Deep convolutional neural network for the diagnosis of thyroid nodules on ultrasound

Background We designed a deep convolutional neural network (CNN) to diagnose thyroid malignancy on ultrasound (US) and compared the diagnostic performance of CNN with that of experienced radiologists. Methods Between May 2012 and February 2015, 589 thyroid nodules in 519 patients were diagnosed as b...

Full description

Saved in:
Bibliographic Details
Published inHead & neck Vol. 41; no. 4; pp. 885 - 891
Main Authors Ko, Su Yeon, Lee, Ji Hye, Yoon, Jung Hyun, Na, Hyesun, Hong, Eunhye, Han, Kyunghwa, Jung, Inkyung, Kim, Eun‐Kyung, Moon, Hee Jung, Park, Vivian Y., Lee, Eunjung, Kwak, Jin Young
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.04.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background We designed a deep convolutional neural network (CNN) to diagnose thyroid malignancy on ultrasound (US) and compared the diagnostic performance of CNN with that of experienced radiologists. Methods Between May 2012 and February 2015, 589 thyroid nodules in 519 patients were diagnosed as benign or malignant by surgical excision. Experienced radiologists retrospectively reviewed the US of the thyroid nodules in a test set. CNNs were trained and tested using retrospective data of 439 and 150 US images, respectively. Diagnostic performances were compared between the two groups. Results Of the 589 thyroid nodules, 396 were malignant and 193 were benign. The area under the curve (AUC) for diagnosing thyroid malignancy was 0.805‐0.860 for radiologists. The AUCs for diagnosing thyroid malignancy for the three CNNs were 0.845, 0.835, and 0.850. There was no significant difference in AUC between radiologists and CNNs. Conclusions CNNs showed comparable diagnostic performance compared to experienced radiologists in differentiating thyroid malignancy on US.
AbstractList We designed a deep convolutional neural network (CNN) to diagnose thyroid malignancy on ultrasound (US) and compared the diagnostic performance of CNN with that of experienced radiologists.BACKGROUNDWe designed a deep convolutional neural network (CNN) to diagnose thyroid malignancy on ultrasound (US) and compared the diagnostic performance of CNN with that of experienced radiologists.Between May 2012 and February 2015, 589 thyroid nodules in 519 patients were diagnosed as benign or malignant by surgical excision. Experienced radiologists retrospectively reviewed the US of the thyroid nodules in a test set. CNNs were trained and tested using retrospective data of 439 and 150 US images, respectively. Diagnostic performances were compared between the two groups.METHODSBetween May 2012 and February 2015, 589 thyroid nodules in 519 patients were diagnosed as benign or malignant by surgical excision. Experienced radiologists retrospectively reviewed the US of the thyroid nodules in a test set. CNNs were trained and tested using retrospective data of 439 and 150 US images, respectively. Diagnostic performances were compared between the two groups.Of the 589 thyroid nodules, 396 were malignant and 193 were benign. The area under the curve (AUC) for diagnosing thyroid malignancy was 0.805-0.860 for radiologists. The AUCs for diagnosing thyroid malignancy for the three CNNs were 0.845, 0.835, and 0.850. There was no significant difference in AUC between radiologists and CNNs.RESULTSOf the 589 thyroid nodules, 396 were malignant and 193 were benign. The area under the curve (AUC) for diagnosing thyroid malignancy was 0.805-0.860 for radiologists. The AUCs for diagnosing thyroid malignancy for the three CNNs were 0.845, 0.835, and 0.850. There was no significant difference in AUC between radiologists and CNNs.CNNs showed comparable diagnostic performance compared to experienced radiologists in differentiating thyroid malignancy on US.CONCLUSIONSCNNs showed comparable diagnostic performance compared to experienced radiologists in differentiating thyroid malignancy on US.
Background We designed a deep convolutional neural network (CNN) to diagnose thyroid malignancy on ultrasound (US) and compared the diagnostic performance of CNN with that of experienced radiologists. Methods Between May 2012 and February 2015, 589 thyroid nodules in 519 patients were diagnosed as benign or malignant by surgical excision. Experienced radiologists retrospectively reviewed the US of the thyroid nodules in a test set. CNNs were trained and tested using retrospective data of 439 and 150 US images, respectively. Diagnostic performances were compared between the two groups. Results Of the 589 thyroid nodules, 396 were malignant and 193 were benign. The area under the curve (AUC) for diagnosing thyroid malignancy was 0.805‐0.860 for radiologists. The AUCs for diagnosing thyroid malignancy for the three CNNs were 0.845, 0.835, and 0.850. There was no significant difference in AUC between radiologists and CNNs. Conclusions CNNs showed comparable diagnostic performance compared to experienced radiologists in differentiating thyroid malignancy on US.
BackgroundWe designed a deep convolutional neural network (CNN) to diagnose thyroid malignancy on ultrasound (US) and compared the diagnostic performance of CNN with that of experienced radiologists.MethodsBetween May 2012 and February 2015, 589 thyroid nodules in 519 patients were diagnosed as benign or malignant by surgical excision. Experienced radiologists retrospectively reviewed the US of the thyroid nodules in a test set. CNNs were trained and tested using retrospective data of 439 and 150 US images, respectively. Diagnostic performances were compared between the two groups.ResultsOf the 589 thyroid nodules, 396 were malignant and 193 were benign. The area under the curve (AUC) for diagnosing thyroid malignancy was 0.805‐0.860 for radiologists. The AUCs for diagnosing thyroid malignancy for the three CNNs were 0.845, 0.835, and 0.850. There was no significant difference in AUC between radiologists and CNNs.ConclusionsCNNs showed comparable diagnostic performance compared to experienced radiologists in differentiating thyroid malignancy on US.
We designed a deep convolutional neural network (CNN) to diagnose thyroid malignancy on ultrasound (US) and compared the diagnostic performance of CNN with that of experienced radiologists. Between May 2012 and February 2015, 589 thyroid nodules in 519 patients were diagnosed as benign or malignant by surgical excision. Experienced radiologists retrospectively reviewed the US of the thyroid nodules in a test set. CNNs were trained and tested using retrospective data of 439 and 150 US images, respectively. Diagnostic performances were compared between the two groups. Of the 589 thyroid nodules, 396 were malignant and 193 were benign. The area under the curve (AUC) for diagnosing thyroid malignancy was 0.805-0.860 for radiologists. The AUCs for diagnosing thyroid malignancy for the three CNNs were 0.845, 0.835, and 0.850. There was no significant difference in AUC between radiologists and CNNs. CNNs showed comparable diagnostic performance compared to experienced radiologists in differentiating thyroid malignancy on US.
Author Na, Hyesun
Han, Kyunghwa
Jung, Inkyung
Kim, Eun‐Kyung
Lee, Ji Hye
Kwak, Jin Young
Yoon, Jung Hyun
Moon, Hee Jung
Park, Vivian Y.
Ko, Su Yeon
Lee, Eunjung
Hong, Eunhye
Author_xml – sequence: 1
  givenname: Su Yeon
  surname: Ko
  fullname: Ko, Su Yeon
  organization: Jeju National University Hospital, Jeju National School of Medicine
– sequence: 2
  givenname: Ji Hye
  orcidid: 0000-0002-1501-9105
  surname: Lee
  fullname: Lee, Ji Hye
  organization: Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine
– sequence: 3
  givenname: Jung Hyun
  surname: Yoon
  fullname: Yoon, Jung Hyun
  organization: Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine
– sequence: 4
  givenname: Hyesun
  surname: Na
  fullname: Na, Hyesun
  organization: Yonsei University
– sequence: 5
  givenname: Eunhye
  surname: Hong
  fullname: Hong, Eunhye
  organization: Yonsei University
– sequence: 6
  givenname: Kyunghwa
  orcidid: 0000-0002-5687-7237
  surname: Han
  fullname: Han, Kyunghwa
  organization: Research Institute of Radiological Science, Center for Clinical Imaging Data Science
– sequence: 7
  givenname: Inkyung
  surname: Jung
  fullname: Jung, Inkyung
  organization: Yonsei University College of Medicine
– sequence: 8
  givenname: Eun‐Kyung
  surname: Kim
  fullname: Kim, Eun‐Kyung
  organization: Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine
– sequence: 9
  givenname: Hee Jung
  orcidid: 0000-0002-5643-5885
  surname: Moon
  fullname: Moon, Hee Jung
  organization: Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine
– sequence: 10
  givenname: Vivian Y.
  surname: Park
  fullname: Park, Vivian Y.
  organization: Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine
– sequence: 11
  givenname: Eunjung
  surname: Lee
  fullname: Lee, Eunjung
  email: eunjunglee@yonsei.ac.kr
  organization: Yonsei University
– sequence: 12
  givenname: Jin Young
  surname: Kwak
  fullname: Kwak, Jin Young
  email: docjin@yuhs.ac
  organization: Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30715773$$D View this record in MEDLINE/PubMed
BookMark eNp9kUlLBDEQhYMo7gf_gDR40UNrZeklR3EHwYuem0wWjWaSMeko8-_NOOpB0FMVj68e1HtbaNUHrxHaw3CMAcjJk1bHpGG4WUGbGHhXA2Xd6mJntKbQsQ20ldIzANCWkXW0UTTcdB3dRPfnWs8qGfxbcHm0wQtXeZ3j5xjfQ3ypTIjV-KQrZcWjD8mmKpgizGOwqvJBZaeL5KvsxihSyF7toDUjXNK7X3MbPVxe3J9d17d3Vzdnp7e1pH3f1KIRXBnBCFAlemoExxgaUFiaiWmNoRMjW4NBdQSAt4Th3vBeTrhujSwWdBsdLn1nMbxmncZhapPUzgmvQ04DwR1vgDFKCnrwC30OOZZvFxTHtOk4oYXa_6LyZKrVMIt2KuJ8-M6rAEdLQMaQUtTmB8EwLLoYShfDZxeFPfnFSjuKRcYlJ-v-u3i3Ts__th6uL86XFx-XvZoa
CitedBy_id crossref_primary_10_3390_diagnostics12040794
crossref_primary_10_1055_a_2122_5585
crossref_primary_10_1016_j_talanta_2019_120500
crossref_primary_10_3390_diagnostics13101723
crossref_primary_10_21015_vtse_v9i4_736
crossref_primary_10_1109_ACCESS_2020_3004766
crossref_primary_10_3389_fonc_2020_591846
crossref_primary_10_3390_systems11100519
crossref_primary_10_1007_s11042_022_13433_7
crossref_primary_10_1016_j_artmed_2022_102344
crossref_primary_10_1002_jum_15206
crossref_primary_10_37015_AUDT_2019_190811
crossref_primary_10_1002_uog_23530
crossref_primary_10_3389_fpubh_2022_960740
crossref_primary_10_1016_j_bbe_2021_02_008
crossref_primary_10_1093_neuros_nyab170
crossref_primary_10_47164_ijngc_v15i3_1768
crossref_primary_10_1016_j_jare_2023_09_043
crossref_primary_10_1186_s12880_024_01244_1
crossref_primary_10_3390_diagnostics12040944
crossref_primary_10_1007_s10278_022_00680_1
crossref_primary_10_1007_s42979_023_02010_w
crossref_primary_10_1038_s41598_021_99622_0
crossref_primary_10_3390_diagnostics11122209
crossref_primary_10_1111_srt_13086
crossref_primary_10_1016_j_compbiomed_2020_103871
crossref_primary_10_1371_journal_pone_0242806
crossref_primary_10_1016_S2589_7500_19_30123_2
crossref_primary_10_3389_fendo_2019_00907
crossref_primary_10_1371_journal_pone_0241796
crossref_primary_10_1007_s00405_022_07436_1
crossref_primary_10_1016_S2589_7500_21_00041_8
crossref_primary_10_1007_s13721_022_00388_w
crossref_primary_10_35420_jcohns_2023_34_2_17
crossref_primary_10_1038_s41598_019_56395_x
crossref_primary_10_1038_s41598_020_72270_6
crossref_primary_10_1016_j_ultrasmedbio_2023_08_026
crossref_primary_10_1002_jum_16392
crossref_primary_10_1155_2022_9492056
crossref_primary_10_1016_j_compbiomed_2022_105961
crossref_primary_10_1088_1361_6560_ad29bb
crossref_primary_10_3389_fonc_2020_01151
crossref_primary_10_3233_JIFS_210100
crossref_primary_10_3803_EnM_2019_34_2_124
crossref_primary_10_3389_fonc_2022_944859
crossref_primary_10_1007_s10278_020_00362_w
crossref_primary_10_1109_ACCESS_2020_3034914
crossref_primary_10_1371_journal_pone_0262128
crossref_primary_10_3390_cancers13194740
crossref_primary_10_1016_j_ejrad_2021_109717
crossref_primary_10_3390_biomedicines9070720
crossref_primary_10_1007_s11042_023_15068_8
crossref_primary_10_3389_fonc_2022_1066508
crossref_primary_10_3174_ajnr_A7149
crossref_primary_10_1155_2022_6009107
crossref_primary_10_1038_s41598_023_34459_3
crossref_primary_10_1016_j_nic_2020_08_003
crossref_primary_10_1055_a_1173_4315
crossref_primary_10_1159_000504390
Cites_doi 10.2214/AJR.14.13825
10.1007/s13246-013-0199-8
10.1007/s12020-009-9262-3
10.1148/radiol.2473070944
10.1097/MD.0000000000001129
10.1089/thy.2016.0372
10.7863/ultra.15.05055
10.1089/thy.2008.0354
10.1016/j.ultras.2016.09.011
10.5244/C.28.6
10.1148/radiol.11110206
10.1007/BF03343959
10.1016/j.ultrasmedbio.2013.10.005
10.7785/tcrt.2012.500381
10.1016/j.ejrad.2011.11.011
10.1145/2733373.2807412
10.2214/AJR.15.15813
10.1109/TMI.2016.2535302
10.1530/EJE-12-0936
10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
10.3348/kjr.2016.17.3.370
10.1016/j.cmpb.2011.10.001
10.1016/j.clinimag.2008.10.034
10.1089/thy.2015.0020
10.1148/radiol.2373050220
10.1118/1.4939060
10.2307/2529310
10.7326/0003-4819-126-3-199702010-00009
10.1109/TMI.2016.2528162
10.2214/ajr.178.3.1780687
10.3348/kjr.2010.11.2.149
10.1002/cncr.21281
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
NPM
7QP
7TK
K9.
7X8
DOI 10.1002/hed.25415
DatabaseName CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1097-0347
EndPage 891
ExternalDocumentID 30715773
10_1002_hed_25415
HED25415
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
– fundername: Ministry of Education
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DUUFO
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6P
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WWO
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QP
7TK
K9.
7X8
ID FETCH-LOGICAL-c3885-a5a9dfa4203da83fa911050d1cfbf6ff3bfc6f10d7200962418f98cb9e6fcc383
IEDL.DBID DR2
ISSN 1043-3074
1097-0347
IngestDate Fri Jul 11 15:44:20 EDT 2025
Fri Jul 25 03:44:49 EDT 2025
Wed Feb 19 02:32:01 EST 2025
Thu Apr 24 22:56:25 EDT 2025
Tue Jul 01 03:28:00 EDT 2025
Wed Jan 22 17:09:58 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords deep learning
thyroid nodule
thyroid cancer
convolutional neural network (CNN)
ultrasound
Language English
License 2019 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3885-a5a9dfa4203da83fa911050d1cfbf6ff3bfc6f10d7200962418f98cb9e6fcc383
Notes Funding information
Ministry of Education; National Research Foundation of Korea
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-5687-7237
0000-0002-5643-5885
0000-0002-1501-9105
OpenAccessLink https://ir.ymlib.yonsei.ac.kr/handle/22282913/169451
PMID 30715773
PQID 2191357923
PQPubID 996355
PageCount 7
ParticipantIDs proquest_miscellaneous_2179504432
proquest_journals_2191357923
pubmed_primary_30715773
crossref_primary_10_1002_hed_25415
crossref_citationtrail_10_1002_hed_25415
wiley_primary_10_1002_hed_25415_HED25415
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2019
2019-04-00
20190401
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Houston
PublicationTitle Head & neck
PublicationTitleAlternate Head Neck
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2010; 34
2010; 11
2012; 81
2016; 207
2015; 94
2017; 27
2005; 237
2002; 178
2013; 168
2008; 247
2015; 205
2014; 40
2016; 17
2012; 107
2016; 35
2017; 73
2002; 25
2009; 36
1997; 126
2010; 20
2013; 36
2005; 105
2016; 43
2014; 13
1977; 33
2015
2014
2011; 260
2016; 26
1950; 3
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 94
  start-page: e1129
  year: 2015
  article-title: Grey‐scale analysis improves the ultrasonographic evaluation of thyroid nodules
  publication-title: Medicine (Baltimore)
– volume: 11
  start-page: 149
  year: 2010
  end-page: 155
  article-title: Observer variability and the performance between faculties and residents: US criteria for benign and malignant thyroid nodules
  publication-title: Korean J Radiol
– volume: 43
  start-page: 554
  year: 2016
  end-page: 567
  article-title: Computer‐aided diagnosis for classifying benign versus malignant thyroid nodules based on ultrasound images: a comparison with radiologist‐based assessments
  publication-title: Med Phys
– volume: 25
  start-page: 39
  year: 2002
  end-page: 43
  article-title: Ultrasonography: is it useful in the diagnosis of cancer in thyroid nodules?
  publication-title: J Endocrinol Invest
– volume: 107
  start-page: 233
  year: 2012
  end-page: 241
  article-title: ThyroScreen system: high resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform
  publication-title: Comput Methods Programs Biomed
– volume: 35
  start-page: 1285
  year: 2016
  end-page: 1298
  article-title: Deep convolutional neural networks for computer‐aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans Med Imaging
– start-page: 689
  year: 2015
  end-page: 692
– volume: 36
  start-page: 464
  year: 2009
  end-page: 472
  article-title: Ultrasonographic evaluation of thyroid nodules: comparison of ultrasonographic, cytological, and histopathological findings
  publication-title: Endocrine
– volume: 13
  start-page: 289
  year: 2014
  end-page: 301
  article-title: A review on ultrasound‐based thyroid cancer tissue characterization and automated classification
  publication-title: Technol Cancer Res Treat
– volume: 34
  start-page: 127
  year: 2010
  end-page: 133
  article-title: Positive predictive values of sonographic features of solid thyroid nodule
  publication-title: Clin Imaging
– volume: 247
  start-page: 762
  year: 2008
  end-page: 770
  article-title: Benign and malignant thyroid nodules: US differentiation‐‐multicenter retrospective study
  publication-title: Radiology
– volume: 178
  start-page: 687
  year: 2002
  end-page: 691
  article-title: New sonographic criteria for recommending fine‐needle aspiration biopsy of nonpalpable solid nodules of the thyroid
  publication-title: AJR Am J Roentgenol
– volume: 168
  start-page: 649
  year: 2013
  end-page: 655
  article-title: Prospective evaluation of Thyroid Imaging Reporting and Data System on 4550 nodules with and without elastography
  publication-title: Eur J Endocrinol
– volume: 105
  start-page: 217
  year: 2005
  end-page: 219
  article-title: Papillary carcinoma of the thyroid <or=1.0 cm: rarely incidental or occult any more
  publication-title: Cancer
– volume: 35
  start-page: 1299
  year: 2016
  end-page: 1312
  article-title: Convolutional neural networks for medical image analysis: fine tuning or full training?
  publication-title: IEEE Trans Med Imaging
– volume: 3
  start-page: 32
  year: 1950
  end-page: 35
  article-title: Index for rating diagnostic tests
  publication-title: Cancer
– volume: 33
  start-page: 159
  year: 1977
  end-page: 174
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
– volume: 20
  start-page: 167
  year: 2010
  end-page: 172
  article-title: Interobserver and intraobserver variations in ultrasound assessment of thyroid nodules
  publication-title: Thyroid
– year: 2014
– volume: 27
  start-page: 546
  year: 2017
  end-page: 552
  article-title: A computer‐aided diagnosis system using artificial intelligence for the diagnosis and characterization of thyroid nodules on ultrasound: initial clinical assessment
  publication-title: Thyroid
– volume: 36
  start-page: 219
  year: 2013
  end-page: 230
  article-title: Computer‐aided diagnosis system for classifying benign and malignant thyroid nodules in multi‐stained FNAB cytological images
  publication-title: Australas Phys Eng Sci Med
– volume: 207
  start-page: 859
  year: 2016
  end-page: 864
  article-title: Classifier model based on machine learning algorithms: application to differential diagnosis of suspicious thyroid nodules via sonography
  publication-title: AJR Am J Roentgenol
– volume: 35
  start-page: 775
  year: 2016
  end-page: 782
  article-title: Quantitative evaluation for differentiating malignant and benign thyroid nodules using histogram analysis of grayscale sonograms
  publication-title: J Ultrasound Med
– volume: 126
  start-page: 226
  year: 1997
  end-page: 231
  article-title: Thyroid incidentalomas: management approaches to nonpalpable nodules discovered incidentally on thyroid imaging
  publication-title: Ann Intern Med
– volume: 205
  start-page: W343
  year: 2015
  end-page: W351
  article-title: Application of texture analysis in the differential diagnosis of benign and malignant thyroid nodules: comparison with gray‐scale ultrasound and elastography
  publication-title: AJR Am J Roentgenol
– volume: 73
  start-page: 221
  year: 2017
  end-page: 230
  article-title: A pre‐trained convolutional neural network based method for thyroid nodule diagnosis
  publication-title: Ultrasonics
– volume: 17
  start-page: 370
  year: 2016
  end-page: 395
  article-title: Ultrasonography diagnosis and imaging‐based management of thyroid nodules: revised Korean Society of Thyroid Radiology consensus statement and recommendations
  publication-title: Korean J Radiol
– volume: 26
  start-page: 1
  year: 2016
  end-page: 133
  article-title: 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer
  publication-title: Thyroid
– volume: 81
  start-page: e352
  year: 2012
  end-page: e356
  article-title: Man to man training: can it help improve the diagnostic performances and interobserver variabilities of thyroid ultrasonography in residents?
  publication-title: Eur J Radiol
– volume: 237
  start-page: 794
  year: 2005
  end-page: 800
  article-title: Management of thyroid nodules detected at US: society of radiologists in ultrasound consensus conference statement
  publication-title: Radiology
– volume: 40
  start-page: 854
  year: 2014
  end-page: 863
  article-title: Diagnostic performance of ultrasound and ultrasound elastography with respect to physician experience
  publication-title: Ultrasound Med Biol
– volume: 260
  start-page: 892
  year: 2011
  end-page: 899
  article-title: Thyroid Imaging Reporting and Data System for US features of nodules: a step in establishing better stratification of cancer risk
  publication-title: Radiology
– ident: e_1_2_6_26_1
– ident: e_1_2_6_15_1
  doi: 10.2214/AJR.14.13825
– ident: e_1_2_6_21_1
  doi: 10.1007/s13246-013-0199-8
– ident: e_1_2_6_30_1
  doi: 10.1007/s12020-009-9262-3
– ident: e_1_2_6_5_1
  doi: 10.1148/radiol.2473070944
– ident: e_1_2_6_13_1
  doi: 10.1097/MD.0000000000001129
– ident: e_1_2_6_18_1
  doi: 10.1089/thy.2016.0372
– ident: e_1_2_6_14_1
  doi: 10.7863/ultra.15.05055
– ident: e_1_2_6_9_1
  doi: 10.1089/thy.2008.0354
– ident: e_1_2_6_24_1
  doi: 10.1016/j.ultras.2016.09.011
– ident: e_1_2_6_27_1
  doi: 10.5244/C.28.6
– ident: e_1_2_6_4_1
  doi: 10.1148/radiol.11110206
– ident: e_1_2_6_6_1
  doi: 10.1007/BF03343959
– ident: e_1_2_6_12_1
  doi: 10.1016/j.ultrasmedbio.2013.10.005
– ident: e_1_2_6_20_1
  doi: 10.7785/tcrt.2012.500381
– ident: e_1_2_6_10_1
  doi: 10.1016/j.ejrad.2011.11.011
– ident: e_1_2_6_25_1
  doi: 10.1145/2733373.2807412
– ident: e_1_2_6_16_1
  doi: 10.2214/AJR.15.15813
– ident: e_1_2_6_22_1
  doi: 10.1109/TMI.2016.2535302
– ident: e_1_2_6_8_1
  doi: 10.1530/EJE-12-0936
– ident: e_1_2_6_28_1
  doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
– ident: e_1_2_6_34_1
  doi: 10.3348/kjr.2016.17.3.370
– ident: e_1_2_6_19_1
  doi: 10.1016/j.cmpb.2011.10.001
– ident: e_1_2_6_31_1
  doi: 10.1016/j.clinimag.2008.10.034
– ident: e_1_2_6_2_1
  doi: 10.1089/thy.2015.0020
– ident: e_1_2_6_7_1
  doi: 10.1148/radiol.2373050220
– ident: e_1_2_6_17_1
  doi: 10.1118/1.4939060
– ident: e_1_2_6_29_1
  doi: 10.2307/2529310
– ident: e_1_2_6_32_1
  doi: 10.7326/0003-4819-126-3-199702010-00009
– ident: e_1_2_6_23_1
  doi: 10.1109/TMI.2016.2528162
– ident: e_1_2_6_3_1
  doi: 10.2214/ajr.178.3.1780687
– ident: e_1_2_6_11_1
  doi: 10.3348/kjr.2010.11.2.149
– ident: e_1_2_6_33_1
  doi: 10.1002/cncr.21281
SSID ssj0003642
Score 2.537749
Snippet Background We designed a deep convolutional neural network (CNN) to diagnose thyroid malignancy on ultrasound (US) and compared the diagnostic performance of...
We designed a deep convolutional neural network (CNN) to diagnose thyroid malignancy on ultrasound (US) and compared the diagnostic performance of CNN with...
BackgroundWe designed a deep convolutional neural network (CNN) to diagnose thyroid malignancy on ultrasound (US) and compared the diagnostic performance of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 885
SubjectTerms Benign
convolutional neural network (CNN)
deep learning
Head and neck
Malignancy
Neural networks
Nodules
Thyroid
Thyroid cancer
Thyroid gland
thyroid nodule
Ultrasonic imaging
Ultrasound
Title Deep convolutional neural network for the diagnosis of thyroid nodules on ultrasound
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhed.25415
https://www.ncbi.nlm.nih.gov/pubmed/30715773
https://www.proquest.com/docview/2191357923
https://www.proquest.com/docview/2179504432
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA4yJy8uuI0bUTx46dg2SRc8iQuDoAeZAQ9CSdMEB4d2mLYH_fW-JG2HcQHxUFrS16bNey_5krx8QegMmjAGluI6TAc-0ThTDieh7_g89bheCxrGer3zw2MwHNP7Z_a8gi7btTCWH6IbcNOeYepr7eA8LS8WpKGvMhtA78YsMNexWhoQPS2oo0hA7UwnJXp8hbasQq5_0T253BZ9A5jLeNU0OHfr6KX9VBtn8jaoq3QgPr6wOP7zXzbQWgNE8ZW1nE20IvMtNLqRcoZ1JHpjkSChGS_NycSLYwC5GEAjzmyM3qTEhYKE93kxyXBeZPVUQlKO62k156XetGkbje9uR9dDp9l3wREkipjDGQedceq7JOMRURwqRJe5mSdUqgKlSKpEoDw3C_XUSgAYIFJxJNJYBkrAK8gO6uVFLvcQjo2TQzvpcUGhaxcrsAtPsED6noCjj85bDSSiISXXe2NME0un7CdQNIkpmj467URnlonjJ6HDVo1J44xlApWyR5gmSuyjk-42uJGeG-G5LGotE8bMpZT4fbRr1d_lAubjsTCEp8-NEn_PPhne3piL_b-LHqBVAGGxjQY6RL1qXssjADpVemws-hNS3fcr
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hONBLoSptF2jrVj1wyZLEdh4Sl6qAlhY4VIvEpYocxxaIVYJ2N4f21zNjJ0GUIqEeokTOJE48M56xPfMZ4AuaMImSEgaSAp9EXtlA8TQOYlVGinJB05zync_Ok8mF-H4pL1fgoM-F8fgQw4QbaYbrr0nBaUJ6_x419MpUYxzeUIb5Gu3o7QZUP-_Bo3gi_Fqn4DTDInpcoTDeHx59aI0euZgPPVZnco434Ff_sT7S5GbcLsux_vMXjuP__s0mvOx8UfbVC88rWDH1a5geGnPLKBi9E0qkINBLd3Ih4wz9XIZ-I6t8mN71gjUWC37Pm-uK1U3VzgwW1aydLedqQfs2bcHF8dH02yTotl4INM8yGSipkG1KxCGvVMatwj4xlGEVaVvaxFpeWp3YKKxSWl1J0A3IbJ7pMjeJ1fgK_gZW66Y274DlTs_RVEZKCxzd5RZFI9IyMXGk8RjBXs-CQne45LQ9xqzwiMpxgU1TuKYZweeB9NaDcfyLaLfnY9Hp46LAfjnikrASR_BpuI2aRMsjqjZNSzRpLkMheDyCt57_Qy0oP5FMU3x6z3Hx6eqLydGhu9h-PulHWJ9Mz06L05PzHzvwAn2y3AcH7cLqct6a9-j3LMsPTrzvAMJu-0Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hKiEupYhHl1Lqoh64ZEliOw_1hFhWS6GoQiBxQIocP1TUVbLa3RzaX9-xnQTRUqniECVyJnHimfGM7ZnPAJ_QhHGUlDDgNvCJ5coEgqZxEIsyEjYXNM1tvvPXq2Ryy77c8bsV-Nzlwnh8iH7CzWqG66-tgs-UOX4EDf2u1RBHNzbB_BVLwsyK9Oj6ETuKJswvdTJqJ1hYBysUxsf9o0-N0V8e5lOH1Vmc8Qbcd9_qA01-DJtlOZS__oBxfOHPvIHXrSdKTrzobMKKrrbgZqT1jNhQ9FYkkcJCXrqTCxgn6OUS9BqJ8kF6DwtSGyz4Oa8fFKlq1Uw1FlWkmS7nYmF3bdqG2_HZzekkaDdeCCTNMh4ILpBpgsUhVSKjRmCPGPJQRdKUJjGGlkYmJgpVatdWEnQCMpNnssx1YiS-gu7AalVX-i2Q3Gk5GspISIZju9ygYESSJzqOJB4DOOo4UMgWldxujjEtPJ5yXGDTFK5pBnDYk848FMdzRPsdG4tWGxcF9soR5RYpcQAf-9uoR3ZxRFS6bixNmvOQMRoPYNezv68FxSfiaYpPHzkm_rv6YnI2chd7_0_6Ada-jcbF5fnVxTtYR4cs95FB-7C6nDf6PTo9y_LACfdv8O75_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+convolutional+neural+network+for+the+diagnosis+of+thyroid+nodules+on+ultrasound&rft.jtitle=Head+%26+neck&rft.au=Ko%2C+Su+Yeon&rft.au=Lee%2C+Ji+Hye&rft.au=Yoon%2C+Jung+Hyun&rft.au=Na%2C+Hyesun&rft.date=2019-04-01&rft.eissn=1097-0347&rft.volume=41&rft.issue=4&rft.spage=885&rft_id=info:doi/10.1002%2Fhed.25415&rft_id=info%3Apmid%2F30715773&rft.externalDocID=30715773
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1043-3074&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1043-3074&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1043-3074&client=summon