Molecular Programming of Perivascular Stem Cell Precursors
Pericytes have been shown to act as precursors of resident adult stem cells in stromal tissues in vivo. When expanded in vitro these cells are capable of giving rise to multiple mesenchymal cell types, irrespective of their tissue of origin. This phenomenon of multi‐lineage differentiation is only o...
Saved in:
Published in | Stem cells (Dayton, Ohio) Vol. 36; no. 12; pp. 1890 - 1904 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.12.2018
Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pericytes have been shown to act as precursors of resident adult stem cells in stromal tissues in vivo. When expanded in vitro these cells are capable of giving rise to multiple mesenchymal cell types, irrespective of their tissue of origin. This phenomenon of multi‐lineage differentiation is only observed in culture, whereas in vivo, stromal stem cell differentiation is restricted to tissue‐specific cell types. An important unanswered question is how a single, widely distributed cell type (a pericyte) gives rise to stem cells with tissue‐specific functions and attributes. Using a combination of transcriptomics and epigenomics we have compared the molecular status of two populations of stromal stem cell precursors. Using a LacZ transgene insertion that is expressed in pericytes but not in stem cells, we were able to compare pericyte populations from two different tissues, mouse incisors and bone marrow. Pericytes, freshly isolated from mouse incisors and bone marrow, exhibited transcriptomes and epigenetic landscapes that were extensively different, reflecting their tissue of origin and future in vivo differentiation potential. Dspp, an odontoblast differentiation gene, as well as additional odontogenic genes, are shown to be expressed in dental pulp‐derived pericytes. These genetic loci are also decorated with histone modifications indicative of a transcriptionally active chromatin state. In bone marrow pericytes, a major osteogenic differentiation gene, Runx2, is not expressed but is marked by both active and repressive histones and therefore primed to be expressed. Polycomb repressor complex 1 analysis showed that key genes involved in the induction of adipogenesis, chondrogenesis, and myogenesis are targeted by Ring1b and therefore stably repressed. This indicates that pericyte populations are molecularly obstructed from differentiating down certain lineages in vivo. Stem Cells 2018;36:1890–15
We isolate fresh pericytes from two anatomical locations and subject them to RNA and histone ChIP sequencing without a prior in vitro expansion step. Molecular profiling of the same cell populations indicate that they harbour epigenetic marks that are driving a dissimilar transcriptomic output, one that is appropriate to the cells tissue of isolation and that restricts the pericytes future differentiation. |
---|---|
AbstractList | Pericytes have been shown to act as precursors of resident adult stem cells in stromal tissues in vivo. When expanded in vitro these cells are capable of giving rise to multiple mesenchymal cell types, irrespective of their tissue of origin. This phenomenon of multi‐lineage differentiation is only observed in culture, whereas in vivo, stromal stem cell differentiation is restricted to tissue‐specific cell types. An important unanswered question is how a single, widely distributed cell type (a pericyte) gives rise to stem cells with tissue‐specific functions and attributes. Using a combination of transcriptomics and epigenomics we have compared the molecular status of two populations of stromal stem cell precursors. Using a LacZ transgene insertion that is expressed in pericytes but not in stem cells, we were able to compare pericyte populations from two different tissues, mouse incisors and bone marrow. Pericytes, freshly isolated from mouse incisors and bone marrow, exhibited transcriptomes and epigenetic landscapes that were extensively different, reflecting their tissue of origin and future in vivo differentiation potential. Dspp, an odontoblast differentiation gene, as well as additional odontogenic genes, are shown to be expressed in dental pulp‐derived pericytes. These genetic loci are also decorated with histone modifications indicative of a transcriptionally active chromatin state. In bone marrow pericytes, a major osteogenic differentiation gene, Runx2, is not expressed but is marked by both active and repressive histones and therefore primed to be expressed. Polycomb repressor complex 1 analysis showed that key genes involved in the induction of adipogenesis, chondrogenesis, and myogenesis are targeted by Ring1b and therefore stably repressed. This indicates that pericyte populations are molecularly obstructed from differentiating down certain lineages in vivo. Stem Cells 2018;36:1890–15
We isolate fresh pericytes from two anatomical locations and subject them to RNA and histone ChIP sequencing without a prior in vitro expansion step. Molecular profiling of the same cell populations indicate that they harbour epigenetic marks that are driving a dissimilar transcriptomic output, one that is appropriate to the cells tissue of isolation and that restricts the pericytes future differentiation. Pericytes have been shown to act as precursors of resident adult stem cells in stromal tissues in vivo. When expanded in vitro these cells are capable of giving rise to multiple mesenchymal cell types, irrespective of their tissue of origin. This phenomenon of multi-lineage differentiation is only observed in culture, whereas in vivo, stromal stem cell differentiation is restricted to tissue-specific cell types. An important unanswered question is how a single, widely distributed cell type (a pericyte) gives rise to stem cells with tissue-specific functions and attributes. Using a combination of transcriptomics and epigenomics we have compared the molecular status of two populations of stromal stem cell precursors. Using a LacZ transgene insertion that is expressed in pericytes but not in stem cells, we were able to compare pericyte populations from two different tissues, mouse incisors and bone marrow. Pericytes, freshly isolated from mouse incisors and bone marrow, exhibited transcriptomes and epigenetic landscapes that were extensively different, reflecting their tissue of origin and future in vivo differentiation potential. Dspp, an odontoblast differentiation gene, as well as additional odontogenic genes, are shown to be expressed in dental pulp-derived pericytes. These genetic loci are also decorated with histone modifications indicative of a transcriptionally active chromatin state. In bone marrow pericytes, a major osteogenic differentiation gene, Runx2, is not expressed but is marked by both active and repressive histones and therefore primed to be expressed. Polycomb repressor complex 1 analysis showed that key genes involved in the induction of adipogenesis, chondrogenesis, and myogenesis are targeted by Ring1b and therefore stably repressed. This indicates that pericyte populations are molecularly obstructed from differentiating down certain lineages in vivo. Pericytes have been shown to act as precursors of resident adult stem cells in stromal tissues in vivo. When expanded in vitro these cells are capable of giving rise to multiple mesenchymal cell types, irrespective of their tissue of origin. This phenomenon of multi-lineage differentiation is only observed in culture, whereas in vivo, stromal stem cell differentiation is restricted to tissue-specific cell types. An important unanswered question is how a single, widely distributed cell type (a pericyte) gives rise to stem cells with tissue-specific functions and attributes. Using a combination of transcriptomics and epigenomics we have compared the molecular status of two populations of stromal stem cell precursors. Using a LacZ transgene insertion that is expressed in pericytes but not in stem cells, we were able to compare pericyte populations from two different tissues, mouse incisors and bone marrow. Pericytes, freshly isolated from mouse incisors and bone marrow, exhibited transcriptomes and epigenetic landscapes that were extensively different, reflecting their tissue of origin and future in vivo differentiation potential. Dspp, an odontoblast differentiation gene, as well as additional odontogenic genes, are shown to be expressed in dental pulp-derived pericytes. These genetic loci are also decorated with histone modifications indicative of a transcriptionally active chromatin state. In bone marrow pericytes, a major osteogenic differentiation gene, Runx2, is not expressed but is marked by both active and repressive histones and therefore primed to be expressed. Polycomb repressor complex 1 analysis showed that key genes involved in the induction of adipogenesis, chondrogenesis, and myogenesis are targeted by Ring1b and therefore stably repressed. This indicates that pericyte populations are molecularly obstructed from differentiating down certain lineages in vivo. Stem Cells 2018;36:1890-15. Pericytes have been shown to act as precursors of resident adult stem cells in stromal tissues in vivo. When expanded in vitro these cells are capable of giving rise to multiple mesenchymal cell types, irrespective of their tissue of origin. This phenomenon of multi-lineage differentiation is only observed in culture, whereas in vivo, stromal stem cell differentiation is restricted to tissue-specific cell types. An important unanswered question is how a single, widely distributed cell type (a pericyte) gives rise to stem cells with tissue-specific functions and attributes. Using a combination of transcriptomics and epigenomics we have compared the molecular status of two populations of stromal stem cell precursors. Using a LacZ transgene insertion that is expressed in pericytes but not in stem cells, we were able to compare pericyte populations from two different tissues, mouse incisors and bone marrow. Pericytes, freshly isolated from mouse incisors and bone marrow, exhibited transcriptomes and epigenetic landscapes that were extensively different, reflecting their tissue of origin and future in vivo differentiation potential. Dspp, an odontoblast differentiation gene, as well as additional odontogenic genes, are shown to be expressed in dental pulp-derived pericytes. These genetic loci are also decorated with histone modifications indicative of a transcriptionally active chromatin state. In bone marrow pericytes, a major osteogenic differentiation gene, Runx2, is not expressed but is marked by both active and repressive histones and therefore primed to be expressed. Polycomb repressor complex 1 analysis showed that key genes involved in the induction of adipogenesis, chondrogenesis, and myogenesis are targeted by Ring1b and therefore stably repressed. This indicates that pericyte populations are molecularly obstructed from differentiating down certain lineages in vivo. Stem Cells 2018;36:1890-15.Pericytes have been shown to act as precursors of resident adult stem cells in stromal tissues in vivo. When expanded in vitro these cells are capable of giving rise to multiple mesenchymal cell types, irrespective of their tissue of origin. This phenomenon of multi-lineage differentiation is only observed in culture, whereas in vivo, stromal stem cell differentiation is restricted to tissue-specific cell types. An important unanswered question is how a single, widely distributed cell type (a pericyte) gives rise to stem cells with tissue-specific functions and attributes. Using a combination of transcriptomics and epigenomics we have compared the molecular status of two populations of stromal stem cell precursors. Using a LacZ transgene insertion that is expressed in pericytes but not in stem cells, we were able to compare pericyte populations from two different tissues, mouse incisors and bone marrow. Pericytes, freshly isolated from mouse incisors and bone marrow, exhibited transcriptomes and epigenetic landscapes that were extensively different, reflecting their tissue of origin and future in vivo differentiation potential. Dspp, an odontoblast differentiation gene, as well as additional odontogenic genes, are shown to be expressed in dental pulp-derived pericytes. These genetic loci are also decorated with histone modifications indicative of a transcriptionally active chromatin state. In bone marrow pericytes, a major osteogenic differentiation gene, Runx2, is not expressed but is marked by both active and repressive histones and therefore primed to be expressed. Polycomb repressor complex 1 analysis showed that key genes involved in the induction of adipogenesis, chondrogenesis, and myogenesis are targeted by Ring1b and therefore stably repressed. This indicates that pericyte populations are molecularly obstructed from differentiating down certain lineages in vivo. Stem Cells 2018;36:1890-15. Pericytes have been shown to act as precursors of resident adult stem cells in stromal tissues in vivo. When expanded in vitro these cells are capable of giving rise to multiple mesenchymal cell types, irrespective of their tissue of origin. This phenomenon of multi‐lineage differentiation is only observed in culture, whereas in vivo, stromal stem cell differentiation is restricted to tissue‐specific cell types. An important unanswered question is how a single, widely distributed cell type (a pericyte) gives rise to stem cells with tissue‐specific functions and attributes. Using a combination of transcriptomics and epigenomics we have compared the molecular status of two populations of stromal stem cell precursors. Using a LacZ transgene insertion that is expressed in pericytes but not in stem cells, we were able to compare pericyte populations from two different tissues, mouse incisors and bone marrow. Pericytes, freshly isolated from mouse incisors and bone marrow, exhibited transcriptomes and epigenetic landscapes that were extensively different, reflecting their tissue of origin and future in vivo differentiation potential. Dspp, an odontoblast differentiation gene, as well as additional odontogenic genes, are shown to be expressed in dental pulp‐derived pericytes. These genetic loci are also decorated with histone modifications indicative of a transcriptionally active chromatin state. In bone marrow pericytes, a major osteogenic differentiation gene, Runx2, is not expressed but is marked by both active and repressive histones and therefore primed to be expressed. Polycomb repressor complex 1 analysis showed that key genes involved in the induction of adipogenesis, chondrogenesis, and myogenesis are targeted by Ring1b and therefore stably repressed. This indicates that pericyte populations are molecularly obstructed from differentiating down certain lineages in vivo. Stem Cells 2018;36:1890–15 |
Author | Yianni, Val Sharpe, Paul T. |
Author_xml | – sequence: 1 givenname: Val orcidid: 0000-0001-9857-7577 surname: Yianni fullname: Yianni, Val organization: Dental Institute, Kings College London – sequence: 2 givenname: Paul T. orcidid: 0000-0003-2116-9561 surname: Sharpe fullname: Sharpe, Paul T. email: paul.sharpe@kcl.ac.uk organization: Dental Institute, Kings College London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30068019$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kEtPwzAQhC0EorwO_AFUiQscUtZO4tjcUFUeEhVILWfL8aNKlcRgJ6D-e1xaLhWcdqX9ZnY0x2i_da1B6BzDCAOQm9CZZkQYz_fQEc4znmQcs_24A6VJDpwP0HEISwCc5YwdokEKQBlgfoRup642qq-lH756t_Cyaap2MXR2-Gp89SnD5jaLH4ZjU9eRirgPzodTdGBlHczZdp6gt_vJfPyYPL88PI3vnhOVMpYnXIEi2GaYG0Z1XHOms4xqIi0urAVVWqpLrRVOUwq8sIpSDaBtZgsubZmeoKuN77t3H70JnWiqoGIW2RrXB0GAEeCYA4vo5Q66dL1vYzoR_2JKCpKTSF1sqb5sjBbvvmqkX4nfViJwswGUdyF4Y4WqOtlVru28rGqBQax7F-vexbr3qLjeUfya_sVu3b-q2qz-B8VsPpn-KL4BCrGRvA |
CitedBy_id | crossref_primary_10_1038_s41368_020_00105_1 crossref_primary_10_1002_jor_24284 crossref_primary_10_1038_s41598_020_77161_4 crossref_primary_10_7554_eLife_62810 crossref_primary_10_4103_1673_5374_270301 crossref_primary_10_1002_cbin_11127 crossref_primary_10_3389_fdmed_2021_651219 crossref_primary_10_3389_fcell_2021_769193 crossref_primary_10_1111_micc_12554 crossref_primary_10_1016_j_bone_2020_115309 crossref_primary_10_3389_fdmed_2020_00006 crossref_primary_10_1212_WNL_0000000000207379 crossref_primary_10_3389_fbioe_2023_1186030 crossref_primary_10_1177_0022034519862258 crossref_primary_10_3389_fcell_2023_1148121 crossref_primary_10_1016_j_joen_2020_06_023 crossref_primary_10_1016_j_expneurol_2024_114825 crossref_primary_10_3389_fcell_2020_00077 crossref_primary_10_1002_advs_202304421 crossref_primary_10_1002_stem_2930 crossref_primary_10_1186_s13036_019_0158_3 crossref_primary_10_3390_cells11101707 |
Cites_doi | 10.1038/nature00870 10.1080/14653240600855905 10.1182/blood.V56.2.289.289 10.1359/jbmr.2003.18.4.696 10.1038/ncomms1508 10.1242/dev.126.14.3047 10.1002/stem.1681 10.1016/j.cell.2012.05.032 10.1161/01.CIR.0000144457.55518.E5 10.1038/nprot.2012.016 10.1177/0022034509342873 10.1016/j.transproceed.2008.08.009 10.1634/stemcells.2007-1122 10.1186/gb-2009-10-3-r25 10.1101/gad.219626.113 10.1101/gad.206094.112 10.1126/science.276.5309.71 10.1186/gb-2008-9-9-r137 10.1007/s12265-010-9248-9 10.1016/j.exphem.2007.12.015 10.1093/nar/gkw257 10.2217/rme-2017-0091 10.1002/stem.2599 10.1038/ncb1542 10.1016/S0002-9440(10)63868-0 10.1242/jcs.02932 10.1093/bioinformatics/btt656 10.1007/s12015-017-9791-8 10.1242/dev.033902 10.1186/gb-2010-11-8-r86 10.1182/blood.V101.4.1477 10.1016/j.stem.2016.12.006 10.1073/pnas.0607617103 10.1177/0022034509340867 10.1016/j.gde.2003.08.001 10.1038/nmeth.3317 10.1089/scd.2007.0156 10.1097/00003086-199202000-00043 10.1016/j.stemcr.2015.07.005 10.1517/14712598.2010.517191 10.1146/annurev-biochem-051710-134100 10.1016/j.jcyt.2012.11.005 10.1242/dev.128.7.1059 10.1016/0092-8674(93)90610-3 10.1242/dev.01846 10.1016/j.stem.2008.07.003 10.1038/nature09262 10.1038/mt.2008.229 10.1016/j.stem.2017.03.013 10.1186/s13059-014-0550-8 10.1038/nrm2066 10.1182/blood-2005-11-010504 10.1177/0022034515599765 10.1002/dvdy.1200 10.1038/ncomms12706 10.1083/jcb.200612127 10.1073/pnas.1015449108 10.1186/1750-1326-5-32 10.1177/0022034516678208 10.1093/nar/gkw343 10.1016/j.ydbio.2011.01.018 10.1371/journal.pone.0055296 10.1038/nsmb.2669 10.1038/nsmb1131 10.1038/nrm3789 10.1016/j.stem.2017.02.005 10.1038/nri3209 10.1126/science.1156232 10.1182/blood-2003-09-3070 10.1038/s41598-017-03145-6 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1089>3.0.CO;2-X 10.1073/pnas.1306495110 10.1016/j.joen.2007.02.009 10.1016/j.molcel.2010.02.032 10.1016/j.stemcr.2016.05.011 10.3389/fncel.2016.00020 10.1038/sj.leu.2404470 10.1016/j.devcel.2014.11.023 10.1016/j.devcel.2010.07.010 10.1006/dbio.1996.8487 |
ContentType | Journal Article |
Copyright | AlphaMed Press 2018 AlphaMed Press 2018. 2018 AlphaMed Press |
Copyright_xml | – notice: AlphaMed Press 2018 – notice: AlphaMed Press 2018. – notice: 2018 AlphaMed Press |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TK 7TM 8FD FR3 K9. P64 RC3 7X8 |
DOI | 10.1002/stem.2895 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1549-4918 |
EndPage | 1904 |
ExternalDocumentID | 30068019 10_1002_stem_2895 STEM2895 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust – fundername: Oxford University – fundername: MRC funderid: MRK018035/1 – fundername: Medical Research Council grantid: MR/K018035/1 |
GroupedDBID | --- .GJ 05W 0R~ 123 18M 1OB 1OC 24P 2WC 31~ 3WU 4.4 53G 5RE 5WD 8-0 8-1 A00 AABZA AACZT AAESR AAIHA AAONW AAPGJ AAPXW AARHZ AAUAY AAVAP AAWDT AAZKR ABCUV ABDFA ABEJV ABHFT ABLJU ABMNT ABNHQ ABPTD ABXVV ACFRR ACGFO ACGFS ACIWK ACPOU ACPRK ACUFI ACUTJ ACXQS ACZBC ADBBV ADGKP ADIPN ADKYN ADQBN ADVEK ADXAS ADZMN AENEX AEUQT AFBPY AFFZL AFGWE AFRAH AFYAG AFZJQ AGMDO AHMBA AHMMS AIURR AJAOE AJEEA ALMA_UNASSIGNED_HOLDINGS AMNDL AMYDB APJGH ATGXG AVNTJ AZBYB AZVAB BAWUL BCRHZ BEYMZ BMXJE BRXPI CS3 DCZOG DIK DU5 E3Z EBS EJD EMB EMOBN F5P FD6 G-S GODZA GX1 H13 HHY HZ~ IH2 KOP KSI KSN LATKE LEEKS LH4 LITHE LMP LOXES LUTES LW6 LYRES MY~ N9A NNB NOMLY NU- O66 O9- OBOKY OCZFY OIG OJZSN OK1 OPAEJ OVD OWPYF P2P P2W P4E PALCI PQQKQ RAO RIWAO RJQFR ROL ROX RWI SUPJJ SV3 TEORI TMA TR2 WBKPD WOHZO WOQ WYB WYJ XV2 ZGI ZXP ZZTAW ~S- AAYXX ABGNP ABJNI ABVGC ABXZS AGORE AJNCP ALXQX CITATION AAMMB ACVCV ADMTO AEFGJ AFFQV AGXDD AHGBF AIDQK AIDYY AJBYB AJDVS CGR CUY CVF ECM EIF NPM OBFPC 7QO 7QP 7QR 7TK 7TM 8FD FR3 K9. P64 RC3 WIN 7X8 |
ID | FETCH-LOGICAL-c3885-9c0c21f419e86dc2158d446d2af17ff0cbf6dbddc1336097fc66d00df4f79afb3 |
ISSN | 1066-5099 1549-4918 |
IngestDate | Thu Jul 10 19:07:19 EDT 2025 Wed Aug 13 07:49:53 EDT 2025 Mon Jul 21 06:08:01 EDT 2025 Tue Jul 01 00:23:40 EDT 2025 Thu Apr 24 23:09:31 EDT 2025 Wed Jan 22 16:42:46 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Epigenetics Pericyte Adult stem cells MSC Transcriptomics |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model AlphaMed Press 2018. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3885-9c0c21f419e86dc2158d446d2af17ff0cbf6dbddc1336097fc66d00df4f79afb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9857-7577 0000-0003-2116-9561 |
OpenAccessLink | https://stemcellsjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/stem.2895 |
PMID | 30068019 |
PQID | 2151627252 |
PQPubID | 1046343 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2082091908 proquest_journals_2151627252 pubmed_primary_30068019 crossref_citationtrail_10_1002_stem_2895 crossref_primary_10_1002_stem_2895 wiley_primary_10_1002_stem_2895_STEM2895 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2018 2018-12-01 2018-12-00 20181201 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: England – name: Oxford |
PublicationTitle | Stem cells (Dayton, Ohio) |
PublicationTitleAlternate | Stem Cells |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Inc Oxford University Press |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Oxford University Press |
References | 2009; 88 2001; 220 2010; 11 2010; 10 2017; 7 2001; 222 2013; 27 2005; 132 2010; 19 2010; 466 2013; 20 1997; 276 2008; 36 2008; 9 2003; 13 2003; 18 2008; 3 2013; 8 1999; 126 2007; 109 2007; 33 2012; 12 2011a; 108 2011; 352 2007; 178 2013; 15 2010; Chapter 19 1997; 183 1992; 275 2016; 118 1993; 75 2017; 35 2003; 162 2007; 9 2014; 15 2008; 26 2013; 110 2007; 21 2010; 5 2009; 17 2016; 44 2015; 12 1991; 3 2017; 20 2012; 81 2009; 24 2010; 38 2006; 119 2015; 5 2011; 2 2004; 103 2006; 13 2010 2015; 94 2008; 17 2006; 7 2016; 10 2006; 8 2002; 418 2008; 322 2001; 66 2011; 4 2009; 136 2001; 128 2012; 150 2016; 6 2004; 110 2017; 96 2016; 7 2009a; 10 1980; 56 2014; 30 2012; 7 2008; 40 2003; 101 2014; 32 2006; 103 2018; 14 2014; 31 2018; 13 Singh (2022022513212361100_stem2895-bib-0042) 2015; 5 Roh (2022022513212361100_stem2895-bib-0041) 2006; 103 Sacchetti (2022022513212361100_stem2895-bib-0053) 2016; 6 Sung (2022022513212361100_stem2895-bib-0084) 2008; 40 Toro (2022022513212361100_stem2895-bib-0036) 2016; 7 Kucia (2022022513212361100_stem2895-bib-0068) 2007; 21 Etchevers (2022022513212361100_stem2895-bib-0039) 2001; 128 Ozerdem (2022022513212361100_stem2895-bib-0069) 2001; 222 Moorman (2022022513212361100_stem2895-bib-0079) 2001; 66 Diaz-Flores (2022022513212361100_stem2895-bib-0005) 2009; 24 Liao (2022022513212361100_stem2895-bib-0022) 2014; 30 Gao (2022022513212361100_stem2895-bib-0059) 2011; 352 Tang (2022022513212361100_stem2895-bib-0016) 2008; 322 Huang (2022022513212361100_stem2895-bib-0003) 2009; 88 Hardy (2022022513212361100_stem2895-bib-0086) 2017; 35 Shilatifard (2022022513212361100_stem2895-bib-0047) 2012; 81 Chen (2022022513212361100_stem2895-bib-0043) 2009; 88 Abe (2022022513212361100_stem2895-bib-0074) 2003; 101 Prockop (2022022513212361100_stem2895-bib-0080) 1997; 276 Bexell (2022022513212361100_stem2895-bib-0011) 2009; 17 Trapnell (2022022513212361100_stem2895-bib-0026) 2012; 7 Feng (2022022513212361100_stem2895-bib-0064) 2010; 10 Goecks (2022022513212361100_stem2895-bib-0025) 2010; 11 Zhang (2022022513212361100_stem2895-bib-0029) 2008; 9 Guimarães-Camboa (2022022513212361100_stem2895-bib-0035) 2017; 20 Hellström (2022022513212361100_stem2895-bib-0030) 1999; 126 Blankenberg (2022022513212361100_stem2895-bib-0024) 2010; Chapter 19 Steffen (2022022513212361100_stem2895-bib-0045) 2014; 15 Schuettengruber (2022022513212361100_stem2895-bib-0051) 2009; 136 Montarras (2022022513212361100_stem2895-bib-0055) 1991; 3 Brachvogel (2022022513212361100_stem2895-bib-0032) 2005; 132 Leeb (2022022513212361100_stem2895-bib-0050) 2007; 178 Dellavalle (2022022513212361100_stem2895-bib-0017) 2007; 9 Brighton (2022022513212361100_stem2895-bib-0012) 1992; 275 Dellavalle (2022022513212361100_stem2895-bib-0038) 2011; 2 Love (2022022513212361100_stem2895-bib-0021) 2014; 15 Langmead (2022022513212361100_stem2895-bib-0028) 2009; 10 Bondjers (2022022513212361100_stem2895-bib-0067) 2003; 162 Tidhar (2022022513212361100_stem2895-bib-0019) 2001; 220 Silva Meirelles (2022022513212361100_stem2895-bib-0009) 2006; 119 Liu (2022022513212361100_stem2895-bib-0061) 2013; 110 Feng-Juan (2022022513212361100_stem2895-bib-0014) 2014; 32 Wei (2022022513212361100_stem2895-bib-0044) 2007; 33 Crisan (2022022513212361100_stem2895-bib-0008) 2008; 3 Cano (2022022513212361100_stem2895-bib-0071) 2017; 20 Vidovic (2022022513212361100_stem2895-bib-0007) 2017; 96 Covas (2022022513212361100_stem2895-bib-0013) 2008; 36 Shi (2022022513212361100_stem2895-bib-0010) 2003; 18 Rosen (2022022513212361100_stem2895-bib-0063) 2006; 7 Silva Meirelles (2022022513212361100_stem2895-bib-0075) 2008; 26 Méndez-Ferrer (2022022513212361100_stem2895-bib-0037) 2010; 466 Di Croce (2022022513212361100_stem2895-bib-0046) 2013; 20 Farrington-Rock (2022022513212361100_stem2895-bib-0057) 2004; 110 Psaltis (2022022513212361100_stem2895-bib-0082) 2011; 4 Maes (2022022513212361100_stem2895-bib-0018) 2010; 19 Steward (2022022513212361100_stem2895-bib-0048) 2006; 13 Phinney (2022022513212361100_stem2895-bib-0004) 2013; 15 Hematti (2022022513212361100_stem2895-bib-0001) 2010 Trost (2022022513212361100_stem2895-bib-0065) 2016; 10 Wörsdörfer (2022022513212361100_stem2895-bib-0073) 2018; 14 Kim (2022022513212361100_stem2895-bib-0060) 2013; 8 Arensbergen (2022022513212361100_stem2895-bib-0052) 2013; 27 Ng (2022022513212361100_stem2895-bib-0062) 1997; 183 Vishvanath (2022022513212361100_stem2895-bib-0072) 2017; 20 Wang (2022022513212361100_stem2895-bib-0034) 2016; 118 Voigt (2022022513212361100_stem2895-bib-0040) 2013; 27 Winkler (2022022513212361100_stem2895-bib-0066) 2010; 5 Dominici (2022022513212361100_stem2895-bib-0031) 2006; 8 Weintraub (2022022513212361100_stem2895-bib-0056) 1993; 75 Le Blanc (2022022513212361100_stem2895-bib-0076) 2012; 12 Babb (2022022513212361100_stem2895-bib-0077) 2017; 7 Gang (2022022513212361100_stem2895-bib-0033) 2007; 109 Ramírez (2022022513212361100_stem2895-bib-0027) 2016; 44 Castro-Malaspina (2022022513212361100_stem2895-bib-0078) 1980; 56 Peister (2022022513212361100_stem2895-bib-0083) 2004; 103 Jiang (2022022513212361100_stem2895-bib-0002) 2002; 418 Brooke (2022022513212361100_stem2895-bib-0081) 2008; 17 Volponi (2022022513212361100_stem2895-bib-0085) 2015; 94 Feng (2022022513212361100_stem2895-bib-0006) 2011; 108 Cossu (2022022513212361100_stem2895-bib-0054) 2003; 13 Krautler (2022022513212361100_stem2895-bib-0015) 2012; 150 Kim (2022022513212361100_stem2895-bib-0020) 2015; 12 Boyle (2022022513212361100_stem2895-bib-0049) 2010; 38 Campagnolo (2022022513212361100_stem2895-bib-0070) 2018; 13 Briot (2022022513212361100_stem2895-bib-0058) 2014; 31 Afgan (2022022513212361100_stem2895-bib-0023) 2016; 44 |
References_xml | – volume: 38 start-page: 452 year: 2010 end-page: 464 article-title: Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination publication-title: Mol Cell – volume: 101 start-page: 1477 year: 2003 end-page: 1483 article-title: Distinct contributions of TNF and LT cytokines to the development of dendritic cells in vitro and their recruitment in vivo publication-title: Blood – volume: 6 start-page: 897 year: 2016 end-page: 913 article-title: No identical ‘mesenchymal stem cells’ at different times and sites: Human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels publication-title: Stem Cell Rep – volume: 119 start-page: 2204 year: 2006 end-page: 2213 article-title: Mesenchymal stem cells reside in virtually all post‐natal organs and tissues publication-title: J Cell Sci – volume: 32 start-page: 1408 year: 2014 end-page: 1419 article-title: The surface markers and identity of human mesenchymal stem cells publication-title: Stem Cells – volume: 20 start-page: 296 year: 2017 end-page: 297 article-title: Pericytes or mesenchymal stem cells: Is that the question? publication-title: Cell Stem Cell – volume: 220 start-page: 60 year: 2001 end-page: 73 article-title: A novel transgenic marker for migrating limb muscle precursors and for vascular smooth muscle cells publication-title: Dev Dyn – volume: 4 start-page: 161 year: 2011 end-page: 176 article-title: Resident vascular progenitor cells‐diverse origins, phenotype, and function publication-title: J Cardiovasc Transl Res – volume: 36 start-page: 642 year: 2008 end-page: 654 article-title: Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene‐expression profile with CD146 + perivascular cells and fibroblasts publication-title: Exp Hematol – volume: 8 start-page: e55296 year: 2013 article-title: Ihh and Runx2/Runx3 signaling interact to coordinate early chondrogenesis: A mouse model publication-title: PLoS One – volume: 10 start-page: 20 year: 2016 article-title: Brain and Retinal Pericytes: Origin, function and role publication-title: Front Cell Neurosci – volume: 26 start-page: 2287 year: 2008 end-page: 2299 article-title: In search of the in vivo identity of mesenchymal stem cells publication-title: Stem Cells – volume: 88 start-page: 792 year: 2009 end-page: 806 article-title: Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine publication-title: J Dent Res – volume: 118 start-page: e52965 year: 2016 article-title: Isolation and primary culture of mouse aortic endothelial cells publication-title: J Vis Exp – volume: 94 start-page: 1568 year: 2015 end-page: 1574 article-title: Composition of mineral produced by dental mesenchymal stem cells publication-title: J Dent Res – volume: 24 start-page: 909 year: 2009 end-page: 969 article-title: Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche publication-title: Histol Histopathol – volume: 11 start-page: R86 year: 2010 article-title: Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences publication-title: Genome Biol – volume: 30 start-page: 923 year: 2014 end-page: 930 article-title: featureCounts: An efficient general purpose program for assigning sequence reads to genomic features publication-title: Bioinformatics – volume: 222 start-page: 218 year: 2001 end-page: 227 article-title: NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis publication-title: Dev Dyn – volume: 183 start-page: 108 year: 1997 end-page: 121 article-title: SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse publication-title: Dev Biol – volume: 35 start-page: 1273 year: 2017 end-page: 1289 article-title: Transcriptional networks in single perivascular cells sorted from human adipose tissue reveal a hierarchy of mesenchymal stem cells publication-title: Stem Cells – volume: 44 start-page: W160 year: 2016 end-page: W165 article-title: deepTools2: A next generation web server for deep‐sequencing data analysis publication-title: Nucleic Acids Res – volume: 3 start-page: 301 year: 2008 end-page: 313 article-title: A perivascular origin for mesenchymal stem cells in multiple human organs publication-title: Cell Stem Cell – volume: 322 start-page: 583 year: 2008 end-page: 586 article-title: White fat progenitor cells reside in the adipose vasculature publication-title: Science – volume: 7 start-page: 885 year: 2006 end-page: 896 article-title: Adipocyte differentiation from the inside out publication-title: Nat Rev Mol Cell Biol – volume: 108 start-page: 6503 year: 2011a end-page: 6508 article-title: Dual origin of mesenchymal stem cells contributing to organ growth and repair publication-title: Proc Natl Acad Sci USA – volume: Chapter 19 start-page: Unit 19.10.1–21 year: 2010 article-title: Galaxy: A web‐based genome analysis tool for experimentalists publication-title: Curr Protoc Mol Biol – volume: 178 start-page: 219 year: 2007 end-page: 229 article-title: Ring1B is crucial for the regulation of developmental control genes and PRC1 proteins but not X inactivation in embryonic cells publication-title: J Cell Biol – volume: 162 start-page: 721 year: 2003 end-page: 729 article-title: Transcription profiling of platelet‐derived growth factor‐B‐deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells publication-title: Am J Pathol – volume: 9 start-page: 255 year: 2007 end-page: 267 article-title: Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells publication-title: Nat Cell Biol – volume: 126 start-page: 3047 year: 1999 end-page: 3055 article-title: Role of PDGF‐B and PDGFR‐beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse publication-title: Development (Cambridge, England) – volume: 13 start-page: 119 year: 2018 end-page: 122 article-title: Realities and misconceptions on the pericytes role in tissue repair publication-title: Regen Med – volume: 14 start-page: 144 year: 2018 end-page: 147 article-title: Do vascular mural cells possess endogenous plasticity in vivo? publication-title: Stem Cell Rev Rep – volume: 20 start-page: 345 year: 2017 end-page: 359.e5 article-title: Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo publication-title: Cell Stem Cell – volume: 20 start-page: 585 year: 2017 end-page: 586 article-title: Do adipocytes emerge from mural progenitors? publication-title: Cell Stem Cell – volume: 18 start-page: 696 year: 2003 end-page: 704 article-title: Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp publication-title: J Bone Miner Res – volume: 75 start-page: 1241 year: 1993 end-page: 1244 article-title: The MyoD family and myogenesis: Redundancy, networks, and thresholds publication-title: Cell – volume: 128 start-page: 1059 year: 2001 end-page: 1068 article-title: The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain publication-title: Development – volume: 5 start-page: 323 year: 2015 end-page: 336 article-title: Cell‐cycle control of bivalent epigenetic domains regulates the exit from pluripotency publication-title: Stem Cell Rep – volume: 40 start-page: 2649 year: 2008 end-page: 2654 article-title: Isolation and characterization of mouse mesenchymal stem cells publication-title: Transplant Proc – volume: 352 start-page: 83 year: 2011 end-page: 91 article-title: The zinc finger transcription factors Osr1 and Osr2 control synovial joint formation publication-title: Dev Biol – volume: 12 start-page: 357 year: 2015 end-page: 360 article-title: HISAT: A fast spliced aligner with low memory requirements publication-title: Nat Methods – volume: 109 start-page: 1743 year: 2007 end-page: 1751 article-title: SSEA‐4 identifies mesenchymal stem cells from bone marrow publication-title: Blood – volume: 103 start-page: 1662 year: 2004 end-page: 1668 article-title: Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential publication-title: Blood – volume: 17 start-page: 929 year: 2008 end-page: 940 article-title: Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta publication-title: Stem Cells Dev – volume: 110 start-page: 2226 year: 2004 end-page: 2232 article-title: Chondrogenic and adipogenic potential of microvascular pericytes publication-title: Circulation – volume: 8 start-page: 315 year: 2006 end-page: 317 article-title: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement publication-title: Cytotherapy – volume: 7 start-page: 3102 year: 2017 article-title: Axin2‐expressing cells differentiate into reparative odontoblasts via autocrine Wnt/β‐catenin signaling in response to tooth damage publication-title: Sci Rep – volume: 27 start-page: 1318 year: 2013 end-page: 1338 article-title: A double take on bivalent promoters publication-title: Genes Dev – volume: 2 start-page: 499 year: 2011 article-title: Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells publication-title: Nat Commun – volume: 132 start-page: 2657 year: 2005 end-page: 2668 article-title: Pervascular cells expressing annexin A5 define a novel mesenchymal stem cell‐like population with the capacity to differentiate into multiple mesenchymal lineages publication-title: Development – volume: 150 start-page: 194 year: 2012 end-page: 206 article-title: Follicular dendritic cells emerge from ubiquitous perivascular precursors publication-title: Cell – volume: 7 start-page: 562 year: 2012 end-page: 578 article-title: Differential gene and transcript expression analysis of RNA‐seq experiments with TopHat and Cufflinks publication-title: Nat Protoc – volume: 9 start-page: R137 year: 2008 article-title: Model‐based analysis of ChIP‐Seq (MACS) publication-title: Genome Biol – volume: 21 start-page: 297 year: 2007 end-page: 303 article-title: Morphological and molecular characterization of novel population of CXCR4+ SSEA‐4+ Oct‐4+ very small embryonic‐like cells purified from human cord blood: Preliminary report publication-title: Leukemia – volume: 103 start-page: 15782 year: 2006 end-page: 15787 article-title: The genomic landscape of histone modifications in human T cells publication-title: Proc Natl Acad Sci USA – volume: 275 start-page: 287 year: 1992 end-page: 299 article-title: The pericyte as a possible osteoblast progenitor cell publication-title: Clin Orthop Relat Res – volume: 10 start-page: 1441 year: 2010 end-page: 1451 article-title: Perivascular cells as mesenchymal stem cells publication-title: Expert Opin Biol Ther – volume: 7 start-page: 12706 year: 2016 article-title: Nestin+ cells direct inflammatory cell migration in atherosclerosis publication-title: Nat Commun – volume: 136 start-page: 3531 year: 2009 end-page: 3542 article-title: Recruitment of Polycomb group complexes and their role in the dynamic regulation of cell fate choice publication-title: Development – volume: 31 start-page: 707 year: 2014 end-page: 721 article-title: Repression of Sox9 by Jag1 is continuously required to suppress the default chondrogenic fate of vascular smooth muscle cells publication-title: Dev Cell – volume: 19 start-page: 329 year: 2010 end-page: 344 article-title: Osteoblast precursors, but not mature osteoblasts, Move into developing and fractured bones along with invading blood vessels publication-title: Dev Cell – year: 2010 – volume: 110 start-page: 18555 year: 2013 end-page: 18560 article-title: Odd‐skipped related‐1 controls neural crest chondrogenesis during tongue development publication-title: Proc Natl Acad Sci USA – volume: 27 start-page: 52 year: 2013 end-page: 63 article-title: Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult β cells publication-title: Genes Dev – volume: 276 start-page: 71 year: 1997 end-page: 74 article-title: Marrow stromal cells as stem cells for nonhematopoietic tissues publication-title: Science (New York, N.Y.) – volume: 13 start-page: 537 year: 2003 end-page: 542 article-title: Mesoangioblasts ‐ Vascular progenitors for extravascular mesodermal tissues publication-title: Curr Opin Genet Dev – volume: 3 start-page: 592 year: 1991 end-page: 600 article-title: Developmental patterns in the expression of Myf5, MyoD, myogenin, and MRF4 during myogenesis publication-title: New Biol – volume: 44 start-page: W3 year: 2016 end-page: W10 article-title: The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update publication-title: Nucleic Acids Res – volume: 466 start-page: 829 year: 2010 end-page: 834 article-title: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche publication-title: Nature – volume: 13 start-page: 852 year: 2006 end-page: 854 article-title: Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes publication-title: Nat Struct Mol Biol – volume: 15 start-page: 140 year: 2013 end-page: 145 article-title: Mesenchymal stromal cells: misconceptions and evolving concepts publication-title: Cytotherapy – volume: 66 start-page: 57 year: 2001 end-page: 66 article-title: Phenotypic and functional comparison of cultures of marrow‐derived mesenchymal stem cells (MSCs) and stromal cells publication-title: J Cell Physiol – volume: 88 start-page: 904 year: 2009 end-page: 909 article-title: , and in tooth development publication-title: J Dent Res – volume: 12 start-page: 383 year: 2012 end-page: 396 article-title: Multipotent mesenchymal stromal cells and the innate immune system publication-title: Nat Rev Immunol – volume: 418 start-page: 41 year: 2002 end-page: 49 article-title: Pluripotency of mesenchymal stem cells derived from adult marrow publication-title: Nature – volume: 15 start-page: 550 year: 2014 article-title: Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2 publication-title: Genome Biol – volume: 10 start-page: R25 year: 2009a article-title: Ultrafast and memory‐efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol – volume: 15 start-page: 340 year: 2014 end-page: 356 article-title: What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory publication-title: Nat Rev Mol Cell Biol – volume: 17 start-page: 183 year: 2009 end-page: 190 article-title: Bone marrow multipotent mesenchymal stroma cells act as pericyte‐like migratory vehicles in experimental gliomas publication-title: Mol Ther – volume: 81 start-page: 65 year: 2012 end-page: 95 article-title: The COMPASS family of histone H3K4 methylases: Mechanisms of regulation in development and disease pathogenesis publication-title: Annu Rev Biochem – volume: 5 start-page: 32 year: 2010 article-title: Pericyte‐specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling publication-title: Mol Neurodegener – volume: 33 start-page: 703 year: 2007 end-page: 708 article-title: Expression of mineralization markers in dental pulp cells publication-title: J Endod – volume: 96 start-page: 323 year: 2017 end-page: 330 article-title: α SMA‐expressing perivascular cells represent dental pulp progenitors in vivo publication-title: J Dent Res – volume: 56 start-page: 289 year: 1980 end-page: 301 article-title: Characterization of human bone marrow fibroblast colony‐forming cells (CFU‐F) and their progeny publication-title: Blood – volume: 20 start-page: 1147 year: 2013 end-page: 1155 article-title: Transcriptional regulation by Polycomb group proteins publication-title: Nat Struct Mol Biol – volume: 418 start-page: 41 year: 2002 ident: 2022022513212361100_stem2895-bib-0002 article-title: Pluripotency of mesenchymal stem cells derived from adult marrow publication-title: Nature doi: 10.1038/nature00870 – volume: 8 start-page: 315 year: 2006 ident: 2022022513212361100_stem2895-bib-0031 article-title: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement publication-title: Cytotherapy doi: 10.1080/14653240600855905 – volume: 56 start-page: 289 year: 1980 ident: 2022022513212361100_stem2895-bib-0078 article-title: Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny publication-title: Blood doi: 10.1182/blood.V56.2.289.289 – volume: 18 start-page: 696 year: 2003 ident: 2022022513212361100_stem2895-bib-0010 article-title: Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp publication-title: J Bone Miner Res doi: 10.1359/jbmr.2003.18.4.696 – volume: 2 start-page: 499 year: 2011 ident: 2022022513212361100_stem2895-bib-0038 article-title: Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells publication-title: Nat Commun doi: 10.1038/ncomms1508 – volume: 126 start-page: 3047 year: 1999 ident: 2022022513212361100_stem2895-bib-0030 article-title: Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse publication-title: Development (Cambridge, England) doi: 10.1242/dev.126.14.3047 – volume: 32 start-page: 1408 year: 2014 ident: 2022022513212361100_stem2895-bib-0014 article-title: The surface markers and identity of human mesenchymal stem cells publication-title: Stem Cells doi: 10.1002/stem.1681 – volume: 150 start-page: 194 year: 2012 ident: 2022022513212361100_stem2895-bib-0015 article-title: Follicular dendritic cells emerge from ubiquitous perivascular precursors publication-title: Cell doi: 10.1016/j.cell.2012.05.032 – volume: 110 start-page: 2226 year: 2004 ident: 2022022513212361100_stem2895-bib-0057 article-title: Chondrogenic and adipogenic potential of microvascular pericytes publication-title: Circulation doi: 10.1161/01.CIR.0000144457.55518.E5 – volume-title: Mesenchymal Stromal Cells: Biology and Clinical Applications year: 2010 ident: 2022022513212361100_stem2895-bib-0001 – volume: 7 start-page: 562 year: 2012 ident: 2022022513212361100_stem2895-bib-0026 article-title: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks publication-title: Nat Protoc doi: 10.1038/nprot.2012.016 – volume: 88 start-page: 904 year: 2009 ident: 2022022513212361100_stem2895-bib-0043 article-title: Runx2, Osx, and Dspp in tooth development publication-title: J Dent Res doi: 10.1177/0022034509342873 – volume: 40 start-page: 2649 year: 2008 ident: 2022022513212361100_stem2895-bib-0084 article-title: Isolation and characterization of mouse mesenchymal stem cells publication-title: Transplant Proc doi: 10.1016/j.transproceed.2008.08.009 – volume: 26 start-page: 2287 year: 2008 ident: 2022022513212361100_stem2895-bib-0075 article-title: In search of the in vivo identity of mesenchymal stem cells publication-title: Stem Cells doi: 10.1634/stemcells.2007-1122 – volume: 10 start-page: R25 year: 2009 ident: 2022022513212361100_stem2895-bib-0028 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol doi: 10.1186/gb-2009-10-3-r25 – volume: 27 start-page: 1318 year: 2013 ident: 2022022513212361100_stem2895-bib-0040 article-title: A double take on bivalent promoters publication-title: Genes Dev doi: 10.1101/gad.219626.113 – volume: 27 start-page: 52 year: 2013 ident: 2022022513212361100_stem2895-bib-0052 article-title: Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult β cells publication-title: Genes Dev doi: 10.1101/gad.206094.112 – volume: 276 start-page: 71 year: 1997 ident: 2022022513212361100_stem2895-bib-0080 article-title: Marrow stromal cells as stem cells for nonhematopoietic tissues publication-title: Science (New York, N.Y.) doi: 10.1126/science.276.5309.71 – volume: 9 start-page: R137 year: 2008 ident: 2022022513212361100_stem2895-bib-0029 article-title: Model-based analysis of ChIP-Seq (MACS) publication-title: Genome Biol doi: 10.1186/gb-2008-9-9-r137 – volume: 4 start-page: 161 year: 2011 ident: 2022022513212361100_stem2895-bib-0082 article-title: Resident vascular progenitor cells-diverse origins, phenotype, and function publication-title: J Cardiovasc Transl Res doi: 10.1007/s12265-010-9248-9 – volume: 36 start-page: 642 year: 2008 ident: 2022022513212361100_stem2895-bib-0013 article-title: Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146 + perivascular cells and fibroblasts publication-title: Exp Hematol doi: 10.1016/j.exphem.2007.12.015 – volume: 44 start-page: W160 year: 2016 ident: 2022022513212361100_stem2895-bib-0027 article-title: deepTools2: A next generation web server for deep-sequencing data analysis publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw257 – volume: 13 start-page: 119 year: 2018 ident: 2022022513212361100_stem2895-bib-0070 article-title: Realities and misconceptions on the pericytes role in tissue repair publication-title: Regen Med doi: 10.2217/rme-2017-0091 – volume: 35 start-page: 1273 year: 2017 ident: 2022022513212361100_stem2895-bib-0086 article-title: Transcriptional networks in single perivascular cells sorted from human adipose tissue reveal a hierarchy of mesenchymal stem cells publication-title: Stem Cells doi: 10.1002/stem.2599 – volume: 9 start-page: 255 year: 2007 ident: 2022022513212361100_stem2895-bib-0017 article-title: Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells publication-title: Nat Cell Biol doi: 10.1038/ncb1542 – volume: 162 start-page: 721 year: 2003 ident: 2022022513212361100_stem2895-bib-0067 article-title: Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells publication-title: Am J Pathol doi: 10.1016/S0002-9440(10)63868-0 – volume: 119 start-page: 2204 year: 2006 ident: 2022022513212361100_stem2895-bib-0009 article-title: Mesenchymal stem cells reside in virtually all post-natal organs and tissues publication-title: J Cell Sci doi: 10.1242/jcs.02932 – volume: 30 start-page: 923 year: 2014 ident: 2022022513212361100_stem2895-bib-0022 article-title: featureCounts: An efficient general purpose program for assigning sequence reads to genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt656 – volume: 14 start-page: 144 year: 2018 ident: 2022022513212361100_stem2895-bib-0073 article-title: Do vascular mural cells possess endogenous plasticity in vivo? publication-title: Stem Cell Rev Rep doi: 10.1007/s12015-017-9791-8 – volume: 136 start-page: 3531 year: 2009 ident: 2022022513212361100_stem2895-bib-0051 article-title: Recruitment of Polycomb group complexes and their role in the dynamic regulation of cell fate choice publication-title: Development doi: 10.1242/dev.033902 – volume: 11 start-page: R86 year: 2010 ident: 2022022513212361100_stem2895-bib-0025 article-title: Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences publication-title: Genome Biol doi: 10.1186/gb-2010-11-8-r86 – volume: 101 start-page: 1477 year: 2003 ident: 2022022513212361100_stem2895-bib-0074 article-title: Distinct contributions of TNF and LT cytokines to the development of dendritic cells in vitro and their recruitment in vivo publication-title: Blood doi: 10.1182/blood.V101.4.1477 – volume: 20 start-page: 345 year: 2017 ident: 2022022513212361100_stem2895-bib-0035 article-title: Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.12.006 – volume: 103 start-page: 15782 year: 2006 ident: 2022022513212361100_stem2895-bib-0041 article-title: The genomic landscape of histone modifications in human T cells publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0607617103 – volume: 88 start-page: 792 year: 2009 ident: 2022022513212361100_stem2895-bib-0003 article-title: Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine publication-title: J Dent Res doi: 10.1177/0022034509340867 – volume: 13 start-page: 537 year: 2003 ident: 2022022513212361100_stem2895-bib-0054 article-title: Mesoangioblasts - Vascular progenitors for extravascular mesodermal tissues publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2003.08.001 – volume: 12 start-page: 357 year: 2015 ident: 2022022513212361100_stem2895-bib-0020 article-title: HISAT: A fast spliced aligner with low memory requirements publication-title: Nat Methods doi: 10.1038/nmeth.3317 – volume: 17 start-page: 929 year: 2008 ident: 2022022513212361100_stem2895-bib-0081 article-title: Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta publication-title: Stem Cells Dev doi: 10.1089/scd.2007.0156 – volume: 275 start-page: 287 year: 1992 ident: 2022022513212361100_stem2895-bib-0012 article-title: The pericyte as a possible osteoblast progenitor cell publication-title: Clin Orthop Relat Res doi: 10.1097/00003086-199202000-00043 – volume: 5 start-page: 323 year: 2015 ident: 2022022513212361100_stem2895-bib-0042 article-title: Cell-cycle control of bivalent epigenetic domains regulates the exit from pluripotency publication-title: Stem Cell Rep doi: 10.1016/j.stemcr.2015.07.005 – volume: 10 start-page: 1441 year: 2010 ident: 2022022513212361100_stem2895-bib-0064 article-title: Perivascular cells as mesenchymal stem cells publication-title: Expert Opin Biol Ther doi: 10.1517/14712598.2010.517191 – volume: 81 start-page: 65 year: 2012 ident: 2022022513212361100_stem2895-bib-0047 article-title: The COMPASS family of histone H3K4 methylases: Mechanisms of regulation in development and disease pathogenesis publication-title: Annu Rev Biochem doi: 10.1146/annurev-biochem-051710-134100 – volume: 15 start-page: 140 year: 2013 ident: 2022022513212361100_stem2895-bib-0004 article-title: Mesenchymal stromal cells: misconceptions and evolving concepts publication-title: Cytotherapy doi: 10.1016/j.jcyt.2012.11.005 – volume: 128 start-page: 1059 year: 2001 ident: 2022022513212361100_stem2895-bib-0039 article-title: The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain publication-title: Development doi: 10.1242/dev.128.7.1059 – volume: 75 start-page: 1241 year: 1993 ident: 2022022513212361100_stem2895-bib-0056 article-title: The MyoD family and myogenesis: Redundancy, networks, and thresholds publication-title: Cell doi: 10.1016/0092-8674(93)90610-3 – volume: Chapter 19 start-page: Unit 19.10.1–21 year: 2010 ident: 2022022513212361100_stem2895-bib-0024 article-title: Galaxy: A web-based genome analysis tool for experimentalists publication-title: Curr Protoc Mol Biol – volume: 132 start-page: 2657 year: 2005 ident: 2022022513212361100_stem2895-bib-0032 article-title: Pervascular cells expressing annexin A5 define a novel mesenchymal stem cell-like population with the capacity to differentiate into multiple mesenchymal lineages publication-title: Development doi: 10.1242/dev.01846 – volume: 3 start-page: 301 year: 2008 ident: 2022022513212361100_stem2895-bib-0008 article-title: A perivascular origin for mesenchymal stem cells in multiple human organs publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.07.003 – volume: 466 start-page: 829 year: 2010 ident: 2022022513212361100_stem2895-bib-0037 article-title: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche publication-title: Nature doi: 10.1038/nature09262 – volume: 17 start-page: 183 year: 2009 ident: 2022022513212361100_stem2895-bib-0011 article-title: Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas publication-title: Mol Ther doi: 10.1038/mt.2008.229 – volume: 3 start-page: 592 year: 1991 ident: 2022022513212361100_stem2895-bib-0055 article-title: Developmental patterns in the expression of Myf5, MyoD, myogenin, and MRF4 during myogenesis publication-title: New Biol – volume: 20 start-page: 585 year: 2017 ident: 2022022513212361100_stem2895-bib-0072 article-title: Do adipocytes emerge from mural progenitors? publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.03.013 – volume: 15 start-page: 550 year: 2014 ident: 2022022513212361100_stem2895-bib-0021 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 7 start-page: 885 year: 2006 ident: 2022022513212361100_stem2895-bib-0063 article-title: Adipocyte differentiation from the inside out publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2066 – volume: 66 start-page: 57 year: 2001 ident: 2022022513212361100_stem2895-bib-0079 article-title: Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells publication-title: J Cell Physiol – volume: 109 start-page: 1743 year: 2007 ident: 2022022513212361100_stem2895-bib-0033 article-title: SSEA-4 identifies mesenchymal stem cells from bone marrow publication-title: Blood doi: 10.1182/blood-2005-11-010504 – volume: 94 start-page: 1568 year: 2015 ident: 2022022513212361100_stem2895-bib-0085 article-title: Composition of mineral produced by dental mesenchymal stem cells publication-title: J Dent Res doi: 10.1177/0022034515599765 – volume: 222 start-page: 218 year: 2001 ident: 2022022513212361100_stem2895-bib-0069 article-title: NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis publication-title: Dev Dyn doi: 10.1002/dvdy.1200 – volume: 7 start-page: 12706 year: 2016 ident: 2022022513212361100_stem2895-bib-0036 article-title: Nestin+ cells direct inflammatory cell migration in atherosclerosis publication-title: Nat Commun doi: 10.1038/ncomms12706 – volume: 178 start-page: 219 year: 2007 ident: 2022022513212361100_stem2895-bib-0050 article-title: Ring1B is crucial for the regulation of developmental control genes and PRC1 proteins but not X inactivation in embryonic cells publication-title: J Cell Biol doi: 10.1083/jcb.200612127 – volume: 108 start-page: 6503 year: 2011 ident: 2022022513212361100_stem2895-bib-0006 article-title: Dual origin of mesenchymal stem cells contributing to organ growth and repair publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1015449108 – volume: 5 start-page: 32 year: 2010 ident: 2022022513212361100_stem2895-bib-0066 article-title: Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling publication-title: Mol Neurodegener doi: 10.1186/1750-1326-5-32 – volume: 96 start-page: 323 year: 2017 ident: 2022022513212361100_stem2895-bib-0007 article-title: α SMA-expressing perivascular cells represent dental pulp progenitors in vivo publication-title: J Dent Res doi: 10.1177/0022034516678208 – volume: 44 start-page: W3 year: 2016 ident: 2022022513212361100_stem2895-bib-0023 article-title: The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw343 – volume: 352 start-page: 83 year: 2011 ident: 2022022513212361100_stem2895-bib-0059 article-title: The zinc finger transcription factors Osr1 and Osr2 control synovial joint formation publication-title: Dev Biol doi: 10.1016/j.ydbio.2011.01.018 – volume: 8 start-page: e55296 year: 2013 ident: 2022022513212361100_stem2895-bib-0060 article-title: Ihh and Runx2/Runx3 signaling interact to coordinate early chondrogenesis: A mouse model publication-title: PLoS One doi: 10.1371/journal.pone.0055296 – volume: 24 start-page: 909 year: 2009 ident: 2022022513212361100_stem2895-bib-0005 article-title: Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche publication-title: Histol Histopathol – volume: 20 start-page: 1147 year: 2013 ident: 2022022513212361100_stem2895-bib-0046 article-title: Transcriptional regulation by Polycomb group proteins publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2669 – volume: 13 start-page: 852 year: 2006 ident: 2022022513212361100_stem2895-bib-0048 article-title: Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb1131 – volume: 15 start-page: 340 year: 2014 ident: 2022022513212361100_stem2895-bib-0045 article-title: What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3789 – volume: 20 start-page: 296 year: 2017 ident: 2022022513212361100_stem2895-bib-0071 article-title: Pericytes or mesenchymal stem cells: Is that the question? publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.02.005 – volume: 12 start-page: 383 year: 2012 ident: 2022022513212361100_stem2895-bib-0076 article-title: Multipotent mesenchymal stromal cells and the innate immune system publication-title: Nat Rev Immunol doi: 10.1038/nri3209 – volume: 322 start-page: 583 year: 2008 ident: 2022022513212361100_stem2895-bib-0016 article-title: White fat progenitor cells reside in the adipose vasculature publication-title: Science doi: 10.1126/science.1156232 – volume: 103 start-page: 1662 year: 2004 ident: 2022022513212361100_stem2895-bib-0083 article-title: Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential publication-title: Blood doi: 10.1182/blood-2003-09-3070 – volume: 7 start-page: 3102 year: 2017 ident: 2022022513212361100_stem2895-bib-0077 article-title: Axin2-expressing cells differentiate into reparative odontoblasts via autocrine Wnt/β-catenin signaling in response to tooth damage publication-title: Sci Rep doi: 10.1038/s41598-017-03145-6 – volume: 220 start-page: 60 year: 2001 ident: 2022022513212361100_stem2895-bib-0019 article-title: A novel transgenic marker for migrating limb muscle precursors and for vascular smooth muscle cells publication-title: Dev Dyn doi: 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1089>3.0.CO;2-X – volume: 110 start-page: 18555 year: 2013 ident: 2022022513212361100_stem2895-bib-0061 article-title: Odd-skipped related-1 controls neural crest chondrogenesis during tongue development publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1306495110 – volume: 33 start-page: 703 year: 2007 ident: 2022022513212361100_stem2895-bib-0044 article-title: Expression of mineralization markers in dental pulp cells publication-title: J Endod doi: 10.1016/j.joen.2007.02.009 – volume: 118 start-page: e52965 year: 2016 ident: 2022022513212361100_stem2895-bib-0034 article-title: Isolation and primary culture of mouse aortic endothelial cells publication-title: J Vis Exp – volume: 38 start-page: 452 year: 2010 ident: 2022022513212361100_stem2895-bib-0049 article-title: Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination publication-title: Mol Cell doi: 10.1016/j.molcel.2010.02.032 – volume: 6 start-page: 897 year: 2016 ident: 2022022513212361100_stem2895-bib-0053 article-title: No identical ‘mesenchymal stem cells’ at different times and sites: Human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels publication-title: Stem Cell Rep doi: 10.1016/j.stemcr.2016.05.011 – volume: 10 start-page: 20 year: 2016 ident: 2022022513212361100_stem2895-bib-0065 article-title: Brain and Retinal Pericytes: Origin, function and role publication-title: Front Cell Neurosci doi: 10.3389/fncel.2016.00020 – volume: 21 start-page: 297 year: 2007 ident: 2022022513212361100_stem2895-bib-0068 article-title: Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: Preliminary report publication-title: Leukemia doi: 10.1038/sj.leu.2404470 – volume: 31 start-page: 707 year: 2014 ident: 2022022513212361100_stem2895-bib-0058 article-title: Repression of Sox9 by Jag1 is continuously required to suppress the default chondrogenic fate of vascular smooth muscle cells publication-title: Dev Cell doi: 10.1016/j.devcel.2014.11.023 – volume: 19 start-page: 329 year: 2010 ident: 2022022513212361100_stem2895-bib-0018 article-title: Osteoblast precursors, but not mature osteoblasts, Move into developing and fractured bones along with invading blood vessels publication-title: Dev Cell doi: 10.1016/j.devcel.2010.07.010 – volume: 183 start-page: 108 year: 1997 ident: 2022022513212361100_stem2895-bib-0062 article-title: SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse publication-title: Dev Biol doi: 10.1006/dbio.1996.8487 |
SSID | ssj0014588 |
Score | 2.3946035 |
Snippet | Pericytes have been shown to act as precursors of resident adult stem cells in stromal tissues in vivo. When expanded in vitro these cells are capable of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1890 |
SubjectTerms | Adipogenesis Adult stem cells Animals Biocompatibility Biomedical materials Bone marrow Cbfa-1 protein Cell culture Cell Differentiation Chondrogenesis Chromatin Dental pulp Differentiation (biology) Epigenetics Genes Histones Incisors Insertion Mesenchymal Stem Cells - metabolism Mesenchyme Mice MSC Myogenesis Pericyte Pericytes Pericytes - cytology Pericytes - metabolism Polycomb group proteins Populations Precursors Stem cell transplantation Stem cells Tissues Transcription Transcriptomics |
Title | Molecular Programming of Perivascular Stem Cell Precursors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.2895 https://www.ncbi.nlm.nih.gov/pubmed/30068019 https://www.proquest.com/docview/2151627252 https://www.proquest.com/docview/2082091908 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCIlLRXl1S4sC4oBUZYmd2Im5oT5UQAtI3UrlFCV-iEp0U7XbQ_n1zNiON6VbqXCJLMeJHX_OeGY8D0Le2gbEDsuA-inF08Iamkp01BW50lIqngsXbX_yVRwcFZ-P-fEiU6HzLpm3Y_V7qV_J_6AKdYAresn-A7LxpVABZcAXroAwXO-E8aTPbYv2_mhmdRpsmL9D79HG9HBuTrd3nI7uHLXrF104wQk8qbuPCnyngN1troJF_befJ91AUfDjBNMbObvYJpplYLznM9ObGG5Px0MtAq0GFhme8AHrkQLz4F9qAjEsMANdoI-BWvpwJf2qYAPaRyuf-DPso8BpFEtptI_5imGqxyDt8cVG1B--_7U_RatBH2GZ1fhojY_eJw8YSAeYuGL305d4eITOt-6QO3xSH1AqY-9jr9fZkBuyxXVRxfEa08dkNQgJyUeP-Bq5Z2ZPyEOfNvTqKfkQcU8GuCedTYa4J4hrgrgnC9yfkaP9venOQRpyYKQqryqeSpUpRm1BpamEhiKvNEjwmjWWltZmqrVCt1ormucik6VVQugs07awpWxsmz8nK7NuZtZJwrkpMgOVhvGi1bYpKzzlZdpSqtuGjsi7fkpqFQLEY56SX_WNiR-RN7HpmY-KsqzRZj-vdfhpLmrkMAUrGWcj8jreBpKGy7yZme4S2iBbKmH9VCPywuMRe8ldshgqYbAOoNu7rw-nexMsbNxlsC_Jo8VvsUlW5ueXZgvYzXn7yi2uP5WcfgE |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Programming+of+Perivascular+Stem+Cell+Precursors&rft.jtitle=Stem+cells+%28Dayton%2C+Ohio%29&rft.au=Yianni%2C+Val&rft.au=Sharpe%2C+Paul+T.&rft.date=2018-12-01&rft.issn=1066-5099&rft.eissn=1549-4918&rft.volume=36&rft.issue=12&rft.spage=1890&rft.epage=1904&rft_id=info:doi/10.1002%2Fstem.2895&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_stem_2895 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5099&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5099&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5099&client=summon |