Response of the mechanical and chiral character of ethane to ultra‐fast laser pulses

A pair of simulated left and right circularly polarized ultra‐fast laser pulses of duration 20 femtoseconds that induce a mixture of excited states are applied to ethane. The response of the electron dynamics is investigated within the next generation quantum theory of atoms in molecules (NG‐QTAIM)...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational chemistry Vol. 45; no. 3; pp. 150 - 158
Main Authors Mi, Xiao Peng, Lu, Hui, Xu, Tianlv, Früchtl, Herbert, Mourik, Tanja, Paterson, Martin J., Kirk, Steven R., Jenkins, Samantha
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 30.01.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A pair of simulated left and right circularly polarized ultra‐fast laser pulses of duration 20 femtoseconds that induce a mixture of excited states are applied to ethane. The response of the electron dynamics is investigated within the next generation quantum theory of atoms in molecules (NG‐QTAIM) using third‐generation eigenvector‐trajectories which are introduced in this work. This enables an analysis of the mechanical and chiral properties of the electron dynamics of ethane without needing to subject the C‐C bond to external torsions as was the case for second‐generation eigenvector‐trajectories. The mechanical properties, in particular, the bond‐flexing and bond‐torsion were found to increase depending on the plane of the applied laser pulses. The bond‐flexing and bond‐torsion, depending on the plane of polarization, increases or decreases after the laser pulses are switched off. This is explainable in terms of directionally‐dependent effects of the long‐lasting superpositions of excited states. The chiral properties correspond to the ethane molecule being classified as formally achiral consistent with previous NG‐QTAIM investigations. Future planned investigations using ultra‐fast circularly polarized lasers are briefly discussed. The ethane C1‐C2 bond critical point (BCP) Hessian of ρ(r) eigenvector‐trajectories T(s) for the for the clockwise (CW, [+1]) (red) and counter‐clockwise (CCW, [−1]) (blue) circularly laser pulse polarized in yz plane 60 femtoseconds after the pulses are switched off. The end of each T(s) is denoted by a cube marker. The most (±e2) and least (±e1) preferred eigenvector directions of the total charge density accumulation ρ(rb). The inset is the view down the ethane C1‐C2 BCP bond‐path, showing the Cartesian yz axes, where the BCPs are represented by undecorated green spheres.
AbstractList A pair of simulated left and right circularly polarized ultra‐fast laser pulses of duration 20 femtoseconds that induce a mixture of excited states are applied to ethane. The response of the electron dynamics is investigated within the next generation quantum theory of atoms in molecules (NG‐QTAIM) using third‐generation eigenvector‐trajectories which are introduced in this work. This enables an analysis of the mechanical and chiral properties of the electron dynamics of ethane without needing to subject the C‐C bond to external torsions as was the case for second‐generation eigenvector‐trajectories. The mechanical properties, in particular, the bond‐flexing and bond‐torsion were found to increase depending on the plane of the applied laser pulses. The bond‐flexing and bond‐torsion, depending on the plane of polarization, increases or decreases after the laser pulses are switched off. This is explainable in terms of directionally‐dependent effects of the long‐lasting superpositions of excited states. The chiral properties correspond to the ethane molecule being classified as formally achiral consistent with previous NG‐QTAIM investigations. Future planned investigations using ultra‐fast circularly polarized lasers are briefly discussed.
A pair of simulated left and right circularly polarized ultra-fast laser pulses of duration 20 femtoseconds that induce a mixture of excited states are applied to ethane. The response of the electron dynamics is investigated within the next generation quantum theory of atoms in molecules (NG-QTAIM) using third-generation eigenvector-trajectories which are introduced in this work. This enables an analysis of the mechanical and chiral properties of the electron dynamics of ethane without needing to subject the C-C bond to external torsions as was the case for second-generation eigenvector-trajectories. The mechanical properties, in particular, the bond-flexing and bond-torsion were found to increase depending on the plane of the applied laser pulses. The bond-flexing and bond-torsion, depending on the plane of polarization, increases or decreases after the laser pulses are switched off. This is explainable in terms of directionally-dependent effects of the long-lasting superpositions of excited states. The chiral properties correspond to the ethane molecule being classified as formally achiral consistent with previous NG-QTAIM investigations. Future planned investigations using ultra-fast circularly polarized lasers are briefly discussed.A pair of simulated left and right circularly polarized ultra-fast laser pulses of duration 20 femtoseconds that induce a mixture of excited states are applied to ethane. The response of the electron dynamics is investigated within the next generation quantum theory of atoms in molecules (NG-QTAIM) using third-generation eigenvector-trajectories which are introduced in this work. This enables an analysis of the mechanical and chiral properties of the electron dynamics of ethane without needing to subject the C-C bond to external torsions as was the case for second-generation eigenvector-trajectories. The mechanical properties, in particular, the bond-flexing and bond-torsion were found to increase depending on the plane of the applied laser pulses. The bond-flexing and bond-torsion, depending on the plane of polarization, increases or decreases after the laser pulses are switched off. This is explainable in terms of directionally-dependent effects of the long-lasting superpositions of excited states. The chiral properties correspond to the ethane molecule being classified as formally achiral consistent with previous NG-QTAIM investigations. Future planned investigations using ultra-fast circularly polarized lasers are briefly discussed.
A pair of simulated left and right circularly polarized ultra‐fast laser pulses of duration 20 femtoseconds that induce a mixture of excited states are applied to ethane. The response of the electron dynamics is investigated within the next generation quantum theory of atoms in molecules (NG‐QTAIM) using third‐generation eigenvector‐trajectories which are introduced in this work. This enables an analysis of the mechanical and chiral properties of the electron dynamics of ethane without needing to subject the C‐C bond to external torsions as was the case for second‐generation eigenvector‐trajectories. The mechanical properties, in particular, the bond‐flexing and bond‐torsion were found to increase depending on the plane of the applied laser pulses. The bond‐flexing and bond‐torsion, depending on the plane of polarization, increases or decreases after the laser pulses are switched off. This is explainable in terms of directionally‐dependent effects of the long‐lasting superpositions of excited states. The chiral properties correspond to the ethane molecule being classified as formally achiral consistent with previous NG‐QTAIM investigations. Future planned investigations using ultra‐fast circularly polarized lasers are briefly discussed. The ethane C1‐C2 bond critical point (BCP) Hessian of ρ(r) eigenvector‐trajectories T(s) for the for the clockwise (CW, [+1]) (red) and counter‐clockwise (CCW, [−1]) (blue) circularly laser pulse polarized in yz plane 60 femtoseconds after the pulses are switched off. The end of each T(s) is denoted by a cube marker. The most (±e2) and least (±e1) preferred eigenvector directions of the total charge density accumulation ρ(rb). The inset is the view down the ethane C1‐C2 BCP bond‐path, showing the Cartesian yz axes, where the BCPs are represented by undecorated green spheres.
Author Xu, Tianlv
Mourik, Tanja
Lu, Hui
Kirk, Steven R.
Mi, Xiao Peng
Früchtl, Herbert
Jenkins, Samantha
Paterson, Martin J.
Author_xml – sequence: 1
  givenname: Xiao Peng
  surname: Mi
  fullname: Mi, Xiao Peng
  organization: Hunan Normal University
– sequence: 2
  givenname: Hui
  surname: Lu
  fullname: Lu, Hui
  organization: Hunan Normal University
– sequence: 3
  givenname: Tianlv
  surname: Xu
  fullname: Xu, Tianlv
  organization: Hunan Normal University
– sequence: 4
  givenname: Herbert
  surname: Früchtl
  fullname: Früchtl, Herbert
  organization: University of Saint Andrews
– sequence: 5
  givenname: Tanja
  orcidid: 0000-0001-7683-3293
  surname: Mourik
  fullname: Mourik, Tanja
  organization: University of Saint Andrews
– sequence: 6
  givenname: Martin J.
  orcidid: 0000-0002-0012-974X
  surname: Paterson
  fullname: Paterson, Martin J.
  organization: Heriot‐Watt University
– sequence: 7
  givenname: Steven R.
  surname: Kirk
  fullname: Kirk, Steven R.
  email: steven.kirk@cantab.net
  organization: Hunan Normal University
– sequence: 8
  givenname: Samantha
  orcidid: 0000-0002-4288-7653
  surname: Jenkins
  fullname: Jenkins, Samantha
  email: samanthajsuman@gmail.com
  organization: Hunan Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37698200$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1KAzEUhYNUtK0ufAEZcKOLqcnM5G8pxV8EQVTchTRzh06ZTmqSQbrzEXxGn8TU1k3RVS653zkc7hmgXmtbQOiI4BHBODufGTPKeJbRHdQnWLJUCv7aQ31MZJYKRsk-Gng_wxjnlBV7aD_nTIoM4z56eQS_sK2HxFZJmEIyBzPVbW10k-i2TMy0dnGMf06bAG6FQYgEJMEmXROc_vr4rLQPSaN93C-6xoM_QLuVjsPh5h2i56vLp_FNev9wfTu-uE9NLgRNi2pSQIENIzyGy9ikYJLyktEKaw7FJActSwLAuDHAMK4EB1JqqTFlVJI8H6LTte_C2bcOfFDz2htomhjQdl5lghWECl7wiJ5soTPbuTami5SUucgpZZE63lDdZA6lWrh6rt1S_V4sAudrwDjrvYNKmTroUNs2nqJuFMFq1YmKnaifTqLibEvxa_oXu3F_rxtY_g-qu_F4rfgGT3eaLg
CitedBy_id crossref_primary_10_1016_j_cplett_2024_141391
crossref_primary_10_1021_acs_chemrev_4c00297
Cites_doi 10.1063/5.0079910
10.1002/qua.26884
10.1021/ja00808a004
10.1002/ijch.201100097
10.1103/PhysRevA.102.063103
10.1063/1.3098140
10.3390/molecules27186099
10.1002/jcc.27126
10.1016/j.cplett.2018.10.029
10.1016/j.cplett.2022.139762
10.1063/1.456153
10.1039/C9CP05879F
10.1088/0953-8984/12/49/3
10.1002/jcc.24358
10.1039/D1CC01904J
10.1039/D3CS00350G
10.1016/j.cplett.2022.139669
10.1021/jacs.0c05128
10.1016/j.cplett.2017.04.017
10.1126/sciadv.adj1429
10.1021/jp953512m
10.1002/qua.25847
10.1063/1.4948646
10.1016/j.cplett.2004.06.011
10.1103/PhysRevLett.117.033001
10.1016/j.cplett.2019.136907
10.1073/pnas.1907189116
10.1021/acs.jpclett.7b03416
10.1063/1.462569
10.1103/PhysRevA.101.021403
10.1002/jcc.24896
10.1038/nphys3369
10.1002/jcc.24792
10.1002/jcc.24499
10.1038/s41567-017-0038-z
10.1002/qua.25676
10.1063/1.2973634
10.1063/5.0090232
10.1016/j.cplett.2016.11.028
10.1002/wcms.1611
10.1021/acs.jctc.0c01228
10.1063/1.4966260
10.1103/PhysRevX.9.031002
10.1002/qua.25565
10.1103/PhysRevA.98.021401
10.1016/j.cpc.2013.10.026
10.1126/science.1206997
10.1063/1.5004675
ContentType Journal Article
Copyright 2023 Wiley Periodicals LLC.
2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2023 Wiley Periodicals LLC.
– notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
NPM
JQ2
7X8
DOI 10.1002/jcc.27225
DatabaseName CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

ProQuest Computer Science Collection
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 158
ExternalDocumentID 37698200
10_1002_jcc_27225
JCC27225
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 2022JJ30029
– fundername: National Natural Science Foundation of China
  grantid: 2022JJ30029
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZZTAW
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
JQ2
7X8
ID FETCH-LOGICAL-c3885-4fb4e40c61700026b46957d65f0a7e4b3ea9d1ee67cce600f87e1da9a05659133
IEDL.DBID DR2
ISSN 0192-8651
1096-987X
IngestDate Fri Jul 11 01:17:41 EDT 2025
Fri Jul 25 10:50:50 EDT 2025
Thu Apr 03 06:54:03 EDT 2025
Thu Apr 24 23:11:53 EDT 2025
Tue Jul 01 02:05:06 EDT 2025
Sun Jul 06 04:45:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords electron dynamics
chiral
ethane
next generation quantum theory of atoms in molecules
ultra-fast laser
Language English
License 2023 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3885-4fb4e40c61700026b46957d65f0a7e4b3ea9d1ee67cce600f87e1da9a05659133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7683-3293
0000-0002-4288-7653
0000-0002-0012-974X
OpenAccessLink https://hdl.handle.net/10023/28399
PMID 37698200
PQID 2899383556
PQPubID 48816
PageCount 9
ParticipantIDs proquest_miscellaneous_2864158747
proquest_journals_2899383556
pubmed_primary_37698200
crossref_citationtrail_10_1002_jcc_27225
crossref_primary_10_1002_jcc_27225
wiley_primary_10_1002_jcc_27225_JCC27225
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 30, 2024
PublicationDateYYYYMMDD 2024-01-30
PublicationDate_xml – month: 01
  year: 2024
  text: January 30, 2024
  day: 30
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: New York
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J Comput Chem
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2022; 156
2011; 333
2019; 9
2023; 52
1974; 96
2020; 142
2023; 9
2015; 11
2018; 148
2009
2016; 145
2008; 129
2016; 144
1996; 100
2020; 101
2009; 130
2020; 102
2016; 37
2022; 27
2017; 677
2012; 52
1992; 96
2022; 122
2021; 57
2018; 9
2023; 44
2018; 713
2018; 119
2000; 12
2021
2018; 118
2017; 38
2004; 393
2021; 17
1989; 90
2022; 12
2019; 116
2016; 117
2022; 803
2020; 22
2018; 98
2014; 185
2022; 800
2018; 14
2017; 667
2020; 738
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
Kirk S. R. (e_1_2_10_50_1) 2021
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 27
  start-page: 6099
  year: 2022
  publication-title: Molecules
– year: 2009
– volume: 118
  year: 2018
  publication-title: Int. J. Quantum Chem.
– volume: 145
  start-page: 174704
  year: 2016
  publication-title: J. Chem. Phys.
– volume: 52
  start-page: 5861
  year: 2023
  publication-title: Chem. Soc. Rev.
– volume: 800
  start-page: 139669
  year: 2022
  publication-title: Chem. Phys. Lett.
– volume: 44
  start-page: 1776
  year: 2023
  publication-title: J. Comput. Chem.
– volume: 713
  start-page: 125
  year: 2018
  publication-title: Chem. Phys. Lett.
– volume: 102
  start-page: 063103
  year: 2020
  publication-title: Phys. Rev. A
– year: 2021
– volume: 144
  start-page: 184108
  year: 2016
  publication-title: J. Chem. Phys.
– volume: 156
  start-page: 224116
  year: 2022
  publication-title: J. Chem. Phys.
– volume: 122
  year: 2022
  publication-title: Int. J. Quantum Chem.
– volume: 90
  start-page: 1007
  year: 1989
  publication-title: J. Chem. Phys.
– volume: 100
  start-page: 10892
  year: 1996
  publication-title: J. Phys. Chem.
– volume: 37
  start-page: 1511
  year: 2016
  publication-title: J. Comput. Chem.
– volume: 677
  start-page: 156
  year: 2017
  publication-title: Chem. Phys. Lett.
– volume: 119
  year: 2018
  publication-title: Int. J. Quantum Chem.
– volume: 9
  start-page: 031002
  year: 2019
  publication-title: Phys. Rev. X.
– volume: 185
  start-page: 1007
  year: 2014
  publication-title: Comput. Phys. Commun.
– volume: 12
  year: 2022
  publication-title: WIREs Comput. Mol. Sci.
– volume: 98
  start-page: 021401
  year: 2018
  publication-title: Phys. Rev. A
– volume: 57
  start-page: 6408
  year: 2021
  publication-title: Chem. Commun.
– volume: 52
  start-page: 438
  year: 2012
  publication-title: Isr. J. Chem.
– volume: 333
  start-page: 1875
  year: 2011
  publication-title: Science
– volume: 38
  start-page: 1515
  year: 2017
  publication-title: J. Comput. Chem.
– volume: 96
  start-page: 6796
  year: 1992
  publication-title: J. Chem. Phys.
– volume: 12
  start-page: 10325
  year: 2000
  publication-title: J. Phys. Condens. Matter
– volume: 130
  start-page: 154104
  year: 2009
  publication-title: J. Chem. Phys.
– volume: 116
  start-page: 23923
  year: 2019
  publication-title: Proc. Natl. Acad. Sci.
– volume: 129
  start-page: 094102
  year: 2008
  publication-title: J. Chem. Phys.
– volume: 738
  start-page: 136907
  year: 2020
  publication-title: Chem. Phys. Lett.
– volume: 38
  year: 2017
  publication-title: J. Comput. Chem.
– volume: 22
  start-page: 2509
  year: 2020
  publication-title: Phys. Chem. Chem. Phys.
– volume: 9
  start-page: 1429
  year: 2023
  publication-title: Sci. Adv.
– volume: 393
  start-page: 51
  year: 2004
  publication-title: Chem. Phys. Lett.
– volume: 96
  year: 1974
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 033001
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 9
  start-page: 1105
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 14
  start-page: 484
  year: 2018
  publication-title: Nat. Phys.
– volume: 37
  start-page: 2722
  year: 2016
  publication-title: J. Comput. Chem.
– volume: 101
  start-page: 021403
  year: 2020
  publication-title: Phys. Rev. A
– volume: 156
  start-page: 204123
  year: 2022
  publication-title: J. Chem. Phys.
– volume: 148
  start-page: 044117
  year: 2018
  publication-title: J. Chem. Phys.
– volume: 667
  start-page: 25
  year: 2017
  publication-title: Chem. Phys. Lett.
– volume: 17
  start-page: 1117
  year: 2021
  publication-title: J. Chem. Theory Comput.
– volume: 11
  start-page: 654
  year: 2015
  publication-title: Nat. Phys.
– volume: 142
  start-page: 12551
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 803
  start-page: 139762
  year: 2022
  publication-title: Chem. Phys. Lett.
– ident: e_1_2_10_42_1
  doi: 10.1063/5.0079910
– ident: e_1_2_10_4_1
  doi: 10.1002/qua.26884
– ident: e_1_2_10_24_1
  doi: 10.1021/ja00808a004
– ident: e_1_2_10_45_1
  doi: 10.1002/ijch.201100097
– ident: e_1_2_10_34_1
  doi: 10.1103/PhysRevA.102.063103
– ident: e_1_2_10_27_1
  doi: 10.1063/1.3098140
– ident: e_1_2_10_31_1
  doi: 10.3390/molecules27186099
– ident: e_1_2_10_15_1
  doi: 10.1002/jcc.27126
– volume-title: QuantVec. BEACON Research Group, College of Chemistry and Chemical Engineering
  year: 2021
  ident: e_1_2_10_50_1
– ident: e_1_2_10_17_1
  doi: 10.1016/j.cplett.2018.10.029
– ident: e_1_2_10_13_1
  doi: 10.1016/j.cplett.2022.139762
– ident: e_1_2_10_37_1
  doi: 10.1063/1.456153
– ident: e_1_2_10_30_1
  doi: 10.1039/C9CP05879F
– ident: e_1_2_10_26_1
  doi: 10.1088/0953-8984/12/49/3
– ident: e_1_2_10_40_1
  doi: 10.1002/jcc.24358
– ident: e_1_2_10_3_1
  doi: 10.1039/D1CC01904J
– ident: e_1_2_10_23_1
  doi: 10.1039/D3CS00350G
– ident: e_1_2_10_12_1
  doi: 10.1016/j.cplett.2022.139669
– ident: e_1_2_10_14_1
  doi: 10.1021/jacs.0c05128
– ident: e_1_2_10_16_1
  doi: 10.1016/j.cplett.2017.04.017
– ident: e_1_2_10_11_1
  doi: 10.1126/sciadv.adj1429
– ident: e_1_2_10_39_1
– ident: e_1_2_10_25_1
  doi: 10.1021/jp953512m
– ident: e_1_2_10_18_1
  doi: 10.1002/qua.25847
– ident: e_1_2_10_43_1
  doi: 10.1063/1.4948646
– ident: e_1_2_10_35_1
  doi: 10.1016/j.cplett.2004.06.011
– ident: e_1_2_10_7_1
  doi: 10.1103/PhysRevLett.117.033001
– ident: e_1_2_10_29_1
  doi: 10.1016/j.cplett.2019.136907
– ident: e_1_2_10_9_1
  doi: 10.1073/pnas.1907189116
– ident: e_1_2_10_46_1
  doi: 10.1021/acs.jpclett.7b03416
– ident: e_1_2_10_36_1
  doi: 10.1063/1.462569
– ident: e_1_2_10_47_1
  doi: 10.1103/PhysRevA.101.021403
– ident: e_1_2_10_33_1
  doi: 10.1002/jcc.24896
– ident: e_1_2_10_6_1
  doi: 10.1038/nphys3369
– ident: e_1_2_10_32_1
  doi: 10.1002/jcc.24792
– ident: e_1_2_10_19_1
  doi: 10.1002/jcc.24499
– ident: e_1_2_10_5_1
  doi: 10.1038/s41567-017-0038-z
– ident: e_1_2_10_21_1
  doi: 10.1002/qua.25676
– ident: e_1_2_10_28_1
  doi: 10.1063/1.2973634
– ident: e_1_2_10_49_1
  doi: 10.1063/5.0090232
– ident: e_1_2_10_22_1
  doi: 10.1016/j.cplett.2016.11.028
– ident: e_1_2_10_51_1
  doi: 10.1002/wcms.1611
– ident: e_1_2_10_38_1
  doi: 10.1021/acs.jctc.0c01228
– ident: e_1_2_10_44_1
  doi: 10.1063/1.4966260
– ident: e_1_2_10_10_1
  doi: 10.1103/PhysRevX.9.031002
– ident: e_1_2_10_20_1
  doi: 10.1002/qua.25565
– ident: e_1_2_10_8_1
  doi: 10.1103/PhysRevA.98.021401
– ident: e_1_2_10_48_1
  doi: 10.1016/j.cpc.2013.10.026
– ident: e_1_2_10_2_1
  doi: 10.1126/science.1206997
– ident: e_1_2_10_41_1
  doi: 10.1063/1.5004675
SSID ssj0003564
Score 2.4582882
Snippet A pair of simulated left and right circularly polarized ultra‐fast laser pulses of duration 20 femtoseconds that induce a mixture of excited states are applied...
A pair of simulated left and right circularly polarized ultra-fast laser pulses of duration 20 femtoseconds that induce a mixture of excited states are applied...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 150
SubjectTerms chiral
Circular polarization
Eigenvectors
electron dynamics
Ethane
Excitation
Lasers
Mechanical properties
next generation quantum theory of atoms in molecules
Quantum theory
ultra‐fast laser
Title Response of the mechanical and chiral character of ethane to ultra‐fast laser pulses
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.27225
https://www.ncbi.nlm.nih.gov/pubmed/37698200
https://www.proquest.com/docview/2899383556
https://www.proquest.com/docview/2864158747
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hLnChPApdXnKrHnrJkk3sxBEntAIhpPaASsWhUuTHRH3ALtpNLpz4CfxGfgkzySaIl4S4RfJEdjxjzzcT-xuAr9qH0ksVBehNSgGKj4MsxiLQzmstI08ukvOQ338kx2fy5Fydz8F-exem4YfoEm68Mur9mhe4sdO9B9LQf871o5TMkfZfPqvFgOj0gToqVg11FCGYQCdq0LIKhdFe9-ZjX_QMYD7Gq7XDOfoAv9uhNudM_ver0vbd9RMWx3d-yzIszYCoOGgsZwXmcLQKC8O2_tsa_Dptjs-iGBeCYKK4RL4lzEoVZuSF-_N3Qo-uZXxmMeREPIpyLKqLcmLubm4LMy0FIXRqv6rIDU8_wtnR4c_hcTCrwhC4WGsVyMJKlKFj5naO2CwF1Cr1iSpCk6K0MZrMDxCT1Dkk-FToFAfeZIaglcooBF6H-dF4hJ9ASMe1fjw6JPtIdULgJM5Ca-PER9Zp04NvrT5yN6Mo50oZF3lDrhzlNFF5PVE9-NKJXjW8HC8JbbdKzWdLc5pzhElhuVJJDz53zTS3_KeE5mhcsUxCwEZTqNWDjcYYul5oR84INoU02Fqlr3efnwyH9cPm20W3YDEi2MRJnjjchvlyUuEOwZ7S7tb2fQ9DCPy9
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB7BcoALlFJg223rVhx6yRISO3GkXqpV0ZYCBwSISxU59kT8dRftJhdOPALP2CfpTLIJorQS6i2SJ7IzHnu-mdjfAGxp50snVeChMzEFKC70khBzT1untQwcuUjOQx4cRsMTuXemzubgc3MXpuaHaBNuvDKq_ZoXOCektx9YQy-t7Qcx2eM8LHBF7yqgOnogjwpVTR5FGMbT1N7wCvnBdvvqY2_0BGI-RqyVy9ldgR_NYOuTJlf9ssj69vYPHsf__ZoXsDzDouJLbTyrMIejl7A4aErArcHpUX2CFsU4F4QUxU_ki8I8r8KMnLDnFxN6tA3pM4sh5-JRFGNRXhcT8-vuPjfTQhBIp_abkjzx9BWc7H49Hgy9WSEGz4ZaK0_mmUTpWyZv56Ato5haxS5SuW9ilFmIJnE7iFFsLRKCynWMO84khtCVSigKXofOaDzCTRDScrkfhxbJRGIdET4JEz_LwsgFmdWmC5-aCUntjKWci2VcpzW_cpCSotJKUV342Ire1NQcfxPqNbOazlbnNOUgkyJzpaIufGibSbf8s4R0NC5ZJiJsoyna6sJGbQ1tL7QpJ4ScfBpsNaf_7j7dGwyqh9fPF30Pi8Pjg_10_9vh9zewFBCK4pxP6PegU0xKfEsoqMjeVcb-GwkUAOc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB7xI9FeWmgLbEvBRT30kt1sYjuOOFULK_6FEFQcKkWOPRFtYXe1m1x66iPwjDwJ42QTRClSxS2SJ7IzHnu-mdjfAHxW1ueWi8BDqyMKUGzoxSFmnjJWKR5YcpEuD3l0LHfP-f6FuJiBrfouTMUP0STc3Moo92u3wEc269yThv40ph1EZI6zMM-lr5xJb5_ec0eFouKOIgjjKSm6Na2QH3SaVx86o0cI8yFgLT1O_zV8r8daHTT51S7ytG1-_0Xj-MyPWYRXUyTKvlamswQzOHgDL3p1Abi38O20Oj-LbJgxwonsGt01YTerTA8sM5c_xvRoaspnJ4YuE48sH7LiKh_r2z83mZ7kjCA6tY8K8sOTd3De3znr7XrTMgyeCZUSHs9Sjtw3jrrdhWwpRdQislJkvo6QpyHq2HYRZWQMEn7KVIRdq2NN2ErEFAMvw9xgOMBVYNy4Yj8WDZKBREoSOgljP01DaYPUKN2CL_V8JGbKUe5KZVwlFbtykJCiklJRLdhsREcVMce_hNbqSU2ma3OSuBCT4nIhZAs-Nc2kW_erhHQ0LJyMJGSjKNZqwUplDE0vtCXHhJt8Gmw5pU93n-z3euXD-_8X3YCFk-1-crh3fPABXgYEoVzCJ_TXYC4fF_iRIFCerpemfgcjSv-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response+of+the+mechanical+and+chiral+character+of+ethane+to+ultra-fast+laser+pulses&rft.jtitle=Journal+of+computational+chemistry&rft.au=Mi%2C+Xiao+Peng&rft.au=Lu%2C+Hui&rft.au=Xu%2C+Tianlv&rft.au=Fr%C3%BCchtl%2C+Herbert&rft.date=2024-01-30&rft.eissn=1096-987X&rft.volume=45&rft.issue=3&rft.spage=150&rft_id=info:doi/10.1002%2Fjcc.27225&rft_id=info%3Apmid%2F37698200&rft.externalDocID=37698200
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon