Fracture of polycrystalline graphene membranes by in situ nanoindentation in a scanning electron microscope
Failure of polycrystalline graphene grown by chemical vapor deposition was investigated by nanoindentation in a scanning electron microscope. Circular graphene membranes were subject to central point loads using a nanomanipulator combined with an atomic force microscope cantilever as a force sensor....
Saved in:
Published in | Physica status solidi. PSS-RRL. Rapid research letters Vol. 9; no. 10; pp. 564 - 569 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin
WILEY-VCH Verlag Berlin GmbH
01.10.2015
WILEY‐VCH Verlag Berlin GmbH Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Failure of polycrystalline graphene grown by chemical vapor deposition was investigated by nanoindentation in a scanning electron microscope. Circular graphene membranes were subject to central point loads using a nanomanipulator combined with an atomic force microscope cantilever as a force sensor. The grain boundaries of the polycrystalline graphene were visualized by Raman spectroscopy coupled with a carbon isotope labeling technique. Graphene membranes without any grain boundary had a failure strength of 45.4 ± 10.4 GPa, compared to 16.4 ± 5.1 GPa for those with grain boundaries when a Young's modulus was assumed to be 1 TPa. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)
The failure strength of polycrystalline monolayer graphene grown by chemical vapor deposition is investigated by in situ nanoindentation in a scanning electron microscope. By visualizing the grain boundaries with carbon isotope labeling and Raman mapping techniques, the mechanical property of monolayer graphene is correlated with the grain boundary density. |
---|---|
AbstractList | Failure of polycrystalline graphene grown by chemical vapor deposition was investigated by nanoindentation in a scanning electron microscope. Circular graphene membranes were subject to central point loads using a nanomanipulator combined with an atomic force microscope cantilever as a force sensor. The grain boundaries of the polycrystalline graphene were visualized by Raman spectroscopy coupled with a carbon isotope labeling technique. Graphene membranes without any grain boundary had a failure strength of 45.4 ± 10.4 GPa, compared to 16.4 ± 5.1 GPa for those with grain boundaries when a Young's modulus was assumed to be 1 TPa. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim) Failure of polycrystalline graphene grown by chemical vapor deposition was investigated by nanoindentation in a scanning electron microscope. Circular graphene membranes were subject to central point loads using a nanomanipulator combined with an atomic force microscope cantilever as a force sensor. The grain boundaries of the polycrystalline graphene were visualized by Raman spectroscopy coupled with a carbon isotope labeling technique. Graphene membranes without any grain boundary had a failure strength of 45.4 ± 10.4 GPa, compared to 16.4 ± 5.1 GPa for those with grain boundaries when a Young's modulus was assumed to be 1 TPa. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim) The failure strength of polycrystalline monolayer graphene grown by chemical vapor deposition is investigated by in situ nanoindentation in a scanning electron microscope. By visualizing the grain boundaries with carbon isotope labeling and Raman mapping techniques, the mechanical property of monolayer graphene is correlated with the grain boundary density. Failure of polycrystalline graphene grown by chemical vapor deposition was investigated by nanoindentation in a scanning electron microscope. Circular graphene membranes were subject to central point loads using a nanomanipulator combined with an atomic force microscope cantilever as a force sensor. The grain boundaries of the polycrystalline graphene were visualized by Raman spectroscopy coupled with a carbon isotope labeling technique. Graphene membranes without any grain boundary had a failure strength of 45.4 plus or minus 10.4 GPa, compared to 16.4 plus or minus 5.1 GPa for those with grain boundaries when a Young's modulus was assumed to be 1 TPa. ( copyright 2015 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim) The failure strength of polycrystalline monolayer graphene grown by chemical vapor deposition is investigated by in situ nanoindentation in a scanning electron microscope. By visualizing the grain boundaries with carbon isotope labeling and Raman mapping techniques, the mechanical property of monolayer graphene is correlated with the grain boundary density. |
Author | Suk, Ji Won Hao, Yufeng Mancevski, Vladimir Liechti, Kenneth M. Ruoff, Rodney S. |
Author_xml | – sequence: 1 givenname: Ji Won surname: Suk fullname: Suk, Ji Won email: jwsuk@skku.edu organization: School of Mechanical Engineering, Sungkyunkwan University, 440-746, Suwon, Republic of Korea – sequence: 2 givenname: Vladimir surname: Mancevski fullname: Mancevski, Vladimir organization: Xidex Corporation, 78754, Austin, Texas, USA – sequence: 3 givenname: Yufeng surname: Hao fullname: Hao, Yufeng organization: Department of Mechanical Engineering and the Materials Science and Engineering Program, The University of Texas at Austin, 78712, Austin, Texas, USA – sequence: 4 givenname: Kenneth M. surname: Liechti fullname: Liechti, Kenneth M. organization: Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, 78712, Austin, Texas, USA – sequence: 5 givenname: Rodney S. surname: Ruoff fullname: Ruoff, Rodney S. organization: Institute of Basic Sciences Center for Multidimensional Carbon Materials &Department of Chemistry and School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, 689-798, Ulsan, Republic of Korea |
BookMark | eNqFkU1rFTEUhoO0YD_cug64cTPXZJLMx1KqvRVKra2l7kImc6amzSRjkkHn35vLyEUK4iqHw_Mc8vIeowPnHSD0mpINJaR8N8UYNiWhgpKS8xfoiDZVWVRlTQ72s-Av0XGMj4SItubsCD2dB6XTHAD7AU_eLjosMSlrjQP8ENT0HfIwwtgF5SDibsHG4WjSjJ1y3rgeXFLJeLfbKxy1cs64BwwWdAp5PRodfNR-glN0OCgb4dWf9wTdnX_8enZRXH7efjp7f1lo1jS80HRgNWNdL0CQjnWg2oGoVnDR9wqAgOpLCqRqO90q3Xac8mYQAjrgrCa9Zifo7Xp3Cv7HDDHJ0UQN1uYEfo6S1i0rOcteRt88Qx_9HFz-XaZK1tSMkipTfKV2SWKAQWqzhk5BGSspkbsG5K4BuW8ga5tn2hTMqMLyb6FdhZ_GwvIfWl7f3t787Rara2KCX3tXhSdZ1awW8v5qK6--iO3Ft-sP8ob9BusDrfs |
CitedBy_id | crossref_primary_10_1016_j_mtcomm_2022_103623 crossref_primary_10_1093_nsr_nwy067 crossref_primary_10_1016_j_compositesb_2019_107499 crossref_primary_10_1016_j_compositesb_2024_111515 crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_107 crossref_primary_10_1021_acs_chemmater_0c01660 crossref_primary_10_1142_S2047684116500214 crossref_primary_10_1007_s42649_019_0005_5 crossref_primary_10_1016_j_jmps_2024_105828 crossref_primary_10_1016_j_carbon_2020_01_107 crossref_primary_10_1016_j_jmst_2025_02_014 crossref_primary_10_1080_19475411_2020_1791276 crossref_primary_10_3367_UFNe_2017_11_038233 crossref_primary_10_3390_nano10102063 crossref_primary_10_1016_j_bios_2018_11_049 crossref_primary_10_1088_1361_6528_ace44e crossref_primary_10_1021_acsnano_8b04460 crossref_primary_10_1016_j_eml_2020_100771 crossref_primary_10_1016_j_commatsci_2022_111924 crossref_primary_10_1007_s10854_016_4982_7 crossref_primary_10_1016_j_mattod_2021_10_009 crossref_primary_10_1007_s10999_017_9389_y crossref_primary_10_1088_1361_6463_ab27ad crossref_primary_10_1039_D0NR07606F crossref_primary_10_1080_10408436_2019_1582003 crossref_primary_10_1088_2053_1583_aa5147 crossref_primary_10_3390_mi13010027 |
Cites_doi | 10.1021/nl200429f 10.1021/nl400542n 10.1038/srep04439 10.1021/nl902515k 10.1126/science.1157996 10.1021/nl304420b 10.1063/1.4776667 10.1021/nn103102a 10.1038/srep07437 10.1016/j.carbon.2014.02.003 10.1126/science.1235126 10.1002/adma.201201782 10.1038/nmat3370 10.1088/0957-4484/25/21/215704 10.1038/nmat3010 10.1038/srep05991 10.1038/nature09718 10.1021/nn5033888 10.1088/0957-4484/24/50/505703 10.1021/ja109793s 10.1039/c3nr06388g 10.1126/science.1196893 10.1021/nn201207c 10.1063/1.1935133 10.1126/science.1171245 10.1063/1.3643444 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1002/pssr.201510244 |
DatabaseName | Istex CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | CrossRef Technology Research Database Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1862-6270 |
EndPage | 569 |
ExternalDocumentID | 3841353391 10_1002_pssr_201510244 PSSR201510244 ark_67375_WNG_NQ5GHXPD_R |
Genre | article |
GrantInformation_xml | – fundername: Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT &Future Planning (NRF‐2014R1A1A1004818) |
GroupedDBID | 05W 0R~ 123 1OC 31~ 33P 3SF 4.4 52U 8-1 8UM AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADZMN AEEZP AEIGN AEIMD AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AGQPQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI BSCLL CS3 DCZOG DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2W PQQKQ ROL SUPJJ WBKPD WGJPS WIH WIK WOHZO WXSBR WYISQ XV2 ZZTAW ~S- AFPWT AAYXX AEYWJ AGYGG CITATION 7U5 8FD L7M |
ID | FETCH-LOGICAL-c3884-c1f3733bd5e50b3bea9f0a9545ddaee0ead21e069bc9ac9b4148f55ebe4370dc3 |
ISSN | 1862-6254 |
IngestDate | Fri Jul 11 16:55:39 EDT 2025 Fri Jul 25 07:16:45 EDT 2025 Tue Jul 01 02:15:08 EDT 2025 Thu Apr 24 22:51:22 EDT 2025 Wed Jan 22 16:54:19 EST 2025 Mon Apr 07 06:04:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3884-c1f3733bd5e50b3bea9f0a9545ddaee0ead21e069bc9ac9b4148f55ebe4370dc3 |
Notes | Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT &Future Planning (NRF-2014R1A1A1004818) istex:35E2B0BDF34964F1B87A07E4DDB36D0E7A5B12C8 ark:/67375/WNG-NQ5GHXPD-R ArticleID:PSSR201510244 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1723873106 |
PQPubID | 1036348 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1793243414 proquest_journals_1723873106 crossref_citationtrail_10_1002_pssr_201510244 crossref_primary_10_1002_pssr_201510244 wiley_primary_10_1002_pssr_201510244_PSSR201510244 istex_primary_ark_67375_WNG_NQ5GHXPD_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10 October 2015 2015-10-00 20151001 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10 |
PublicationDecade | 2010 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin – name: Weinheim |
PublicationTitle | Physica status solidi. PSS-RRL. Rapid research letters |
PublicationTitleAlternate | Phys. Status Solidi RRL |
PublicationYear | 2015 |
Publisher | WILEY-VCH Verlag Berlin GmbH WILEY‐VCH Verlag Berlin GmbH Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag Berlin GmbH – name: WILEY‐VCH Verlag Berlin GmbH – name: Wiley Subscription Services, Inc |
References | J. W. Suk, A. Kitt, C. W. Magnuson, Y. F. Hao, S. Ahmed, J. H. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, ACS Nano 5, 6916-6924 (2011). J. W. Suk, W. H. Lee, J. Lee, H. Chou, R. D. Piner, Y. F. Hao, D. Akinwande, and R. S. Ruoff, Nano Lett. 13, 1462-1467 (2013). X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312-1314 (2009). Y. Hwangbo, C. K. Lee, S. M. Kim, J. H. Kim, K. S. Kim, B. Jang, H. J. Lee, S. K. Lee, S. S. Kim, J. H. Ahn, and S. M. Lee, Sci. Rep. 4, 4439 (2014). J. H. An, E. Voelkl, J. W. Suk, X. S. Li, C. W. Magnuson, L. F. Fu, P. Tiemeijer, M. Bischoff, B. Freitag, E. Popova, and R. S. Ruoff, ACS Nano 5, 2433-2439 (2011). Y. J. Wei, J. T. Wu, H. Q. Yin, X. H. Shi, R. G. Yang, and M. Dresselhaus, Nature Mater. 11, 759-763 (2012). C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Science 321, 385-388 (2008). C. S. Ruiz-Vargas, H. L. L. Zhuang, P. Y. Huang, A. M. van der Zande, S. Garg, P. L. McEuen, D. A. Muller, R. G. Hennig, and J. Park, Nano Lett. 11, 2259-2263 (2011). J. E. Sader, J. Pacifico, C. P. Green, and P. Mulvaney, J. Appl. Phys. 97, 124903 (2005). Q. K. Yu, L. A. Jauregui, W. Wu, R. Colby, J. F. Tian, Z. H. Su, H. L. Cao, Z. H. Liu, D. Pandey, D. G. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. M. Bao, S. S. Pei, and Y. P. Chen, Nature Mater. 10, 443-449 (2011). Z. G. Song, V. I. Artyukhov, B. I. Yakobson, and Z. P. Xu, Nano Lett. 13, 1829-1833 (2013). L. Q. Xu, N. Wei, and Y. P. Zheng, Nanotechnology 24, 505703 (2013). J. W. Suk, K. Kirk, Y. F. Hao, N. A. Hall, and R. S. Ruoff, Adv. Mater. 24, 6342-6347 (2012). Z. D. Sha, S. S. Quek, Q. X. Pei, Z. S. Liu, T. J. Wang, V. B. Shenoy, and Y. W. Zhang, Sci. Rep. 4, 7437 (2014). G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerherg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, Science 340, 1073-1076 (2013). X. S. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo, and R. S. Ruoff, J. Am. Chem. Soc. 133, 2816-2819 (2011). A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, Appl. Phys. Lett. 99, 122108 (2011). Z. D. Sha, Q. Wan, Q. X. Pei, S. S. Quek, Z. S. Liu, Y. W. Zhang, and V. B. Shenoy, Sci. Rep. 4, 5991 (2014). P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, and D. A. Muller, Nature 469, 389-393 (2011). Z. D. Sha, Q. X. Pei, Z. S. Liu, V. B. Shenoy, and Y. W. Zhang, Carbon 72, 200-206 (2014). B. Mortazavi, M. Potschke, and G. Cuniberti, Nanoscale 6, 3344-3352 (2014). R. Grantab, V. B. Shenoy, and R. S. Ruoff, Science 330, 946-948 (2010). Q. Y. Lin, Y. H. Zeng, D. M. Liu, G. Y. Jing, Z. M. Liao, and D. P. Yu, ACS Nano 8, 10246-10251 (2014). X. S. Li, W. W. Cai, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4268-4272 (2009). A. Y. Serov, Z.Y. Ong, and E. Pop, Appl. Phys. Lett. 102, 033104 (2013). B. Mortazavi and G. Cuniberti, Nanotechnology 25, 215704 (2014). 2014; 4 2011; 469 2013; 13 2013; 24 2010; 330 2009; 9 2011; 11 2014; 25 2005; 97 2011; 99 2011; 10 2013; 102 2013; 340 2008; 321 2014; 8 2012; 24 2014; 72 2011; 5 2014; 6 2012; 11 2009; 324 2011; 133 e_1_2_6_10_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312-1314 (2009). – reference: J. H. An, E. Voelkl, J. W. Suk, X. S. Li, C. W. Magnuson, L. F. Fu, P. Tiemeijer, M. Bischoff, B. Freitag, E. Popova, and R. S. Ruoff, ACS Nano 5, 2433-2439 (2011). – reference: J. W. Suk, A. Kitt, C. W. Magnuson, Y. F. Hao, S. Ahmed, J. H. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, ACS Nano 5, 6916-6924 (2011). – reference: Z. D. Sha, S. S. Quek, Q. X. Pei, Z. S. Liu, T. J. Wang, V. B. Shenoy, and Y. W. Zhang, Sci. Rep. 4, 7437 (2014). – reference: B. Mortazavi and G. Cuniberti, Nanotechnology 25, 215704 (2014). – reference: A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, Appl. Phys. Lett. 99, 122108 (2011). – reference: A. Y. Serov, Z.Y. Ong, and E. Pop, Appl. Phys. Lett. 102, 033104 (2013). – reference: Q. Y. Lin, Y. H. Zeng, D. M. Liu, G. Y. Jing, Z. M. Liao, and D. P. Yu, ACS Nano 8, 10246-10251 (2014). – reference: X. S. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo, and R. S. Ruoff, J. Am. Chem. Soc. 133, 2816-2819 (2011). – reference: P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, and D. A. Muller, Nature 469, 389-393 (2011). – reference: C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Science 321, 385-388 (2008). – reference: Z. G. Song, V. I. Artyukhov, B. I. Yakobson, and Z. P. Xu, Nano Lett. 13, 1829-1833 (2013). – reference: Q. K. Yu, L. A. Jauregui, W. Wu, R. Colby, J. F. Tian, Z. H. Su, H. L. Cao, Z. H. Liu, D. Pandey, D. G. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. M. Bao, S. S. Pei, and Y. P. Chen, Nature Mater. 10, 443-449 (2011). – reference: B. Mortazavi, M. Potschke, and G. Cuniberti, Nanoscale 6, 3344-3352 (2014). – reference: J. E. Sader, J. Pacifico, C. P. Green, and P. Mulvaney, J. Appl. Phys. 97, 124903 (2005). – reference: R. Grantab, V. B. Shenoy, and R. S. Ruoff, Science 330, 946-948 (2010). – reference: J. W. Suk, K. Kirk, Y. F. Hao, N. A. Hall, and R. S. Ruoff, Adv. Mater. 24, 6342-6347 (2012). – reference: G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerherg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, Science 340, 1073-1076 (2013). – reference: C. S. Ruiz-Vargas, H. L. L. Zhuang, P. Y. Huang, A. M. van der Zande, S. Garg, P. L. McEuen, D. A. Muller, R. G. Hennig, and J. Park, Nano Lett. 11, 2259-2263 (2011). – reference: J. W. Suk, W. H. Lee, J. Lee, H. Chou, R. D. Piner, Y. F. Hao, D. Akinwande, and R. S. Ruoff, Nano Lett. 13, 1462-1467 (2013). – reference: Z. D. Sha, Q. Wan, Q. X. Pei, S. S. Quek, Z. S. Liu, Y. W. Zhang, and V. B. Shenoy, Sci. Rep. 4, 5991 (2014). – reference: Z. D. Sha, Q. X. Pei, Z. S. Liu, V. B. Shenoy, and Y. W. Zhang, Carbon 72, 200-206 (2014). – reference: Y. Hwangbo, C. K. Lee, S. M. Kim, J. H. Kim, K. S. Kim, B. Jang, H. J. Lee, S. K. Lee, S. S. Kim, J. H. Ahn, and S. M. Lee, Sci. Rep. 4, 4439 (2014). – reference: X. S. Li, W. W. Cai, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4268-4272 (2009). – reference: Y. J. Wei, J. T. Wu, H. Q. Yin, X. H. Shi, R. G. Yang, and M. Dresselhaus, Nature Mater. 11, 759-763 (2012). – reference: L. Q. Xu, N. Wei, and Y. P. Zheng, Nanotechnology 24, 505703 (2013). – volume: 469 start-page: 389 year: 2011 end-page: 393 publication-title: Nature – volume: 4 start-page: 7437 year: 2014 publication-title: Sci. Rep – volume: 324 start-page: 1312 year: 2009 end-page: 1314 publication-title: Science – volume: 5 start-page: 6916 year: 2011 end-page: 6924 publication-title: ACS Nano – volume: 10 start-page: 443 year: 2011 end-page: 449 publication-title: Nature Mater – volume: 102 start-page: 033104 year: 2013 publication-title: Appl. Phys. Lett – volume: 97 start-page: 124903 year: 2005 publication-title: J. Appl. Phys – volume: 8 start-page: 10246 year: 2014 end-page: 10251 publication-title: ACS Nano – volume: 133 start-page: 2816 year: 2011 end-page: 2819 publication-title: J. Am. Chem. Soc – volume: 4 start-page: 4439 year: 2014 publication-title: Sci. Rep – volume: 6 start-page: 3344 year: 2014 end-page: 3352 publication-title: Nanoscale – volume: 330 start-page: 946 year: 2010 end-page: 948 publication-title: Science – volume: 72 start-page: 200 year: 2014 end-page: 206 publication-title: Carbon – volume: 13 start-page: 1829 year: 2013 end-page: 1833 publication-title: Nano Lett – volume: 25 start-page: 215704 year: 2014 publication-title: Nanotechnology – volume: 11 start-page: 2259 year: 2011 end-page: 2263 publication-title: Nano Lett – volume: 99 start-page: 122108 year: 2011 publication-title: Appl. Phys. Lett – volume: 321 start-page: 385 year: 2008 end-page: 388 publication-title: Science – volume: 24 start-page: 6342 year: 2012 end-page: 6347 publication-title: Adv. Mater – volume: 13 start-page: 1462 year: 2013 end-page: 1467 publication-title: Nano Lett – volume: 11 start-page: 759 year: 2012 end-page: 763 publication-title: Nature Mater – volume: 24 start-page: 505703 year: 2013 publication-title: Nanotechnology – volume: 5 start-page: 2433 year: 2011 end-page: 2439 publication-title: ACS Nano – volume: 9 start-page: 4268 year: 2009 end-page: 4272 publication-title: Nano Lett – volume: 340 start-page: 1073 year: 2013 end-page: 1076 publication-title: Science – volume: 4 start-page: 5991 year: 2014 publication-title: Sci. Rep – ident: e_1_2_6_10_1 doi: 10.1021/nl200429f – ident: e_1_2_6_14_1 doi: 10.1021/nl400542n – ident: e_1_2_6_21_1 doi: 10.1038/srep04439 – ident: e_1_2_6_3_1 doi: 10.1021/nl902515k – ident: e_1_2_6_9_1 doi: 10.1126/science.1157996 – ident: e_1_2_6_22_1 doi: 10.1021/nl304420b – ident: e_1_2_6_7_1 doi: 10.1063/1.4776667 – ident: e_1_2_6_5_1 doi: 10.1021/nn103102a – ident: e_1_2_6_26_1 doi: 10.1038/srep07437 – ident: e_1_2_6_25_1 doi: 10.1016/j.carbon.2014.02.003 – ident: e_1_2_6_15_1 doi: 10.1126/science.1235126 – ident: e_1_2_6_19_1 doi: 10.1002/adma.201201782 – ident: e_1_2_6_11_1 doi: 10.1038/nmat3370 – ident: e_1_2_6_13_1 doi: 10.1088/0957-4484/25/21/215704 – ident: e_1_2_6_6_1 doi: 10.1038/nmat3010 – ident: e_1_2_6_27_1 doi: 10.1038/srep05991 – ident: e_1_2_6_4_1 doi: 10.1038/nature09718 – ident: e_1_2_6_16_1 doi: 10.1021/nn5033888 – ident: e_1_2_6_24_1 doi: 10.1088/0957-4484/24/50/505703 – ident: e_1_2_6_17_1 doi: 10.1021/ja109793s – ident: e_1_2_6_8_1 doi: 10.1039/c3nr06388g – ident: e_1_2_6_12_1 doi: 10.1126/science.1196893 – ident: e_1_2_6_18_1 doi: 10.1021/nn201207c – ident: e_1_2_6_20_1 doi: 10.1063/1.1935133 – ident: e_1_2_6_2_1 doi: 10.1126/science.1171245 – ident: e_1_2_6_23_1 doi: 10.1063/1.3643444 |
SSID | ssj0059743 |
Score | 2.22757 |
Snippet | Failure of polycrystalline graphene grown by chemical vapor deposition was investigated by nanoindentation in a scanning electron microscope. Circular graphene... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 564 |
SubjectTerms | Chemical vapor deposition Crystallization Failure Grain boundaries Graphene Marking Membranes Nanoindentation Scanning electron microscopy |
Title | Fracture of polycrystalline graphene membranes by in situ nanoindentation in a scanning electron microscope |
URI | https://api.istex.fr/ark:/67375/WNG-NQ5GHXPD-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssr.201510244 https://www.proquest.com/docview/1723873106 https://www.proquest.com/docview/1793243414 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bj5pAFJ7YNU360vSa2m6badK0DxMswgzI42a3q9msxure-kQGGFKyikalqf3b_QM9hwHE7X19IGY4isz5_Oac4VwIeQN_fxGYtmWYsR0bHF4GGPWuISRWewpcyTkmCg-GTv-cn1yJq0bjey1qKVsH7fDbL_NKbqNVGAO9Ypbsf2i2-lIYgPegXziChuH4Tzo-xhQnfAKAYcvz6SZcbsDYm-aWY16JGoiMzdQMPGJgNLQ0k5StknXGUpnOsVBiWgQbwrhkq1A3MGJlbxw2w3C9PHGlbsSOtG5xG2KdrRjcYxIlbTaaTIzx-LTNxnKRYFJMsaMyzTOGKtt9kuUEfJKwy20IwADB96XooX0xlVEyS5Zbdsz3cz9lsSrWWYwgSlT4uYhF0LlFbNCu72F0RBUNVzAllg-vgjsuDvtMb2ayouRXbxb0axwNTpgBbpveh1D1Md2DpCR2r45fs8bSwuG1BV_oXjE_rSW6Nu0CTBWMAATusjjfrpplpEAlKf4sm5sMoIhxdf4OaVrg2wA5Nw-OBqeT0oBAFy_PCynvs6w1alrvd6-wY0s1kRa-7jhKdXcrt5fOHpD7haNDDzRqH5KGSh-Ruxo6q8fkusQuncf0BnZpiV1aYZcGG5qkFLFLb2AXxyUtsUtL7NItdp-Q8-MPZ4d9o2j8YYR2t8uNsBPbrm0HkVDCDOxASS82pQfGfhRJpUxgP6ujTMcLQk-GXsDBp4-FAD7itmtGof2U7KXzVD0jVLldL-4qBV694iq2pKPiyOlaHpCUbUvZIkY5hX5YVMXH5ixTX9fztnyccr-a8hZ5V8kvdD2Y30q-zTVSicnlNUZRusK_HPb84UfR61-Njvxxi-yXKvMLcln5HWwG6ILv5bTI6-o0UD8-z4N5n2coA84XBzMUrmXlqv7LT_J38Pf8Nh96Qe5t_8D7ZG-9zNRLMMvXwasCxj8AE27hrw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fracture+of+polycrystalline+graphene+membranes+by+in+situ+nanoindentation+in+a+scanning+electron+microscope&rft.jtitle=Physica+status+solidi.+PSS-RRL.+Rapid+research+letters&rft.au=Suk%2C+Ji+Won&rft.au=Mancevski%2C+Vladimir&rft.au=Hao%2C+Yufeng&rft.au=Liechti%2C+Kenneth+M.&rft.date=2015-10-01&rft.pub=WILEY%E2%80%90VCH+Verlag+Berlin+GmbH&rft.issn=1862-6254&rft.eissn=1862-6270&rft.volume=9&rft.issue=10&rft.spage=564&rft.epage=569&rft_id=info:doi/10.1002%2Fpssr.201510244&rft.externalDBID=10.1002%252Fpssr.201510244&rft.externalDocID=PSSR201510244 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6254&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6254&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6254&client=summon |