Low-kinetic energy impact response of auxetic and conventional open-cell polyurethane foams

This paper reports quasi‐static and low‐kinetic energy impact testing of auxetic and conventional open‐cell polyurethane foams. The auxetic foams were fabricated using the established thermo‐mechanical process originally developed by Lakes. Converted foams were subject to compression along each dime...

Full description

Saved in:
Bibliographic Details
Published inPhysica Status Solidi. B: Basic Solid State Physics Vol. 252; no. 7; pp. 1631 - 1639
Main Authors Allen, T., Shepherd, J., Hewage, T. A. M., Senior, T., Foster, L., Alderson, A.
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.07.2015
Subjects
Online AccessGet full text
ISSN0370-1972
1521-3951
DOI10.1002/pssb.201451715

Cover

Loading…
Abstract This paper reports quasi‐static and low‐kinetic energy impact testing of auxetic and conventional open‐cell polyurethane foams. The auxetic foams were fabricated using the established thermo‐mechanical process originally developed by Lakes. Converted foams were subject to compression along each dimension to 85% and 70% of the unconverted dimension during the conversion process, corresponding to linear compression ratios of 0.85 and 0.7, respectively. The 0.7 linear compression ratio foams were confirmed to have a re‐entrant foam cell structure and to be auxetic. Impact tests were performed for kinetic energies up to 4 J using an instrumented drop rig and high speed video. A flat dropper was employed on isolated foams, and a hemispherical‐shaped dropper on foams covered with a rigid polypropylene outer shell layer. The flat dropper tests provide data on the rate dependency of the Poisson's ratio in these foam test specimens. The foam Poisson's ratios were found to be unaffected by the strain rate for the impact energies considered here. Acceleration‐time data are reported along with deformation images from the video footage. The auxetic samples displayed a six times reduction in peak acceleration, showing potential in impact protector devices such as shin or thigh protectors in sports equipment applications.
AbstractList This paper reports quasi-static and low-kinetic energy impact testing of auxetic and conventional open-cell polyurethane foams. The auxetic foams were fabricated using the established thermo-mechanical process originally developed by Lakes. Converted foams were subject to compression along each dimension to 85% and 70% of the unconverted dimension during the conversion process, corresponding to linear compression ratios of 0.85 and 0.7, respectively. The 0.7 linear compression ratio foams were confirmed to have a re-entrant foam cell structure and to be auxetic. Impact tests were performed for kinetic energies up to 4J using an instrumented drop rig and high speed video. A flat dropper was employed on isolated foams, and a hemispherical-shaped dropper on foams covered with a rigid polypropylene outer shell layer. The flat dropper tests provide data on the rate dependency of the Poisson's ratio in these foam test specimens. The foam Poisson's ratios were found to be unaffected by the strain rate for the impact energies considered here. Acceleration-time data are reported along with deformation images from the video footage. The auxetic samples displayed a six times reduction in peak acceleration, showing potential in impact protector devices such as shin or thigh protectors in sports equipment applications.
This paper reports quasi‐static and low‐kinetic energy impact testing of auxetic and conventional open‐cell polyurethane foams. The auxetic foams were fabricated using the established thermo‐mechanical process originally developed by Lakes. Converted foams were subject to compression along each dimension to 85% and 70% of the unconverted dimension during the conversion process, corresponding to linear compression ratios of 0.85 and 0.7, respectively. The 0.7 linear compression ratio foams were confirmed to have a re‐entrant foam cell structure and to be auxetic. Impact tests were performed for kinetic energies up to 4 J using an instrumented drop rig and high speed video. A flat dropper was employed on isolated foams, and a hemispherical‐shaped dropper on foams covered with a rigid polypropylene outer shell layer. The flat dropper tests provide data on the rate dependency of the Poisson's ratio in these foam test specimens. The foam Poisson's ratios were found to be unaffected by the strain rate for the impact energies considered here. Acceleration‐time data are reported along with deformation images from the video footage. The auxetic samples displayed a six times reduction in peak acceleration, showing potential in impact protector devices such as shin or thigh protectors in sports equipment applications.
Author Alderson, A.
Foster, L.
Hewage, T. A. M.
Allen, T.
Senior, T.
Shepherd, J.
Author_xml – sequence: 1
  givenname: T.
  surname: Allen
  fullname: Allen, T.
  organization: Centre for Sports Engineering Research, Sheffield Hallam University, Howard Street, S1 1WB, Sheffield, UK
– sequence: 2
  givenname: J.
  surname: Shepherd
  fullname: Shepherd, J.
  organization: Centre for Sports Engineering Research, Sheffield Hallam University, Howard Street, S1 1WB, Sheffield, UK
– sequence: 3
  givenname: T. A. M.
  surname: Hewage
  fullname: Hewage, T. A. M.
  organization: Materials and Engineering Research Institute, Sheffield Hallam University, Howard Street, S1 1WB, Sheffield, UK
– sequence: 4
  givenname: T.
  surname: Senior
  fullname: Senior, T.
  organization: Centre for Sports Engineering Research, Sheffield Hallam University, Howard Street, S1 1WB, Sheffield, UK
– sequence: 5
  givenname: L.
  surname: Foster
  fullname: Foster, L.
  organization: Centre for Sports Engineering Research, Sheffield Hallam University, Howard Street, S1 1WB, Sheffield, UK
– sequence: 6
  givenname: A.
  surname: Alderson
  fullname: Alderson, A.
  email: aldersonandy@gmail.com
  organization: Materials and Engineering Research Institute, Sheffield Hallam University, Howard Street, S1 1WB, Sheffield, UK
BookMark eNqFkDtPwzAQgC0EEqWwMntkSfGjtpMREE-Vh0olBgbLcS5gSO1gp0D_PS1FCCEhplu-73T3baF1HzwgtEvJgBLC9tuUygEjdCioomIN9ahgNOOFoOuoR7giGS0U20RbKT0RQhTltIfuR-Ete3YeOmcxeIgPc-ymrbEdjpDa4BPgUGMze_8kjK-wDf4VfOeCNw0OLfjMQtPgNjTzWYTu0XjAdTDTtI02atMk2PmafTQ5OZ4cnWWj69Pzo4NRZnmei6xQZSmpFYZRUnMplSktE6BqPiyrvGJG1BXhPC-NUIUkMpeKlTK3MJSMVgXvo73V2jaGlxmkTk9dWp60OCTMkl7UyAvBc0IW6HCF2hhSilBr6zqzfKWLxjWaEr1MqZcp9XfKhTb4pbXRTU2c_y0UK-HNNTD_h9Y3t7eHP91s5brUwfu3a-Kzlooroe-uTvXkbHQpxxdSj_kHHmOZ3A
CitedBy_id crossref_primary_10_1016_j_measurement_2018_07_036
crossref_primary_10_1002_pssb_201570348
crossref_primary_10_1016_j_actamat_2017_01_004
crossref_primary_10_1088_1361_665X_acfddf
crossref_primary_10_1088_1361_665X_ac6ea2
crossref_primary_10_1016_j_compstruct_2017_09_076
crossref_primary_10_1016_j_compositesb_2020_108340
crossref_primary_10_1016_j_matdes_2018_11_002
crossref_primary_10_3390_ma12162573
crossref_primary_10_1016_j_isci_2022_105656
crossref_primary_10_3390_app8060941
crossref_primary_10_1016_j_polymertesting_2019_106189
crossref_primary_10_1115_1_4048198
crossref_primary_10_1061_JENMDT_EMENG_6978
crossref_primary_10_1088_2631_8695_ad337d
crossref_primary_10_1088_0964_1726_25_5_054014
crossref_primary_10_1073_pnas_1801540115
crossref_primary_10_1115_1_4051592
crossref_primary_10_1002_adem_202100872
crossref_primary_10_1016_j_compstruct_2017_03_018
crossref_primary_10_3390_app11031207
crossref_primary_10_1016_j_proeng_2016_06_323
crossref_primary_10_1007_s10853_017_1789_8
crossref_primary_10_1016_j_matdes_2021_110139
crossref_primary_10_1088_1361_665X_aac23a
crossref_primary_10_1080_15376494_2022_2139874
crossref_primary_10_1177_0021998318764021
crossref_primary_10_1016_j_ymssp_2022_109375
crossref_primary_10_4028_www_scientific_net_AMM_878_179
crossref_primary_10_1088_1361_665X_acd91c
crossref_primary_10_1007_s10853_016_9992_6
crossref_primary_10_1002_pssb_201700596
crossref_primary_10_1088_1361_665X_ace144
crossref_primary_10_3390_app8030354
crossref_primary_10_1080_17455030_2022_2128226
crossref_primary_10_1016_j_cej_2025_161088
crossref_primary_10_1088_0964_1726_25_5_054001
crossref_primary_10_1016_j_ijimpeng_2022_104315
crossref_primary_10_1108_RPJ_03_2023_0082
crossref_primary_10_1016_j_compositesb_2022_109733
crossref_primary_10_1002_pssb_201600140
crossref_primary_10_1016_j_compstruct_2021_113825
crossref_primary_10_1177_00219983231168698
crossref_primary_10_1016_j_polymer_2023_126664
crossref_primary_10_1002_pssb_202200324
crossref_primary_10_1002_pssb_201600106
crossref_primary_10_3390_ma15196963
crossref_primary_10_1002_adem_202101183
crossref_primary_10_1007_s10853_020_05366_z
crossref_primary_10_1016_j_ijimpeng_2018_06_001
crossref_primary_10_1021_acsapm_2c00269
crossref_primary_10_1016_j_compositesb_2022_109849
crossref_primary_10_1016_j_mser_2021_100628
crossref_primary_10_1016_j_ijimpeng_2022_104176
crossref_primary_10_1002_pssb_201800587
crossref_primary_10_1088_1757_899X_489_1_012038
crossref_primary_10_1002_pssb_201900197
crossref_primary_10_1088_2053_1591_ac9d83
crossref_primary_10_1016_j_compstruct_2025_118874
crossref_primary_10_1016_j_compstruct_2018_09_066
crossref_primary_10_1016_j_tws_2024_112409
crossref_primary_10_3390_sym13050865
crossref_primary_10_3389_fpubh_2024_1412518
crossref_primary_10_1016_j_apmt_2020_100775
crossref_primary_10_1016_j_eml_2020_101142
crossref_primary_10_1016_j_compscitech_2018_05_014
crossref_primary_10_1007_s13369_024_08817_w
crossref_primary_10_1088_1361_665X_aaa3cf
crossref_primary_10_1088_1361_665X_abdc06
crossref_primary_10_1016_j_engfracmech_2021_107824
Cites_doi 10.1155/2013/892781
10.1016/j.compositesb.2013.10.084
10.1002/pssb.200572714
10.1007/BF02403846
10.1016/j.msea.2008.11.002
10.1243/095440602321029382
10.1115/1.2806807
10.1177/0021955X13503844
10.1177/026248930102000601
10.1126/science.235.4792.1038
10.1002/pssb.201083975
10.1023/A:1004830103411
10.1542/peds.101.6.1057
10.2165/00007256-200333010-00006
10.1080/09500830600957340
10.1115/1.2919256
10.1023/A:1018606926094
10.1016/j.ijengsci.2012.01.010
10.1007/BF00551939
10.1007/BF02844024
10.1177/002199839302701203
10.1016/S0020-7683(02)00379-7
10.1088/0964-1726/22/8/084015
10.1016/j.proeng.2014.06.079
10.1002/pssb.201384232
10.1002/pssb.201384249
10.1136/bjsm.2005.018341
10.1002/adem.200800388
10.1007/BF02843972
10.1002/pssb.201384242
10.1007/s10853-008-2841-5
10.1038/353124a0
10.1177/1754337111431024
10.1002/pssb.200777701
10.1002/pssb.200777708
10.1016/j.ijfatigue.2006.07.015
ContentType Journal Article
Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SR
7U5
8FD
JG9
L7M
DOI 10.1002/pssb.201451715
DatabaseName Istex
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1521-3951
EndPage 1639
ExternalDocumentID 10_1002_pssb_201451715
PSSB201451715
ark_67375_WNG_THLM6RJ6_R
Genre article
GrantInformation_xml – fundername: Sheffield Hallam University
GroupedDBID .GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AFFNX
AFFPM
AFGKR
AFWVQ
AGHNM
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BSCLL
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
FEDTE
G.N
GNP
GYQRN
H.T
H.X
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
SAMSI
W8V
W99
WBKPD
WGJPS
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AEUQT
AFPWT
GODZA
RWI
WRC
AAYXX
AEYWJ
AGYGG
CITATION
7SR
7U5
8FD
JG9
L7M
ID FETCH-LOGICAL-c3885-97bb61c5a210f3667abc25e7f34bd8d2a5fd0338ba5796068672b68ce4621d93
IEDL.DBID DR2
ISSN 0370-1972
IngestDate Fri Jul 11 11:15:59 EDT 2025
Thu Apr 24 23:00:54 EDT 2025
Tue Jul 01 00:57:53 EDT 2025
Wed Jan 22 16:27:59 EST 2025
Wed Apr 02 05:41:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3885-97bb61c5a210f3667abc25e7f34bd8d2a5fd0338ba5796068672b68ce4621d93
Notes Sheffield Hallam University
istex:A8718AD678D1751A3AC22A1E176E42B4650E2532
ark:/67375/WNG-THLM6RJ6-R
ArticleID:PSSB201451715
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1718953800
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1718953800
crossref_citationtrail_10_1002_pssb_201451715
crossref_primary_10_1002_pssb_201451715
wiley_primary_10_1002_pssb_201451715_PSSB201451715
istex_primary_ark_67375_WNG_THLM6RJ6_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07
July 2015
2015-07-00
20150701
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07
PublicationDecade 2010
PublicationTitle Physica Status Solidi. B: Basic Solid State Physics
PublicationTitleAlternate Phys. Status Solidi B
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References B. Howell, P. Prendergast, and L. Hansen, Acoustic Behaviour of Negative Poisson's Ratio Materials, DTRC-SME-91/01 ( David Taylor Research Centre, Annapolis, MD, 1991).
C. P. Chen and R. S. Lakes, J. Eng. Mater. Technol. 118, 285-288 ( 1996).
S. A. McDonald, G. Dedreuil-Monet, Y. T. Yao, A. Alderson, and P. J. Withers, Phys. Status Solidi B 248(1), 45-51 ( 2011).
M. Sanami, N. Ravirala, K. Alderson, and A. Alderson, Proc. Eng. 72, 453-458 ( 2014).
R. S. Lakes and A. Lowe, Cell. Polym. 19, 157-167 ( 2000).
S. Ankrah and N. J. Mills, Sports Eng. 7(1), 41-52 ( 2004).
J. Lisiecki, T. Błazejewicz, S. Kłysz, G. Gmurczyk, P. Reymer, and G. Mikułowski, Phys. Status Solidi B 250(10), 1988-1995 ( 2013).
R. S. Lakes, Trans. ASME-J. Mech. Design 115, 696-700 ( 1993).
N. J. Mills, in: Sport Materials, edited by M. J. Jenkins ( Woodhead, Cambridge, 2003), chap. 2.
Y. C. Wang, R. S. Lakes, and A. Butenhoff, Cell. Polym. 20, 373-385 ( 2001).
A. McIntosh, Proc. Inst. Mech. Eng., Part P: J. Sports Eng. Technol. 226(3-4), 193-199 ( 2012).
T. C. Lim, A. Alderson, and K. L. Alderson, Phys. Status Solidi B 251(2), 307-313 ( 2014).
N. Chan and K. Evans, J. Mater. Sci. 32(22), 5945-5953 ( 1997).
L. L. Gibson and M. F. Ashby, Cellular Solids. Structure and Properties ( Pergamon Press, Oxford, 1988), ISBN 0-08- 036607-4.
P. Pastorino, F. Scarpa, S. Patsias, J. R. Yates, S. J. Haake, and M. Ruzzene, Phys. Status Solidi B 244(3), 955-965 ( 2007).
Y.-C. Wang and R. Lakes, Int. J. Solids Struct. 39, 4825-4838 ( 2002).
S. Ankrah and N. J. Mills, Sports Eng. 6(4), 207-219 ( 2003).
T. A. Adirim and T. L. Cheng, Sports Med. 33(1), 75-81 ( 2003).
C. Qi, S. Yang, D. Wang, and L.-J. Yang, Sci. World J. 2013, 892781 ( 2013).
J. N. Grima, D. Attard, R. Gatt, and R. Cassar, Adv. Eng. Mater. 11(7), 533-535 ( 2009).
Y. Hou, R. Neville, F. Scarpa, C. Remillat, B. Gua, and M. Ruzzene, Composites B 59, 33-42 ( 2014).
B. Moore, T. Jaglinski, D. S. Stone, and R. S. Lakes, Philos. Mag. Lett. 86(10), 651-659 ( 2006).
R. Bahr and T. Krosshaug, Br. J. Sports Med. 39(6), 324-329 ( 2005).
R. S. Lakes and K. Elms, J. Compos. Mater. 27(12), 1193-1202 ( 1993).
M. Uzun, Fibres Text. East. Eur. 20, 5(94) 70-74 ( 2012).
E. A. Friis, R. S. Lakes, and J. B. Park, J. Mater. Sci. 23, 4406-4414 ( 1988).
C. Ge, J. Cell. Plast. 49, 521-533 ( 2013).
C. Kocer, D. R. McKenzie, and M. M. Bilek, Mater. Sci. Eng. A 505, 111-115 ( 2009).
A. A. Poźniak, H. Kamiński, P. Kȩdziora, B. Maruszewski, T. Strȩk, and K. W. Wojciechowski, Rev. Adv. Mater. Sci. 23(2), 169-174 ( 2010).
M. Bianchi, F. L. Scarpa, and C. W. Smith, J. Mater. Sci. 43(17), 5851-5860 ( 2008).
F. Scarpa, J. R. Yates, L. G. Ciffo, and S. Patsias, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 216(12), 1153-1156 ( 2002).
J. N. Grima, R. Caruana-Gauci, K. W. Wojciechowski, and K. E. Evans, Smart Mater. Struct. 22(8), 084015 ( 2013).
A. C. Hergenroeder, Pediatrics 101(6), 1057-1063 ( 1998).
R. Lakes, Science 235, 1038-1040 ( 1987).
K. L. Alderson, A. Fitzgerald, and K. E. Evans, J. Mater. Sci. 35, 4039-4047 ( 2000).
J. Lisiecki, S. Kłysz, T. Błazejewicz, G. Gmurczyk, and P. Reymer, Phys. Status Solidi B 251(2), 314-320 ( 2014).
J. B. Choi and R. S. Lakes, J. Mater. Sci. 27, 5375-4684 ( 1992).
K. L. Alderson and V. L. Coenen, Phys. Status Solidi B 245(3), 489-496 ( 2008).
I. I. Argatov, R. Guinovart-Díaz, and F. J. Sabina, Int. J. Eng. Sci. 54, 42-57 ( 2012).
K. E. Evans, M. Nkansah, I. J. Hutchison, and S. C. Rogers, Nature 353, 124 ( 1991).
A. Bezazi and F. Scarpa, Int. J. Fatigue 29, 922-930 ( 2007).
R. Lakes and K. W. Wojciechowski, Phys. Status Solidi B 245(3), 545-551 ( 2008).
2002; 39
2007; 244
1991; 353
1993; 27
2013; 49
2013; 22
2011
2004; 7
2002; 216
2003
1991
2008; 245
2012; 226
2014; 251
2012; 54
2003; 33
2001; 20
2010; 23
2011; 248
2009; 11
2007; 29
2006; 86
2000; 19
1997; 32
2013; 2013
1987; 235
2000; 35
2003; 6
2014; 59
1988; 23
2008; 43
2013; 250
1992; 27
2005; 39
2014; 72
2009; 505
1998; 101
1993; 115
1996; 118
2012; 20
1988
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
Uzun M. (e_1_2_7_31_1) 2012; 20
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_16_1
Lakes R. S. (e_1_2_7_27_1) 2000; 19
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_29_1
Mills N. J. (e_1_2_7_8_1) 2003
Gibson L. L. (e_1_2_7_39_1) 1988
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
Lisiecki J. (e_1_2_7_24_1) 2013; 250
Howell B. (e_1_2_7_17_1) 1991
Poźniak A. A. (e_1_2_7_22_1) 2010; 23
References_xml – reference: S. A. McDonald, G. Dedreuil-Monet, Y. T. Yao, A. Alderson, and P. J. Withers, Phys. Status Solidi B 248(1), 45-51 ( 2011).
– reference: R. S. Lakes and K. Elms, J. Compos. Mater. 27(12), 1193-1202 ( 1993).
– reference: R. Bahr and T. Krosshaug, Br. J. Sports Med. 39(6), 324-329 ( 2005).
– reference: T. A. Adirim and T. L. Cheng, Sports Med. 33(1), 75-81 ( 2003).
– reference: K. L. Alderson and V. L. Coenen, Phys. Status Solidi B 245(3), 489-496 ( 2008).
– reference: E. A. Friis, R. S. Lakes, and J. B. Park, J. Mater. Sci. 23, 4406-4414 ( 1988).
– reference: R. Lakes and K. W. Wojciechowski, Phys. Status Solidi B 245(3), 545-551 ( 2008).
– reference: F. Scarpa, J. R. Yates, L. G. Ciffo, and S. Patsias, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 216(12), 1153-1156 ( 2002).
– reference: Y. C. Wang, R. S. Lakes, and A. Butenhoff, Cell. Polym. 20, 373-385 ( 2001).
– reference: A. McIntosh, Proc. Inst. Mech. Eng., Part P: J. Sports Eng. Technol. 226(3-4), 193-199 ( 2012).
– reference: R. S. Lakes and A. Lowe, Cell. Polym. 19, 157-167 ( 2000).
– reference: C. Ge, J. Cell. Plast. 49, 521-533 ( 2013).
– reference: P. Pastorino, F. Scarpa, S. Patsias, J. R. Yates, S. J. Haake, and M. Ruzzene, Phys. Status Solidi B 244(3), 955-965 ( 2007).
– reference: L. L. Gibson and M. F. Ashby, Cellular Solids. Structure and Properties ( Pergamon Press, Oxford, 1988), ISBN 0-08- 036607-4.
– reference: A. Bezazi and F. Scarpa, Int. J. Fatigue 29, 922-930 ( 2007).
– reference: M. Uzun, Fibres Text. East. Eur. 20, 5(94) 70-74 ( 2012).
– reference: J. N. Grima, D. Attard, R. Gatt, and R. Cassar, Adv. Eng. Mater. 11(7), 533-535 ( 2009).
– reference: B. Howell, P. Prendergast, and L. Hansen, Acoustic Behaviour of Negative Poisson's Ratio Materials, DTRC-SME-91/01 ( David Taylor Research Centre, Annapolis, MD, 1991).
– reference: K. L. Alderson, A. Fitzgerald, and K. E. Evans, J. Mater. Sci. 35, 4039-4047 ( 2000).
– reference: N. J. Mills, in: Sport Materials, edited by M. J. Jenkins ( Woodhead, Cambridge, 2003), chap. 2.
– reference: J. Lisiecki, T. Błazejewicz, S. Kłysz, G. Gmurczyk, P. Reymer, and G. Mikułowski, Phys. Status Solidi B 250(10), 1988-1995 ( 2013).
– reference: C. Qi, S. Yang, D. Wang, and L.-J. Yang, Sci. World J. 2013, 892781 ( 2013).
– reference: Y. Hou, R. Neville, F. Scarpa, C. Remillat, B. Gua, and M. Ruzzene, Composites B 59, 33-42 ( 2014).
– reference: R. S. Lakes, Trans. ASME-J. Mech. Design 115, 696-700 ( 1993).
– reference: C. P. Chen and R. S. Lakes, J. Eng. Mater. Technol. 118, 285-288 ( 1996).
– reference: T. C. Lim, A. Alderson, and K. L. Alderson, Phys. Status Solidi B 251(2), 307-313 ( 2014).
– reference: B. Moore, T. Jaglinski, D. S. Stone, and R. S. Lakes, Philos. Mag. Lett. 86(10), 651-659 ( 2006).
– reference: S. Ankrah and N. J. Mills, Sports Eng. 7(1), 41-52 ( 2004).
– reference: J. Lisiecki, S. Kłysz, T. Błazejewicz, G. Gmurczyk, and P. Reymer, Phys. Status Solidi B 251(2), 314-320 ( 2014).
– reference: M. Sanami, N. Ravirala, K. Alderson, and A. Alderson, Proc. Eng. 72, 453-458 ( 2014).
– reference: M. Bianchi, F. L. Scarpa, and C. W. Smith, J. Mater. Sci. 43(17), 5851-5860 ( 2008).
– reference: R. Lakes, Science 235, 1038-1040 ( 1987).
– reference: N. Chan and K. Evans, J. Mater. Sci. 32(22), 5945-5953 ( 1997).
– reference: A. A. Poźniak, H. Kamiński, P. Kȩdziora, B. Maruszewski, T. Strȩk, and K. W. Wojciechowski, Rev. Adv. Mater. Sci. 23(2), 169-174 ( 2010).
– reference: J. B. Choi and R. S. Lakes, J. Mater. Sci. 27, 5375-4684 ( 1992).
– reference: J. N. Grima, R. Caruana-Gauci, K. W. Wojciechowski, and K. E. Evans, Smart Mater. Struct. 22(8), 084015 ( 2013).
– reference: C. Kocer, D. R. McKenzie, and M. M. Bilek, Mater. Sci. Eng. A 505, 111-115 ( 2009).
– reference: Y.-C. Wang and R. Lakes, Int. J. Solids Struct. 39, 4825-4838 ( 2002).
– reference: I. I. Argatov, R. Guinovart-Díaz, and F. J. Sabina, Int. J. Eng. Sci. 54, 42-57 ( 2012).
– reference: A. C. Hergenroeder, Pediatrics 101(6), 1057-1063 ( 1998).
– reference: S. Ankrah and N. J. Mills, Sports Eng. 6(4), 207-219 ( 2003).
– reference: K. E. Evans, M. Nkansah, I. J. Hutchison, and S. C. Rogers, Nature 353, 124 ( 1991).
– volume: 251
  start-page: 307
  issue: 2
  year: 2014
  end-page: 313
  publication-title: Phys. Status Solidi B
– volume: 35
  start-page: 4039
  year: 2000
  end-page: 4047
  publication-title: J. Mater. Sci.
– volume: 86
  start-page: 651
  issue: 10
  year: 2006
  end-page: 659
  publication-title: Philos. Mag. Lett.
– volume: 244
  start-page: 955
  issue: 3
  year: 2007
  end-page: 965
  publication-title: Phys. Status Solidi B
– volume: 19
  start-page: 157
  year: 2000
  end-page: 167
  publication-title: Cell. Polym.
– volume: 32
  start-page: 5945
  issue: 22
  year: 1997
  end-page: 5953
  publication-title: J. Mater. Sci.
– volume: 20
  start-page: 373
  year: 2001
  end-page: 385
  publication-title: Cell. Polym.
– volume: 39
  start-page: 324
  issue: 6
  year: 2005
  end-page: 329
  publication-title: Br. J. Sports Med.
– volume: 27
  start-page: 1193
  issue: 12
  year: 1993
  end-page: 1202
  publication-title: J. Compos. Mater.
– volume: 59
  start-page: 33
  year: 2014
  end-page: 42
  publication-title: Composites B
– year: 2003
– volume: 248
  start-page: 45
  issue: 1
  year: 2011
  end-page: 51
  publication-title: Phys. Status Solidi B
– volume: 7
  start-page: 41
  issue: 1
  year: 2004
  end-page: 52
  publication-title: Sports Eng.
– volume: 118
  start-page: 285
  year: 1996
  end-page: 288
  publication-title: J. Eng. Mater. Technol.
– volume: 20
  start-page: 70
  year: 2012
  end-page: 74
  publication-title: Fibres Text. East. Eur.
– volume: 2013
  start-page: 892781
  year: 2013
  publication-title: Sci. World J.
– volume: 23
  start-page: 4406
  year: 1988
  end-page: 4414
  publication-title: J. Mater. Sci.
– volume: 49
  start-page: 521
  year: 2013
  end-page: 533
  publication-title: J. Cell. Plast.
– volume: 33
  start-page: 75
  issue: 1
  year: 2003
  end-page: 81
  publication-title: Sports Med.
– volume: 11
  start-page: 533
  issue: 7
  year: 2009
  end-page: 535
  publication-title: Adv. Eng. Mater.
– volume: 245
  start-page: 489
  issue: 3
  year: 2008
  end-page: 496
  publication-title: Phys. Status Solidi B
– volume: 43
  start-page: 5851
  issue: 17
  year: 2008
  end-page: 5860
  publication-title: J. Mater. Sci.
– volume: 27
  start-page: 5375
  year: 1992
  end-page: 4684
  publication-title: J. Mater. Sci.
– start-page: 955
  year: 2011
  end-page: 965
– volume: 216
  start-page: 1153
  issue: 12
  year: 2002
  end-page: 1156
  publication-title: Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
– volume: 226
  start-page: 193
  issue: 3‐4
  year: 2012
  end-page: 199
  publication-title: Proc. Inst. Mech. Eng., Part P: J. Sports Eng. Technol.
– volume: 250
  start-page: 1988
  issue: 10
  year: 2013
  end-page: 1995
  publication-title: Phys. Status Solidi B
– volume: 353
  start-page: 124
  year: 1991
  publication-title: Nature
– volume: 23
  start-page: 169
  issue: 2
  year: 2010
  end-page: 174
  publication-title: Rev. Adv. Mater. Sci.
– volume: 39
  start-page: 4825
  year: 2002
  end-page: 4838
  publication-title: Int. J. Solids Struct.
– volume: 101
  start-page: 1057
  issue: 6
  year: 1998
  end-page: 1063
  publication-title: Pediatrics
– year: 1988
– volume: 6
  start-page: 207
  issue: 4
  year: 2003
  end-page: 219
  publication-title: Sports Eng.
– volume: 29
  start-page: 922
  year: 2007
  end-page: 930
  publication-title: Int. J. Fatigue
– volume: 72
  start-page: 453
  year: 2014
  end-page: 458
  publication-title: Proc. Eng.
– volume: 251
  start-page: 314
  issue: 2
  year: 2014
  end-page: 320
  publication-title: Phys. Status Solidi B
– volume: 235
  start-page: 1038
  year: 1987
  end-page: 1040
  publication-title: Science
– volume: 54
  start-page: 42
  year: 2012
  end-page: 57
  publication-title: Int. J. Eng. Sci.
– volume: 22
  start-page: 084015
  issue: 8
  year: 2013
  publication-title: Smart Mater. Struct.
– year: 1991
– volume: 115
  start-page: 696
  year: 1993
  end-page: 700
  publication-title: Trans. ASME—J. Mech. Design
– volume: 245
  start-page: 545
  issue: 3
  year: 2008
  end-page: 551
  publication-title: Phys. Status Solidi B
– volume: 505
  start-page: 111
  year: 2009
  end-page: 115
  publication-title: Mater. Sci. Eng. A
– ident: e_1_2_7_37_1
– ident: e_1_2_7_38_1
  doi: 10.1155/2013/892781
– ident: e_1_2_7_29_1
  doi: 10.1016/j.compositesb.2013.10.084
– ident: e_1_2_7_40_1
  doi: 10.1002/pssb.200572714
– ident: e_1_2_7_15_1
  doi: 10.1007/BF02403846
– ident: e_1_2_7_35_1
  doi: 10.1016/j.msea.2008.11.002
– volume-title: Cellular Solids. Structure and Properties
  year: 1988
  ident: e_1_2_7_39_1
– ident: e_1_2_7_28_1
  doi: 10.1243/095440602321029382
– ident: e_1_2_7_18_1
  doi: 10.1115/1.2806807
– ident: e_1_2_7_23_1
  doi: 10.1177/0021955X13503844
– ident: e_1_2_7_43_1
  doi: 10.1177/026248930102000601
– ident: e_1_2_7_11_1
  doi: 10.1126/science.235.4792.1038
– ident: e_1_2_7_41_1
  doi: 10.1002/pssb.201083975
– ident: e_1_2_7_32_1
  doi: 10.1023/A:1004830103411
– ident: e_1_2_7_2_1
  doi: 10.1542/peds.101.6.1057
– ident: e_1_2_7_3_1
  doi: 10.2165/00007256-200333010-00006
– ident: e_1_2_7_19_1
  doi: 10.1080/09500830600957340
– ident: e_1_2_7_34_1
  doi: 10.1115/1.2919256
– volume-title: Acoustic Behaviour of Negative Poisson's Ratio Materials
  year: 1991
  ident: e_1_2_7_17_1
– volume: 23
  start-page: 169
  issue: 2
  year: 2010
  ident: e_1_2_7_22_1
  publication-title: Rev. Adv. Mater. Sci.
– ident: e_1_2_7_14_1
  doi: 10.1023/A:1018606926094
– ident: e_1_2_7_33_1
  doi: 10.1016/j.ijengsci.2012.01.010
– volume: 19
  start-page: 157
  year: 2000
  ident: e_1_2_7_27_1
  publication-title: Cell. Polym.
– ident: e_1_2_7_42_1
  doi: 10.1007/BF00551939
– ident: e_1_2_7_6_1
  doi: 10.1007/BF02844024
– ident: e_1_2_7_13_1
  doi: 10.1177/002199839302701203
– ident: e_1_2_7_36_1
  doi: 10.1016/S0020-7683(02)00379-7
– ident: e_1_2_7_21_1
  doi: 10.1088/0964-1726/22/8/084015
– volume: 20
  start-page: 70
  year: 2012
  ident: e_1_2_7_31_1
  publication-title: Fibres Text. East. Eur.
– ident: e_1_2_7_9_1
  doi: 10.1016/j.proeng.2014.06.079
– volume: 250
  start-page: 1988
  issue: 10
  year: 2013
  ident: e_1_2_7_24_1
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.201384232
– ident: e_1_2_7_26_1
  doi: 10.1002/pssb.201384249
– ident: e_1_2_7_4_1
  doi: 10.1136/bjsm.2005.018341
– ident: e_1_2_7_12_1
  doi: 10.1002/adem.200800388
– ident: e_1_2_7_7_1
  doi: 10.1007/BF02843972
– ident: e_1_2_7_25_1
  doi: 10.1002/pssb.201384242
– ident: e_1_2_7_44_1
  doi: 10.1007/s10853-008-2841-5
– ident: e_1_2_7_10_1
  doi: 10.1038/353124a0
– ident: e_1_2_7_5_1
  doi: 10.1177/1754337111431024
– ident: e_1_2_7_30_1
  doi: 10.1002/pssb.200777701
– ident: e_1_2_7_20_1
  doi: 10.1002/pssb.200777708
– ident: e_1_2_7_16_1
  doi: 10.1016/j.ijfatigue.2006.07.015
– volume-title: Sport Materials
  year: 2003
  ident: e_1_2_7_8_1
SSID ssj0007131
ssj0047196
Score 2.4125164
Snippet This paper reports quasi‐static and low‐kinetic energy impact testing of auxetic and conventional open‐cell polyurethane foams. The auxetic foams were...
This paper reports quasi-static and low-kinetic energy impact testing of auxetic and conventional open-cell polyurethane foams. The auxetic foams were...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1631
SubjectTerms auxetic
Compression ratio
Flats
foam
Foams
impact
Impact response
Impact tests
negative Poisson's ratio
Plastic foam
Poissons ratio
Polyurethane foam
Title Low-kinetic energy impact response of auxetic and conventional open-cell polyurethane foams
URI https://api.istex.fr/ark:/67375/WNG-THLM6RJ6-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssb.201451715
https://www.proquest.com/docview/1718953800
Volume 252
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBYlodBLH2lL3UdQoDQnJWutHrvH9JGYYIdiuzQ3IWm1Fyde4_XStKf-hP7G_JJoJHtjB0Khve3C7CwaaaSR9M03CL23qSiBhoQYJzRhuaBEO8YJk84Htz4-14GuaXAmet_Y6Tk_X8vij_wQ7YEbeEaYr8HBtakPb0lDZ3VtAJrFeFeGLHMAbEFUNLzlj_I7sBbw4WfhPN5cyoRAsa0VhWNCDzd1bSxR22Dtq434cz2KDcvQ8ROkVw2I6JPJQbMwB_bXHW7H_2nhU_R4GaPiozionqEHbrqDHgasqK2fI9Wvflz__jPx-r0AdiF7EMd0SzyPmFuHqxLr5ipI6GmB19HtGEp2eQ1waYBn1cXPZu7gBN_hstKX9Qs0Pv4y_tQjyzoNxKZZxkkujRFdy7XfPpapEFIbS7mTZcpMkRVU87JI_FbYaEh8hZwUSY3IrGOCdos8fYm2ptXUvUI410yWxtgSipPnKQwWWljetZQJIynrILLqGWWXHOZQSuNCRfZlqsBmqrVZB-238rPI3nGv5IfQ0a2Ynk8A8ya5-n52osa9_kAMT4UadtDeaiQo74lgKW-fqqmVV5Plfv1Ikg6ioV__8k_1dTT62L69_peP3qBH_plH_PBbtLWYN-6dj5IWZhdtH30e9Ee7wSNuACBCC04
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKwQXylNdysNICE5us44fybEgylJ2V2i7CG6W7TiXLZvVZiMKJ35Cf2N_ST32Ju0iISQ4JprYythjz9jffIPQS5uKEmhIiHFCE5YLSrRjnDDpvHPr_XMd6JpGYzH4zI6_8hZNCLkwkR-iO3ADywjrNRg4HEgfXLGGLuraADaL8b6ENPNtKOsdoqrJFYOUj8E6yIdfh_N4dykTAuW2WhLHhB5sNraxSW2Dvs82PNDrfmzYiI52kGl_IeJPZvvNyuzbn7-xO_7XP95Fd9ZuKj6M8-oeuuHm99HNABe19QOkhtX3i1_nM9-BF8AuJBDimHGJlxF263BVYt2cBQk9L_B1gDuGql2-Bbg3wIvq9EezdHCI73BZ6W_1QzQ9ejd9OyDrUg3EplnGSS6NEX3LtY8gy1QIqY2l3MkyZabICqp5WSQ-GjYacl8hLUVSIzLrmKD9Ik8foa15NXe7COeaydIYW0J98jyF-UILy_uWMmEkZT1E2qFRdk1jDtU0TlUkYKYKdKY6nfXQ605-EQk8_ij5Kox0J6aXM4C9Sa6-jN-r6WA4EpNjoSY99KKdCsobI2jK66dqauWbyXK_hSRJD9EwsH_pU306OXnTPT3-l4-eo1uD6Wiohh_GH_fQbf-eRzjxE7S1WjbuqXeaVuZZMItLXWIN1Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQKxAXKC81PI2E4OR24_Vj9wgtIZQ0qtIgerNsr31JyUbZrCic-An8xv6SerzJNkFCSHDc1axXHs_YY_ubbxB6ZVPhgYaEGCc0YbmgRDvGCZMuBLchPteRrul4KPqf2dEZP1vL4m_4IdoDN_CMOF-Dg88Kv39NGjqrKgPQLMa7ErLMt5lIMrDrw9E1gVTYgrWIjzAN583VpUwIVNtacTgmdH-zsY01ahvUfbERgK6HsXEd6t1FetWDBn4y2asXZs_--I3c8X-6uIPuLINU_LaxqnvohpveRzcjWNRWD5AalN8uf_6ahPaDAHYxfRA3-ZZ43oBuHS491vVFlNDTAq_D2zHU7AotwK0BnpXn3-u5gyN8h32pv1YP0bj3fnzQJ8tCDcSmWcZJLo0RXct12D_6VAipjaXcSZ8yU2QF1dwXSdgLGw2Zr5CUIqkRmXVM0G6Rp4_Q1rScul2Ec82kN8Z6qE6ep2AttLC8aykTRlLWQWQ1MsouScyhlsa5auiXqQKdqVZnHfSmlZ819B1_lHwdB7oV0_MJgN4kV1-GH9S4PzgWoyOhRh30cmUJKrgiaCrop6wrFZrJ8rCAJEkH0Tiuf_mnOjk9fdc-Pf6Xj16gWyeHPTX4OPz0BN0Or3mDJX6Kthbz2j0LEdPCPI9OcQVFZgyN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-kinetic+energy+impact+response+of+auxetic+and+conventional+open-cell+polyurethane+foams&rft.jtitle=Physica+Status+Solidi.+B%3A+Basic+Solid+State+Physics&rft.au=Allen%2C+T&rft.au=Shepherd%2C+J&rft.au=Hewage%2C+TAM&rft.au=Senior%2C+T&rft.date=2015-07-01&rft.issn=0370-1972&rft.eissn=1521-3951&rft.volume=252&rft.issue=7&rft.spage=1631&rft.epage=1639&rft_id=info:doi/10.1002%2Fpssb.201451715&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-1972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-1972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-1972&client=summon