year: 2002 end-page: 238 article-title: Radial glia: Multi‐purpose cells for vertebrate brain development publication-title: Trends in Neurosciences – volume: 82 start-page: 31 issue: 1 year: 2013 end-page: 44 article-title: The Pallium and mind/behavior relationships in teleost fishes publication-title: Brain, Behavior and Evolution – volume: 29 start-page: R647 issue: 13 year: 2019 end-page: R662 article-title: Evolution of the chordate telencephalon publication-title: Current Biology – volume: 68 start-page: 2451 issue: 12 year: 2020 end-page: 2470 article-title: Radial glia in the zebrafish brain: Functional, structural, and physiological comparison with the mammalian glia publication-title: Glia – volume: 37 start-page: 1900 issue: 7 year: 2017 end-page: 1909 article-title: Circadian kinetics of cell cycle progression in adult neurogenic niches of a diurnal vertebrate publication-title: The Journal of Neuroscience – ident: e_1_2_9_57_1 doi: 10.1016/j.cell.2008.01.033 – ident: e_1_2_9_54_1 doi: 10.1002/cne.24374 – ident: e_1_2_9_5_1 doi: 10.1016/j.neuroscience.2012.09.022 – ident: e_1_2_9_39_1 doi: 10.1002/cne.20824 – ident: e_1_2_9_51_1 doi: 10.1016/j.abb.2007.03.036 – ident: e_1_2_9_15_1 doi: 10.1159/000351994 – ident: e_1_2_9_38_1 doi: 10.1016/j.brainres.2010.12.089 – volume: 13 start-page: 1 issue: 19 year: 2019 ident: e_1_2_9_6_1 article-title: Adult islet1 expression outlines ventralized derivatives along Zebrafish Neuraxis publication-title: Frontiers in Neuroanatomy contributor: fullname: Baeuml S. W. – ident: e_1_2_9_34_1 doi: 10.1021/acschemneuro.7b00496 – ident: e_1_2_9_45_1 doi: 10.1038/s41598-019-41521-6 – ident: e_1_2_9_29_1 doi: 10.1098/rstb.2006.2015 – ident: e_1_2_9_21_1 doi: 10.1101/cshperspect.a019018 – ident: e_1_2_9_24_1 doi: 10.1016/j.exer.2017.05.012 – ident: e_1_2_9_27_1 doi: 10.1002/glia.22990 – ident: e_1_2_9_18_1 doi: 10.1002/cne.23733 – ident: e_1_2_9_25_1 doi: 10.1002/cne.22481 – ident: e_1_2_9_20_1 doi: 10.1016/j.cub.2017.09.052 – ident: e_1_2_9_4_1 doi: 10.1126/science.aat0473 – ident: e_1_2_9_56_1 doi: 10.1016/j.physbeh.2010.04.003 – ident: e_1_2_9_14_1 doi: 10.1002/neu.480210804 – ident: e_1_2_9_19_1 doi: 10.1007/s00429-020-02038-1 – ident: e_1_2_9_11_1 doi: 10.1016/S0166-2236(02)02156-2 – ident: e_1_2_9_32_1 doi: 10.1002/cne.24092 – ident: e_1_2_9_26_1 doi: 10.1038/293141a0 – ident: e_1_2_9_2_1 doi: 10.1111/ede.12308 – ident: e_1_2_9_40_1 doi: 10.1016/B978-0-12-418669-9.00002-7 – ident: e_1_2_9_30_1 doi: 10.1242/dev.185595 – ident: e_1_2_9_31_1 doi: 10.1002/cne.23065 – ident: e_1_2_9_43_1 doi: 10.1111/j.1749-6632.1969.tb20432.x – ident: e_1_2_9_10_1 doi: 10.1002/0471733849 – ident: e_1_2_9_9_1 doi: 10.1159/000235613 – ident: e_1_2_9_44_1 doi: 10.1007/s00429-010-0285-6 – ident: e_1_2_9_3_1 doi: 10.1523/JNEUROSCI.3222-16.2017 – ident: e_1_2_9_17_1 doi: 10.1073/pnas.1010442107 – ident: e_1_2_9_37_1 doi: 10.1016/j.cell.2019.05.050 – ident: e_1_2_9_42_1 doi: 10.1038/srep34331 – ident: e_1_2_9_22_1 doi: 10.1002/cne.22757 – ident: e_1_2_9_53_1 doi: 10.1242/dev.071878 – ident: e_1_2_9_47_1 doi: 10.1016/j.neuron.2016.09.005 – ident: e_1_2_9_50_1 doi: 10.1126/science.183.4123.425 – volume: 11 start-page: 1 issue: 437 year: 2017 ident: e_1_2_9_48_1 article-title: Cell proliferation, migration, and neurogenesis in the adult brain of the pulse type weakly electric fish, Gymnotus omarorum publication-title: Frontiers in Neuroscience contributor: fullname: Olivera‐Pasilio V. – ident: e_1_2_9_8_1 doi: 10.1016/j.cub.2019.05.026 – ident: e_1_2_9_16_1 doi: 10.1016/j.brainres.2019.146350 – ident: e_1_2_9_55_1 doi: 10.1002/glia.22856 – ident: e_1_2_9_28_1 doi: 10.1002/glia.23849 – ident: e_1_2_9_36_1 doi: 10.1002/dvdy.22455 – ident: e_1_2_9_52_1 doi: 10.1038/nature25975 – volume: 10 start-page: 279 year: 1968 ident: e_1_2_9_49_1 article-title: Autoradiographische Untersuchungen zum DNA‐Stoffwechsel Mitose‐Häufigkeit im ZNS von Brachydanio rerio HAM. BUCH. Cyprinidae, Pisces publication-title: Journal für Hirnforschung contributor: fullname: Rahmann H. – ident: e_1_2_9_46_1 doi: 10.1016/j.brainresbull.2007.10.058 – ident: e_1_2_9_41_1 doi: 10.1002/cne.21604 – ident: e_1_2_9_13_1 doi: 10.1111/j.1460-9568.2004.03813.x – ident: e_1_2_9_12_1 doi: 10.1002/bies.20615 – volume: 11 start-page: 1 issue: 367 year: 2018 ident: e_1_2_9_23_1 article-title: Glial cells in the fish retinal nerve fiber layer form tight junctions, separating and surrounding axons publication-title: Frontiers in Molecular Neuroscience contributor: fullname: Garcia‐Pradas L. – ident: e_1_2_9_58_1 doi: 10.1002/cne.20571 – ident: e_1_2_9_35_1 doi: 10.1002/glia.20971 – ident: e_1_2_9_7_1 doi: 10.1159/000229013 – ident: e_1_2_9_33_1 doi: 10.1002/cne.23100 |
SSID | ssj0009938 |
Score | 2.4384973 |
Snippet | In the brain of teleost fish, radial glial cells are the main astroglial cell type. To understand how radial glia structures are adapting to continuous growth... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2813 |
SubjectTerms | Animals Astatotilapia burtoni astrocyte Astrocytes Brain Cell differentiation cell proliferation Cichlids - growth & development doublecortin Doublecortin protein Ependymoglial Cells - physiology Female Glial cells Growth patterns Immunocytochemistry Male Neurogenesis - physiology Neuronal-glial interactions Pallium Proliferating cell nuclear antigen radial glia Radial glial cells Sox2 Stem cells Telencephalon Telencephalon - growth & development tissue clearing Ventricle |
Title | Organization of radial glia reveals growth pattern in the telencephalon of a percomorph fish Astatotilapia burtoni |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcne.25126 https://www.ncbi.nlm.nih.gov/pubmed/33580516 https://www.proquest.com/docview/2524415089 https://search.proquest.com/docview/2489251400 |
Volume | 529 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SQKGXJm362CQNauihF29s2ZIlcgp5EAoNITQQSsFIWjlrutjLrveSX58Zeb1JGgqlN4OshzUz0jfSzGeAL5RbKQXXkXDGRpkXZaQzM4pyK7VEMZempETh7xfy_Dr7diNu1uCwz4Xp-CFWB25kGWG9JgM3dn7wQBrqaj-kzZnotpM0p3Cuk6sH6ijcd7tVmEIQtMx7VqGYH6xqPt2LngHMp3g1bDhnG_CrH2oXZ_J7uGjt0N39weL4n9-yCa-XQJQddZrzBtZ8_RZe_mzCMfsWzB4nabKmZDMiMZiw20llGNE-odqyW_Th2zGbBo7OmlU1QzjJWh8SmaZjM-mqGjb1MxxSgzJlZTUfsyPKY2railLpDEO5IgKt3sH12emP4_No-X-GyKVKEY-xioXNvXRcx8pxbhG-eZ3ZpLQidiotpbJaKOMSjp6P04bATGYcYjArnU_fw3rd1P4jMGX4iAvjHKW28sRanmsfvD2JmjMqB7DfS6qYdjQcRUe4zAucvCJM3gB2exkWS0ucYwknlzFWegCfV8VoQ3QxYmrfLPCdTGlsAZezAXzoZL_qJaV7YpFg41-DBP_efXF8cRoetv_91R14xUlDQ_zvLqy3s4X_hCintXvwgmeXe0Gp7wEOxvjS |
link.rule.ids | 315,783,787,1378,11574,27936,27937,46064,46306,46488,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQXyqOFbQsY1AOXbLNO7LWlXqo-tEC7B9RKFVIV2V6nG7FKVtvshV_fGWezfQkJcYvkZzwz9je25zPADsVWSsF1JJyxUepFHunUjKK-lVqimHOTU6Dw6VAOztPvF-JiBfbaWJiGH2K54UaWEeZrMnDakN69ZQ11pe_S6iyfwFM094Qebjj8eUsehStvMw_TJQQt-y2vUMx3l0Xvr0aPIOZ9xBqWnOM1uGw729w0-d2d17br_jzgcfzfv3kFLxdYlO03yvMaVnz5Bp79qsJO-1uY3Y3TZFXOZsRjMGFXk8IwYn5CzWVX6MbXYzYNNJ0lK0qGiJLVPsQyTcdm0hQ1bOpn2KcKxcry4nrM9imUqaoLiqYzDEWLILRYh_Pjo7ODQbR4oiFyiVJEZaxiYfteOq5j5Ti3iOC8Tm0vtyJ2Ksmlsloo43ocnR-nDeGZ1DiEYVY6n2zAalmV_j0wZfiIC-McRbfynrW8r31w-CQqzyjvwJdWVNm0YeLIGs5lnuHgZWHwOrDdCjFbGOM1pnDyGmOlO_B5mYxmRGcjpvTVHPOkSmMNOKN14F0j_GUrCR0Vix5W_jWI8O_NZwfDo_Cx-e9ZP8HzwdnpSXbybfhjC15wUtdwHXgbVuvZ3H9A0FPbj0G3bwCuE_wT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4qQ0NcJmAMOgZ4iAOXbKkTu7Y4TWPVgFH1QKVpl8h27TVSlURd9v_zntN2VBMSt0j-Jb33bH_P9vcF4DNxK6XgOhHO2CT3IiQ6N7NkaKWW6OZgAhGFf43l5TT_cS2ue_B1zYXp9CE2B240M-J6TRO8mYXTB9FQV_kT2pzlE3iaIwwn4XyeTx4Ud3XWLcP0BkHL4VpWKOWnm6bbm9EjhLkNWOOOM3oBeyuoyM46376Enq9ewe5NHQ_C92H5N42S1YEtSWZgwW4XpWEkzISBxW4xy27nrIkqmhUrK4aAj7U-Uo2auVl0TQ1r_BINUKPVWSjv5uyMmEZ1WxLZzTC0PGLE8jVMRxe_zy-T1R8UEpcpRUrDKhV26KXjOlWOc4sAy-vcDoIVqVNZkMpqoYwbcMxNnDYEN3LjECVZ6Xx2ADtVXfm3wJThMy6Mc0Q-5QNr-VD7mI9J9O0s9OHT2pRF0wllFJ0kMi_Q3kW0dx-O1kYuVnPlDks4JXWp0n043hRjlNPVhal8fY91cqWxB1xw-vCmc85mlIxucsUAO_8SvfXv4Yvz8UX8OPz_qh_h2eTbqLj6Pv75Dp5ziqYoq3kEO-3y3r9HSNLaDzH0_gAwZdqZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organization+of+radial+glia+reveals+growth+pattern+in+the+telencephalon+of+a+percomorph+fish+Astatotilapia+burtoni&rft.jtitle=Journal+of+comparative+neurology+%281911%29&rft.au=Mack%2C+Andreas+F.&rft.au=DeOliveira%E2%80%90Mello%2C+Laura&rft.au=Mattheus%2C+Ulrich&rft.au=Neckel%2C+Peter+H.&rft.date=2021-07-01&rft.issn=0021-9967&rft.eissn=1096-9861&rft_id=info:doi/10.1002%2Fcne.25126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cne_25126 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9967&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9967&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9967&client=summon |