Low-kinetic energy impact response of auxetic and conventional open-cell polyurethane foams
This paper reports quasi‐static and low‐kinetic energy impact testing of auxetic and conventional open‐cell polyurethane foams. The auxetic foams were fabricated using the established thermo‐mechanical process originally developed by Lakes. Converted foams were subject to compression along each dime...
Saved in:
Published in | Physica Status Solidi. B: Basic Solid State Physics Vol. 252; no. 7; pp. 1631 - 1639 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.07.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0370-1972 1521-3951 |
DOI | 10.1002/pssb.201451715 |
Cover
Loading…
Abstract | This paper reports quasi‐static and low‐kinetic energy impact testing of auxetic and conventional open‐cell polyurethane foams. The auxetic foams were fabricated using the established thermo‐mechanical process originally developed by Lakes. Converted foams were subject to compression along each dimension to 85% and 70% of the unconverted dimension during the conversion process, corresponding to linear compression ratios of 0.85 and 0.7, respectively. The 0.7 linear compression ratio foams were confirmed to have a re‐entrant foam cell structure and to be auxetic. Impact tests were performed for kinetic energies up to 4 J using an instrumented drop rig and high speed video. A flat dropper was employed on isolated foams, and a hemispherical‐shaped dropper on foams covered with a rigid polypropylene outer shell layer. The flat dropper tests provide data on the rate dependency of the Poisson's ratio in these foam test specimens. The foam Poisson's ratios were found to be unaffected by the strain rate for the impact energies considered here. Acceleration‐time data are reported along with deformation images from the video footage. The auxetic samples displayed a six times reduction in peak acceleration, showing potential in impact protector devices such as shin or thigh protectors in sports equipment applications. |
---|---|
AbstractList | This paper reports quasi-static and low-kinetic energy impact testing of auxetic and conventional open-cell polyurethane foams. The auxetic foams were fabricated using the established thermo-mechanical process originally developed by Lakes. Converted foams were subject to compression along each dimension to 85% and 70% of the unconverted dimension during the conversion process, corresponding to linear compression ratios of 0.85 and 0.7, respectively. The 0.7 linear compression ratio foams were confirmed to have a re-entrant foam cell structure and to be auxetic. Impact tests were performed for kinetic energies up to 4J using an instrumented drop rig and high speed video. A flat dropper was employed on isolated foams, and a hemispherical-shaped dropper on foams covered with a rigid polypropylene outer shell layer. The flat dropper tests provide data on the rate dependency of the Poisson's ratio in these foam test specimens. The foam Poisson's ratios were found to be unaffected by the strain rate for the impact energies considered here. Acceleration-time data are reported along with deformation images from the video footage. The auxetic samples displayed a six times reduction in peak acceleration, showing potential in impact protector devices such as shin or thigh protectors in sports equipment applications. This paper reports quasi‐static and low‐kinetic energy impact testing of auxetic and conventional open‐cell polyurethane foams. The auxetic foams were fabricated using the established thermo‐mechanical process originally developed by Lakes. Converted foams were subject to compression along each dimension to 85% and 70% of the unconverted dimension during the conversion process, corresponding to linear compression ratios of 0.85 and 0.7, respectively. The 0.7 linear compression ratio foams were confirmed to have a re‐entrant foam cell structure and to be auxetic. Impact tests were performed for kinetic energies up to 4 J using an instrumented drop rig and high speed video. A flat dropper was employed on isolated foams, and a hemispherical‐shaped dropper on foams covered with a rigid polypropylene outer shell layer. The flat dropper tests provide data on the rate dependency of the Poisson's ratio in these foam test specimens. The foam Poisson's ratios were found to be unaffected by the strain rate for the impact energies considered here. Acceleration‐time data are reported along with deformation images from the video footage. The auxetic samples displayed a six times reduction in peak acceleration, showing potential in impact protector devices such as shin or thigh protectors in sports equipment applications. |
Author | Alderson, A. Foster, L. Hewage, T. A. M. Allen, T. Senior, T. Shepherd, J. |
Author_xml | – sequence: 1 givenname: T. surname: Allen fullname: Allen, T. organization: Centre for Sports Engineering Research, Sheffield Hallam University, Howard Street, S1 1WB, Sheffield, UK – sequence: 2 givenname: J. surname: Shepherd fullname: Shepherd, J. organization: Centre for Sports Engineering Research, Sheffield Hallam University, Howard Street, S1 1WB, Sheffield, UK – sequence: 3 givenname: T. A. M. surname: Hewage fullname: Hewage, T. A. M. organization: Materials and Engineering Research Institute, Sheffield Hallam University, Howard Street, S1 1WB, Sheffield, UK – sequence: 4 givenname: T. surname: Senior fullname: Senior, T. organization: Centre for Sports Engineering Research, Sheffield Hallam University, Howard Street, S1 1WB, Sheffield, UK – sequence: 5 givenname: L. surname: Foster fullname: Foster, L. organization: Centre for Sports Engineering Research, Sheffield Hallam University, Howard Street, S1 1WB, Sheffield, UK – sequence: 6 givenname: A. surname: Alderson fullname: Alderson, A. email: aldersonandy@gmail.com organization: Materials and Engineering Research Institute, Sheffield Hallam University, Howard Street, S1 1WB, Sheffield, UK |
BookMark | eNqFkDtPwzAQgC0EEqWwMntkSfGjtpMREE-Vh0olBgbLcS5gSO1gp0D_PS1FCCEhplu-73T3baF1HzwgtEvJgBLC9tuUygEjdCioomIN9ahgNOOFoOuoR7giGS0U20RbKT0RQhTltIfuR-Ete3YeOmcxeIgPc-ymrbEdjpDa4BPgUGMze_8kjK-wDf4VfOeCNw0OLfjMQtPgNjTzWYTu0XjAdTDTtI02atMk2PmafTQ5OZ4cnWWj69Pzo4NRZnmei6xQZSmpFYZRUnMplSktE6BqPiyrvGJG1BXhPC-NUIUkMpeKlTK3MJSMVgXvo73V2jaGlxmkTk9dWp60OCTMkl7UyAvBc0IW6HCF2hhSilBr6zqzfKWLxjWaEr1MqZcp9XfKhTb4pbXRTU2c_y0UK-HNNTD_h9Y3t7eHP91s5brUwfu3a-Kzlooroe-uTvXkbHQpxxdSj_kHHmOZ3A |
CitedBy_id | crossref_primary_10_1016_j_measurement_2018_07_036 crossref_primary_10_1002_pssb_201570348 crossref_primary_10_1016_j_actamat_2017_01_004 crossref_primary_10_1088_1361_665X_acfddf crossref_primary_10_1088_1361_665X_ac6ea2 crossref_primary_10_1016_j_compstruct_2017_09_076 crossref_primary_10_1016_j_compositesb_2020_108340 crossref_primary_10_1016_j_matdes_2018_11_002 crossref_primary_10_3390_ma12162573 crossref_primary_10_1016_j_isci_2022_105656 crossref_primary_10_3390_app8060941 crossref_primary_10_1016_j_polymertesting_2019_106189 crossref_primary_10_1115_1_4048198 crossref_primary_10_1061_JENMDT_EMENG_6978 crossref_primary_10_1088_2631_8695_ad337d crossref_primary_10_1088_0964_1726_25_5_054014 crossref_primary_10_1073_pnas_1801540115 crossref_primary_10_1115_1_4051592 crossref_primary_10_1002_adem_202100872 crossref_primary_10_1016_j_compstruct_2017_03_018 crossref_primary_10_3390_app11031207 crossref_primary_10_1016_j_proeng_2016_06_323 crossref_primary_10_1007_s10853_017_1789_8 crossref_primary_10_1016_j_matdes_2021_110139 crossref_primary_10_1088_1361_665X_aac23a crossref_primary_10_1080_15376494_2022_2139874 crossref_primary_10_1177_0021998318764021 crossref_primary_10_1016_j_ymssp_2022_109375 crossref_primary_10_4028_www_scientific_net_AMM_878_179 crossref_primary_10_1088_1361_665X_acd91c crossref_primary_10_1007_s10853_016_9992_6 crossref_primary_10_1002_pssb_201700596 crossref_primary_10_1088_1361_665X_ace144 crossref_primary_10_3390_app8030354 crossref_primary_10_1080_17455030_2022_2128226 crossref_primary_10_1016_j_cej_2025_161088 crossref_primary_10_1088_0964_1726_25_5_054001 crossref_primary_10_1016_j_ijimpeng_2022_104315 crossref_primary_10_1108_RPJ_03_2023_0082 crossref_primary_10_1016_j_compositesb_2022_109733 crossref_primary_10_1002_pssb_201600140 crossref_primary_10_1016_j_compstruct_2021_113825 crossref_primary_10_1177_00219983231168698 crossref_primary_10_1016_j_polymer_2023_126664 crossref_primary_10_1002_pssb_202200324 crossref_primary_10_1002_pssb_201600106 crossref_primary_10_3390_ma15196963 crossref_primary_10_1002_adem_202101183 crossref_primary_10_1007_s10853_020_05366_z crossref_primary_10_1016_j_ijimpeng_2018_06_001 crossref_primary_10_1021_acsapm_2c00269 crossref_primary_10_1016_j_compositesb_2022_109849 crossref_primary_10_1016_j_mser_2021_100628 crossref_primary_10_1016_j_ijimpeng_2022_104176 crossref_primary_10_1002_pssb_201800587 crossref_primary_10_1088_1757_899X_489_1_012038 crossref_primary_10_1002_pssb_201900197 crossref_primary_10_1088_2053_1591_ac9d83 crossref_primary_10_1016_j_compstruct_2025_118874 crossref_primary_10_1016_j_compstruct_2018_09_066 crossref_primary_10_1016_j_tws_2024_112409 crossref_primary_10_3390_sym13050865 crossref_primary_10_3389_fpubh_2024_1412518 crossref_primary_10_1016_j_apmt_2020_100775 crossref_primary_10_1016_j_eml_2020_101142 crossref_primary_10_1016_j_compscitech_2018_05_014 crossref_primary_10_1007_s13369_024_08817_w crossref_primary_10_1088_1361_665X_aaa3cf crossref_primary_10_1088_1361_665X_abdc06 crossref_primary_10_1016_j_engfracmech_2021_107824 |
Cites_doi | 10.1155/2013/892781 10.1016/j.compositesb.2013.10.084 10.1002/pssb.200572714 10.1007/BF02403846 10.1016/j.msea.2008.11.002 10.1243/095440602321029382 10.1115/1.2806807 10.1177/0021955X13503844 10.1177/026248930102000601 10.1126/science.235.4792.1038 10.1002/pssb.201083975 10.1023/A:1004830103411 10.1542/peds.101.6.1057 10.2165/00007256-200333010-00006 10.1080/09500830600957340 10.1115/1.2919256 10.1023/A:1018606926094 10.1016/j.ijengsci.2012.01.010 10.1007/BF00551939 10.1007/BF02844024 10.1177/002199839302701203 10.1016/S0020-7683(02)00379-7 10.1088/0964-1726/22/8/084015 10.1016/j.proeng.2014.06.079 10.1002/pssb.201384232 10.1002/pssb.201384249 10.1136/bjsm.2005.018341 10.1002/adem.200800388 10.1007/BF02843972 10.1002/pssb.201384242 10.1007/s10853-008-2841-5 10.1038/353124a0 10.1177/1754337111431024 10.1002/pssb.200777701 10.1002/pssb.200777708 10.1016/j.ijfatigue.2006.07.015 |
ContentType | Journal Article |
Copyright | 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SR 7U5 8FD JG9 L7M |
DOI | 10.1002/pssb.201451715 |
DatabaseName | Istex CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1521-3951 |
EndPage | 1639 |
ExternalDocumentID | 10_1002_pssb_201451715 PSSB201451715 ark_67375_WNG_THLM6RJ6_R |
Genre | article |
GrantInformation_xml | – fundername: Sheffield Hallam University |
GroupedDBID | .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AFFNX AFFPM AFGKR AFWVQ AGHNM AHBTC AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB AUFTA AZBYB AZFZN AZVAB BAFTC BHBCM BMNLL BMXJE BNHUX BROTX BSCLL BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 FEDTE G.N GNP GYQRN H.T H.X HGLYW HHY HVGLF HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RNS ROL RX1 SAMSI W8V W99 WBKPD WGJPS WIH WIK WOHZO WQJ WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AEUQT AFPWT GODZA RWI WRC AAYXX AEYWJ AGYGG CITATION 7SR 7U5 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3885-97bb61c5a210f3667abc25e7f34bd8d2a5fd0338ba5796068672b68ce4621d93 |
IEDL.DBID | DR2 |
ISSN | 0370-1972 |
IngestDate | Fri Jul 11 11:15:59 EDT 2025 Thu Apr 24 23:00:54 EDT 2025 Tue Jul 01 00:57:53 EDT 2025 Wed Jan 22 16:27:59 EST 2025 Wed Apr 02 05:41:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3885-97bb61c5a210f3667abc25e7f34bd8d2a5fd0338ba5796068672b68ce4621d93 |
Notes | Sheffield Hallam University istex:A8718AD678D1751A3AC22A1E176E42B4650E2532 ark:/67375/WNG-THLM6RJ6-R ArticleID:PSSB201451715 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1718953800 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1718953800 crossref_citationtrail_10_1002_pssb_201451715 crossref_primary_10_1002_pssb_201451715 wiley_primary_10_1002_pssb_201451715_PSSB201451715 istex_primary_ark_67375_WNG_THLM6RJ6_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-07 July 2015 2015-07-00 20150701 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07 |
PublicationDecade | 2010 |
PublicationTitle | Physica Status Solidi. B: Basic Solid State Physics |
PublicationTitleAlternate | Phys. Status Solidi B |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | B. Howell, P. Prendergast, and L. Hansen, Acoustic Behaviour of Negative Poisson's Ratio Materials, DTRC-SME-91/01 ( David Taylor Research Centre, Annapolis, MD, 1991). C. P. Chen and R. S. Lakes, J. Eng. Mater. Technol. 118, 285-288 ( 1996). S. A. McDonald, G. Dedreuil-Monet, Y. T. Yao, A. Alderson, and P. J. Withers, Phys. Status Solidi B 248(1), 45-51 ( 2011). M. Sanami, N. Ravirala, K. Alderson, and A. Alderson, Proc. Eng. 72, 453-458 ( 2014). R. S. Lakes and A. Lowe, Cell. Polym. 19, 157-167 ( 2000). S. Ankrah and N. J. Mills, Sports Eng. 7(1), 41-52 ( 2004). J. Lisiecki, T. Błazejewicz, S. Kłysz, G. Gmurczyk, P. Reymer, and G. Mikułowski, Phys. Status Solidi B 250(10), 1988-1995 ( 2013). R. S. Lakes, Trans. ASME-J. Mech. Design 115, 696-700 ( 1993). N. J. Mills, in: Sport Materials, edited by M. J. Jenkins ( Woodhead, Cambridge, 2003), chap. 2. Y. C. Wang, R. S. Lakes, and A. Butenhoff, Cell. Polym. 20, 373-385 ( 2001). A. McIntosh, Proc. Inst. Mech. Eng., Part P: J. Sports Eng. Technol. 226(3-4), 193-199 ( 2012). T. C. Lim, A. Alderson, and K. L. Alderson, Phys. Status Solidi B 251(2), 307-313 ( 2014). N. Chan and K. Evans, J. Mater. Sci. 32(22), 5945-5953 ( 1997). L. L. Gibson and M. F. Ashby, Cellular Solids. Structure and Properties ( Pergamon Press, Oxford, 1988), ISBN 0-08- 036607-4. P. Pastorino, F. Scarpa, S. Patsias, J. R. Yates, S. J. Haake, and M. Ruzzene, Phys. Status Solidi B 244(3), 955-965 ( 2007). Y.-C. Wang and R. Lakes, Int. J. Solids Struct. 39, 4825-4838 ( 2002). S. Ankrah and N. J. Mills, Sports Eng. 6(4), 207-219 ( 2003). T. A. Adirim and T. L. Cheng, Sports Med. 33(1), 75-81 ( 2003). C. Qi, S. Yang, D. Wang, and L.-J. Yang, Sci. World J. 2013, 892781 ( 2013). J. N. Grima, D. Attard, R. Gatt, and R. Cassar, Adv. Eng. Mater. 11(7), 533-535 ( 2009). Y. Hou, R. Neville, F. Scarpa, C. Remillat, B. Gua, and M. Ruzzene, Composites B 59, 33-42 ( 2014). B. Moore, T. Jaglinski, D. S. Stone, and R. S. Lakes, Philos. Mag. Lett. 86(10), 651-659 ( 2006). R. Bahr and T. Krosshaug, Br. J. Sports Med. 39(6), 324-329 ( 2005). R. S. Lakes and K. Elms, J. Compos. Mater. 27(12), 1193-1202 ( 1993). M. Uzun, Fibres Text. East. Eur. 20, 5(94) 70-74 ( 2012). E. A. Friis, R. S. Lakes, and J. B. Park, J. Mater. Sci. 23, 4406-4414 ( 1988). C. Ge, J. Cell. Plast. 49, 521-533 ( 2013). C. Kocer, D. R. McKenzie, and M. M. Bilek, Mater. Sci. Eng. A 505, 111-115 ( 2009). A. A. Poźniak, H. Kamiński, P. Kȩdziora, B. Maruszewski, T. Strȩk, and K. W. Wojciechowski, Rev. Adv. Mater. Sci. 23(2), 169-174 ( 2010). M. Bianchi, F. L. Scarpa, and C. W. Smith, J. Mater. Sci. 43(17), 5851-5860 ( 2008). F. Scarpa, J. R. Yates, L. G. Ciffo, and S. Patsias, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 216(12), 1153-1156 ( 2002). J. N. Grima, R. Caruana-Gauci, K. W. Wojciechowski, and K. E. Evans, Smart Mater. Struct. 22(8), 084015 ( 2013). A. C. Hergenroeder, Pediatrics 101(6), 1057-1063 ( 1998). R. Lakes, Science 235, 1038-1040 ( 1987). K. L. Alderson, A. Fitzgerald, and K. E. Evans, J. Mater. Sci. 35, 4039-4047 ( 2000). J. Lisiecki, S. Kłysz, T. Błazejewicz, G. Gmurczyk, and P. Reymer, Phys. Status Solidi B 251(2), 314-320 ( 2014). J. B. Choi and R. S. Lakes, J. Mater. Sci. 27, 5375-4684 ( 1992). K. L. Alderson and V. L. Coenen, Phys. Status Solidi B 245(3), 489-496 ( 2008). I. I. Argatov, R. Guinovart-Díaz, and F. J. Sabina, Int. J. Eng. Sci. 54, 42-57 ( 2012). K. E. Evans, M. Nkansah, I. J. Hutchison, and S. C. Rogers, Nature 353, 124 ( 1991). A. Bezazi and F. Scarpa, Int. J. Fatigue 29, 922-930 ( 2007). R. Lakes and K. W. Wojciechowski, Phys. Status Solidi B 245(3), 545-551 ( 2008). 2002; 39 2007; 244 1991; 353 1993; 27 2013; 49 2013; 22 2011 2004; 7 2002; 216 2003 1991 2008; 245 2012; 226 2014; 251 2012; 54 2003; 33 2001; 20 2010; 23 2011; 248 2009; 11 2007; 29 2006; 86 2000; 19 1997; 32 2013; 2013 1987; 235 2000; 35 2003; 6 2014; 59 1988; 23 2008; 43 2013; 250 1992; 27 2005; 39 2014; 72 2009; 505 1998; 101 1993; 115 1996; 118 2012; 20 1988 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 Uzun M. (e_1_2_7_31_1) 2012; 20 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_16_1 Lakes R. S. (e_1_2_7_27_1) 2000; 19 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_29_1 Mills N. J. (e_1_2_7_8_1) 2003 Gibson L. L. (e_1_2_7_39_1) 1988 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 Lisiecki J. (e_1_2_7_24_1) 2013; 250 Howell B. (e_1_2_7_17_1) 1991 Poźniak A. A. (e_1_2_7_22_1) 2010; 23 |
References_xml | – reference: S. A. McDonald, G. Dedreuil-Monet, Y. T. Yao, A. Alderson, and P. J. Withers, Phys. Status Solidi B 248(1), 45-51 ( 2011). – reference: R. S. Lakes and K. Elms, J. Compos. Mater. 27(12), 1193-1202 ( 1993). – reference: R. Bahr and T. Krosshaug, Br. J. Sports Med. 39(6), 324-329 ( 2005). – reference: T. A. Adirim and T. L. Cheng, Sports Med. 33(1), 75-81 ( 2003). – reference: K. L. Alderson and V. L. Coenen, Phys. Status Solidi B 245(3), 489-496 ( 2008). – reference: E. A. Friis, R. S. Lakes, and J. B. Park, J. Mater. Sci. 23, 4406-4414 ( 1988). – reference: R. Lakes and K. W. Wojciechowski, Phys. Status Solidi B 245(3), 545-551 ( 2008). – reference: F. Scarpa, J. R. Yates, L. G. Ciffo, and S. Patsias, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 216(12), 1153-1156 ( 2002). – reference: Y. C. Wang, R. S. Lakes, and A. Butenhoff, Cell. Polym. 20, 373-385 ( 2001). – reference: A. McIntosh, Proc. Inst. Mech. Eng., Part P: J. Sports Eng. Technol. 226(3-4), 193-199 ( 2012). – reference: R. S. Lakes and A. Lowe, Cell. Polym. 19, 157-167 ( 2000). – reference: C. Ge, J. Cell. Plast. 49, 521-533 ( 2013). – reference: P. Pastorino, F. Scarpa, S. Patsias, J. R. Yates, S. J. Haake, and M. Ruzzene, Phys. Status Solidi B 244(3), 955-965 ( 2007). – reference: L. L. Gibson and M. F. Ashby, Cellular Solids. Structure and Properties ( Pergamon Press, Oxford, 1988), ISBN 0-08- 036607-4. – reference: A. Bezazi and F. Scarpa, Int. J. Fatigue 29, 922-930 ( 2007). – reference: M. Uzun, Fibres Text. East. Eur. 20, 5(94) 70-74 ( 2012). – reference: J. N. Grima, D. Attard, R. Gatt, and R. Cassar, Adv. Eng. Mater. 11(7), 533-535 ( 2009). – reference: B. Howell, P. Prendergast, and L. Hansen, Acoustic Behaviour of Negative Poisson's Ratio Materials, DTRC-SME-91/01 ( David Taylor Research Centre, Annapolis, MD, 1991). – reference: K. L. Alderson, A. Fitzgerald, and K. E. Evans, J. Mater. Sci. 35, 4039-4047 ( 2000). – reference: N. J. Mills, in: Sport Materials, edited by M. J. Jenkins ( Woodhead, Cambridge, 2003), chap. 2. – reference: J. Lisiecki, T. Błazejewicz, S. Kłysz, G. Gmurczyk, P. Reymer, and G. Mikułowski, Phys. Status Solidi B 250(10), 1988-1995 ( 2013). – reference: C. Qi, S. Yang, D. Wang, and L.-J. Yang, Sci. World J. 2013, 892781 ( 2013). – reference: Y. Hou, R. Neville, F. Scarpa, C. Remillat, B. Gua, and M. Ruzzene, Composites B 59, 33-42 ( 2014). – reference: R. S. Lakes, Trans. ASME-J. Mech. Design 115, 696-700 ( 1993). – reference: C. P. Chen and R. S. Lakes, J. Eng. Mater. Technol. 118, 285-288 ( 1996). – reference: T. C. Lim, A. Alderson, and K. L. Alderson, Phys. Status Solidi B 251(2), 307-313 ( 2014). – reference: B. Moore, T. Jaglinski, D. S. Stone, and R. S. Lakes, Philos. Mag. Lett. 86(10), 651-659 ( 2006). – reference: S. Ankrah and N. J. Mills, Sports Eng. 7(1), 41-52 ( 2004). – reference: J. Lisiecki, S. Kłysz, T. Błazejewicz, G. Gmurczyk, and P. Reymer, Phys. Status Solidi B 251(2), 314-320 ( 2014). – reference: M. Sanami, N. Ravirala, K. Alderson, and A. Alderson, Proc. Eng. 72, 453-458 ( 2014). – reference: M. Bianchi, F. L. Scarpa, and C. W. Smith, J. Mater. Sci. 43(17), 5851-5860 ( 2008). – reference: R. Lakes, Science 235, 1038-1040 ( 1987). – reference: N. Chan and K. Evans, J. Mater. Sci. 32(22), 5945-5953 ( 1997). – reference: A. A. Poźniak, H. Kamiński, P. Kȩdziora, B. Maruszewski, T. Strȩk, and K. W. Wojciechowski, Rev. Adv. Mater. Sci. 23(2), 169-174 ( 2010). – reference: J. B. Choi and R. S. Lakes, J. Mater. Sci. 27, 5375-4684 ( 1992). – reference: J. N. Grima, R. Caruana-Gauci, K. W. Wojciechowski, and K. E. Evans, Smart Mater. Struct. 22(8), 084015 ( 2013). – reference: C. Kocer, D. R. McKenzie, and M. M. Bilek, Mater. Sci. Eng. A 505, 111-115 ( 2009). – reference: Y.-C. Wang and R. Lakes, Int. J. Solids Struct. 39, 4825-4838 ( 2002). – reference: I. I. Argatov, R. Guinovart-Díaz, and F. J. Sabina, Int. J. Eng. Sci. 54, 42-57 ( 2012). – reference: A. C. Hergenroeder, Pediatrics 101(6), 1057-1063 ( 1998). – reference: S. Ankrah and N. J. Mills, Sports Eng. 6(4), 207-219 ( 2003). – reference: K. E. Evans, M. Nkansah, I. J. Hutchison, and S. C. Rogers, Nature 353, 124 ( 1991). – volume: 251 start-page: 307 issue: 2 year: 2014 end-page: 313 publication-title: Phys. Status Solidi B – volume: 35 start-page: 4039 year: 2000 end-page: 4047 publication-title: J. Mater. Sci. – volume: 86 start-page: 651 issue: 10 year: 2006 end-page: 659 publication-title: Philos. Mag. Lett. – volume: 244 start-page: 955 issue: 3 year: 2007 end-page: 965 publication-title: Phys. Status Solidi B – volume: 19 start-page: 157 year: 2000 end-page: 167 publication-title: Cell. Polym. – volume: 32 start-page: 5945 issue: 22 year: 1997 end-page: 5953 publication-title: J. Mater. Sci. – volume: 20 start-page: 373 year: 2001 end-page: 385 publication-title: Cell. Polym. – volume: 39 start-page: 324 issue: 6 year: 2005 end-page: 329 publication-title: Br. J. Sports Med. – volume: 27 start-page: 1193 issue: 12 year: 1993 end-page: 1202 publication-title: J. Compos. Mater. – volume: 59 start-page: 33 year: 2014 end-page: 42 publication-title: Composites B – year: 2003 – volume: 248 start-page: 45 issue: 1 year: 2011 end-page: 51 publication-title: Phys. Status Solidi B – volume: 7 start-page: 41 issue: 1 year: 2004 end-page: 52 publication-title: Sports Eng. – volume: 118 start-page: 285 year: 1996 end-page: 288 publication-title: J. Eng. Mater. Technol. – volume: 20 start-page: 70 year: 2012 end-page: 74 publication-title: Fibres Text. East. Eur. – volume: 2013 start-page: 892781 year: 2013 publication-title: Sci. World J. – volume: 23 start-page: 4406 year: 1988 end-page: 4414 publication-title: J. Mater. Sci. – volume: 49 start-page: 521 year: 2013 end-page: 533 publication-title: J. Cell. Plast. – volume: 33 start-page: 75 issue: 1 year: 2003 end-page: 81 publication-title: Sports Med. – volume: 11 start-page: 533 issue: 7 year: 2009 end-page: 535 publication-title: Adv. Eng. Mater. – volume: 245 start-page: 489 issue: 3 year: 2008 end-page: 496 publication-title: Phys. Status Solidi B – volume: 43 start-page: 5851 issue: 17 year: 2008 end-page: 5860 publication-title: J. Mater. Sci. – volume: 27 start-page: 5375 year: 1992 end-page: 4684 publication-title: J. Mater. Sci. – start-page: 955 year: 2011 end-page: 965 – volume: 216 start-page: 1153 issue: 12 year: 2002 end-page: 1156 publication-title: Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. – volume: 226 start-page: 193 issue: 3‐4 year: 2012 end-page: 199 publication-title: Proc. Inst. Mech. Eng., Part P: J. Sports Eng. Technol. – volume: 250 start-page: 1988 issue: 10 year: 2013 end-page: 1995 publication-title: Phys. Status Solidi B – volume: 353 start-page: 124 year: 1991 publication-title: Nature – volume: 23 start-page: 169 issue: 2 year: 2010 end-page: 174 publication-title: Rev. Adv. Mater. Sci. – volume: 39 start-page: 4825 year: 2002 end-page: 4838 publication-title: Int. J. Solids Struct. – volume: 101 start-page: 1057 issue: 6 year: 1998 end-page: 1063 publication-title: Pediatrics – year: 1988 – volume: 6 start-page: 207 issue: 4 year: 2003 end-page: 219 publication-title: Sports Eng. – volume: 29 start-page: 922 year: 2007 end-page: 930 publication-title: Int. J. Fatigue – volume: 72 start-page: 453 year: 2014 end-page: 458 publication-title: Proc. Eng. – volume: 251 start-page: 314 issue: 2 year: 2014 end-page: 320 publication-title: Phys. Status Solidi B – volume: 235 start-page: 1038 year: 1987 end-page: 1040 publication-title: Science – volume: 54 start-page: 42 year: 2012 end-page: 57 publication-title: Int. J. Eng. Sci. – volume: 22 start-page: 084015 issue: 8 year: 2013 publication-title: Smart Mater. Struct. – year: 1991 – volume: 115 start-page: 696 year: 1993 end-page: 700 publication-title: Trans. ASME—J. Mech. Design – volume: 245 start-page: 545 issue: 3 year: 2008 end-page: 551 publication-title: Phys. Status Solidi B – volume: 505 start-page: 111 year: 2009 end-page: 115 publication-title: Mater. Sci. Eng. A – ident: e_1_2_7_37_1 – ident: e_1_2_7_38_1 doi: 10.1155/2013/892781 – ident: e_1_2_7_29_1 doi: 10.1016/j.compositesb.2013.10.084 – ident: e_1_2_7_40_1 doi: 10.1002/pssb.200572714 – ident: e_1_2_7_15_1 doi: 10.1007/BF02403846 – ident: e_1_2_7_35_1 doi: 10.1016/j.msea.2008.11.002 – volume-title: Cellular Solids. Structure and Properties year: 1988 ident: e_1_2_7_39_1 – ident: e_1_2_7_28_1 doi: 10.1243/095440602321029382 – ident: e_1_2_7_18_1 doi: 10.1115/1.2806807 – ident: e_1_2_7_23_1 doi: 10.1177/0021955X13503844 – ident: e_1_2_7_43_1 doi: 10.1177/026248930102000601 – ident: e_1_2_7_11_1 doi: 10.1126/science.235.4792.1038 – ident: e_1_2_7_41_1 doi: 10.1002/pssb.201083975 – ident: e_1_2_7_32_1 doi: 10.1023/A:1004830103411 – ident: e_1_2_7_2_1 doi: 10.1542/peds.101.6.1057 – ident: e_1_2_7_3_1 doi: 10.2165/00007256-200333010-00006 – ident: e_1_2_7_19_1 doi: 10.1080/09500830600957340 – ident: e_1_2_7_34_1 doi: 10.1115/1.2919256 – volume-title: Acoustic Behaviour of Negative Poisson's Ratio Materials year: 1991 ident: e_1_2_7_17_1 – volume: 23 start-page: 169 issue: 2 year: 2010 ident: e_1_2_7_22_1 publication-title: Rev. Adv. Mater. Sci. – ident: e_1_2_7_14_1 doi: 10.1023/A:1018606926094 – ident: e_1_2_7_33_1 doi: 10.1016/j.ijengsci.2012.01.010 – volume: 19 start-page: 157 year: 2000 ident: e_1_2_7_27_1 publication-title: Cell. Polym. – ident: e_1_2_7_42_1 doi: 10.1007/BF00551939 – ident: e_1_2_7_6_1 doi: 10.1007/BF02844024 – ident: e_1_2_7_13_1 doi: 10.1177/002199839302701203 – ident: e_1_2_7_36_1 doi: 10.1016/S0020-7683(02)00379-7 – ident: e_1_2_7_21_1 doi: 10.1088/0964-1726/22/8/084015 – volume: 20 start-page: 70 year: 2012 ident: e_1_2_7_31_1 publication-title: Fibres Text. East. Eur. – ident: e_1_2_7_9_1 doi: 10.1016/j.proeng.2014.06.079 – volume: 250 start-page: 1988 issue: 10 year: 2013 ident: e_1_2_7_24_1 publication-title: Phys. Status Solidi B doi: 10.1002/pssb.201384232 – ident: e_1_2_7_26_1 doi: 10.1002/pssb.201384249 – ident: e_1_2_7_4_1 doi: 10.1136/bjsm.2005.018341 – ident: e_1_2_7_12_1 doi: 10.1002/adem.200800388 – ident: e_1_2_7_7_1 doi: 10.1007/BF02843972 – ident: e_1_2_7_25_1 doi: 10.1002/pssb.201384242 – ident: e_1_2_7_44_1 doi: 10.1007/s10853-008-2841-5 – ident: e_1_2_7_10_1 doi: 10.1038/353124a0 – ident: e_1_2_7_5_1 doi: 10.1177/1754337111431024 – ident: e_1_2_7_30_1 doi: 10.1002/pssb.200777701 – ident: e_1_2_7_20_1 doi: 10.1002/pssb.200777708 – ident: e_1_2_7_16_1 doi: 10.1016/j.ijfatigue.2006.07.015 – volume-title: Sport Materials year: 2003 ident: e_1_2_7_8_1 |
SSID | ssj0007131 ssj0047196 |
Score | 2.4125164 |
Snippet | This paper reports quasi‐static and low‐kinetic energy impact testing of auxetic and conventional open‐cell polyurethane foams. The auxetic foams were... This paper reports quasi-static and low-kinetic energy impact testing of auxetic and conventional open-cell polyurethane foams. The auxetic foams were... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1631 |
SubjectTerms | auxetic Compression ratio Flats foam Foams impact Impact response Impact tests negative Poisson's ratio Plastic foam Poissons ratio Polyurethane foam |
Title | Low-kinetic energy impact response of auxetic and conventional open-cell polyurethane foams |
URI | https://api.istex.fr/ark:/67375/WNG-THLM6RJ6-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssb.201451715 https://www.proquest.com/docview/1718953800 |
Volume | 252 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBYlodBLH2lL3UdQoDQnJWutHrvH9JGYYIdiuzQ3IWm1Fyde4_XStKf-hP7G_JJoJHtjB0Khve3C7CwaaaSR9M03CL23qSiBhoQYJzRhuaBEO8YJk84Htz4-14GuaXAmet_Y6Tk_X8vij_wQ7YEbeEaYr8HBtakPb0lDZ3VtAJrFeFeGLHMAbEFUNLzlj_I7sBbw4WfhPN5cyoRAsa0VhWNCDzd1bSxR22Dtq434cz2KDcvQ8ROkVw2I6JPJQbMwB_bXHW7H_2nhU_R4GaPiozionqEHbrqDHgasqK2fI9Wvflz__jPx-r0AdiF7EMd0SzyPmFuHqxLr5ipI6GmB19HtGEp2eQ1waYBn1cXPZu7gBN_hstKX9Qs0Pv4y_tQjyzoNxKZZxkkujRFdy7XfPpapEFIbS7mTZcpMkRVU87JI_FbYaEh8hZwUSY3IrGOCdos8fYm2ptXUvUI410yWxtgSipPnKQwWWljetZQJIynrILLqGWWXHOZQSuNCRfZlqsBmqrVZB-238rPI3nGv5IfQ0a2Ynk8A8ya5-n52osa9_kAMT4UadtDeaiQo74lgKW-fqqmVV5Plfv1Ikg6ioV__8k_1dTT62L69_peP3qBH_plH_PBbtLWYN-6dj5IWZhdtH30e9Ee7wSNuACBCC04 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKwQXylNdysNICE5us44fybEgylJ2V2i7CG6W7TiXLZvVZiMKJ35Cf2N_ST32Ju0iISQ4JprYythjz9jffIPQS5uKEmhIiHFCE5YLSrRjnDDpvHPr_XMd6JpGYzH4zI6_8hZNCLkwkR-iO3ADywjrNRg4HEgfXLGGLuraADaL8b6ENPNtKOsdoqrJFYOUj8E6yIdfh_N4dykTAuW2WhLHhB5sNraxSW2Dvs82PNDrfmzYiI52kGl_IeJPZvvNyuzbn7-xO_7XP95Fd9ZuKj6M8-oeuuHm99HNABe19QOkhtX3i1_nM9-BF8AuJBDimHGJlxF263BVYt2cBQk9L_B1gDuGql2-Bbg3wIvq9EezdHCI73BZ6W_1QzQ9ejd9OyDrUg3EplnGSS6NEX3LtY8gy1QIqY2l3MkyZabICqp5WSQ-GjYacl8hLUVSIzLrmKD9Ik8foa15NXe7COeaydIYW0J98jyF-UILy_uWMmEkZT1E2qFRdk1jDtU0TlUkYKYKdKY6nfXQ605-EQk8_ij5Kox0J6aXM4C9Sa6-jN-r6WA4EpNjoSY99KKdCsobI2jK66dqauWbyXK_hSRJD9EwsH_pU306OXnTPT3-l4-eo1uD6Wiohh_GH_fQbf-eRzjxE7S1WjbuqXeaVuZZMItLXWIN1Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQKxAXKC81PI2E4OR24_Vj9wgtIZQ0qtIgerNsr31JyUbZrCic-An8xv6SerzJNkFCSHDc1axXHs_YY_ubbxB6ZVPhgYaEGCc0YbmgRDvGCZMuBLchPteRrul4KPqf2dEZP1vL4m_4IdoDN_CMOF-Dg88Kv39NGjqrKgPQLMa7ErLMt5lIMrDrw9E1gVTYgrWIjzAN583VpUwIVNtacTgmdH-zsY01ahvUfbERgK6HsXEd6t1FetWDBn4y2asXZs_--I3c8X-6uIPuLINU_LaxqnvohpveRzcjWNRWD5AalN8uf_6ahPaDAHYxfRA3-ZZ43oBuHS491vVFlNDTAq_D2zHU7AotwK0BnpXn3-u5gyN8h32pv1YP0bj3fnzQJ8tCDcSmWcZJLo0RXct12D_6VAipjaXcSZ8yU2QF1dwXSdgLGw2Zr5CUIqkRmXVM0G6Rp4_Q1rScul2Ec82kN8Z6qE6ep2AttLC8aykTRlLWQWQ1MsouScyhlsa5auiXqQKdqVZnHfSmlZ819B1_lHwdB7oV0_MJgN4kV1-GH9S4PzgWoyOhRh30cmUJKrgiaCrop6wrFZrJ8rCAJEkH0Tiuf_mnOjk9fdc-Pf6Xj16gWyeHPTX4OPz0BN0Or3mDJX6Kthbz2j0LEdPCPI9OcQVFZgyN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-kinetic+energy+impact+response+of+auxetic+and+conventional+open-cell+polyurethane+foams&rft.jtitle=Physica+Status+Solidi.+B%3A+Basic+Solid+State+Physics&rft.au=Allen%2C+T&rft.au=Shepherd%2C+J&rft.au=Hewage%2C+TAM&rft.au=Senior%2C+T&rft.date=2015-07-01&rft.issn=0370-1972&rft.eissn=1521-3951&rft.volume=252&rft.issue=7&rft.spage=1631&rft.epage=1639&rft_id=info:doi/10.1002%2Fpssb.201451715&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-1972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-1972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-1972&client=summon |