Response of the mechanical and chiral character of ethane to ultra‐fast laser pulses
A pair of simulated left and right circularly polarized ultra‐fast laser pulses of duration 20 femtoseconds that induce a mixture of excited states are applied to ethane. The response of the electron dynamics is investigated within the next generation quantum theory of atoms in molecules (NG‐QTAIM)...
Saved in:
Published in | Journal of computational chemistry Vol. 45; no. 3; pp. 150 - 158 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
30.01.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A pair of simulated left and right circularly polarized ultra‐fast laser pulses of duration 20 femtoseconds that induce a mixture of excited states are applied to ethane. The response of the electron dynamics is investigated within the next generation quantum theory of atoms in molecules (NG‐QTAIM) using third‐generation eigenvector‐trajectories which are introduced in this work. This enables an analysis of the mechanical and chiral properties of the electron dynamics of ethane without needing to subject the C‐C bond to external torsions as was the case for second‐generation eigenvector‐trajectories. The mechanical properties, in particular, the bond‐flexing and bond‐torsion were found to increase depending on the plane of the applied laser pulses. The bond‐flexing and bond‐torsion, depending on the plane of polarization, increases or decreases after the laser pulses are switched off. This is explainable in terms of directionally‐dependent effects of the long‐lasting superpositions of excited states. The chiral properties correspond to the ethane molecule being classified as formally achiral consistent with previous NG‐QTAIM investigations. Future planned investigations using ultra‐fast circularly polarized lasers are briefly discussed.
The ethane C1‐C2 bond critical point (BCP) Hessian of ρ(r) eigenvector‐trajectories T(s) for the for the clockwise (CW, [+1]) (red) and counter‐clockwise (CCW, [−1]) (blue) circularly laser pulse polarized in yz plane 60 femtoseconds after the pulses are switched off. The end of each T(s) is denoted by a cube marker. The most (±e2) and least (±e1) preferred eigenvector directions of the total charge density accumulation ρ(rb). The inset is the view down the ethane C1‐C2 BCP bond‐path, showing the Cartesian yz axes, where the BCPs are represented by undecorated green spheres. |
---|---|
AbstractList | A pair of simulated left and right circularly polarized ultra‐fast laser pulses of duration 20 femtoseconds that induce a mixture of excited states are applied to ethane. The response of the electron dynamics is investigated within the next generation quantum theory of atoms in molecules (NG‐QTAIM) using third‐generation eigenvector‐trajectories which are introduced in this work. This enables an analysis of the mechanical and chiral properties of the electron dynamics of ethane without needing to subject the C‐C bond to external torsions as was the case for second‐generation eigenvector‐trajectories. The mechanical properties, in particular, the bond‐flexing and bond‐torsion were found to increase depending on the plane of the applied laser pulses. The bond‐flexing and bond‐torsion, depending on the plane of polarization, increases or decreases after the laser pulses are switched off. This is explainable in terms of directionally‐dependent effects of the long‐lasting superpositions of excited states. The chiral properties correspond to the ethane molecule being classified as formally achiral consistent with previous NG‐QTAIM investigations. Future planned investigations using ultra‐fast circularly polarized lasers are briefly discussed. A pair of simulated left and right circularly polarized ultra-fast laser pulses of duration 20 femtoseconds that induce a mixture of excited states are applied to ethane. The response of the electron dynamics is investigated within the next generation quantum theory of atoms in molecules (NG-QTAIM) using third-generation eigenvector-trajectories which are introduced in this work. This enables an analysis of the mechanical and chiral properties of the electron dynamics of ethane without needing to subject the C-C bond to external torsions as was the case for second-generation eigenvector-trajectories. The mechanical properties, in particular, the bond-flexing and bond-torsion were found to increase depending on the plane of the applied laser pulses. The bond-flexing and bond-torsion, depending on the plane of polarization, increases or decreases after the laser pulses are switched off. This is explainable in terms of directionally-dependent effects of the long-lasting superpositions of excited states. The chiral properties correspond to the ethane molecule being classified as formally achiral consistent with previous NG-QTAIM investigations. Future planned investigations using ultra-fast circularly polarized lasers are briefly discussed.A pair of simulated left and right circularly polarized ultra-fast laser pulses of duration 20 femtoseconds that induce a mixture of excited states are applied to ethane. The response of the electron dynamics is investigated within the next generation quantum theory of atoms in molecules (NG-QTAIM) using third-generation eigenvector-trajectories which are introduced in this work. This enables an analysis of the mechanical and chiral properties of the electron dynamics of ethane without needing to subject the C-C bond to external torsions as was the case for second-generation eigenvector-trajectories. The mechanical properties, in particular, the bond-flexing and bond-torsion were found to increase depending on the plane of the applied laser pulses. The bond-flexing and bond-torsion, depending on the plane of polarization, increases or decreases after the laser pulses are switched off. This is explainable in terms of directionally-dependent effects of the long-lasting superpositions of excited states. The chiral properties correspond to the ethane molecule being classified as formally achiral consistent with previous NG-QTAIM investigations. Future planned investigations using ultra-fast circularly polarized lasers are briefly discussed. A pair of simulated left and right circularly polarized ultra‐fast laser pulses of duration 20 femtoseconds that induce a mixture of excited states are applied to ethane. The response of the electron dynamics is investigated within the next generation quantum theory of atoms in molecules (NG‐QTAIM) using third‐generation eigenvector‐trajectories which are introduced in this work. This enables an analysis of the mechanical and chiral properties of the electron dynamics of ethane without needing to subject the C‐C bond to external torsions as was the case for second‐generation eigenvector‐trajectories. The mechanical properties, in particular, the bond‐flexing and bond‐torsion were found to increase depending on the plane of the applied laser pulses. The bond‐flexing and bond‐torsion, depending on the plane of polarization, increases or decreases after the laser pulses are switched off. This is explainable in terms of directionally‐dependent effects of the long‐lasting superpositions of excited states. The chiral properties correspond to the ethane molecule being classified as formally achiral consistent with previous NG‐QTAIM investigations. Future planned investigations using ultra‐fast circularly polarized lasers are briefly discussed. The ethane C1‐C2 bond critical point (BCP) Hessian of ρ(r) eigenvector‐trajectories T(s) for the for the clockwise (CW, [+1]) (red) and counter‐clockwise (CCW, [−1]) (blue) circularly laser pulse polarized in yz plane 60 femtoseconds after the pulses are switched off. The end of each T(s) is denoted by a cube marker. The most (±e2) and least (±e1) preferred eigenvector directions of the total charge density accumulation ρ(rb). The inset is the view down the ethane C1‐C2 BCP bond‐path, showing the Cartesian yz axes, where the BCPs are represented by undecorated green spheres. |
Author | Xu, Tianlv Mourik, Tanja Lu, Hui Kirk, Steven R. Mi, Xiao Peng Früchtl, Herbert Jenkins, Samantha Paterson, Martin J. |
Author_xml | – sequence: 1 givenname: Xiao Peng surname: Mi fullname: Mi, Xiao Peng organization: Hunan Normal University – sequence: 2 givenname: Hui surname: Lu fullname: Lu, Hui organization: Hunan Normal University – sequence: 3 givenname: Tianlv surname: Xu fullname: Xu, Tianlv organization: Hunan Normal University – sequence: 4 givenname: Herbert surname: Früchtl fullname: Früchtl, Herbert organization: University of Saint Andrews – sequence: 5 givenname: Tanja orcidid: 0000-0001-7683-3293 surname: Mourik fullname: Mourik, Tanja organization: University of Saint Andrews – sequence: 6 givenname: Martin J. orcidid: 0000-0002-0012-974X surname: Paterson fullname: Paterson, Martin J. organization: Heriot‐Watt University – sequence: 7 givenname: Steven R. surname: Kirk fullname: Kirk, Steven R. email: steven.kirk@cantab.net organization: Hunan Normal University – sequence: 8 givenname: Samantha orcidid: 0000-0002-4288-7653 surname: Jenkins fullname: Jenkins, Samantha email: samanthajsuman@gmail.com organization: Hunan Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37698200$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1KAzEUhYNUtK0ufAEZcKOLqcnM5G8pxV8EQVTchTRzh06ZTmqSQbrzEXxGn8TU1k3RVS653zkc7hmgXmtbQOiI4BHBODufGTPKeJbRHdQnWLJUCv7aQ31MZJYKRsk-Gng_wxjnlBV7aD_nTIoM4z56eQS_sK2HxFZJmEIyBzPVbW10k-i2TMy0dnGMf06bAG6FQYgEJMEmXROc_vr4rLQPSaN93C-6xoM_QLuVjsPh5h2i56vLp_FNev9wfTu-uE9NLgRNi2pSQIENIzyGy9ikYJLyktEKaw7FJActSwLAuDHAMK4EB1JqqTFlVJI8H6LTte_C2bcOfFDz2htomhjQdl5lghWECl7wiJ5soTPbuTami5SUucgpZZE63lDdZA6lWrh6rt1S_V4sAudrwDjrvYNKmTroUNs2nqJuFMFq1YmKnaifTqLibEvxa_oXu3F_rxtY_g-qu_F4rfgGT3eaLg |
CitedBy_id | crossref_primary_10_1016_j_cplett_2024_141391 crossref_primary_10_1021_acs_chemrev_4c00297 |
Cites_doi | 10.1063/5.0079910 10.1002/qua.26884 10.1021/ja00808a004 10.1002/ijch.201100097 10.1103/PhysRevA.102.063103 10.1063/1.3098140 10.3390/molecules27186099 10.1002/jcc.27126 10.1016/j.cplett.2018.10.029 10.1016/j.cplett.2022.139762 10.1063/1.456153 10.1039/C9CP05879F 10.1088/0953-8984/12/49/3 10.1002/jcc.24358 10.1039/D1CC01904J 10.1039/D3CS00350G 10.1016/j.cplett.2022.139669 10.1021/jacs.0c05128 10.1016/j.cplett.2017.04.017 10.1126/sciadv.adj1429 10.1021/jp953512m 10.1002/qua.25847 10.1063/1.4948646 10.1016/j.cplett.2004.06.011 10.1103/PhysRevLett.117.033001 10.1016/j.cplett.2019.136907 10.1073/pnas.1907189116 10.1021/acs.jpclett.7b03416 10.1063/1.462569 10.1103/PhysRevA.101.021403 10.1002/jcc.24896 10.1038/nphys3369 10.1002/jcc.24792 10.1002/jcc.24499 10.1038/s41567-017-0038-z 10.1002/qua.25676 10.1063/1.2973634 10.1063/5.0090232 10.1016/j.cplett.2016.11.028 10.1002/wcms.1611 10.1021/acs.jctc.0c01228 10.1063/1.4966260 10.1103/PhysRevX.9.031002 10.1002/qua.25565 10.1103/PhysRevA.98.021401 10.1016/j.cpc.2013.10.026 10.1126/science.1206997 10.1063/1.5004675 |
ContentType | Journal Article |
Copyright | 2023 Wiley Periodicals LLC. 2024 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2023 Wiley Periodicals LLC. – notice: 2024 Wiley Periodicals LLC. |
DBID | AAYXX CITATION NPM JQ2 7X8 |
DOI | 10.1002/jcc.27225 |
DatabaseName | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic ProQuest Computer Science Collection PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1096-987X |
EndPage | 158 |
ExternalDocumentID | 37698200 10_1002_jcc_27225 JCC27225 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 2022JJ30029 – fundername: National Natural Science Foundation of China grantid: 2022JJ30029 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 36B 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YQT ZZTAW ~IA ~KM ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION NPM JQ2 7X8 |
ID | FETCH-LOGICAL-c3885-4fb4e40c61700026b46957d65f0a7e4b3ea9d1ee67cce600f87e1da9a05659133 |
IEDL.DBID | DR2 |
ISSN | 0192-8651 1096-987X |
IngestDate | Fri Jul 11 01:17:41 EDT 2025 Fri Jul 25 10:50:50 EDT 2025 Thu Apr 03 06:54:03 EDT 2025 Thu Apr 24 23:11:53 EDT 2025 Tue Jul 01 02:05:06 EDT 2025 Sun Jul 06 04:45:22 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | electron dynamics chiral ethane next generation quantum theory of atoms in molecules ultra-fast laser |
Language | English |
License | 2023 Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3885-4fb4e40c61700026b46957d65f0a7e4b3ea9d1ee67cce600f87e1da9a05659133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7683-3293 0000-0002-4288-7653 0000-0002-0012-974X |
OpenAccessLink | https://hdl.handle.net/10023/28399 |
PMID | 37698200 |
PQID | 2899383556 |
PQPubID | 48816 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2864158747 proquest_journals_2899383556 pubmed_primary_37698200 crossref_citationtrail_10_1002_jcc_27225 crossref_primary_10_1002_jcc_27225 wiley_primary_10_1002_jcc_27225_JCC27225 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 30, 2024 |
PublicationDateYYYYMMDD | 2024-01-30 |
PublicationDate_xml | – month: 01 year: 2024 text: January 30, 2024 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: New York |
PublicationTitle | Journal of computational chemistry |
PublicationTitleAlternate | J Comput Chem |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2022; 156 2011; 333 2019; 9 2023; 52 1974; 96 2020; 142 2023; 9 2015; 11 2018; 148 2009 2016; 145 2008; 129 2016; 144 1996; 100 2020; 101 2009; 130 2020; 102 2016; 37 2022; 27 2017; 677 2012; 52 1992; 96 2022; 122 2021; 57 2018; 9 2023; 44 2018; 713 2018; 119 2000; 12 2021 2018; 118 2017; 38 2004; 393 2021; 17 1989; 90 2022; 12 2019; 116 2016; 117 2022; 803 2020; 22 2018; 98 2014; 185 2022; 800 2018; 14 2017; 667 2020; 738 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 Kirk S. R. (e_1_2_10_50_1) 2021 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 27 start-page: 6099 year: 2022 publication-title: Molecules – year: 2009 – volume: 118 year: 2018 publication-title: Int. J. Quantum Chem. – volume: 145 start-page: 174704 year: 2016 publication-title: J. Chem. Phys. – volume: 52 start-page: 5861 year: 2023 publication-title: Chem. Soc. Rev. – volume: 800 start-page: 139669 year: 2022 publication-title: Chem. Phys. Lett. – volume: 44 start-page: 1776 year: 2023 publication-title: J. Comput. Chem. – volume: 713 start-page: 125 year: 2018 publication-title: Chem. Phys. Lett. – volume: 102 start-page: 063103 year: 2020 publication-title: Phys. Rev. A – year: 2021 – volume: 144 start-page: 184108 year: 2016 publication-title: J. Chem. Phys. – volume: 156 start-page: 224116 year: 2022 publication-title: J. Chem. Phys. – volume: 122 year: 2022 publication-title: Int. J. Quantum Chem. – volume: 90 start-page: 1007 year: 1989 publication-title: J. Chem. Phys. – volume: 100 start-page: 10892 year: 1996 publication-title: J. Phys. Chem. – volume: 37 start-page: 1511 year: 2016 publication-title: J. Comput. Chem. – volume: 677 start-page: 156 year: 2017 publication-title: Chem. Phys. Lett. – volume: 119 year: 2018 publication-title: Int. J. Quantum Chem. – volume: 9 start-page: 031002 year: 2019 publication-title: Phys. Rev. X. – volume: 185 start-page: 1007 year: 2014 publication-title: Comput. Phys. Commun. – volume: 12 year: 2022 publication-title: WIREs Comput. Mol. Sci. – volume: 98 start-page: 021401 year: 2018 publication-title: Phys. Rev. A – volume: 57 start-page: 6408 year: 2021 publication-title: Chem. Commun. – volume: 52 start-page: 438 year: 2012 publication-title: Isr. J. Chem. – volume: 333 start-page: 1875 year: 2011 publication-title: Science – volume: 38 start-page: 1515 year: 2017 publication-title: J. Comput. Chem. – volume: 96 start-page: 6796 year: 1992 publication-title: J. Chem. Phys. – volume: 12 start-page: 10325 year: 2000 publication-title: J. Phys. Condens. Matter – volume: 130 start-page: 154104 year: 2009 publication-title: J. Chem. Phys. – volume: 116 start-page: 23923 year: 2019 publication-title: Proc. Natl. Acad. Sci. – volume: 129 start-page: 094102 year: 2008 publication-title: J. Chem. Phys. – volume: 738 start-page: 136907 year: 2020 publication-title: Chem. Phys. Lett. – volume: 38 year: 2017 publication-title: J. Comput. Chem. – volume: 22 start-page: 2509 year: 2020 publication-title: Phys. Chem. Chem. Phys. – volume: 9 start-page: 1429 year: 2023 publication-title: Sci. Adv. – volume: 393 start-page: 51 year: 2004 publication-title: Chem. Phys. Lett. – volume: 96 year: 1974 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 033001 year: 2016 publication-title: Phys. Rev. Lett. – volume: 9 start-page: 1105 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 14 start-page: 484 year: 2018 publication-title: Nat. Phys. – volume: 37 start-page: 2722 year: 2016 publication-title: J. Comput. Chem. – volume: 101 start-page: 021403 year: 2020 publication-title: Phys. Rev. A – volume: 156 start-page: 204123 year: 2022 publication-title: J. Chem. Phys. – volume: 148 start-page: 044117 year: 2018 publication-title: J. Chem. Phys. – volume: 667 start-page: 25 year: 2017 publication-title: Chem. Phys. Lett. – volume: 17 start-page: 1117 year: 2021 publication-title: J. Chem. Theory Comput. – volume: 11 start-page: 654 year: 2015 publication-title: Nat. Phys. – volume: 142 start-page: 12551 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 803 start-page: 139762 year: 2022 publication-title: Chem. Phys. Lett. – ident: e_1_2_10_42_1 doi: 10.1063/5.0079910 – ident: e_1_2_10_4_1 doi: 10.1002/qua.26884 – ident: e_1_2_10_24_1 doi: 10.1021/ja00808a004 – ident: e_1_2_10_45_1 doi: 10.1002/ijch.201100097 – ident: e_1_2_10_34_1 doi: 10.1103/PhysRevA.102.063103 – ident: e_1_2_10_27_1 doi: 10.1063/1.3098140 – ident: e_1_2_10_31_1 doi: 10.3390/molecules27186099 – ident: e_1_2_10_15_1 doi: 10.1002/jcc.27126 – volume-title: QuantVec. BEACON Research Group, College of Chemistry and Chemical Engineering year: 2021 ident: e_1_2_10_50_1 – ident: e_1_2_10_17_1 doi: 10.1016/j.cplett.2018.10.029 – ident: e_1_2_10_13_1 doi: 10.1016/j.cplett.2022.139762 – ident: e_1_2_10_37_1 doi: 10.1063/1.456153 – ident: e_1_2_10_30_1 doi: 10.1039/C9CP05879F – ident: e_1_2_10_26_1 doi: 10.1088/0953-8984/12/49/3 – ident: e_1_2_10_40_1 doi: 10.1002/jcc.24358 – ident: e_1_2_10_3_1 doi: 10.1039/D1CC01904J – ident: e_1_2_10_23_1 doi: 10.1039/D3CS00350G – ident: e_1_2_10_12_1 doi: 10.1016/j.cplett.2022.139669 – ident: e_1_2_10_14_1 doi: 10.1021/jacs.0c05128 – ident: e_1_2_10_16_1 doi: 10.1016/j.cplett.2017.04.017 – ident: e_1_2_10_11_1 doi: 10.1126/sciadv.adj1429 – ident: e_1_2_10_39_1 – ident: e_1_2_10_25_1 doi: 10.1021/jp953512m – ident: e_1_2_10_18_1 doi: 10.1002/qua.25847 – ident: e_1_2_10_43_1 doi: 10.1063/1.4948646 – ident: e_1_2_10_35_1 doi: 10.1016/j.cplett.2004.06.011 – ident: e_1_2_10_7_1 doi: 10.1103/PhysRevLett.117.033001 – ident: e_1_2_10_29_1 doi: 10.1016/j.cplett.2019.136907 – ident: e_1_2_10_9_1 doi: 10.1073/pnas.1907189116 – ident: e_1_2_10_46_1 doi: 10.1021/acs.jpclett.7b03416 – ident: e_1_2_10_36_1 doi: 10.1063/1.462569 – ident: e_1_2_10_47_1 doi: 10.1103/PhysRevA.101.021403 – ident: e_1_2_10_33_1 doi: 10.1002/jcc.24896 – ident: e_1_2_10_6_1 doi: 10.1038/nphys3369 – ident: e_1_2_10_32_1 doi: 10.1002/jcc.24792 – ident: e_1_2_10_19_1 doi: 10.1002/jcc.24499 – ident: e_1_2_10_5_1 doi: 10.1038/s41567-017-0038-z – ident: e_1_2_10_21_1 doi: 10.1002/qua.25676 – ident: e_1_2_10_28_1 doi: 10.1063/1.2973634 – ident: e_1_2_10_49_1 doi: 10.1063/5.0090232 – ident: e_1_2_10_22_1 doi: 10.1016/j.cplett.2016.11.028 – ident: e_1_2_10_51_1 doi: 10.1002/wcms.1611 – ident: e_1_2_10_38_1 doi: 10.1021/acs.jctc.0c01228 – ident: e_1_2_10_44_1 doi: 10.1063/1.4966260 – ident: e_1_2_10_10_1 doi: 10.1103/PhysRevX.9.031002 – ident: e_1_2_10_20_1 doi: 10.1002/qua.25565 – ident: e_1_2_10_8_1 doi: 10.1103/PhysRevA.98.021401 – ident: e_1_2_10_48_1 doi: 10.1016/j.cpc.2013.10.026 – ident: e_1_2_10_2_1 doi: 10.1126/science.1206997 – ident: e_1_2_10_41_1 doi: 10.1063/1.5004675 |
SSID | ssj0003564 |
Score | 2.4582882 |
Snippet | A pair of simulated left and right circularly polarized ultra‐fast laser pulses of duration 20 femtoseconds that induce a mixture of excited states are applied... A pair of simulated left and right circularly polarized ultra-fast laser pulses of duration 20 femtoseconds that induce a mixture of excited states are applied... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 150 |
SubjectTerms | chiral Circular polarization Eigenvectors electron dynamics Ethane Excitation Lasers Mechanical properties next generation quantum theory of atoms in molecules Quantum theory ultra‐fast laser |
Title | Response of the mechanical and chiral character of ethane to ultra‐fast laser pulses |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.27225 https://www.ncbi.nlm.nih.gov/pubmed/37698200 https://www.proquest.com/docview/2899383556 https://www.proquest.com/docview/2864158747 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hLnChPApdXnKrHnrJkk3sxBEntAIhpPaASsWhUuTHRH3ALtpNLpz4CfxGfgkzySaIl4S4RfJEdjxjzzcT-xuAr9qH0ksVBehNSgGKj4MsxiLQzmstI08ukvOQ338kx2fy5Fydz8F-exem4YfoEm68Mur9mhe4sdO9B9LQf871o5TMkfZfPqvFgOj0gToqVg11FCGYQCdq0LIKhdFe9-ZjX_QMYD7Gq7XDOfoAv9uhNudM_ver0vbd9RMWx3d-yzIszYCoOGgsZwXmcLQKC8O2_tsa_Dptjs-iGBeCYKK4RL4lzEoVZuSF-_N3Qo-uZXxmMeREPIpyLKqLcmLubm4LMy0FIXRqv6rIDU8_wtnR4c_hcTCrwhC4WGsVyMJKlKFj5naO2CwF1Cr1iSpCk6K0MZrMDxCT1Dkk-FToFAfeZIaglcooBF6H-dF4hJ9ASMe1fjw6JPtIdULgJM5Ca-PER9Zp04NvrT5yN6Mo50oZF3lDrhzlNFF5PVE9-NKJXjW8HC8JbbdKzWdLc5pzhElhuVJJDz53zTS3_KeE5mhcsUxCwEZTqNWDjcYYul5oR84INoU02Fqlr3efnwyH9cPm20W3YDEi2MRJnjjchvlyUuEOwZ7S7tb2fQ9DCPy9 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB7BcoALlFJg223rVhx6yRISO3GkXqpV0ZYCBwSISxU59kT8dRftJhdOPALP2CfpTLIJorQS6i2SJ7IzHnu-mdjfAGxp50snVeChMzEFKC70khBzT1untQwcuUjOQx4cRsMTuXemzubgc3MXpuaHaBNuvDKq_ZoXOCektx9YQy-t7Qcx2eM8LHBF7yqgOnogjwpVTR5FGMbT1N7wCvnBdvvqY2_0BGI-RqyVy9ldgR_NYOuTJlf9ssj69vYPHsf__ZoXsDzDouJLbTyrMIejl7A4aErArcHpUX2CFsU4F4QUxU_ki8I8r8KMnLDnFxN6tA3pM4sh5-JRFGNRXhcT8-vuPjfTQhBIp_abkjzx9BWc7H49Hgy9WSEGz4ZaK0_mmUTpWyZv56Ato5haxS5SuW9ilFmIJnE7iFFsLRKCynWMO84khtCVSigKXofOaDzCTRDScrkfhxbJRGIdET4JEz_LwsgFmdWmC5-aCUntjKWci2VcpzW_cpCSotJKUV342Ire1NQcfxPqNbOazlbnNOUgkyJzpaIufGibSbf8s4R0NC5ZJiJsoyna6sJGbQ1tL7QpJ4ScfBpsNaf_7j7dGwyqh9fPF30Pi8Pjg_10_9vh9zewFBCK4pxP6PegU0xKfEsoqMjeVcb-GwkUAOc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB7xI9FeWmgLbEvBRT30kt1sYjuOOFULK_6FEFQcKkWOPRFtYXe1m1x66iPwjDwJ42QTRClSxS2SJ7IzHnu-mdjfAHxW1ueWi8BDqyMKUGzoxSFmnjJWKR5YcpEuD3l0LHfP-f6FuJiBrfouTMUP0STc3Moo92u3wEc269yThv40ph1EZI6zMM-lr5xJb5_ec0eFouKOIgjjKSm6Na2QH3SaVx86o0cI8yFgLT1O_zV8r8daHTT51S7ytG1-_0Xj-MyPWYRXUyTKvlamswQzOHgDL3p1Abi38O20Oj-LbJgxwonsGt01YTerTA8sM5c_xvRoaspnJ4YuE48sH7LiKh_r2z83mZ7kjCA6tY8K8sOTd3De3znr7XrTMgyeCZUSHs9Sjtw3jrrdhWwpRdQislJkvo6QpyHq2HYRZWQMEn7KVIRdq2NN2ErEFAMvw9xgOMBVYNy4Yj8WDZKBREoSOgljP01DaYPUKN2CL_V8JGbKUe5KZVwlFbtykJCiklJRLdhsREcVMce_hNbqSU2ma3OSuBCT4nIhZAs-Nc2kW_erhHQ0LJyMJGSjKNZqwUplDE0vtCXHhJt8Gmw5pU93n-z3euXD-_8X3YCFk-1-crh3fPABXgYEoVzCJ_TXYC4fF_iRIFCerpemfgcjSv-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response+of+the+mechanical+and+chiral+character+of+ethane+to+ultra-fast+laser+pulses&rft.jtitle=Journal+of+computational+chemistry&rft.au=Mi%2C+Xiao+Peng&rft.au=Lu%2C+Hui&rft.au=Xu%2C+Tianlv&rft.au=Fr%C3%BCchtl%2C+Herbert&rft.date=2024-01-30&rft.eissn=1096-987X&rft.volume=45&rft.issue=3&rft.spage=150&rft_id=info:doi/10.1002%2Fjcc.27225&rft_id=info%3Apmid%2F37698200&rft.externalDocID=37698200 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon |