Effects of small boundary perturbation on flow of viscous fluid
We study the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude ɛ≪1 is applied on part of the boundary of the fluid domain. The complete asymptotic expansion of the solution of the Stokes system, in powers of ε is derived....
Saved in:
Published in | Zeitschrift für angewandte Mathematik und Mechanik Vol. 96; no. 9; pp. 1103 - 1118 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Weinheim
Blackwell Publishing Ltd
01.09.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude ɛ≪1 is applied on part of the boundary of the fluid domain. The complete asymptotic expansion of the solution of the Stokes system, in powers of ε is derived. First two terms are explicitly computed. A simple example shows that the perturbation is nonlocal, i.e. not concentrated near the boundary. The convergence of the expansion is proved. The results are applied on a simple optimal shape design problem.
The author studies the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude ɛ≪1 is applied on part of the boundary of the fluid domain. The complete asymptotic expansion of the solution of the Stokes system, in powers of ε is derived. First two terms are explicitly computed. A simple example shows that the perturbation is nonlocal, i.e. not concentrated near the boundary. The convergence of the expansion is proved. The results are applied on a simple optimal shape design problem. |
---|---|
AbstractList | We study the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude
is applied on part of the boundary of the fluid domain. The complete asymptotic expansion of the solution of the Stokes system, in powers of ε is derived. First two terms are explicitly computed. A simple example shows that the perturbation is nonlocal, i.e. not concentrated near the boundary. The convergence of the expansion is proved. The results are applied on a simple optimal shape design problem. We study the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude 1 is applied on part of the boundary of the fluid domain. The complete asymptotic expansion of the solution of the Stokes system, in powers of [epsi] is derived. First two terms are explicitly computed. A simple example shows that the perturbation is nonlocal, i.e. not concentrated near the boundary. The convergence of the expansion is proved. The results are applied on a simple optimal shape design problem. We study the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude ɛ≪1 is applied on part of the boundary of the fluid domain. The complete asymptotic expansion of the solution of the Stokes system, in powers of ε is derived. First two terms are explicitly computed. A simple example shows that the perturbation is nonlocal, i.e. not concentrated near the boundary. The convergence of the expansion is proved. The results are applied on a simple optimal shape design problem. The author studies the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude ɛ≪1 is applied on part of the boundary of the fluid domain. The complete asymptotic expansion of the solution of the Stokes system, in powers of ε is derived. First two terms are explicitly computed. A simple example shows that the perturbation is nonlocal, i.e. not concentrated near the boundary. The convergence of the expansion is proved. The results are applied on a simple optimal shape design problem. We study the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude [Formulaomitted] is applied on part of the boundary of the fluid domain. The complete asymptotic expansion of the solution of the Stokes system, in powers of epsilon is derived. First two terms are explicitly computed. A simple example shows that the perturbation is nonlocal, i.e. not concentrated near the boundary. The convergence of the expansion is proved. The results are applied on a simple optimal shape design problem. The author studies the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude [Formulaomitted] is applied on part of the boundary of the fluid domain. The complete asymptotic expansion of the solution of the Stokes system, in powers of epsilon is derived. First two terms are explicitly computed. A simple example shows that the perturbation is nonlocal, i.e. not concentrated near the boundary. The convergence of the expansion is proved. The results are applied on a simple optimal shape design problem. |
Author | Marušić-Paloka, Eduard |
Author_xml | – sequence: 1 givenname: Eduard surname: Marušić-Paloka fullname: Marušić-Paloka, Eduard email: emarusic@math.hr, emarusic@math.hr organization: Department of Mathematics, University of Zagreb, Bijenička 30, 10000, Zagreb, Croatia |
BookMark | eNqFkM1LwzAYh4MoOD-ungtevHS-SZqPnmSMOZWpF0XwEtI2gWrbzKR1zr_ejImIFyGQvPA84ff-DtBu5zqD0AmGMQYg55-6bccEMAPAOdtBI8wITrM47aIRQJalhHCxjw5CeIENg-kIXcysNWUfEmeT0OqmSQo3dJX262RpfD_4Qve165J4bONWG-y9DqUbQpyHujpCe1Y3wRx_34fo8XL2ML1KF_fz6-lkkZZUSpaSymQmY1IApaWUlHHAVGidF5hzwW2Vm5yUBaasspwJywgFUzEiCgHSaKCH6Gz779K7t8GEXrUxhmka3ZkYRmHJGM1FBllET_-gL27wXUwXKcyloDnISI23VOldCN5YtfR1G_dWGNSmT7XpU_30GYV8K6zqxqz_odXz5Pb2t5tu3Tr05uPH1f5VcUEFU093c8Uov7mDxTQ-vgAMHoiB |
CitedBy_id | crossref_primary_10_1007_s11242_016_0818_4 crossref_primary_10_1007_s11242_019_01360_5 crossref_primary_10_1515_zna_2016_0085 crossref_primary_10_1137_18M1183376 crossref_primary_10_1002_zamm_201700363 crossref_primary_10_1016_j_cjph_2024_02_009 crossref_primary_10_1090_qam_1686 crossref_primary_10_1007_s40840_017_0508_6 |
Cites_doi | 10.1080/00036811.2014.930823 10.1006/jdeq.2000.3814 10.1007/s00033-011-0167-7 10.1080/17476933.2013.831846 10.1006/jdeq.1996.0122 10.1006/jcph.1998.6088 10.1016/S0022-0396(02)00105-5 10.1007/s10958-013-1204-1 |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1002/zamm.201500195 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Civil Engineering Abstracts Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1521-4001 |
EndPage | 1118 |
ExternalDocumentID | 4171462111 10_1002_zamm_201500195 ZAMM201500195 ark_67375_WNG_536JN0LC_5 |
Genre | article |
GrantInformation_xml | – fundername: Croatian science foundation funderid: 3955 |
GroupedDBID | -~X .3N .4S .DC .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 41~ 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCQX ABCUV ABEML ABIJN ACAHQ ACBWZ ACCZN ACGFS ACIWK ACNCT ACPOU ACSCC ACXBN ACXQS ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEIGN AEIMD AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AHBTC AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EDO EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ H~9 I-F IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RJQFR RWI RX1 SAMSI SUPJJ TN5 UB1 V2E VOH W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~02 ~IA ~WT TUS AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c3885-2de4e4587033c883560137aa9b16676fd9e92cb135df657f5230ed527b708ea03 |
IEDL.DBID | DR2 |
ISSN | 0044-2267 |
IngestDate | Fri Oct 25 02:27:05 EDT 2024 Thu Oct 10 16:22:36 EDT 2024 Thu Sep 26 16:01:35 EDT 2024 Sat Aug 24 00:50:31 EDT 2024 Wed Oct 30 09:55:11 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3885-2de4e4587033c883560137aa9b16676fd9e92cb135df657f5230ed527b708ea03 |
Notes | ark:/67375/WNG-536JN0LC-5 ArticleID:ZAMM201500195 istex:F9344D39503AA7C3AD2016116BD9DF324FAEA9C3 Croatian science foundation - No. 3955 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1816873908 |
PQPubID | 2032056 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1855397404 proquest_journals_1816873908 crossref_primary_10_1002_zamm_201500195 wiley_primary_10_1002_zamm_201500195_ZAMM201500195 istex_primary_ark_67375_WNG_536JN0LC_5 |
PublicationCentury | 2000 |
PublicationDate | 2016-09 September 2016 2016-09-00 20160901 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Zeitschrift für angewandte Mathematik und Mechanik |
PublicationTitleAlternate | Z. Angew. Math. Mech |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | D. Daners, Domain perturbation for linear and nonlinear parabolic equations, J. Differ. Eq. 129(2), 358-402 (1996). T. H. C. Luong and C. Daveau, Asymptotic formula for the solution of the Stokes problem with small perturbation of the domain in two and three dimensions, Complex Var. Elliptic Eq. 59(9), 1269-1282 (2014). Y. Achdou, O. Pironneau, and F. Valentin, Effective boundary conditions for laminar flows over periodic rough boundaries, J. Comput. Phys. 147, 187-218 (1998). E. Marušić-Paloka and M. Starcevic, High-order approximations for an incompressible viscous flow on a rough boundary, Appl. Anal. 94(7), 1305-1333 (2015). W. Jäger and A. Mikelić, On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Diff. Eq. 170(1), 96-122 (2001). Y. Amirat, G. A. Chechkin, and M. Romanov, On multiscale homogenization problems in boundary layer theory, ZAMP 63(3), 475-502 (2012). A. Linkevitch, R. S. Ratiu, S. V. Spiridonov, and G. A. Chechkin, On a thin layer of non-Newtonian fluid on rough surface percolating through perforated obstacle, J. of Math. Sci. 189(3), 525-535 (2013) (Translated from Problemy mat. Analiza 68, 173-182 (2013)). Y. Amirat and J. Simon, Influence de la rugosit en hydrodynamique laminaire, C.R. Acad. Sci. Paris Sr. I 323, 313-331 (1996). D. Daners, Dirichlet problems on varying domains, J. Differ. Eq. 188(2), 591-624 (2003). O. Mohammadi and O. Pironneau, Applied Shape Optimization for Fluids (Oxford University Press, 2001). 2013; 189 2014; 59 2005 1998; 147 2001 1996; 323 2001; 170 2015; 94 2003; 188 1996; 129 2012; 63 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_11_1 Mohammadi O. (e_1_2_10_13_1) 2001 Henry D. (e_1_2_10_2_1) 2005 e_1_2_10_4_1 e_1_2_10_3_1 e_1_2_10_6_1 Amirat Y. (e_1_2_10_5_1) 1996; 323 e_1_2_10_8_1 e_1_2_10_7_1 |
References_xml | – volume: 63 start-page: 475 issue: 3 year: 2012 end-page: 502 article-title: On multiscale homogenization problems in boundary layer theory publication-title: ZAMP – volume: 59 start-page: 1269 issue: 9 year: 2014 end-page: 1282 article-title: Asymptotic formula for the solution of the Stokes problem with small perturbation of the domain in two and three dimensions publication-title: Complex Var. Elliptic Eq. – volume: 94 start-page: 1305 issue: 7 year: 2015 end-page: 1333 article-title: High‐order approximations for an incompressible viscous flow on a rough boundary publication-title: Appl. Anal. – year: 2005 – volume: 188 start-page: 591 issue: 2 year: 2003 end-page: 624 article-title: Dirichlet problems on varying domains publication-title: J. Differ. Eq. – volume: 147 start-page: 187 year: 1998 end-page: 218 article-title: Effective boundary conditions for laminar flows over periodic rough boundaries publication-title: J. Comput. Phys. – volume: 129 start-page: 358 issue: 2 year: 1996 end-page: 402 article-title: Domain perturbation for linear and nonlinear parabolic equations publication-title: J. Differ. Eq. – volume: 170 start-page: 96 issue: 1 year: 2001 end-page: 122 article-title: On the roughness‐induced effective boundary conditions for an incompressible viscous flow publication-title: J. Diff. Eq. – year: 2001 – volume: 323 start-page: 313 year: 1996 end-page: 331 article-title: Influence de la rugosit en hydrodynamique laminaire publication-title: C.R. Acad. Sci. Paris Sr. I – volume: 189 start-page: 525 issue: 3 year: 2013 end-page: 535 article-title: On a thin layer of non‐Newtonian fluid on rough surface percolating through perforated obstacle publication-title: J. of Math. Sci. – ident: e_1_2_10_12_1 doi: 10.1080/00036811.2014.930823 – ident: e_1_2_10_3_1 doi: 10.1006/jdeq.2000.3814 – ident: e_1_2_10_6_1 doi: 10.1007/s00033-011-0167-7 – ident: e_1_2_10_11_1 doi: 10.1080/17476933.2013.831846 – volume-title: London Mathematical Society Lecture Notes Series, 318 year: 2005 ident: e_1_2_10_2_1 contributor: fullname: Henry D. – ident: e_1_2_10_7_1 doi: 10.1006/jdeq.1996.0122 – ident: e_1_2_10_4_1 doi: 10.1006/jcph.1998.6088 – ident: e_1_2_10_8_1 doi: 10.1016/S0022-0396(02)00105-5 – ident: e_1_2_10_9_1 – volume-title: Applied Shape Optimization for Fluids year: 2001 ident: e_1_2_10_13_1 contributor: fullname: Mohammadi O. – ident: e_1_2_10_10_1 doi: 10.1007/s10958-013-1204-1 – volume: 323 start-page: 313 year: 1996 ident: e_1_2_10_5_1 article-title: Influence de la rugosit en hydrodynamique laminaire publication-title: C.R. Acad. Sci. Paris Sr. I contributor: fullname: Amirat Y. |
SSID | ssj0001913 |
Score | 2.1753156 |
Snippet | We study the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude ɛ≪1 is applied on... We study the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude is applied on... We study the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude 1 is applied on... We study the effects of small boundary perturbation on the flow of viscous fluid using asymptotic analysis. A small perturbation of magnitude [Formulaomitted]... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 1103 |
SubjectTerms | 35B25 35B40 75D07 76D55 asymptotic analysis Asymptotic expansions Boundaries boundary perturbation Computational fluid dynamics Convergence error estimate Fluid flow Optimization Perturbation methods Stokes system Viscous fluids |
Title | Effects of small boundary perturbation on flow of viscous fluid |
URI | https://api.istex.fr/ark:/67375/WNG-536JN0LC-5/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fzamm.201500195 https://www.proquest.com/docview/1816873908 https://search.proquest.com/docview/1855397404 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iL_rgXaxOqSD6VJfm0suTjOkcw-1BHIovIWlTEHdj3bzs13vSbt3mi6BQSkNOID0nJ_mSnHxB6BwAG1cJTZwwwIHDCIkdGXHuRDB2yZBGTMssQLbl1dus8cyfF07x5_wQxYKb8YysvzYOLlVanpOGTmTXnCQHQGPOvEEn7FLfxHTdPMz5o2AyMt1iZg7gDH_G2ohJebn40qi0ZhT8uQQ5F4FrNvLUtpCc1TkPOHm7Go_UVTT5Qef4n5_aRptTWGpX8na0g1Z0bxdtLJAVQqpZMLyme-g6pz1O7X5ip13Z6dgqu6Bp-GUP9BDGMZWZ3IYn6fQ_jNj7axr1xymkx6_xPmrXbh-rdWd6GYMT0SDgDok104yDe1MaBYDbPENWKGWoXBMmm8ShDkmkXMrjxON-YlabdcyJr3wcaInpAVrt9Xv6ENm-ikmiXQ-yNDN8iMrTOIY3TB0xDbSFLmfGEIOcc0Pk7MpEGAWJQkEWushsVYjJ4ZuJVPO5eGrdCU69RgvfVwUIlmbGFFMnTYVr7hzxaYgDC50V2eBeZs9E9jSoBGQ4B8jGMLMQySz3S5XES6XZLFJHfyl0jNbh28sj2UpodTQc6xOAPiN1mjXvbx1X-LM |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8xeNh44GMbogxYkBB7Crj-yMcTQmysQNsHBNrEi2UnjoQoLWpaYPz13CVNoLwgDSmK5PgiOXe--Gf7_DuAbQRsymYi8-OIRb7kPPVNopSf4NhlYpFIZ4oA2W7QupAnf1UVTUhnYUp-iHrBjTyj-F-Tg9OC9N4za-ijuaGj5Iho6NDbB5hDnxeUveHn2TODFE5HJpvM0kekEVa8jYzvTb8_NS7NkYofpkDnS-hajD1Hi2CrVpchJ9e745HdTR5fETq-67OWYGGCTL2Dsistw4zrf4b5F3yFWOrUJK_5F9gvmY9zb5B5-Y3p9Txb5Gga_vNu3RCHMltY3cMr6w3uSezuKk8G4xzL46v0K1wc_To_bPmTfAx-IqJI-Tx10kmFHi5EEiF0C4iv0JjYNilSNktjF_PENoVKs0CFGS04u1Tx0IYscoaJFZjtD_puFbzQpjxzzQCrnCRKRBs4luIdZ49MRK4BPypr6NuSdkOXBMtck4J0raAG7BTGqsXM8JqC1UKl_3R_ayWCky5rH2oUXK-sqSd-musmpR0JRcyiBmzV1ehhtG1i-g5VgjJKIWqTTDaAF6Z7o0n68qDTqUtr__PSd_jYOu-0dfu4e_oNPuHzoAxsW4fZ0XDsNhAJjexm0defAKyF_Ms |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD7iIk3wsMEYouOWSdN4Cri-5PI0IaAwoNWEQEO8WHZsS4jSVk3L7ddznLSh3QvSJkWRHJ9Izjk-OZ_t488A3xGwCe2YC9OEJCGn1IQqEyLMMHaplGXcqiJBthWdXPHTa3E9sYu_5IeoJty8ZxT_a-_gPeP23khDX9S930mOgMbveZuFeR4h_PWw6OKNQApHI6M1Zh4i0IjHtI2E7k2_PxWW5r2Gn6Yw5yRyLUJP4xOocaPLjJO73eFA72Yvf_E5_s9XLcHHES4N9suOtAwztvMZFifYCrHUrChe8xX4WfIe50HXBfm9arcDXZzQ1H8OeraPgUwXNg_wcu3uoxd7uM2z7jDH8vDWfIGrxtHlwUk4Oo0hzFiSiJAayy0X6N-MZQkCt8izFSqV6rrPk3UmtSnNdJ0J4yIROz_dbI2gsY5JYhVhqzDX6XbsGgSxNtTZeoRVlntCRB1ZYvCOY0fCEluDnbExZK8k3ZAlvTKVXkGyUlANfhS2qsRU_86nqsVC_mkdS8Gi0xY5P5AouDE2phx5aS7r_tCRmKUkqcG3qhr9yy-aqI5FlaCMEIjZOOE1oIXl3mmSvNlvNqvS1395aRs-_D5syPNfrbN1WMDHUZnVtgFzg_7QbiIMGuitoqe_Aq6F-3o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+small+boundary+perturbation+on+flow+of+viscous+fluid&rft.jtitle=Zeitschrift+f%C3%BCr+angewandte+Mathematik+und+Mechanik&rft.au=Maru%C5%A1i%C4%87-Paloka%2C+Eduard&rft.date=2016-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0044-2267&rft.eissn=1521-4001&rft.volume=96&rft.issue=9&rft.spage=1103&rft.epage=1118&rft_id=info:doi/10.1002%2Fzamm.201500195&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_536JN0LC_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2267&client=summon |