Deep convolutional neural network for the diagnosis of thyroid nodules on ultrasound
Background We designed a deep convolutional neural network (CNN) to diagnose thyroid malignancy on ultrasound (US) and compared the diagnostic performance of CNN with that of experienced radiologists. Methods Between May 2012 and February 2015, 589 thyroid nodules in 519 patients were diagnosed as b...
Saved in:
Published in | Head & neck Vol. 41; no. 4; pp. 885 - 891 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.04.2019
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
We designed a deep convolutional neural network (CNN) to diagnose thyroid malignancy on ultrasound (US) and compared the diagnostic performance of CNN with that of experienced radiologists.
Methods
Between May 2012 and February 2015, 589 thyroid nodules in 519 patients were diagnosed as benign or malignant by surgical excision. Experienced radiologists retrospectively reviewed the US of the thyroid nodules in a test set. CNNs were trained and tested using retrospective data of 439 and 150 US images, respectively. Diagnostic performances were compared between the two groups.
Results
Of the 589 thyroid nodules, 396 were malignant and 193 were benign. The area under the curve (AUC) for diagnosing thyroid malignancy was 0.805‐0.860 for radiologists. The AUCs for diagnosing thyroid malignancy for the three CNNs were 0.845, 0.835, and 0.850. There was no significant difference in AUC between radiologists and CNNs.
Conclusions
CNNs showed comparable diagnostic performance compared to experienced radiologists in differentiating thyroid malignancy on US. |
---|---|
AbstractList | We designed a deep convolutional neural network (CNN) to diagnose thyroid malignancy on ultrasound (US) and compared the diagnostic performance of CNN with that of experienced radiologists.BACKGROUNDWe designed a deep convolutional neural network (CNN) to diagnose thyroid malignancy on ultrasound (US) and compared the diagnostic performance of CNN with that of experienced radiologists.Between May 2012 and February 2015, 589 thyroid nodules in 519 patients were diagnosed as benign or malignant by surgical excision. Experienced radiologists retrospectively reviewed the US of the thyroid nodules in a test set. CNNs were trained and tested using retrospective data of 439 and 150 US images, respectively. Diagnostic performances were compared between the two groups.METHODSBetween May 2012 and February 2015, 589 thyroid nodules in 519 patients were diagnosed as benign or malignant by surgical excision. Experienced radiologists retrospectively reviewed the US of the thyroid nodules in a test set. CNNs were trained and tested using retrospective data of 439 and 150 US images, respectively. Diagnostic performances were compared between the two groups.Of the 589 thyroid nodules, 396 were malignant and 193 were benign. The area under the curve (AUC) for diagnosing thyroid malignancy was 0.805-0.860 for radiologists. The AUCs for diagnosing thyroid malignancy for the three CNNs were 0.845, 0.835, and 0.850. There was no significant difference in AUC between radiologists and CNNs.RESULTSOf the 589 thyroid nodules, 396 were malignant and 193 were benign. The area under the curve (AUC) for diagnosing thyroid malignancy was 0.805-0.860 for radiologists. The AUCs for diagnosing thyroid malignancy for the three CNNs were 0.845, 0.835, and 0.850. There was no significant difference in AUC between radiologists and CNNs.CNNs showed comparable diagnostic performance compared to experienced radiologists in differentiating thyroid malignancy on US.CONCLUSIONSCNNs showed comparable diagnostic performance compared to experienced radiologists in differentiating thyroid malignancy on US. Background We designed a deep convolutional neural network (CNN) to diagnose thyroid malignancy on ultrasound (US) and compared the diagnostic performance of CNN with that of experienced radiologists. Methods Between May 2012 and February 2015, 589 thyroid nodules in 519 patients were diagnosed as benign or malignant by surgical excision. Experienced radiologists retrospectively reviewed the US of the thyroid nodules in a test set. CNNs were trained and tested using retrospective data of 439 and 150 US images, respectively. Diagnostic performances were compared between the two groups. Results Of the 589 thyroid nodules, 396 were malignant and 193 were benign. The area under the curve (AUC) for diagnosing thyroid malignancy was 0.805‐0.860 for radiologists. The AUCs for diagnosing thyroid malignancy for the three CNNs were 0.845, 0.835, and 0.850. There was no significant difference in AUC between radiologists and CNNs. Conclusions CNNs showed comparable diagnostic performance compared to experienced radiologists in differentiating thyroid malignancy on US. BackgroundWe designed a deep convolutional neural network (CNN) to diagnose thyroid malignancy on ultrasound (US) and compared the diagnostic performance of CNN with that of experienced radiologists.MethodsBetween May 2012 and February 2015, 589 thyroid nodules in 519 patients were diagnosed as benign or malignant by surgical excision. Experienced radiologists retrospectively reviewed the US of the thyroid nodules in a test set. CNNs were trained and tested using retrospective data of 439 and 150 US images, respectively. Diagnostic performances were compared between the two groups.ResultsOf the 589 thyroid nodules, 396 were malignant and 193 were benign. The area under the curve (AUC) for diagnosing thyroid malignancy was 0.805‐0.860 for radiologists. The AUCs for diagnosing thyroid malignancy for the three CNNs were 0.845, 0.835, and 0.850. There was no significant difference in AUC between radiologists and CNNs.ConclusionsCNNs showed comparable diagnostic performance compared to experienced radiologists in differentiating thyroid malignancy on US. We designed a deep convolutional neural network (CNN) to diagnose thyroid malignancy on ultrasound (US) and compared the diagnostic performance of CNN with that of experienced radiologists. Between May 2012 and February 2015, 589 thyroid nodules in 519 patients were diagnosed as benign or malignant by surgical excision. Experienced radiologists retrospectively reviewed the US of the thyroid nodules in a test set. CNNs were trained and tested using retrospective data of 439 and 150 US images, respectively. Diagnostic performances were compared between the two groups. Of the 589 thyroid nodules, 396 were malignant and 193 were benign. The area under the curve (AUC) for diagnosing thyroid malignancy was 0.805-0.860 for radiologists. The AUCs for diagnosing thyroid malignancy for the three CNNs were 0.845, 0.835, and 0.850. There was no significant difference in AUC between radiologists and CNNs. CNNs showed comparable diagnostic performance compared to experienced radiologists in differentiating thyroid malignancy on US. |
Author | Na, Hyesun Han, Kyunghwa Jung, Inkyung Kim, Eun‐Kyung Lee, Ji Hye Kwak, Jin Young Yoon, Jung Hyun Moon, Hee Jung Park, Vivian Y. Ko, Su Yeon Lee, Eunjung Hong, Eunhye |
Author_xml | – sequence: 1 givenname: Su Yeon surname: Ko fullname: Ko, Su Yeon organization: Jeju National University Hospital, Jeju National School of Medicine – sequence: 2 givenname: Ji Hye orcidid: 0000-0002-1501-9105 surname: Lee fullname: Lee, Ji Hye organization: Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine – sequence: 3 givenname: Jung Hyun surname: Yoon fullname: Yoon, Jung Hyun organization: Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine – sequence: 4 givenname: Hyesun surname: Na fullname: Na, Hyesun organization: Yonsei University – sequence: 5 givenname: Eunhye surname: Hong fullname: Hong, Eunhye organization: Yonsei University – sequence: 6 givenname: Kyunghwa orcidid: 0000-0002-5687-7237 surname: Han fullname: Han, Kyunghwa organization: Research Institute of Radiological Science, Center for Clinical Imaging Data Science – sequence: 7 givenname: Inkyung surname: Jung fullname: Jung, Inkyung organization: Yonsei University College of Medicine – sequence: 8 givenname: Eun‐Kyung surname: Kim fullname: Kim, Eun‐Kyung organization: Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine – sequence: 9 givenname: Hee Jung orcidid: 0000-0002-5643-5885 surname: Moon fullname: Moon, Hee Jung organization: Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine – sequence: 10 givenname: Vivian Y. surname: Park fullname: Park, Vivian Y. organization: Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine – sequence: 11 givenname: Eunjung surname: Lee fullname: Lee, Eunjung email: eunjunglee@yonsei.ac.kr organization: Yonsei University – sequence: 12 givenname: Jin Young surname: Kwak fullname: Kwak, Jin Young email: docjin@yuhs.ac organization: Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30715773$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUlLBDEQhYMo7gf_gDR40UNrZeklR3EHwYuem0wWjWaSMeko8-_NOOpB0FMVj68e1HtbaNUHrxHaw3CMAcjJk1bHpGG4WUGbGHhXA2Xd6mJntKbQsQ20ldIzANCWkXW0UTTcdB3dRPfnWs8qGfxbcHm0wQtXeZ3j5xjfQ3ypTIjV-KQrZcWjD8mmKpgizGOwqvJBZaeL5KvsxihSyF7toDUjXNK7X3MbPVxe3J9d17d3Vzdnp7e1pH3f1KIRXBnBCFAlemoExxgaUFiaiWmNoRMjW4NBdQSAt4Th3vBeTrhujSwWdBsdLn1nMbxmncZhapPUzgmvQ04DwR1vgDFKCnrwC30OOZZvFxTHtOk4oYXa_6LyZKrVMIt2KuJ8-M6rAEdLQMaQUtTmB8EwLLoYShfDZxeFPfnFSjuKRcYlJ-v-u3i3Ts__th6uL86XFx-XvZoa |
CitedBy_id | crossref_primary_10_3390_diagnostics12040794 crossref_primary_10_1055_a_2122_5585 crossref_primary_10_1016_j_talanta_2019_120500 crossref_primary_10_3390_diagnostics13101723 crossref_primary_10_21015_vtse_v9i4_736 crossref_primary_10_1109_ACCESS_2020_3004766 crossref_primary_10_3389_fonc_2020_591846 crossref_primary_10_3390_systems11100519 crossref_primary_10_1007_s11042_022_13433_7 crossref_primary_10_1016_j_artmed_2022_102344 crossref_primary_10_1002_jum_15206 crossref_primary_10_37015_AUDT_2019_190811 crossref_primary_10_1002_uog_23530 crossref_primary_10_3389_fpubh_2022_960740 crossref_primary_10_1016_j_bbe_2021_02_008 crossref_primary_10_1093_neuros_nyab170 crossref_primary_10_47164_ijngc_v15i3_1768 crossref_primary_10_1016_j_jare_2023_09_043 crossref_primary_10_1186_s12880_024_01244_1 crossref_primary_10_3390_diagnostics12040944 crossref_primary_10_1007_s10278_022_00680_1 crossref_primary_10_1007_s42979_023_02010_w crossref_primary_10_1038_s41598_021_99622_0 crossref_primary_10_3390_diagnostics11122209 crossref_primary_10_1111_srt_13086 crossref_primary_10_1016_j_compbiomed_2020_103871 crossref_primary_10_1371_journal_pone_0242806 crossref_primary_10_1016_S2589_7500_19_30123_2 crossref_primary_10_3389_fendo_2019_00907 crossref_primary_10_1371_journal_pone_0241796 crossref_primary_10_1007_s00405_022_07436_1 crossref_primary_10_1016_S2589_7500_21_00041_8 crossref_primary_10_1007_s13721_022_00388_w crossref_primary_10_35420_jcohns_2023_34_2_17 crossref_primary_10_1038_s41598_019_56395_x crossref_primary_10_1038_s41598_020_72270_6 crossref_primary_10_1016_j_ultrasmedbio_2023_08_026 crossref_primary_10_1002_jum_16392 crossref_primary_10_1155_2022_9492056 crossref_primary_10_1016_j_compbiomed_2022_105961 crossref_primary_10_1088_1361_6560_ad29bb crossref_primary_10_3389_fonc_2020_01151 crossref_primary_10_3233_JIFS_210100 crossref_primary_10_3803_EnM_2019_34_2_124 crossref_primary_10_3389_fonc_2022_944859 crossref_primary_10_1007_s10278_020_00362_w crossref_primary_10_1109_ACCESS_2020_3034914 crossref_primary_10_1371_journal_pone_0262128 crossref_primary_10_3390_cancers13194740 crossref_primary_10_1016_j_ejrad_2021_109717 crossref_primary_10_3390_biomedicines9070720 crossref_primary_10_1007_s11042_023_15068_8 crossref_primary_10_3389_fonc_2022_1066508 crossref_primary_10_3174_ajnr_A7149 crossref_primary_10_1155_2022_6009107 crossref_primary_10_1038_s41598_023_34459_3 crossref_primary_10_1016_j_nic_2020_08_003 crossref_primary_10_1055_a_1173_4315 crossref_primary_10_1159_000504390 |
Cites_doi | 10.2214/AJR.14.13825 10.1007/s13246-013-0199-8 10.1007/s12020-009-9262-3 10.1148/radiol.2473070944 10.1097/MD.0000000000001129 10.1089/thy.2016.0372 10.7863/ultra.15.05055 10.1089/thy.2008.0354 10.1016/j.ultras.2016.09.011 10.5244/C.28.6 10.1148/radiol.11110206 10.1007/BF03343959 10.1016/j.ultrasmedbio.2013.10.005 10.7785/tcrt.2012.500381 10.1016/j.ejrad.2011.11.011 10.1145/2733373.2807412 10.2214/AJR.15.15813 10.1109/TMI.2016.2535302 10.1530/EJE-12-0936 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 10.3348/kjr.2016.17.3.370 10.1016/j.cmpb.2011.10.001 10.1016/j.clinimag.2008.10.034 10.1089/thy.2015.0020 10.1148/radiol.2373050220 10.1118/1.4939060 10.2307/2529310 10.7326/0003-4819-126-3-199702010-00009 10.1109/TMI.2016.2528162 10.2214/ajr.178.3.1780687 10.3348/kjr.2010.11.2.149 10.1002/cncr.21281 |
ContentType | Journal Article |
Copyright | 2019 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION NPM 7QP 7TK K9. 7X8 |
DOI | 10.1002/hed.25415 |
DatabaseName | CrossRef PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1097-0347 |
EndPage | 891 |
ExternalDocumentID | 30715773 10_1002_hed_25415 HED25415 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea – fundername: Ministry of Education |
GroupedDBID | --- .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 36B 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DUUFO EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6P MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WWO WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QP 7TK K9. 7X8 |
ID | FETCH-LOGICAL-c3885-a5a9dfa4203da83fa911050d1cfbf6ff3bfc6f10d7200962418f98cb9e6fcc383 |
IEDL.DBID | DR2 |
ISSN | 1043-3074 1097-0347 |
IngestDate | Fri Jul 11 15:44:20 EDT 2025 Fri Jul 25 03:44:49 EDT 2025 Wed Feb 19 02:32:01 EST 2025 Thu Apr 24 22:56:25 EDT 2025 Tue Jul 01 03:28:00 EDT 2025 Wed Jan 22 17:09:58 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | deep learning thyroid nodule thyroid cancer convolutional neural network (CNN) ultrasound |
Language | English |
License | 2019 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3885-a5a9dfa4203da83fa911050d1cfbf6ff3bfc6f10d7200962418f98cb9e6fcc383 |
Notes | Funding information Ministry of Education; National Research Foundation of Korea ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0002-5687-7237 0000-0002-5643-5885 0000-0002-1501-9105 |
OpenAccessLink | https://ir.ymlib.yonsei.ac.kr/handle/22282913/169451 |
PMID | 30715773 |
PQID | 2191357923 |
PQPubID | 996355 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2179504432 proquest_journals_2191357923 pubmed_primary_30715773 crossref_primary_10_1002_hed_25415 crossref_citationtrail_10_1002_hed_25415 wiley_primary_10_1002_hed_25415_HED25415 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2019 2019-04-00 20190401 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Houston |
PublicationTitle | Head & neck |
PublicationTitleAlternate | Head Neck |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2010; 34 2010; 11 2012; 81 2016; 207 2015; 94 2017; 27 2005; 237 2002; 178 2013; 168 2008; 247 2015; 205 2014; 40 2016; 17 2012; 107 2016; 35 2017; 73 2002; 25 2009; 36 1997; 126 2010; 20 2013; 36 2005; 105 2016; 43 2014; 13 1977; 33 2015 2014 2011; 260 2016; 26 1950; 3 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 94 start-page: e1129 year: 2015 article-title: Grey‐scale analysis improves the ultrasonographic evaluation of thyroid nodules publication-title: Medicine (Baltimore) – volume: 11 start-page: 149 year: 2010 end-page: 155 article-title: Observer variability and the performance between faculties and residents: US criteria for benign and malignant thyroid nodules publication-title: Korean J Radiol – volume: 43 start-page: 554 year: 2016 end-page: 567 article-title: Computer‐aided diagnosis for classifying benign versus malignant thyroid nodules based on ultrasound images: a comparison with radiologist‐based assessments publication-title: Med Phys – volume: 25 start-page: 39 year: 2002 end-page: 43 article-title: Ultrasonography: is it useful in the diagnosis of cancer in thyroid nodules? publication-title: J Endocrinol Invest – volume: 107 start-page: 233 year: 2012 end-page: 241 article-title: ThyroScreen system: high resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform publication-title: Comput Methods Programs Biomed – volume: 35 start-page: 1285 year: 2016 end-page: 1298 article-title: Deep convolutional neural networks for computer‐aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans Med Imaging – start-page: 689 year: 2015 end-page: 692 – volume: 36 start-page: 464 year: 2009 end-page: 472 article-title: Ultrasonographic evaluation of thyroid nodules: comparison of ultrasonographic, cytological, and histopathological findings publication-title: Endocrine – volume: 13 start-page: 289 year: 2014 end-page: 301 article-title: A review on ultrasound‐based thyroid cancer tissue characterization and automated classification publication-title: Technol Cancer Res Treat – volume: 34 start-page: 127 year: 2010 end-page: 133 article-title: Positive predictive values of sonographic features of solid thyroid nodule publication-title: Clin Imaging – volume: 247 start-page: 762 year: 2008 end-page: 770 article-title: Benign and malignant thyroid nodules: US differentiation‐‐multicenter retrospective study publication-title: Radiology – volume: 178 start-page: 687 year: 2002 end-page: 691 article-title: New sonographic criteria for recommending fine‐needle aspiration biopsy of nonpalpable solid nodules of the thyroid publication-title: AJR Am J Roentgenol – volume: 168 start-page: 649 year: 2013 end-page: 655 article-title: Prospective evaluation of Thyroid Imaging Reporting and Data System on 4550 nodules with and without elastography publication-title: Eur J Endocrinol – volume: 105 start-page: 217 year: 2005 end-page: 219 article-title: Papillary carcinoma of the thyroid <or=1.0 cm: rarely incidental or occult any more publication-title: Cancer – volume: 35 start-page: 1299 year: 2016 end-page: 1312 article-title: Convolutional neural networks for medical image analysis: fine tuning or full training? publication-title: IEEE Trans Med Imaging – volume: 3 start-page: 32 year: 1950 end-page: 35 article-title: Index for rating diagnostic tests publication-title: Cancer – volume: 33 start-page: 159 year: 1977 end-page: 174 article-title: The measurement of observer agreement for categorical data publication-title: Biometrics – volume: 20 start-page: 167 year: 2010 end-page: 172 article-title: Interobserver and intraobserver variations in ultrasound assessment of thyroid nodules publication-title: Thyroid – year: 2014 – volume: 27 start-page: 546 year: 2017 end-page: 552 article-title: A computer‐aided diagnosis system using artificial intelligence for the diagnosis and characterization of thyroid nodules on ultrasound: initial clinical assessment publication-title: Thyroid – volume: 36 start-page: 219 year: 2013 end-page: 230 article-title: Computer‐aided diagnosis system for classifying benign and malignant thyroid nodules in multi‐stained FNAB cytological images publication-title: Australas Phys Eng Sci Med – volume: 207 start-page: 859 year: 2016 end-page: 864 article-title: Classifier model based on machine learning algorithms: application to differential diagnosis of suspicious thyroid nodules via sonography publication-title: AJR Am J Roentgenol – volume: 35 start-page: 775 year: 2016 end-page: 782 article-title: Quantitative evaluation for differentiating malignant and benign thyroid nodules using histogram analysis of grayscale sonograms publication-title: J Ultrasound Med – volume: 126 start-page: 226 year: 1997 end-page: 231 article-title: Thyroid incidentalomas: management approaches to nonpalpable nodules discovered incidentally on thyroid imaging publication-title: Ann Intern Med – volume: 205 start-page: W343 year: 2015 end-page: W351 article-title: Application of texture analysis in the differential diagnosis of benign and malignant thyroid nodules: comparison with gray‐scale ultrasound and elastography publication-title: AJR Am J Roentgenol – volume: 73 start-page: 221 year: 2017 end-page: 230 article-title: A pre‐trained convolutional neural network based method for thyroid nodule diagnosis publication-title: Ultrasonics – volume: 17 start-page: 370 year: 2016 end-page: 395 article-title: Ultrasonography diagnosis and imaging‐based management of thyroid nodules: revised Korean Society of Thyroid Radiology consensus statement and recommendations publication-title: Korean J Radiol – volume: 26 start-page: 1 year: 2016 end-page: 133 article-title: 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer publication-title: Thyroid – volume: 81 start-page: e352 year: 2012 end-page: e356 article-title: Man to man training: can it help improve the diagnostic performances and interobserver variabilities of thyroid ultrasonography in residents? publication-title: Eur J Radiol – volume: 237 start-page: 794 year: 2005 end-page: 800 article-title: Management of thyroid nodules detected at US: society of radiologists in ultrasound consensus conference statement publication-title: Radiology – volume: 40 start-page: 854 year: 2014 end-page: 863 article-title: Diagnostic performance of ultrasound and ultrasound elastography with respect to physician experience publication-title: Ultrasound Med Biol – volume: 260 start-page: 892 year: 2011 end-page: 899 article-title: Thyroid Imaging Reporting and Data System for US features of nodules: a step in establishing better stratification of cancer risk publication-title: Radiology – ident: e_1_2_6_26_1 – ident: e_1_2_6_15_1 doi: 10.2214/AJR.14.13825 – ident: e_1_2_6_21_1 doi: 10.1007/s13246-013-0199-8 – ident: e_1_2_6_30_1 doi: 10.1007/s12020-009-9262-3 – ident: e_1_2_6_5_1 doi: 10.1148/radiol.2473070944 – ident: e_1_2_6_13_1 doi: 10.1097/MD.0000000000001129 – ident: e_1_2_6_18_1 doi: 10.1089/thy.2016.0372 – ident: e_1_2_6_14_1 doi: 10.7863/ultra.15.05055 – ident: e_1_2_6_9_1 doi: 10.1089/thy.2008.0354 – ident: e_1_2_6_24_1 doi: 10.1016/j.ultras.2016.09.011 – ident: e_1_2_6_27_1 doi: 10.5244/C.28.6 – ident: e_1_2_6_4_1 doi: 10.1148/radiol.11110206 – ident: e_1_2_6_6_1 doi: 10.1007/BF03343959 – ident: e_1_2_6_12_1 doi: 10.1016/j.ultrasmedbio.2013.10.005 – ident: e_1_2_6_20_1 doi: 10.7785/tcrt.2012.500381 – ident: e_1_2_6_10_1 doi: 10.1016/j.ejrad.2011.11.011 – ident: e_1_2_6_25_1 doi: 10.1145/2733373.2807412 – ident: e_1_2_6_16_1 doi: 10.2214/AJR.15.15813 – ident: e_1_2_6_22_1 doi: 10.1109/TMI.2016.2535302 – ident: e_1_2_6_8_1 doi: 10.1530/EJE-12-0936 – ident: e_1_2_6_28_1 doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 – ident: e_1_2_6_34_1 doi: 10.3348/kjr.2016.17.3.370 – ident: e_1_2_6_19_1 doi: 10.1016/j.cmpb.2011.10.001 – ident: e_1_2_6_31_1 doi: 10.1016/j.clinimag.2008.10.034 – ident: e_1_2_6_2_1 doi: 10.1089/thy.2015.0020 – ident: e_1_2_6_7_1 doi: 10.1148/radiol.2373050220 – ident: e_1_2_6_17_1 doi: 10.1118/1.4939060 – ident: e_1_2_6_29_1 doi: 10.2307/2529310 – ident: e_1_2_6_32_1 doi: 10.7326/0003-4819-126-3-199702010-00009 – ident: e_1_2_6_23_1 doi: 10.1109/TMI.2016.2528162 – ident: e_1_2_6_3_1 doi: 10.2214/ajr.178.3.1780687 – ident: e_1_2_6_11_1 doi: 10.3348/kjr.2010.11.2.149 – ident: e_1_2_6_33_1 doi: 10.1002/cncr.21281 |
SSID | ssj0003642 |
Score | 2.537749 |
Snippet | Background
We designed a deep convolutional neural network (CNN) to diagnose thyroid malignancy on ultrasound (US) and compared the diagnostic performance of... We designed a deep convolutional neural network (CNN) to diagnose thyroid malignancy on ultrasound (US) and compared the diagnostic performance of CNN with... BackgroundWe designed a deep convolutional neural network (CNN) to diagnose thyroid malignancy on ultrasound (US) and compared the diagnostic performance of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 885 |
SubjectTerms | Benign convolutional neural network (CNN) deep learning Head and neck Malignancy Neural networks Nodules Thyroid Thyroid cancer Thyroid gland thyroid nodule Ultrasonic imaging Ultrasound |
Title | Deep convolutional neural network for the diagnosis of thyroid nodules on ultrasound |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhed.25415 https://www.ncbi.nlm.nih.gov/pubmed/30715773 https://www.proquest.com/docview/2191357923 https://www.proquest.com/docview/2179504432 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA4yJy8uuI0bUTx46dg2SRc8iQuDoAeZAQ9CSdMEB4d2mLYH_fW-JG2HcQHxUFrS16bNey_5krx8QegMmjAGluI6TAc-0ThTDieh7_g89bheCxrGer3zw2MwHNP7Z_a8gi7btTCWH6IbcNOeYepr7eA8LS8WpKGvMhtA78YsMNexWhoQPS2oo0hA7UwnJXp8hbasQq5_0T253BZ9A5jLeNU0OHfr6KX9VBtn8jaoq3QgPr6wOP7zXzbQWgNE8ZW1nE20IvMtNLqRcoZ1JHpjkSChGS_NycSLYwC5GEAjzmyM3qTEhYKE93kxyXBeZPVUQlKO62k156XetGkbje9uR9dDp9l3wREkipjDGQedceq7JOMRURwqRJe5mSdUqgKlSKpEoDw3C_XUSgAYIFJxJNJYBkrAK8gO6uVFLvcQjo2TQzvpcUGhaxcrsAtPsED6noCjj85bDSSiISXXe2NME0un7CdQNIkpmj467URnlonjJ6HDVo1J44xlApWyR5gmSuyjk-42uJGeG-G5LGotE8bMpZT4fbRr1d_lAubjsTCEp8-NEn_PPhne3piL_b-LHqBVAGGxjQY6RL1qXssjADpVemws-hNS3fcr |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hONBLoSptF2jrVj1wyZLEdh4Sl6qAlhY4VIvEpYocxxaIVYJ2N4f21zNjJ0GUIqEeokTOJE48M56xPfMZ4AuaMImSEgaSAp9EXtlA8TQOYlVGinJB05zync_Ok8mF-H4pL1fgoM-F8fgQw4QbaYbrr0nBaUJ6_x419MpUYxzeUIb5Gu3o7QZUP-_Bo3gi_Fqn4DTDInpcoTDeHx59aI0euZgPPVZnco434Ff_sT7S5GbcLsux_vMXjuP__s0mvOx8UfbVC88rWDH1a5geGnPLKBi9E0qkINBLd3Ih4wz9XIZ-I6t8mN71gjUWC37Pm-uK1U3VzgwW1aydLedqQfs2bcHF8dH02yTotl4INM8yGSipkG1KxCGvVMatwj4xlGEVaVvaxFpeWp3YKKxSWl1J0A3IbJ7pMjeJ1fgK_gZW66Y274DlTs_RVEZKCxzd5RZFI9IyMXGk8RjBXs-CQne45LQ9xqzwiMpxgU1TuKYZweeB9NaDcfyLaLfnY9Hp46LAfjnikrASR_BpuI2aRMsjqjZNSzRpLkMheDyCt57_Qy0oP5FMU3x6z3Hx6eqLydGhu9h-PulHWJ9Mz06L05PzHzvwAn2y3AcH7cLqct6a9-j3LMsPTrzvAMJu-0Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hKiEupYhHl1Lqoh64ZEliOw_1hFhWS6GoQiBxQIocP1TUVbLa3RzaX9-xnQTRUqniECVyJnHimfGM7ZnPAJ_QhHGUlDDgNvCJ5coEgqZxEIsyEjYXNM1tvvPXq2Ryy77c8bsV-Nzlwnh8iH7CzWqG66-tgs-UOX4EDf2u1RBHNzbB_BVLwsyK9Oj6ETuKJswvdTJqJ1hYBysUxsf9o0-N0V8e5lOH1Vmc8Qbcd9_qA01-DJtlOZS__oBxfOHPvIHXrSdKTrzobMKKrrbgZqT1jNhQ9FYkkcJCXrqTCxgn6OUS9BqJ8kF6DwtSGyz4Oa8fFKlq1Uw1FlWkmS7nYmF3bdqG2_HZzekkaDdeCCTNMh4ILpBpgsUhVSKjRmCPGPJQRdKUJjGGlkYmJgpVatdWEnQCMpNnssx1YiS-gu7AalVX-i2Q3Gk5GspISIZju9ygYESSJzqOJB4DOOo4UMgWldxujjEtPJ5yXGDTFK5pBnDYk848FMdzRPsdG4tWGxcF9soR5RYpcQAf-9uoR3ZxRFS6bixNmvOQMRoPYNezv68FxSfiaYpPHzkm_rv6YnI2chd7_0_6Ada-jcbF5fnVxTtYR4cs95FB-7C6nDf6PTo9y_LACfdv8O75_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+convolutional+neural+network+for+the+diagnosis+of+thyroid+nodules+on+ultrasound&rft.jtitle=Head+%26+neck&rft.au=Ko%2C+Su+Yeon&rft.au=Lee%2C+Ji+Hye&rft.au=Yoon%2C+Jung+Hyun&rft.au=Na%2C+Hyesun&rft.date=2019-04-01&rft.eissn=1097-0347&rft.volume=41&rft.issue=4&rft.spage=885&rft_id=info:doi/10.1002%2Fhed.25415&rft_id=info%3Apmid%2F30715773&rft.externalDocID=30715773 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1043-3074&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1043-3074&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1043-3074&client=summon |