Effects of small boundary perturbation on flow of viscous fluid

We study the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude ɛ≪1 is applied on part of the boundary of the fluid domain. The complete asymptotic expansion of the solution of the Stokes system, in powers of ε is derived....

Full description

Saved in:
Bibliographic Details
Published inZeitschrift für angewandte Mathematik und Mechanik Vol. 96; no. 9; pp. 1103 - 1118
Main Author Marušić-Paloka, Eduard
Format Journal Article
LanguageEnglish
Published Weinheim Blackwell Publishing Ltd 01.09.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude ɛ≪1 is applied on part of the boundary of the fluid domain. The complete asymptotic expansion of the solution of the Stokes system, in powers of ε is derived. First two terms are explicitly computed. A simple example shows that the perturbation is nonlocal, i.e. not concentrated near the boundary. The convergence of the expansion is proved. The results are applied on a simple optimal shape design problem. The author studies the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude ɛ≪1 is applied on part of the boundary of the fluid domain. The complete asymptotic expansion of the solution of the Stokes system, in powers of ε is derived. First two terms are explicitly computed. A simple example shows that the perturbation is nonlocal, i.e. not concentrated near the boundary. The convergence of the expansion is proved. The results are applied on a simple optimal shape design problem.
AbstractList We study the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude is applied on part of the boundary of the fluid domain. The complete asymptotic expansion of the solution of the Stokes system, in powers of ε is derived. First two terms are explicitly computed. A simple example shows that the perturbation is nonlocal, i.e. not concentrated near the boundary. The convergence of the expansion is proved. The results are applied on a simple optimal shape design problem.
We study the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude 1 is applied on part of the boundary of the fluid domain. The complete asymptotic expansion of the solution of the Stokes system, in powers of [epsi] is derived. First two terms are explicitly computed. A simple example shows that the perturbation is nonlocal, i.e. not concentrated near the boundary. The convergence of the expansion is proved. The results are applied on a simple optimal shape design problem.
We study the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude ɛ≪1 is applied on part of the boundary of the fluid domain. The complete asymptotic expansion of the solution of the Stokes system, in powers of ε is derived. First two terms are explicitly computed. A simple example shows that the perturbation is nonlocal, i.e. not concentrated near the boundary. The convergence of the expansion is proved. The results are applied on a simple optimal shape design problem. The author studies the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude ɛ≪1 is applied on part of the boundary of the fluid domain. The complete asymptotic expansion of the solution of the Stokes system, in powers of ε is derived. First two terms are explicitly computed. A simple example shows that the perturbation is nonlocal, i.e. not concentrated near the boundary. The convergence of the expansion is proved. The results are applied on a simple optimal shape design problem.
We study the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude [Formulaomitted] is applied on part of the boundary of the fluid domain. The complete asymptotic expansion of the solution of the Stokes system, in powers of epsilon is derived. First two terms are explicitly computed. A simple example shows that the perturbation is nonlocal, i.e. not concentrated near the boundary. The convergence of the expansion is proved. The results are applied on a simple optimal shape design problem. The author studies the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude [Formulaomitted] is applied on part of the boundary of the fluid domain. The complete asymptotic expansion of the solution of the Stokes system, in powers of epsilon is derived. First two terms are explicitly computed. A simple example shows that the perturbation is nonlocal, i.e. not concentrated near the boundary. The convergence of the expansion is proved. The results are applied on a simple optimal shape design problem.
Author Marušić-Paloka, Eduard
Author_xml – sequence: 1
  givenname: Eduard
  surname: Marušić-Paloka
  fullname: Marušić-Paloka, Eduard
  email: emarusic@math.hr, emarusic@math.hr
  organization: Department of Mathematics, University of Zagreb, Bijenička 30, 10000, Zagreb, Croatia
BookMark eNqFkM1LwzAYh4MoOD-ungtevHS-SZqPnmSMOZWpF0XwEtI2gWrbzKR1zr_ejImIFyGQvPA84ff-DtBu5zqD0AmGMQYg55-6bccEMAPAOdtBI8wITrM47aIRQJalhHCxjw5CeIENg-kIXcysNWUfEmeT0OqmSQo3dJX262RpfD_4Qve165J4bONWG-y9DqUbQpyHujpCe1Y3wRx_34fo8XL2ML1KF_fz6-lkkZZUSpaSymQmY1IApaWUlHHAVGidF5hzwW2Vm5yUBaasspwJywgFUzEiCgHSaKCH6Gz779K7t8GEXrUxhmka3ZkYRmHJGM1FBllET_-gL27wXUwXKcyloDnISI23VOldCN5YtfR1G_dWGNSmT7XpU_30GYV8K6zqxqz_odXz5Pb2t5tu3Tr05uPH1f5VcUEFU093c8Uov7mDxTQ-vgAMHoiB
CitedBy_id crossref_primary_10_1007_s11242_016_0818_4
crossref_primary_10_1007_s11242_019_01360_5
crossref_primary_10_1515_zna_2016_0085
crossref_primary_10_1137_18M1183376
crossref_primary_10_1002_zamm_201700363
crossref_primary_10_1016_j_cjph_2024_02_009
crossref_primary_10_1090_qam_1686
crossref_primary_10_1007_s40840_017_0508_6
Cites_doi 10.1080/00036811.2014.930823
10.1006/jdeq.2000.3814
10.1007/s00033-011-0167-7
10.1080/17476933.2013.831846
10.1006/jdeq.1996.0122
10.1006/jcph.1998.6088
10.1016/S0022-0396(02)00105-5
10.1007/s10958-013-1204-1
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/zamm.201500195
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1521-4001
EndPage 1118
ExternalDocumentID 4171462111
10_1002_zamm_201500195
ZAMM201500195
ark_67375_WNG_536JN0LC_5
Genre article
GrantInformation_xml – fundername: Croatian science foundation
  funderid: 3955
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
41~
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCQX
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEIGN
AEIMD
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EDO
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
I-F
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RJQFR
RWI
RX1
SAMSI
SUPJJ
TN5
UB1
V2E
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~02
~IA
~WT
TUS
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3885-2de4e4587033c883560137aa9b16676fd9e92cb135df657f5230ed527b708ea03
IEDL.DBID DR2
ISSN 0044-2267
IngestDate Fri Oct 25 02:27:05 EDT 2024
Thu Oct 10 16:22:36 EDT 2024
Thu Sep 26 16:01:35 EDT 2024
Sat Aug 24 00:50:31 EDT 2024
Wed Oct 30 09:55:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3885-2de4e4587033c883560137aa9b16676fd9e92cb135df657f5230ed527b708ea03
Notes ark:/67375/WNG-536JN0LC-5
ArticleID:ZAMM201500195
istex:F9344D39503AA7C3AD2016116BD9DF324FAEA9C3
Croatian science foundation - No. 3955
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1816873908
PQPubID 2032056
PageCount 16
ParticipantIDs proquest_miscellaneous_1855397404
proquest_journals_1816873908
crossref_primary_10_1002_zamm_201500195
wiley_primary_10_1002_zamm_201500195_ZAMM201500195
istex_primary_ark_67375_WNG_536JN0LC_5
PublicationCentury 2000
PublicationDate 2016-09
September 2016
2016-09-00
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Zeitschrift für angewandte Mathematik und Mechanik
PublicationTitleAlternate Z. Angew. Math. Mech
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References D. Daners, Domain perturbation for linear and nonlinear parabolic equations, J. Differ. Eq. 129(2), 358-402 (1996).
T. H. C. Luong and C. Daveau, Asymptotic formula for the solution of the Stokes problem with small perturbation of the domain in two and three dimensions, Complex Var. Elliptic Eq. 59(9), 1269-1282 (2014).
Y. Achdou, O. Pironneau, and F. Valentin, Effective boundary conditions for laminar flows over periodic rough boundaries, J. Comput. Phys. 147, 187-218 (1998).
E. Marušić-Paloka and M. Starcevic, High-order approximations for an incompressible viscous flow on a rough boundary, Appl. Anal. 94(7), 1305-1333 (2015).
W. Jäger and A. Mikelić, On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Diff. Eq. 170(1), 96-122 (2001).
Y. Amirat, G. A. Chechkin, and M. Romanov, On multiscale homogenization problems in boundary layer theory, ZAMP 63(3), 475-502 (2012).
A. Linkevitch, R. S. Ratiu, S. V. Spiridonov, and G. A. Chechkin, On a thin layer of non-Newtonian fluid on rough surface percolating through perforated obstacle, J. of Math. Sci. 189(3), 525-535 (2013) (Translated from Problemy mat. Analiza 68, 173-182 (2013)).
Y. Amirat and J. Simon, Influence de la rugosit en hydrodynamique laminaire, C.R. Acad. Sci. Paris Sr. I 323, 313-331 (1996).
D. Daners, Dirichlet problems on varying domains, J. Differ. Eq. 188(2), 591-624 (2003).
O. Mohammadi and O. Pironneau, Applied Shape Optimization for Fluids (Oxford University Press, 2001).
2013; 189
2014; 59
2005
1998; 147
2001
1996; 323
2001; 170
2015; 94
2003; 188
1996; 129
2012; 63
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_11_1
Mohammadi O. (e_1_2_10_13_1) 2001
Henry D. (e_1_2_10_2_1) 2005
e_1_2_10_4_1
e_1_2_10_3_1
e_1_2_10_6_1
Amirat Y. (e_1_2_10_5_1) 1996; 323
e_1_2_10_8_1
e_1_2_10_7_1
References_xml – volume: 63
  start-page: 475
  issue: 3
  year: 2012
  end-page: 502
  article-title: On multiscale homogenization problems in boundary layer theory
  publication-title: ZAMP
– volume: 59
  start-page: 1269
  issue: 9
  year: 2014
  end-page: 1282
  article-title: Asymptotic formula for the solution of the Stokes problem with small perturbation of the domain in two and three dimensions
  publication-title: Complex Var. Elliptic Eq.
– volume: 94
  start-page: 1305
  issue: 7
  year: 2015
  end-page: 1333
  article-title: High‐order approximations for an incompressible viscous flow on a rough boundary
  publication-title: Appl. Anal.
– year: 2005
– volume: 188
  start-page: 591
  issue: 2
  year: 2003
  end-page: 624
  article-title: Dirichlet problems on varying domains
  publication-title: J. Differ. Eq.
– volume: 147
  start-page: 187
  year: 1998
  end-page: 218
  article-title: Effective boundary conditions for laminar flows over periodic rough boundaries
  publication-title: J. Comput. Phys.
– volume: 129
  start-page: 358
  issue: 2
  year: 1996
  end-page: 402
  article-title: Domain perturbation for linear and nonlinear parabolic equations
  publication-title: J. Differ. Eq.
– volume: 170
  start-page: 96
  issue: 1
  year: 2001
  end-page: 122
  article-title: On the roughness‐induced effective boundary conditions for an incompressible viscous flow
  publication-title: J. Diff. Eq.
– year: 2001
– volume: 323
  start-page: 313
  year: 1996
  end-page: 331
  article-title: Influence de la rugosit en hydrodynamique laminaire
  publication-title: C.R. Acad. Sci. Paris Sr. I
– volume: 189
  start-page: 525
  issue: 3
  year: 2013
  end-page: 535
  article-title: On a thin layer of non‐Newtonian fluid on rough surface percolating through perforated obstacle
  publication-title: J. of Math. Sci.
– ident: e_1_2_10_12_1
  doi: 10.1080/00036811.2014.930823
– ident: e_1_2_10_3_1
  doi: 10.1006/jdeq.2000.3814
– ident: e_1_2_10_6_1
  doi: 10.1007/s00033-011-0167-7
– ident: e_1_2_10_11_1
  doi: 10.1080/17476933.2013.831846
– volume-title: London Mathematical Society Lecture Notes Series, 318
  year: 2005
  ident: e_1_2_10_2_1
  contributor:
    fullname: Henry D.
– ident: e_1_2_10_7_1
  doi: 10.1006/jdeq.1996.0122
– ident: e_1_2_10_4_1
  doi: 10.1006/jcph.1998.6088
– ident: e_1_2_10_8_1
  doi: 10.1016/S0022-0396(02)00105-5
– ident: e_1_2_10_9_1
– volume-title: Applied Shape Optimization for Fluids
  year: 2001
  ident: e_1_2_10_13_1
  contributor:
    fullname: Mohammadi O.
– ident: e_1_2_10_10_1
  doi: 10.1007/s10958-013-1204-1
– volume: 323
  start-page: 313
  year: 1996
  ident: e_1_2_10_5_1
  article-title: Influence de la rugosit en hydrodynamique laminaire
  publication-title: C.R. Acad. Sci. Paris Sr. I
  contributor:
    fullname: Amirat Y.
SSID ssj0001913
Score 2.1753156
Snippet We study the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude ɛ≪1 is applied on...
We study the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude is applied on...
We study the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude 1 is applied on...
We study the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude [Formulaomitted]...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 1103
SubjectTerms 35B25
35B40
75D07
76D55
asymptotic analysis
Asymptotic expansions
Boundaries
boundary perturbation
Computational fluid dynamics
Convergence
error estimate
Fluid flow
Optimization
Perturbation methods
Stokes system
Viscous fluids
Title Effects of small boundary perturbation on flow of viscous fluid
URI https://api.istex.fr/ark:/67375/WNG-536JN0LC-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fzamm.201500195
https://www.proquest.com/docview/1816873908
https://search.proquest.com/docview/1855397404
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iL_rgXaxOqSD6VJfm0suTjOkcw-1BHIovIWlTEHdj3bzs13vSbt3mi6BQSkNOID0nJ_mSnHxB6BwAG1cJTZwwwIHDCIkdGXHuRDB2yZBGTMssQLbl1dus8cyfF07x5_wQxYKb8YysvzYOLlVanpOGTmTXnCQHQGPOvEEn7FLfxHTdPMz5o2AyMt1iZg7gDH_G2ohJebn40qi0ZhT8uQQ5F4FrNvLUtpCc1TkPOHm7Go_UVTT5Qef4n5_aRptTWGpX8na0g1Z0bxdtLJAVQqpZMLyme-g6pz1O7X5ip13Z6dgqu6Bp-GUP9BDGMZWZ3IYn6fQ_jNj7axr1xymkx6_xPmrXbh-rdWd6GYMT0SDgDok104yDe1MaBYDbPENWKGWoXBMmm8ShDkmkXMrjxON-YlabdcyJr3wcaInpAVrt9Xv6ENm-ikmiXQ-yNDN8iMrTOIY3TB0xDbSFLmfGEIOcc0Pk7MpEGAWJQkEWushsVYjJ4ZuJVPO5eGrdCU69RgvfVwUIlmbGFFMnTYVr7hzxaYgDC50V2eBeZs9E9jSoBGQ4B8jGMLMQySz3S5XES6XZLFJHfyl0jNbh28sj2UpodTQc6xOAPiN1mjXvbx1X-LM
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8xeNh44GMbogxYkBB7Crj-yMcTQmysQNsHBNrEi2UnjoQoLWpaYPz13CVNoLwgDSmK5PgiOXe--Gf7_DuAbQRsymYi8-OIRb7kPPVNopSf4NhlYpFIZ4oA2W7QupAnf1UVTUhnYUp-iHrBjTyj-F-Tg9OC9N4za-ijuaGj5Iho6NDbB5hDnxeUveHn2TODFE5HJpvM0kekEVa8jYzvTb8_NS7NkYofpkDnS-hajD1Hi2CrVpchJ9e745HdTR5fETq-67OWYGGCTL2Dsistw4zrf4b5F3yFWOrUJK_5F9gvmY9zb5B5-Y3p9Txb5Gga_vNu3RCHMltY3cMr6w3uSezuKk8G4xzL46v0K1wc_To_bPmTfAx-IqJI-Tx10kmFHi5EEiF0C4iv0JjYNilSNktjF_PENoVKs0CFGS04u1Tx0IYscoaJFZjtD_puFbzQpjxzzQCrnCRKRBs4luIdZ49MRK4BPypr6NuSdkOXBMtck4J0raAG7BTGqsXM8JqC1UKl_3R_ayWCky5rH2oUXK-sqSd-musmpR0JRcyiBmzV1ehhtG1i-g5VgjJKIWqTTDaAF6Z7o0n68qDTqUtr__PSd_jYOu-0dfu4e_oNPuHzoAxsW4fZ0XDsNhAJjexm0defAKyF_Ms
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD7iIk3wsMEYouOWSdN4Cri-5PI0IaAwoNWEQEO8WHZsS4jSVk3L7ddznLSh3QvSJkWRHJ9Izjk-OZ_t488A3xGwCe2YC9OEJCGn1IQqEyLMMHaplGXcqiJBthWdXPHTa3E9sYu_5IeoJty8ZxT_a-_gPeP23khDX9S930mOgMbveZuFeR4h_PWw6OKNQApHI6M1Zh4i0IjHtI2E7k2_PxWW5r2Gn6Yw5yRyLUJP4xOocaPLjJO73eFA72Yvf_E5_s9XLcHHES4N9suOtAwztvMZFifYCrHUrChe8xX4WfIe50HXBfm9arcDXZzQ1H8OeraPgUwXNg_wcu3uoxd7uM2z7jDH8vDWfIGrxtHlwUk4Oo0hzFiSiJAayy0X6N-MZQkCt8izFSqV6rrPk3UmtSnNdJ0J4yIROz_dbI2gsY5JYhVhqzDX6XbsGgSxNtTZeoRVlntCRB1ZYvCOY0fCEluDnbExZK8k3ZAlvTKVXkGyUlANfhS2qsRU_86nqsVC_mkdS8Gi0xY5P5AouDE2phx5aS7r_tCRmKUkqcG3qhr9yy-aqI5FlaCMEIjZOOE1oIXl3mmSvNlvNqvS1395aRs-_D5syPNfrbN1WMDHUZnVtgFzg_7QbiIMGuitoqe_Aq6F-3o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+small+boundary+perturbation+on+flow+of+viscous+fluid&rft.jtitle=Zeitschrift+f%C3%BCr+angewandte+Mathematik+und+Mechanik&rft.au=Maru%C5%A1i%C4%87-Paloka%2C+Eduard&rft.date=2016-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0044-2267&rft.eissn=1521-4001&rft.volume=96&rft.issue=9&rft.spage=1103&rft.epage=1118&rft_id=info:doi/10.1002%2Fzamm.201500195&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_536JN0LC_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2267&client=summon