Molecular Programming of Perivascular Stem Cell Precursors

Pericytes have been shown to act as precursors of resident adult stem cells in stromal tissues in vivo. When expanded in vitro these cells are capable of giving rise to multiple mesenchymal cell types, irrespective of their tissue of origin. This phenomenon of multi‐lineage differentiation is only o...

Full description

Saved in:
Bibliographic Details
Published inStem cells (Dayton, Ohio) Vol. 36; no. 12; pp. 1890 - 1904
Main Authors Yianni, Val, Sharpe, Paul T.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.12.2018
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pericytes have been shown to act as precursors of resident adult stem cells in stromal tissues in vivo. When expanded in vitro these cells are capable of giving rise to multiple mesenchymal cell types, irrespective of their tissue of origin. This phenomenon of multi‐lineage differentiation is only observed in culture, whereas in vivo, stromal stem cell differentiation is restricted to tissue‐specific cell types. An important unanswered question is how a single, widely distributed cell type (a pericyte) gives rise to stem cells with tissue‐specific functions and attributes. Using a combination of transcriptomics and epigenomics we have compared the molecular status of two populations of stromal stem cell precursors. Using a LacZ transgene insertion that is expressed in pericytes but not in stem cells, we were able to compare pericyte populations from two different tissues, mouse incisors and bone marrow. Pericytes, freshly isolated from mouse incisors and bone marrow, exhibited transcriptomes and epigenetic landscapes that were extensively different, reflecting their tissue of origin and future in vivo differentiation potential. Dspp, an odontoblast differentiation gene, as well as additional odontogenic genes, are shown to be expressed in dental pulp‐derived pericytes. These genetic loci are also decorated with histone modifications indicative of a transcriptionally active chromatin state. In bone marrow pericytes, a major osteogenic differentiation gene, Runx2, is not expressed but is marked by both active and repressive histones and therefore primed to be expressed. Polycomb repressor complex 1 analysis showed that key genes involved in the induction of adipogenesis, chondrogenesis, and myogenesis are targeted by Ring1b and therefore stably repressed. This indicates that pericyte populations are molecularly obstructed from differentiating down certain lineages in vivo. Stem Cells 2018;36:1890–15 We isolate fresh pericytes from two anatomical locations and subject them to RNA and histone ChIP sequencing without a prior in vitro expansion step. Molecular profiling of the same cell populations indicate that they harbour epigenetic marks that are driving a dissimilar transcriptomic output, one that is appropriate to the cells tissue of isolation and that restricts the pericytes future differentiation.
AbstractList Pericytes have been shown to act as precursors of resident adult stem cells in stromal tissues in vivo. When expanded in vitro these cells are capable of giving rise to multiple mesenchymal cell types, irrespective of their tissue of origin. This phenomenon of multi‐lineage differentiation is only observed in culture, whereas in vivo, stromal stem cell differentiation is restricted to tissue‐specific cell types. An important unanswered question is how a single, widely distributed cell type (a pericyte) gives rise to stem cells with tissue‐specific functions and attributes. Using a combination of transcriptomics and epigenomics we have compared the molecular status of two populations of stromal stem cell precursors. Using a LacZ transgene insertion that is expressed in pericytes but not in stem cells, we were able to compare pericyte populations from two different tissues, mouse incisors and bone marrow. Pericytes, freshly isolated from mouse incisors and bone marrow, exhibited transcriptomes and epigenetic landscapes that were extensively different, reflecting their tissue of origin and future in vivo differentiation potential. Dspp, an odontoblast differentiation gene, as well as additional odontogenic genes, are shown to be expressed in dental pulp‐derived pericytes. These genetic loci are also decorated with histone modifications indicative of a transcriptionally active chromatin state. In bone marrow pericytes, a major osteogenic differentiation gene, Runx2, is not expressed but is marked by both active and repressive histones and therefore primed to be expressed. Polycomb repressor complex 1 analysis showed that key genes involved in the induction of adipogenesis, chondrogenesis, and myogenesis are targeted by Ring1b and therefore stably repressed. This indicates that pericyte populations are molecularly obstructed from differentiating down certain lineages in vivo. Stem Cells 2018;36:1890–15 We isolate fresh pericytes from two anatomical locations and subject them to RNA and histone ChIP sequencing without a prior in vitro expansion step. Molecular profiling of the same cell populations indicate that they harbour epigenetic marks that are driving a dissimilar transcriptomic output, one that is appropriate to the cells tissue of isolation and that restricts the pericytes future differentiation.
Pericytes have been shown to act as precursors of resident adult stem cells in stromal tissues in vivo. When expanded in vitro these cells are capable of giving rise to multiple mesenchymal cell types, irrespective of their tissue of origin. This phenomenon of multi-lineage differentiation is only observed in culture, whereas in vivo, stromal stem cell differentiation is restricted to tissue-specific cell types. An important unanswered question is how a single, widely distributed cell type (a pericyte) gives rise to stem cells with tissue-specific functions and attributes. Using a combination of transcriptomics and epigenomics we have compared the molecular status of two populations of stromal stem cell precursors. Using a LacZ transgene insertion that is expressed in pericytes but not in stem cells, we were able to compare pericyte populations from two different tissues, mouse incisors and bone marrow. Pericytes, freshly isolated from mouse incisors and bone marrow, exhibited transcriptomes and epigenetic landscapes that were extensively different, reflecting their tissue of origin and future in vivo differentiation potential. Dspp, an odontoblast differentiation gene, as well as additional odontogenic genes, are shown to be expressed in dental pulp-derived pericytes. These genetic loci are also decorated with histone modifications indicative of a transcriptionally active chromatin state. In bone marrow pericytes, a major osteogenic differentiation gene, Runx2, is not expressed but is marked by both active and repressive histones and therefore primed to be expressed. Polycomb repressor complex 1 analysis showed that key genes involved in the induction of adipogenesis, chondrogenesis, and myogenesis are targeted by Ring1b and therefore stably repressed. This indicates that pericyte populations are molecularly obstructed from differentiating down certain lineages in vivo.
Pericytes have been shown to act as precursors of resident adult stem cells in stromal tissues in vivo. When expanded in vitro these cells are capable of giving rise to multiple mesenchymal cell types, irrespective of their tissue of origin. This phenomenon of multi-lineage differentiation is only observed in culture, whereas in vivo, stromal stem cell differentiation is restricted to tissue-specific cell types. An important unanswered question is how a single, widely distributed cell type (a pericyte) gives rise to stem cells with tissue-specific functions and attributes. Using a combination of transcriptomics and epigenomics we have compared the molecular status of two populations of stromal stem cell precursors. Using a LacZ transgene insertion that is expressed in pericytes but not in stem cells, we were able to compare pericyte populations from two different tissues, mouse incisors and bone marrow. Pericytes, freshly isolated from mouse incisors and bone marrow, exhibited transcriptomes and epigenetic landscapes that were extensively different, reflecting their tissue of origin and future in vivo differentiation potential. Dspp, an odontoblast differentiation gene, as well as additional odontogenic genes, are shown to be expressed in dental pulp-derived pericytes. These genetic loci are also decorated with histone modifications indicative of a transcriptionally active chromatin state. In bone marrow pericytes, a major osteogenic differentiation gene, Runx2, is not expressed but is marked by both active and repressive histones and therefore primed to be expressed. Polycomb repressor complex 1 analysis showed that key genes involved in the induction of adipogenesis, chondrogenesis, and myogenesis are targeted by Ring1b and therefore stably repressed. This indicates that pericyte populations are molecularly obstructed from differentiating down certain lineages in vivo. Stem Cells 2018;36:1890-15.
Pericytes have been shown to act as precursors of resident adult stem cells in stromal tissues in vivo. When expanded in vitro these cells are capable of giving rise to multiple mesenchymal cell types, irrespective of their tissue of origin. This phenomenon of multi-lineage differentiation is only observed in culture, whereas in vivo, stromal stem cell differentiation is restricted to tissue-specific cell types. An important unanswered question is how a single, widely distributed cell type (a pericyte) gives rise to stem cells with tissue-specific functions and attributes. Using a combination of transcriptomics and epigenomics we have compared the molecular status of two populations of stromal stem cell precursors. Using a LacZ transgene insertion that is expressed in pericytes but not in stem cells, we were able to compare pericyte populations from two different tissues, mouse incisors and bone marrow. Pericytes, freshly isolated from mouse incisors and bone marrow, exhibited transcriptomes and epigenetic landscapes that were extensively different, reflecting their tissue of origin and future in vivo differentiation potential. Dspp, an odontoblast differentiation gene, as well as additional odontogenic genes, are shown to be expressed in dental pulp-derived pericytes. These genetic loci are also decorated with histone modifications indicative of a transcriptionally active chromatin state. In bone marrow pericytes, a major osteogenic differentiation gene, Runx2, is not expressed but is marked by both active and repressive histones and therefore primed to be expressed. Polycomb repressor complex 1 analysis showed that key genes involved in the induction of adipogenesis, chondrogenesis, and myogenesis are targeted by Ring1b and therefore stably repressed. This indicates that pericyte populations are molecularly obstructed from differentiating down certain lineages in vivo. Stem Cells 2018;36:1890-15.Pericytes have been shown to act as precursors of resident adult stem cells in stromal tissues in vivo. When expanded in vitro these cells are capable of giving rise to multiple mesenchymal cell types, irrespective of their tissue of origin. This phenomenon of multi-lineage differentiation is only observed in culture, whereas in vivo, stromal stem cell differentiation is restricted to tissue-specific cell types. An important unanswered question is how a single, widely distributed cell type (a pericyte) gives rise to stem cells with tissue-specific functions and attributes. Using a combination of transcriptomics and epigenomics we have compared the molecular status of two populations of stromal stem cell precursors. Using a LacZ transgene insertion that is expressed in pericytes but not in stem cells, we were able to compare pericyte populations from two different tissues, mouse incisors and bone marrow. Pericytes, freshly isolated from mouse incisors and bone marrow, exhibited transcriptomes and epigenetic landscapes that were extensively different, reflecting their tissue of origin and future in vivo differentiation potential. Dspp, an odontoblast differentiation gene, as well as additional odontogenic genes, are shown to be expressed in dental pulp-derived pericytes. These genetic loci are also decorated with histone modifications indicative of a transcriptionally active chromatin state. In bone marrow pericytes, a major osteogenic differentiation gene, Runx2, is not expressed but is marked by both active and repressive histones and therefore primed to be expressed. Polycomb repressor complex 1 analysis showed that key genes involved in the induction of adipogenesis, chondrogenesis, and myogenesis are targeted by Ring1b and therefore stably repressed. This indicates that pericyte populations are molecularly obstructed from differentiating down certain lineages in vivo. Stem Cells 2018;36:1890-15.
Pericytes have been shown to act as precursors of resident adult stem cells in stromal tissues in vivo. When expanded in vitro these cells are capable of giving rise to multiple mesenchymal cell types, irrespective of their tissue of origin. This phenomenon of multi‐lineage differentiation is only observed in culture, whereas in vivo, stromal stem cell differentiation is restricted to tissue‐specific cell types. An important unanswered question is how a single, widely distributed cell type (a pericyte) gives rise to stem cells with tissue‐specific functions and attributes. Using a combination of transcriptomics and epigenomics we have compared the molecular status of two populations of stromal stem cell precursors. Using a LacZ transgene insertion that is expressed in pericytes but not in stem cells, we were able to compare pericyte populations from two different tissues, mouse incisors and bone marrow. Pericytes, freshly isolated from mouse incisors and bone marrow, exhibited transcriptomes and epigenetic landscapes that were extensively different, reflecting their tissue of origin and future in vivo differentiation potential. Dspp, an odontoblast differentiation gene, as well as additional odontogenic genes, are shown to be expressed in dental pulp‐derived pericytes. These genetic loci are also decorated with histone modifications indicative of a transcriptionally active chromatin state. In bone marrow pericytes, a major osteogenic differentiation gene, Runx2, is not expressed but is marked by both active and repressive histones and therefore primed to be expressed. Polycomb repressor complex 1 analysis showed that key genes involved in the induction of adipogenesis, chondrogenesis, and myogenesis are targeted by Ring1b and therefore stably repressed. This indicates that pericyte populations are molecularly obstructed from differentiating down certain lineages in vivo. Stem Cells 2018;36:1890–15
Author Yianni, Val
Sharpe, Paul T.
Author_xml – sequence: 1
  givenname: Val
  orcidid: 0000-0001-9857-7577
  surname: Yianni
  fullname: Yianni, Val
  organization: Dental Institute, Kings College London
– sequence: 2
  givenname: Paul T.
  orcidid: 0000-0003-2116-9561
  surname: Sharpe
  fullname: Sharpe, Paul T.
  email: paul.sharpe@kcl.ac.uk
  organization: Dental Institute, Kings College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30068019$$D View this record in MEDLINE/PubMed
BookMark eNp1kEtPwzAQhC0EorwO_AFUiQscUtZO4tjcUFUeEhVILWfL8aNKlcRgJ6D-e1xaLhWcdqX9ZnY0x2i_da1B6BzDCAOQm9CZZkQYz_fQEc4znmQcs_24A6VJDpwP0HEISwCc5YwdokEKQBlgfoRup642qq-lH756t_Cyaap2MXR2-Gp89SnD5jaLH4ZjU9eRirgPzodTdGBlHczZdp6gt_vJfPyYPL88PI3vnhOVMpYnXIEi2GaYG0Z1XHOms4xqIi0urAVVWqpLrRVOUwq8sIpSDaBtZgsubZmeoKuN77t3H70JnWiqoGIW2RrXB0GAEeCYA4vo5Q66dL1vYzoR_2JKCpKTSF1sqb5sjBbvvmqkX4nfViJwswGUdyF4Y4WqOtlVru28rGqBQax7F-vexbr3qLjeUfya_sVu3b-q2qz-B8VsPpn-KL4BCrGRvA
CitedBy_id crossref_primary_10_1038_s41368_020_00105_1
crossref_primary_10_1002_jor_24284
crossref_primary_10_1038_s41598_020_77161_4
crossref_primary_10_7554_eLife_62810
crossref_primary_10_4103_1673_5374_270301
crossref_primary_10_1002_cbin_11127
crossref_primary_10_3389_fdmed_2021_651219
crossref_primary_10_3389_fcell_2021_769193
crossref_primary_10_1111_micc_12554
crossref_primary_10_1016_j_bone_2020_115309
crossref_primary_10_3389_fdmed_2020_00006
crossref_primary_10_1212_WNL_0000000000207379
crossref_primary_10_3389_fbioe_2023_1186030
crossref_primary_10_1177_0022034519862258
crossref_primary_10_3389_fcell_2023_1148121
crossref_primary_10_1016_j_joen_2020_06_023
crossref_primary_10_1016_j_expneurol_2024_114825
crossref_primary_10_3389_fcell_2020_00077
crossref_primary_10_1002_advs_202304421
crossref_primary_10_1002_stem_2930
crossref_primary_10_1186_s13036_019_0158_3
crossref_primary_10_3390_cells11101707
Cites_doi 10.1038/nature00870
10.1080/14653240600855905
10.1182/blood.V56.2.289.289
10.1359/jbmr.2003.18.4.696
10.1038/ncomms1508
10.1242/dev.126.14.3047
10.1002/stem.1681
10.1016/j.cell.2012.05.032
10.1161/01.CIR.0000144457.55518.E5
10.1038/nprot.2012.016
10.1177/0022034509342873
10.1016/j.transproceed.2008.08.009
10.1634/stemcells.2007-1122
10.1186/gb-2009-10-3-r25
10.1101/gad.219626.113
10.1101/gad.206094.112
10.1126/science.276.5309.71
10.1186/gb-2008-9-9-r137
10.1007/s12265-010-9248-9
10.1016/j.exphem.2007.12.015
10.1093/nar/gkw257
10.2217/rme-2017-0091
10.1002/stem.2599
10.1038/ncb1542
10.1016/S0002-9440(10)63868-0
10.1242/jcs.02932
10.1093/bioinformatics/btt656
10.1007/s12015-017-9791-8
10.1242/dev.033902
10.1186/gb-2010-11-8-r86
10.1182/blood.V101.4.1477
10.1016/j.stem.2016.12.006
10.1073/pnas.0607617103
10.1177/0022034509340867
10.1016/j.gde.2003.08.001
10.1038/nmeth.3317
10.1089/scd.2007.0156
10.1097/00003086-199202000-00043
10.1016/j.stemcr.2015.07.005
10.1517/14712598.2010.517191
10.1146/annurev-biochem-051710-134100
10.1016/j.jcyt.2012.11.005
10.1242/dev.128.7.1059
10.1016/0092-8674(93)90610-3
10.1242/dev.01846
10.1016/j.stem.2008.07.003
10.1038/nature09262
10.1038/mt.2008.229
10.1016/j.stem.2017.03.013
10.1186/s13059-014-0550-8
10.1038/nrm2066
10.1182/blood-2005-11-010504
10.1177/0022034515599765
10.1002/dvdy.1200
10.1038/ncomms12706
10.1083/jcb.200612127
10.1073/pnas.1015449108
10.1186/1750-1326-5-32
10.1177/0022034516678208
10.1093/nar/gkw343
10.1016/j.ydbio.2011.01.018
10.1371/journal.pone.0055296
10.1038/nsmb.2669
10.1038/nsmb1131
10.1038/nrm3789
10.1016/j.stem.2017.02.005
10.1038/nri3209
10.1126/science.1156232
10.1182/blood-2003-09-3070
10.1038/s41598-017-03145-6
10.1002/1097-0177(2000)9999:9999<::AID-DVDY1089>3.0.CO;2-X
10.1073/pnas.1306495110
10.1016/j.joen.2007.02.009
10.1016/j.molcel.2010.02.032
10.1016/j.stemcr.2016.05.011
10.3389/fncel.2016.00020
10.1038/sj.leu.2404470
10.1016/j.devcel.2014.11.023
10.1016/j.devcel.2010.07.010
10.1006/dbio.1996.8487
ContentType Journal Article
Copyright AlphaMed Press 2018
AlphaMed Press 2018.
2018 AlphaMed Press
Copyright_xml – notice: AlphaMed Press 2018
– notice: AlphaMed Press 2018.
– notice: 2018 AlphaMed Press
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TK
7TM
8FD
FR3
K9.
P64
RC3
7X8
DOI 10.1002/stem.2895
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1549-4918
EndPage 1904
ExternalDocumentID 30068019
10_1002_stem_2895
STEM2895
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
– fundername: Oxford University
– fundername: MRC
  funderid: MRK018035/1
– fundername: Medical Research Council
  grantid: MR/K018035/1
GroupedDBID ---
.GJ
05W
0R~
123
18M
1OB
1OC
24P
2WC
31~
3WU
4.4
53G
5RE
5WD
8-0
8-1
A00
AABZA
AACZT
AAESR
AAIHA
AAONW
AAPGJ
AAPXW
AARHZ
AAUAY
AAVAP
AAWDT
AAZKR
ABCUV
ABDFA
ABEJV
ABHFT
ABLJU
ABMNT
ABNHQ
ABPTD
ABXVV
ACFRR
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACUFI
ACUTJ
ACXQS
ACZBC
ADBBV
ADGKP
ADIPN
ADKYN
ADQBN
ADVEK
ADXAS
ADZMN
AENEX
AEUQT
AFBPY
AFFZL
AFGWE
AFRAH
AFYAG
AFZJQ
AGMDO
AHMBA
AHMMS
AIURR
AJAOE
AJEEA
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AMYDB
APJGH
ATGXG
AVNTJ
AZBYB
AZVAB
BAWUL
BCRHZ
BEYMZ
BMXJE
BRXPI
CS3
DCZOG
DIK
DU5
E3Z
EBS
EJD
EMB
EMOBN
F5P
FD6
G-S
GODZA
GX1
H13
HHY
HZ~
IH2
KOP
KSI
KSN
LATKE
LEEKS
LH4
LITHE
LMP
LOXES
LUTES
LW6
LYRES
MY~
N9A
NNB
NOMLY
NU-
O66
O9-
OBOKY
OCZFY
OIG
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P2W
P4E
PALCI
PQQKQ
RAO
RIWAO
RJQFR
ROL
ROX
RWI
SUPJJ
SV3
TEORI
TMA
TR2
WBKPD
WOHZO
WOQ
WYB
WYJ
XV2
ZGI
ZXP
ZZTAW
~S-
AAYXX
ABGNP
ABJNI
ABVGC
ABXZS
AGORE
AJNCP
ALXQX
CITATION
AAMMB
ACVCV
ADMTO
AEFGJ
AFFQV
AGXDD
AHGBF
AIDQK
AIDYY
AJBYB
AJDVS
CGR
CUY
CVF
ECM
EIF
NPM
OBFPC
7QO
7QP
7QR
7TK
7TM
8FD
FR3
K9.
P64
RC3
WIN
7X8
ID FETCH-LOGICAL-c3885-9c0c21f419e86dc2158d446d2af17ff0cbf6dbddc1336097fc66d00df4f79afb3
ISSN 1066-5099
1549-4918
IngestDate Thu Jul 10 19:07:19 EDT 2025
Wed Aug 13 07:49:53 EDT 2025
Mon Jul 21 06:08:01 EDT 2025
Tue Jul 01 00:23:40 EDT 2025
Thu Apr 24 23:09:31 EDT 2025
Wed Jan 22 16:42:46 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Epigenetics
Pericyte
Adult stem cells
MSC
Transcriptomics
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
AlphaMed Press 2018.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3885-9c0c21f419e86dc2158d446d2af17ff0cbf6dbddc1336097fc66d00df4f79afb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9857-7577
0000-0003-2116-9561
OpenAccessLink https://stemcellsjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/stem.2895
PMID 30068019
PQID 2151627252
PQPubID 1046343
PageCount 15
ParticipantIDs proquest_miscellaneous_2082091908
proquest_journals_2151627252
pubmed_primary_30068019
crossref_citationtrail_10_1002_stem_2895
crossref_primary_10_1002_stem_2895
wiley_primary_10_1002_stem_2895_STEM2895
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2018
2018-12-01
2018-12-00
20181201
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: Oxford
PublicationTitle Stem cells (Dayton, Ohio)
PublicationTitleAlternate Stem Cells
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Oxford University Press
Publisher_xml – name: John Wiley & Sons, Inc
– name: Oxford University Press
References 2009; 88
2001; 220
2010; 11
2010; 10
2017; 7
2001; 222
2013; 27
2005; 132
2010; 19
2010; 466
2013; 20
1997; 276
2008; 36
2008; 9
2003; 13
2003; 18
2008; 3
2013; 8
1999; 126
2007; 109
2007; 33
2012; 12
2011a; 108
2011; 352
2007; 178
2013; 15
2010; Chapter 19
1997; 183
1992; 275
2016; 118
1993; 75
2017; 35
2003; 162
2007; 9
2014; 15
2008; 26
2013; 110
2007; 21
2010; 5
2009; 17
2016; 44
2015; 12
1991; 3
2017; 20
2012; 81
2009; 24
2010; 38
2006; 119
2015; 5
2011; 2
2004; 103
2006; 13
2010
2015; 94
2008; 17
2006; 7
2016; 10
2006; 8
2002; 418
2008; 322
2001; 66
2011; 4
2009; 136
2001; 128
2012; 150
2016; 6
2004; 110
2017; 96
2016; 7
2009a; 10
1980; 56
2014; 30
2012; 7
2008; 40
2003; 101
2014; 32
2006; 103
2018; 14
2014; 31
2018; 13
Singh (2022022513212361100_stem2895-bib-0042) 2015; 5
Roh (2022022513212361100_stem2895-bib-0041) 2006; 103
Sacchetti (2022022513212361100_stem2895-bib-0053) 2016; 6
Sung (2022022513212361100_stem2895-bib-0084) 2008; 40
Toro (2022022513212361100_stem2895-bib-0036) 2016; 7
Kucia (2022022513212361100_stem2895-bib-0068) 2007; 21
Etchevers (2022022513212361100_stem2895-bib-0039) 2001; 128
Ozerdem (2022022513212361100_stem2895-bib-0069) 2001; 222
Moorman (2022022513212361100_stem2895-bib-0079) 2001; 66
Diaz-Flores (2022022513212361100_stem2895-bib-0005) 2009; 24
Liao (2022022513212361100_stem2895-bib-0022) 2014; 30
Gao (2022022513212361100_stem2895-bib-0059) 2011; 352
Tang (2022022513212361100_stem2895-bib-0016) 2008; 322
Huang (2022022513212361100_stem2895-bib-0003) 2009; 88
Hardy (2022022513212361100_stem2895-bib-0086) 2017; 35
Shilatifard (2022022513212361100_stem2895-bib-0047) 2012; 81
Chen (2022022513212361100_stem2895-bib-0043) 2009; 88
Abe (2022022513212361100_stem2895-bib-0074) 2003; 101
Prockop (2022022513212361100_stem2895-bib-0080) 1997; 276
Bexell (2022022513212361100_stem2895-bib-0011) 2009; 17
Trapnell (2022022513212361100_stem2895-bib-0026) 2012; 7
Feng (2022022513212361100_stem2895-bib-0064) 2010; 10
Goecks (2022022513212361100_stem2895-bib-0025) 2010; 11
Zhang (2022022513212361100_stem2895-bib-0029) 2008; 9
Guimarães-Camboa (2022022513212361100_stem2895-bib-0035) 2017; 20
Hellström (2022022513212361100_stem2895-bib-0030) 1999; 126
Blankenberg (2022022513212361100_stem2895-bib-0024) 2010; Chapter 19
Steffen (2022022513212361100_stem2895-bib-0045) 2014; 15
Schuettengruber (2022022513212361100_stem2895-bib-0051) 2009; 136
Montarras (2022022513212361100_stem2895-bib-0055) 1991; 3
Brachvogel (2022022513212361100_stem2895-bib-0032) 2005; 132
Leeb (2022022513212361100_stem2895-bib-0050) 2007; 178
Dellavalle (2022022513212361100_stem2895-bib-0017) 2007; 9
Brighton (2022022513212361100_stem2895-bib-0012) 1992; 275
Dellavalle (2022022513212361100_stem2895-bib-0038) 2011; 2
Love (2022022513212361100_stem2895-bib-0021) 2014; 15
Langmead (2022022513212361100_stem2895-bib-0028) 2009; 10
Bondjers (2022022513212361100_stem2895-bib-0067) 2003; 162
Tidhar (2022022513212361100_stem2895-bib-0019) 2001; 220
Silva Meirelles (2022022513212361100_stem2895-bib-0009) 2006; 119
Liu (2022022513212361100_stem2895-bib-0061) 2013; 110
Feng-Juan (2022022513212361100_stem2895-bib-0014) 2014; 32
Wei (2022022513212361100_stem2895-bib-0044) 2007; 33
Crisan (2022022513212361100_stem2895-bib-0008) 2008; 3
Cano (2022022513212361100_stem2895-bib-0071) 2017; 20
Vidovic (2022022513212361100_stem2895-bib-0007) 2017; 96
Covas (2022022513212361100_stem2895-bib-0013) 2008; 36
Shi (2022022513212361100_stem2895-bib-0010) 2003; 18
Rosen (2022022513212361100_stem2895-bib-0063) 2006; 7
Silva Meirelles (2022022513212361100_stem2895-bib-0075) 2008; 26
Méndez-Ferrer (2022022513212361100_stem2895-bib-0037) 2010; 466
Di Croce (2022022513212361100_stem2895-bib-0046) 2013; 20
Farrington-Rock (2022022513212361100_stem2895-bib-0057) 2004; 110
Psaltis (2022022513212361100_stem2895-bib-0082) 2011; 4
Maes (2022022513212361100_stem2895-bib-0018) 2010; 19
Steward (2022022513212361100_stem2895-bib-0048) 2006; 13
Phinney (2022022513212361100_stem2895-bib-0004) 2013; 15
Hematti (2022022513212361100_stem2895-bib-0001) 2010
Trost (2022022513212361100_stem2895-bib-0065) 2016; 10
Wörsdörfer (2022022513212361100_stem2895-bib-0073) 2018; 14
Kim (2022022513212361100_stem2895-bib-0060) 2013; 8
Arensbergen (2022022513212361100_stem2895-bib-0052) 2013; 27
Ng (2022022513212361100_stem2895-bib-0062) 1997; 183
Vishvanath (2022022513212361100_stem2895-bib-0072) 2017; 20
Wang (2022022513212361100_stem2895-bib-0034) 2016; 118
Voigt (2022022513212361100_stem2895-bib-0040) 2013; 27
Winkler (2022022513212361100_stem2895-bib-0066) 2010; 5
Dominici (2022022513212361100_stem2895-bib-0031) 2006; 8
Weintraub (2022022513212361100_stem2895-bib-0056) 1993; 75
Le Blanc (2022022513212361100_stem2895-bib-0076) 2012; 12
Babb (2022022513212361100_stem2895-bib-0077) 2017; 7
Gang (2022022513212361100_stem2895-bib-0033) 2007; 109
Ramírez (2022022513212361100_stem2895-bib-0027) 2016; 44
Castro-Malaspina (2022022513212361100_stem2895-bib-0078) 1980; 56
Peister (2022022513212361100_stem2895-bib-0083) 2004; 103
Jiang (2022022513212361100_stem2895-bib-0002) 2002; 418
Brooke (2022022513212361100_stem2895-bib-0081) 2008; 17
Volponi (2022022513212361100_stem2895-bib-0085) 2015; 94
Feng (2022022513212361100_stem2895-bib-0006) 2011; 108
Cossu (2022022513212361100_stem2895-bib-0054) 2003; 13
Krautler (2022022513212361100_stem2895-bib-0015) 2012; 150
Kim (2022022513212361100_stem2895-bib-0020) 2015; 12
Boyle (2022022513212361100_stem2895-bib-0049) 2010; 38
Campagnolo (2022022513212361100_stem2895-bib-0070) 2018; 13
Briot (2022022513212361100_stem2895-bib-0058) 2014; 31
Afgan (2022022513212361100_stem2895-bib-0023) 2016; 44
References_xml – volume: 38
  start-page: 452
  year: 2010
  end-page: 464
  article-title: Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination
  publication-title: Mol Cell
– volume: 101
  start-page: 1477
  year: 2003
  end-page: 1483
  article-title: Distinct contributions of TNF and LT cytokines to the development of dendritic cells in vitro and their recruitment in vivo
  publication-title: Blood
– volume: 6
  start-page: 897
  year: 2016
  end-page: 913
  article-title: No identical ‘mesenchymal stem cells’ at different times and sites: Human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels
  publication-title: Stem Cell Rep
– volume: 119
  start-page: 2204
  year: 2006
  end-page: 2213
  article-title: Mesenchymal stem cells reside in virtually all post‐natal organs and tissues
  publication-title: J Cell Sci
– volume: 32
  start-page: 1408
  year: 2014
  end-page: 1419
  article-title: The surface markers and identity of human mesenchymal stem cells
  publication-title: Stem Cells
– volume: 20
  start-page: 296
  year: 2017
  end-page: 297
  article-title: Pericytes or mesenchymal stem cells: Is that the question?
  publication-title: Cell Stem Cell
– volume: 220
  start-page: 60
  year: 2001
  end-page: 73
  article-title: A novel transgenic marker for migrating limb muscle precursors and for vascular smooth muscle cells
  publication-title: Dev Dyn
– volume: 4
  start-page: 161
  year: 2011
  end-page: 176
  article-title: Resident vascular progenitor cells‐diverse origins, phenotype, and function
  publication-title: J Cardiovasc Transl Res
– volume: 36
  start-page: 642
  year: 2008
  end-page: 654
  article-title: Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene‐expression profile with CD146 + perivascular cells and fibroblasts
  publication-title: Exp Hematol
– volume: 8
  start-page: e55296
  year: 2013
  article-title: Ihh and Runx2/Runx3 signaling interact to coordinate early chondrogenesis: A mouse model
  publication-title: PLoS One
– volume: 10
  start-page: 20
  year: 2016
  article-title: Brain and Retinal Pericytes: Origin, function and role
  publication-title: Front Cell Neurosci
– volume: 26
  start-page: 2287
  year: 2008
  end-page: 2299
  article-title: In search of the in vivo identity of mesenchymal stem cells
  publication-title: Stem Cells
– volume: 88
  start-page: 792
  year: 2009
  end-page: 806
  article-title: Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine
  publication-title: J Dent Res
– volume: 118
  start-page: e52965
  year: 2016
  article-title: Isolation and primary culture of mouse aortic endothelial cells
  publication-title: J Vis Exp
– volume: 94
  start-page: 1568
  year: 2015
  end-page: 1574
  article-title: Composition of mineral produced by dental mesenchymal stem cells
  publication-title: J Dent Res
– volume: 24
  start-page: 909
  year: 2009
  end-page: 969
  article-title: Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche
  publication-title: Histol Histopathol
– volume: 11
  start-page: R86
  year: 2010
  article-title: Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences
  publication-title: Genome Biol
– volume: 30
  start-page: 923
  year: 2014
  end-page: 930
  article-title: featureCounts: An efficient general purpose program for assigning sequence reads to genomic features
  publication-title: Bioinformatics
– volume: 222
  start-page: 218
  year: 2001
  end-page: 227
  article-title: NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis
  publication-title: Dev Dyn
– volume: 183
  start-page: 108
  year: 1997
  end-page: 121
  article-title: SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse
  publication-title: Dev Biol
– volume: 35
  start-page: 1273
  year: 2017
  end-page: 1289
  article-title: Transcriptional networks in single perivascular cells sorted from human adipose tissue reveal a hierarchy of mesenchymal stem cells
  publication-title: Stem Cells
– volume: 44
  start-page: W160
  year: 2016
  end-page: W165
  article-title: deepTools2: A next generation web server for deep‐sequencing data analysis
  publication-title: Nucleic Acids Res
– volume: 3
  start-page: 301
  year: 2008
  end-page: 313
  article-title: A perivascular origin for mesenchymal stem cells in multiple human organs
  publication-title: Cell Stem Cell
– volume: 322
  start-page: 583
  year: 2008
  end-page: 586
  article-title: White fat progenitor cells reside in the adipose vasculature
  publication-title: Science
– volume: 7
  start-page: 885
  year: 2006
  end-page: 896
  article-title: Adipocyte differentiation from the inside out
  publication-title: Nat Rev Mol Cell Biol
– volume: 108
  start-page: 6503
  year: 2011a
  end-page: 6508
  article-title: Dual origin of mesenchymal stem cells contributing to organ growth and repair
  publication-title: Proc Natl Acad Sci USA
– volume: Chapter 19
  start-page: Unit 19.10.1–21
  year: 2010
  article-title: Galaxy: A web‐based genome analysis tool for experimentalists
  publication-title: Curr Protoc Mol Biol
– volume: 178
  start-page: 219
  year: 2007
  end-page: 229
  article-title: Ring1B is crucial for the regulation of developmental control genes and PRC1 proteins but not X inactivation in embryonic cells
  publication-title: J Cell Biol
– volume: 162
  start-page: 721
  year: 2003
  end-page: 729
  article-title: Transcription profiling of platelet‐derived growth factor‐B‐deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells
  publication-title: Am J Pathol
– volume: 9
  start-page: 255
  year: 2007
  end-page: 267
  article-title: Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells
  publication-title: Nat Cell Biol
– volume: 126
  start-page: 3047
  year: 1999
  end-page: 3055
  article-title: Role of PDGF‐B and PDGFR‐beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse
  publication-title: Development (Cambridge, England)
– volume: 13
  start-page: 119
  year: 2018
  end-page: 122
  article-title: Realities and misconceptions on the pericytes role in tissue repair
  publication-title: Regen Med
– volume: 14
  start-page: 144
  year: 2018
  end-page: 147
  article-title: Do vascular mural cells possess endogenous plasticity in vivo?
  publication-title: Stem Cell Rev Rep
– volume: 20
  start-page: 345
  year: 2017
  end-page: 359.e5
  article-title: Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo
  publication-title: Cell Stem Cell
– volume: 20
  start-page: 585
  year: 2017
  end-page: 586
  article-title: Do adipocytes emerge from mural progenitors?
  publication-title: Cell Stem Cell
– volume: 18
  start-page: 696
  year: 2003
  end-page: 704
  article-title: Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp
  publication-title: J Bone Miner Res
– volume: 75
  start-page: 1241
  year: 1993
  end-page: 1244
  article-title: The MyoD family and myogenesis: Redundancy, networks, and thresholds
  publication-title: Cell
– volume: 128
  start-page: 1059
  year: 2001
  end-page: 1068
  article-title: The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain
  publication-title: Development
– volume: 5
  start-page: 323
  year: 2015
  end-page: 336
  article-title: Cell‐cycle control of bivalent epigenetic domains regulates the exit from pluripotency
  publication-title: Stem Cell Rep
– volume: 40
  start-page: 2649
  year: 2008
  end-page: 2654
  article-title: Isolation and characterization of mouse mesenchymal stem cells
  publication-title: Transplant Proc
– volume: 352
  start-page: 83
  year: 2011
  end-page: 91
  article-title: The zinc finger transcription factors Osr1 and Osr2 control synovial joint formation
  publication-title: Dev Biol
– volume: 12
  start-page: 357
  year: 2015
  end-page: 360
  article-title: HISAT: A fast spliced aligner with low memory requirements
  publication-title: Nat Methods
– volume: 109
  start-page: 1743
  year: 2007
  end-page: 1751
  article-title: SSEA‐4 identifies mesenchymal stem cells from bone marrow
  publication-title: Blood
– volume: 103
  start-page: 1662
  year: 2004
  end-page: 1668
  article-title: Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential
  publication-title: Blood
– volume: 17
  start-page: 929
  year: 2008
  end-page: 940
  article-title: Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta
  publication-title: Stem Cells Dev
– volume: 110
  start-page: 2226
  year: 2004
  end-page: 2232
  article-title: Chondrogenic and adipogenic potential of microvascular pericytes
  publication-title: Circulation
– volume: 8
  start-page: 315
  year: 2006
  end-page: 317
  article-title: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement
  publication-title: Cytotherapy
– volume: 7
  start-page: 3102
  year: 2017
  article-title: Axin2‐expressing cells differentiate into reparative odontoblasts via autocrine Wnt/β‐catenin signaling in response to tooth damage
  publication-title: Sci Rep
– volume: 27
  start-page: 1318
  year: 2013
  end-page: 1338
  article-title: A double take on bivalent promoters
  publication-title: Genes Dev
– volume: 2
  start-page: 499
  year: 2011
  article-title: Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells
  publication-title: Nat Commun
– volume: 132
  start-page: 2657
  year: 2005
  end-page: 2668
  article-title: Pervascular cells expressing annexin A5 define a novel mesenchymal stem cell‐like population with the capacity to differentiate into multiple mesenchymal lineages
  publication-title: Development
– volume: 150
  start-page: 194
  year: 2012
  end-page: 206
  article-title: Follicular dendritic cells emerge from ubiquitous perivascular precursors
  publication-title: Cell
– volume: 7
  start-page: 562
  year: 2012
  end-page: 578
  article-title: Differential gene and transcript expression analysis of RNA‐seq experiments with TopHat and Cufflinks
  publication-title: Nat Protoc
– volume: 9
  start-page: R137
  year: 2008
  article-title: Model‐based analysis of ChIP‐Seq (MACS)
  publication-title: Genome Biol
– volume: 21
  start-page: 297
  year: 2007
  end-page: 303
  article-title: Morphological and molecular characterization of novel population of CXCR4+ SSEA‐4+ Oct‐4+ very small embryonic‐like cells purified from human cord blood: Preliminary report
  publication-title: Leukemia
– volume: 103
  start-page: 15782
  year: 2006
  end-page: 15787
  article-title: The genomic landscape of histone modifications in human T cells
  publication-title: Proc Natl Acad Sci USA
– volume: 275
  start-page: 287
  year: 1992
  end-page: 299
  article-title: The pericyte as a possible osteoblast progenitor cell
  publication-title: Clin Orthop Relat Res
– volume: 10
  start-page: 1441
  year: 2010
  end-page: 1451
  article-title: Perivascular cells as mesenchymal stem cells
  publication-title: Expert Opin Biol Ther
– volume: 7
  start-page: 12706
  year: 2016
  article-title: Nestin+ cells direct inflammatory cell migration in atherosclerosis
  publication-title: Nat Commun
– volume: 136
  start-page: 3531
  year: 2009
  end-page: 3542
  article-title: Recruitment of Polycomb group complexes and their role in the dynamic regulation of cell fate choice
  publication-title: Development
– volume: 31
  start-page: 707
  year: 2014
  end-page: 721
  article-title: Repression of Sox9 by Jag1 is continuously required to suppress the default chondrogenic fate of vascular smooth muscle cells
  publication-title: Dev Cell
– volume: 19
  start-page: 329
  year: 2010
  end-page: 344
  article-title: Osteoblast precursors, but not mature osteoblasts, Move into developing and fractured bones along with invading blood vessels
  publication-title: Dev Cell
– year: 2010
– volume: 110
  start-page: 18555
  year: 2013
  end-page: 18560
  article-title: Odd‐skipped related‐1 controls neural crest chondrogenesis during tongue development
  publication-title: Proc Natl Acad Sci USA
– volume: 27
  start-page: 52
  year: 2013
  end-page: 63
  article-title: Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult β cells
  publication-title: Genes Dev
– volume: 276
  start-page: 71
  year: 1997
  end-page: 74
  article-title: Marrow stromal cells as stem cells for nonhematopoietic tissues
  publication-title: Science (New York, N.Y.)
– volume: 13
  start-page: 537
  year: 2003
  end-page: 542
  article-title: Mesoangioblasts ‐ Vascular progenitors for extravascular mesodermal tissues
  publication-title: Curr Opin Genet Dev
– volume: 3
  start-page: 592
  year: 1991
  end-page: 600
  article-title: Developmental patterns in the expression of Myf5, MyoD, myogenin, and MRF4 during myogenesis
  publication-title: New Biol
– volume: 44
  start-page: W3
  year: 2016
  end-page: W10
  article-title: The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update
  publication-title: Nucleic Acids Res
– volume: 466
  start-page: 829
  year: 2010
  end-page: 834
  article-title: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
  publication-title: Nature
– volume: 13
  start-page: 852
  year: 2006
  end-page: 854
  article-title: Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes
  publication-title: Nat Struct Mol Biol
– volume: 15
  start-page: 140
  year: 2013
  end-page: 145
  article-title: Mesenchymal stromal cells: misconceptions and evolving concepts
  publication-title: Cytotherapy
– volume: 66
  start-page: 57
  year: 2001
  end-page: 66
  article-title: Phenotypic and functional comparison of cultures of marrow‐derived mesenchymal stem cells (MSCs) and stromal cells
  publication-title: J Cell Physiol
– volume: 88
  start-page: 904
  year: 2009
  end-page: 909
  article-title: , and in tooth development
  publication-title: J Dent Res
– volume: 12
  start-page: 383
  year: 2012
  end-page: 396
  article-title: Multipotent mesenchymal stromal cells and the innate immune system
  publication-title: Nat Rev Immunol
– volume: 418
  start-page: 41
  year: 2002
  end-page: 49
  article-title: Pluripotency of mesenchymal stem cells derived from adult marrow
  publication-title: Nature
– volume: 15
  start-page: 550
  year: 2014
  article-title: Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2
  publication-title: Genome Biol
– volume: 10
  start-page: R25
  year: 2009a
  article-title: Ultrafast and memory‐efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol
– volume: 15
  start-page: 340
  year: 2014
  end-page: 356
  article-title: What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory
  publication-title: Nat Rev Mol Cell Biol
– volume: 17
  start-page: 183
  year: 2009
  end-page: 190
  article-title: Bone marrow multipotent mesenchymal stroma cells act as pericyte‐like migratory vehicles in experimental gliomas
  publication-title: Mol Ther
– volume: 81
  start-page: 65
  year: 2012
  end-page: 95
  article-title: The COMPASS family of histone H3K4 methylases: Mechanisms of regulation in development and disease pathogenesis
  publication-title: Annu Rev Biochem
– volume: 5
  start-page: 32
  year: 2010
  article-title: Pericyte‐specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling
  publication-title: Mol Neurodegener
– volume: 33
  start-page: 703
  year: 2007
  end-page: 708
  article-title: Expression of mineralization markers in dental pulp cells
  publication-title: J Endod
– volume: 96
  start-page: 323
  year: 2017
  end-page: 330
  article-title: α SMA‐expressing perivascular cells represent dental pulp progenitors in vivo
  publication-title: J Dent Res
– volume: 56
  start-page: 289
  year: 1980
  end-page: 301
  article-title: Characterization of human bone marrow fibroblast colony‐forming cells (CFU‐F) and their progeny
  publication-title: Blood
– volume: 20
  start-page: 1147
  year: 2013
  end-page: 1155
  article-title: Transcriptional regulation by Polycomb group proteins
  publication-title: Nat Struct Mol Biol
– volume: 418
  start-page: 41
  year: 2002
  ident: 2022022513212361100_stem2895-bib-0002
  article-title: Pluripotency of mesenchymal stem cells derived from adult marrow
  publication-title: Nature
  doi: 10.1038/nature00870
– volume: 8
  start-page: 315
  year: 2006
  ident: 2022022513212361100_stem2895-bib-0031
  article-title: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement
  publication-title: Cytotherapy
  doi: 10.1080/14653240600855905
– volume: 56
  start-page: 289
  year: 1980
  ident: 2022022513212361100_stem2895-bib-0078
  article-title: Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny
  publication-title: Blood
  doi: 10.1182/blood.V56.2.289.289
– volume: 18
  start-page: 696
  year: 2003
  ident: 2022022513212361100_stem2895-bib-0010
  article-title: Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp
  publication-title: J Bone Miner Res
  doi: 10.1359/jbmr.2003.18.4.696
– volume: 2
  start-page: 499
  year: 2011
  ident: 2022022513212361100_stem2895-bib-0038
  article-title: Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells
  publication-title: Nat Commun
  doi: 10.1038/ncomms1508
– volume: 126
  start-page: 3047
  year: 1999
  ident: 2022022513212361100_stem2895-bib-0030
  article-title: Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse
  publication-title: Development (Cambridge, England)
  doi: 10.1242/dev.126.14.3047
– volume: 32
  start-page: 1408
  year: 2014
  ident: 2022022513212361100_stem2895-bib-0014
  article-title: The surface markers and identity of human mesenchymal stem cells
  publication-title: Stem Cells
  doi: 10.1002/stem.1681
– volume: 150
  start-page: 194
  year: 2012
  ident: 2022022513212361100_stem2895-bib-0015
  article-title: Follicular dendritic cells emerge from ubiquitous perivascular precursors
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.032
– volume: 110
  start-page: 2226
  year: 2004
  ident: 2022022513212361100_stem2895-bib-0057
  article-title: Chondrogenic and adipogenic potential of microvascular pericytes
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000144457.55518.E5
– volume-title: Mesenchymal Stromal Cells: Biology and Clinical Applications
  year: 2010
  ident: 2022022513212361100_stem2895-bib-0001
– volume: 7
  start-page: 562
  year: 2012
  ident: 2022022513212361100_stem2895-bib-0026
  article-title: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2012.016
– volume: 88
  start-page: 904
  year: 2009
  ident: 2022022513212361100_stem2895-bib-0043
  article-title: Runx2, Osx, and Dspp in tooth development
  publication-title: J Dent Res
  doi: 10.1177/0022034509342873
– volume: 40
  start-page: 2649
  year: 2008
  ident: 2022022513212361100_stem2895-bib-0084
  article-title: Isolation and characterization of mouse mesenchymal stem cells
  publication-title: Transplant Proc
  doi: 10.1016/j.transproceed.2008.08.009
– volume: 26
  start-page: 2287
  year: 2008
  ident: 2022022513212361100_stem2895-bib-0075
  article-title: In search of the in vivo identity of mesenchymal stem cells
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2007-1122
– volume: 10
  start-page: R25
  year: 2009
  ident: 2022022513212361100_stem2895-bib-0028
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-3-r25
– volume: 27
  start-page: 1318
  year: 2013
  ident: 2022022513212361100_stem2895-bib-0040
  article-title: A double take on bivalent promoters
  publication-title: Genes Dev
  doi: 10.1101/gad.219626.113
– volume: 27
  start-page: 52
  year: 2013
  ident: 2022022513212361100_stem2895-bib-0052
  article-title: Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult β cells
  publication-title: Genes Dev
  doi: 10.1101/gad.206094.112
– volume: 276
  start-page: 71
  year: 1997
  ident: 2022022513212361100_stem2895-bib-0080
  article-title: Marrow stromal cells as stem cells for nonhematopoietic tissues
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.276.5309.71
– volume: 9
  start-page: R137
  year: 2008
  ident: 2022022513212361100_stem2895-bib-0029
  article-title: Model-based analysis of ChIP-Seq (MACS)
  publication-title: Genome Biol
  doi: 10.1186/gb-2008-9-9-r137
– volume: 4
  start-page: 161
  year: 2011
  ident: 2022022513212361100_stem2895-bib-0082
  article-title: Resident vascular progenitor cells-diverse origins, phenotype, and function
  publication-title: J Cardiovasc Transl Res
  doi: 10.1007/s12265-010-9248-9
– volume: 36
  start-page: 642
  year: 2008
  ident: 2022022513212361100_stem2895-bib-0013
  article-title: Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146 + perivascular cells and fibroblasts
  publication-title: Exp Hematol
  doi: 10.1016/j.exphem.2007.12.015
– volume: 44
  start-page: W160
  year: 2016
  ident: 2022022513212361100_stem2895-bib-0027
  article-title: deepTools2: A next generation web server for deep-sequencing data analysis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw257
– volume: 13
  start-page: 119
  year: 2018
  ident: 2022022513212361100_stem2895-bib-0070
  article-title: Realities and misconceptions on the pericytes role in tissue repair
  publication-title: Regen Med
  doi: 10.2217/rme-2017-0091
– volume: 35
  start-page: 1273
  year: 2017
  ident: 2022022513212361100_stem2895-bib-0086
  article-title: Transcriptional networks in single perivascular cells sorted from human adipose tissue reveal a hierarchy of mesenchymal stem cells
  publication-title: Stem Cells
  doi: 10.1002/stem.2599
– volume: 9
  start-page: 255
  year: 2007
  ident: 2022022513212361100_stem2895-bib-0017
  article-title: Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1542
– volume: 162
  start-page: 721
  year: 2003
  ident: 2022022513212361100_stem2895-bib-0067
  article-title: Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)63868-0
– volume: 119
  start-page: 2204
  year: 2006
  ident: 2022022513212361100_stem2895-bib-0009
  article-title: Mesenchymal stem cells reside in virtually all post-natal organs and tissues
  publication-title: J Cell Sci
  doi: 10.1242/jcs.02932
– volume: 30
  start-page: 923
  year: 2014
  ident: 2022022513212361100_stem2895-bib-0022
  article-title: featureCounts: An efficient general purpose program for assigning sequence reads to genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 14
  start-page: 144
  year: 2018
  ident: 2022022513212361100_stem2895-bib-0073
  article-title: Do vascular mural cells possess endogenous plasticity in vivo?
  publication-title: Stem Cell Rev Rep
  doi: 10.1007/s12015-017-9791-8
– volume: 136
  start-page: 3531
  year: 2009
  ident: 2022022513212361100_stem2895-bib-0051
  article-title: Recruitment of Polycomb group complexes and their role in the dynamic regulation of cell fate choice
  publication-title: Development
  doi: 10.1242/dev.033902
– volume: 11
  start-page: R86
  year: 2010
  ident: 2022022513212361100_stem2895-bib-0025
  article-title: Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-8-r86
– volume: 101
  start-page: 1477
  year: 2003
  ident: 2022022513212361100_stem2895-bib-0074
  article-title: Distinct contributions of TNF and LT cytokines to the development of dendritic cells in vitro and their recruitment in vivo
  publication-title: Blood
  doi: 10.1182/blood.V101.4.1477
– volume: 20
  start-page: 345
  year: 2017
  ident: 2022022513212361100_stem2895-bib-0035
  article-title: Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.12.006
– volume: 103
  start-page: 15782
  year: 2006
  ident: 2022022513212361100_stem2895-bib-0041
  article-title: The genomic landscape of histone modifications in human T cells
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0607617103
– volume: 88
  start-page: 792
  year: 2009
  ident: 2022022513212361100_stem2895-bib-0003
  article-title: Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine
  publication-title: J Dent Res
  doi: 10.1177/0022034509340867
– volume: 13
  start-page: 537
  year: 2003
  ident: 2022022513212361100_stem2895-bib-0054
  article-title: Mesoangioblasts - Vascular progenitors for extravascular mesodermal tissues
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2003.08.001
– volume: 12
  start-page: 357
  year: 2015
  ident: 2022022513212361100_stem2895-bib-0020
  article-title: HISAT: A fast spliced aligner with low memory requirements
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3317
– volume: 17
  start-page: 929
  year: 2008
  ident: 2022022513212361100_stem2895-bib-0081
  article-title: Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2007.0156
– volume: 275
  start-page: 287
  year: 1992
  ident: 2022022513212361100_stem2895-bib-0012
  article-title: The pericyte as a possible osteoblast progenitor cell
  publication-title: Clin Orthop Relat Res
  doi: 10.1097/00003086-199202000-00043
– volume: 5
  start-page: 323
  year: 2015
  ident: 2022022513212361100_stem2895-bib-0042
  article-title: Cell-cycle control of bivalent epigenetic domains regulates the exit from pluripotency
  publication-title: Stem Cell Rep
  doi: 10.1016/j.stemcr.2015.07.005
– volume: 10
  start-page: 1441
  year: 2010
  ident: 2022022513212361100_stem2895-bib-0064
  article-title: Perivascular cells as mesenchymal stem cells
  publication-title: Expert Opin Biol Ther
  doi: 10.1517/14712598.2010.517191
– volume: 81
  start-page: 65
  year: 2012
  ident: 2022022513212361100_stem2895-bib-0047
  article-title: The COMPASS family of histone H3K4 methylases: Mechanisms of regulation in development and disease pathogenesis
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev-biochem-051710-134100
– volume: 15
  start-page: 140
  year: 2013
  ident: 2022022513212361100_stem2895-bib-0004
  article-title: Mesenchymal stromal cells: misconceptions and evolving concepts
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2012.11.005
– volume: 128
  start-page: 1059
  year: 2001
  ident: 2022022513212361100_stem2895-bib-0039
  article-title: The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain
  publication-title: Development
  doi: 10.1242/dev.128.7.1059
– volume: 75
  start-page: 1241
  year: 1993
  ident: 2022022513212361100_stem2895-bib-0056
  article-title: The MyoD family and myogenesis: Redundancy, networks, and thresholds
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90610-3
– volume: Chapter 19
  start-page: Unit 19.10.1–21
  year: 2010
  ident: 2022022513212361100_stem2895-bib-0024
  article-title: Galaxy: A web-based genome analysis tool for experimentalists
  publication-title: Curr Protoc Mol Biol
– volume: 132
  start-page: 2657
  year: 2005
  ident: 2022022513212361100_stem2895-bib-0032
  article-title: Pervascular cells expressing annexin A5 define a novel mesenchymal stem cell-like population with the capacity to differentiate into multiple mesenchymal lineages
  publication-title: Development
  doi: 10.1242/dev.01846
– volume: 3
  start-page: 301
  year: 2008
  ident: 2022022513212361100_stem2895-bib-0008
  article-title: A perivascular origin for mesenchymal stem cells in multiple human organs
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.07.003
– volume: 466
  start-page: 829
  year: 2010
  ident: 2022022513212361100_stem2895-bib-0037
  article-title: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
  publication-title: Nature
  doi: 10.1038/nature09262
– volume: 17
  start-page: 183
  year: 2009
  ident: 2022022513212361100_stem2895-bib-0011
  article-title: Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas
  publication-title: Mol Ther
  doi: 10.1038/mt.2008.229
– volume: 3
  start-page: 592
  year: 1991
  ident: 2022022513212361100_stem2895-bib-0055
  article-title: Developmental patterns in the expression of Myf5, MyoD, myogenin, and MRF4 during myogenesis
  publication-title: New Biol
– volume: 20
  start-page: 585
  year: 2017
  ident: 2022022513212361100_stem2895-bib-0072
  article-title: Do adipocytes emerge from mural progenitors?
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.03.013
– volume: 15
  start-page: 550
  year: 2014
  ident: 2022022513212361100_stem2895-bib-0021
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 7
  start-page: 885
  year: 2006
  ident: 2022022513212361100_stem2895-bib-0063
  article-title: Adipocyte differentiation from the inside out
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2066
– volume: 66
  start-page: 57
  year: 2001
  ident: 2022022513212361100_stem2895-bib-0079
  article-title: Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells
  publication-title: J Cell Physiol
– volume: 109
  start-page: 1743
  year: 2007
  ident: 2022022513212361100_stem2895-bib-0033
  article-title: SSEA-4 identifies mesenchymal stem cells from bone marrow
  publication-title: Blood
  doi: 10.1182/blood-2005-11-010504
– volume: 94
  start-page: 1568
  year: 2015
  ident: 2022022513212361100_stem2895-bib-0085
  article-title: Composition of mineral produced by dental mesenchymal stem cells
  publication-title: J Dent Res
  doi: 10.1177/0022034515599765
– volume: 222
  start-page: 218
  year: 2001
  ident: 2022022513212361100_stem2895-bib-0069
  article-title: NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis
  publication-title: Dev Dyn
  doi: 10.1002/dvdy.1200
– volume: 7
  start-page: 12706
  year: 2016
  ident: 2022022513212361100_stem2895-bib-0036
  article-title: Nestin+ cells direct inflammatory cell migration in atherosclerosis
  publication-title: Nat Commun
  doi: 10.1038/ncomms12706
– volume: 178
  start-page: 219
  year: 2007
  ident: 2022022513212361100_stem2895-bib-0050
  article-title: Ring1B is crucial for the regulation of developmental control genes and PRC1 proteins but not X inactivation in embryonic cells
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200612127
– volume: 108
  start-page: 6503
  year: 2011
  ident: 2022022513212361100_stem2895-bib-0006
  article-title: Dual origin of mesenchymal stem cells contributing to organ growth and repair
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1015449108
– volume: 5
  start-page: 32
  year: 2010
  ident: 2022022513212361100_stem2895-bib-0066
  article-title: Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling
  publication-title: Mol Neurodegener
  doi: 10.1186/1750-1326-5-32
– volume: 96
  start-page: 323
  year: 2017
  ident: 2022022513212361100_stem2895-bib-0007
  article-title: α SMA-expressing perivascular cells represent dental pulp progenitors in vivo
  publication-title: J Dent Res
  doi: 10.1177/0022034516678208
– volume: 44
  start-page: W3
  year: 2016
  ident: 2022022513212361100_stem2895-bib-0023
  article-title: The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw343
– volume: 352
  start-page: 83
  year: 2011
  ident: 2022022513212361100_stem2895-bib-0059
  article-title: The zinc finger transcription factors Osr1 and Osr2 control synovial joint formation
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2011.01.018
– volume: 8
  start-page: e55296
  year: 2013
  ident: 2022022513212361100_stem2895-bib-0060
  article-title: Ihh and Runx2/Runx3 signaling interact to coordinate early chondrogenesis: A mouse model
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0055296
– volume: 24
  start-page: 909
  year: 2009
  ident: 2022022513212361100_stem2895-bib-0005
  article-title: Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche
  publication-title: Histol Histopathol
– volume: 20
  start-page: 1147
  year: 2013
  ident: 2022022513212361100_stem2895-bib-0046
  article-title: Transcriptional regulation by Polycomb group proteins
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2669
– volume: 13
  start-page: 852
  year: 2006
  ident: 2022022513212361100_stem2895-bib-0048
  article-title: Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb1131
– volume: 15
  start-page: 340
  year: 2014
  ident: 2022022513212361100_stem2895-bib-0045
  article-title: What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3789
– volume: 20
  start-page: 296
  year: 2017
  ident: 2022022513212361100_stem2895-bib-0071
  article-title: Pericytes or mesenchymal stem cells: Is that the question?
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.02.005
– volume: 12
  start-page: 383
  year: 2012
  ident: 2022022513212361100_stem2895-bib-0076
  article-title: Multipotent mesenchymal stromal cells and the innate immune system
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3209
– volume: 322
  start-page: 583
  year: 2008
  ident: 2022022513212361100_stem2895-bib-0016
  article-title: White fat progenitor cells reside in the adipose vasculature
  publication-title: Science
  doi: 10.1126/science.1156232
– volume: 103
  start-page: 1662
  year: 2004
  ident: 2022022513212361100_stem2895-bib-0083
  article-title: Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential
  publication-title: Blood
  doi: 10.1182/blood-2003-09-3070
– volume: 7
  start-page: 3102
  year: 2017
  ident: 2022022513212361100_stem2895-bib-0077
  article-title: Axin2-expressing cells differentiate into reparative odontoblasts via autocrine Wnt/β-catenin signaling in response to tooth damage
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-03145-6
– volume: 220
  start-page: 60
  year: 2001
  ident: 2022022513212361100_stem2895-bib-0019
  article-title: A novel transgenic marker for migrating limb muscle precursors and for vascular smooth muscle cells
  publication-title: Dev Dyn
  doi: 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1089>3.0.CO;2-X
– volume: 110
  start-page: 18555
  year: 2013
  ident: 2022022513212361100_stem2895-bib-0061
  article-title: Odd-skipped related-1 controls neural crest chondrogenesis during tongue development
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1306495110
– volume: 33
  start-page: 703
  year: 2007
  ident: 2022022513212361100_stem2895-bib-0044
  article-title: Expression of mineralization markers in dental pulp cells
  publication-title: J Endod
  doi: 10.1016/j.joen.2007.02.009
– volume: 118
  start-page: e52965
  year: 2016
  ident: 2022022513212361100_stem2895-bib-0034
  article-title: Isolation and primary culture of mouse aortic endothelial cells
  publication-title: J Vis Exp
– volume: 38
  start-page: 452
  year: 2010
  ident: 2022022513212361100_stem2895-bib-0049
  article-title: Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.02.032
– volume: 6
  start-page: 897
  year: 2016
  ident: 2022022513212361100_stem2895-bib-0053
  article-title: No identical ‘mesenchymal stem cells’ at different times and sites: Human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels
  publication-title: Stem Cell Rep
  doi: 10.1016/j.stemcr.2016.05.011
– volume: 10
  start-page: 20
  year: 2016
  ident: 2022022513212361100_stem2895-bib-0065
  article-title: Brain and Retinal Pericytes: Origin, function and role
  publication-title: Front Cell Neurosci
  doi: 10.3389/fncel.2016.00020
– volume: 21
  start-page: 297
  year: 2007
  ident: 2022022513212361100_stem2895-bib-0068
  article-title: Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: Preliminary report
  publication-title: Leukemia
  doi: 10.1038/sj.leu.2404470
– volume: 31
  start-page: 707
  year: 2014
  ident: 2022022513212361100_stem2895-bib-0058
  article-title: Repression of Sox9 by Jag1 is continuously required to suppress the default chondrogenic fate of vascular smooth muscle cells
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2014.11.023
– volume: 19
  start-page: 329
  year: 2010
  ident: 2022022513212361100_stem2895-bib-0018
  article-title: Osteoblast precursors, but not mature osteoblasts, Move into developing and fractured bones along with invading blood vessels
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2010.07.010
– volume: 183
  start-page: 108
  year: 1997
  ident: 2022022513212361100_stem2895-bib-0062
  article-title: SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse
  publication-title: Dev Biol
  doi: 10.1006/dbio.1996.8487
SSID ssj0014588
Score 2.3946035
Snippet Pericytes have been shown to act as precursors of resident adult stem cells in stromal tissues in vivo. When expanded in vitro these cells are capable of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1890
SubjectTerms Adipogenesis
Adult stem cells
Animals
Biocompatibility
Biomedical materials
Bone marrow
Cbfa-1 protein
Cell culture
Cell Differentiation
Chondrogenesis
Chromatin
Dental pulp
Differentiation (biology)
Epigenetics
Genes
Histones
Incisors
Insertion
Mesenchymal Stem Cells - metabolism
Mesenchyme
Mice
MSC
Myogenesis
Pericyte
Pericytes
Pericytes - cytology
Pericytes - metabolism
Polycomb group proteins
Populations
Precursors
Stem cell transplantation
Stem cells
Tissues
Transcription
Transcriptomics
Title Molecular Programming of Perivascular Stem Cell Precursors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.2895
https://www.ncbi.nlm.nih.gov/pubmed/30068019
https://www.proquest.com/docview/2151627252
https://www.proquest.com/docview/2082091908
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCIlLRXl1S4sC4oBUZYmd2Im5oT5UQAtI3UrlFCV-iEp0U7XbQ_n1zNiON6VbqXCJLMeJHX_OeGY8D0Le2gbEDsuA-inF08Iamkp01BW50lIqngsXbX_yVRwcFZ-P-fEiU6HzLpm3Y_V7qV_J_6AKdYAresn-A7LxpVABZcAXroAwXO-E8aTPbYv2_mhmdRpsmL9D79HG9HBuTrd3nI7uHLXrF104wQk8qbuPCnyngN1troJF_befJ91AUfDjBNMbObvYJpplYLznM9ObGG5Px0MtAq0GFhme8AHrkQLz4F9qAjEsMANdoI-BWvpwJf2qYAPaRyuf-DPso8BpFEtptI_5imGqxyDt8cVG1B--_7U_RatBH2GZ1fhojY_eJw8YSAeYuGL305d4eITOt-6QO3xSH1AqY-9jr9fZkBuyxXVRxfEa08dkNQgJyUeP-Bq5Z2ZPyEOfNvTqKfkQcU8GuCedTYa4J4hrgrgnC9yfkaP9venOQRpyYKQqryqeSpUpRm1BpamEhiKvNEjwmjWWltZmqrVCt1ormucik6VVQugs07awpWxsmz8nK7NuZtZJwrkpMgOVhvGi1bYpKzzlZdpSqtuGjsi7fkpqFQLEY56SX_WNiR-RN7HpmY-KsqzRZj-vdfhpLmrkMAUrGWcj8jreBpKGy7yZme4S2iBbKmH9VCPywuMRe8ldshgqYbAOoNu7rw-nexMsbNxlsC_Jo8VvsUlW5ueXZgvYzXn7yi2uP5WcfgE
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Programming+of+Perivascular+Stem+Cell+Precursors&rft.jtitle=Stem+cells+%28Dayton%2C+Ohio%29&rft.au=Yianni%2C+Val&rft.au=Sharpe%2C+Paul+T.&rft.date=2018-12-01&rft.issn=1066-5099&rft.eissn=1549-4918&rft.volume=36&rft.issue=12&rft.spage=1890&rft.epage=1904&rft_id=info:doi/10.1002%2Fstem.2895&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_stem_2895
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5099&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5099&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5099&client=summon