Fracture of polycrystalline graphene membranes by in situ nanoindentation in a scanning electron microscope

Failure of polycrystalline graphene grown by chemical vapor deposition was investigated by nanoindentation in a scanning electron microscope. Circular graphene membranes were subject to central point loads using a nanomanipulator combined with an atomic force microscope cantilever as a force sensor....

Full description

Saved in:
Bibliographic Details
Published inPhysica status solidi. PSS-RRL. Rapid research letters Vol. 9; no. 10; pp. 564 - 569
Main Authors Suk, Ji Won, Mancevski, Vladimir, Hao, Yufeng, Liechti, Kenneth M., Ruoff, Rodney S.
Format Journal Article
LanguageEnglish
Published Berlin WILEY-VCH Verlag Berlin GmbH 01.10.2015
WILEY‐VCH Verlag Berlin GmbH
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Failure of polycrystalline graphene grown by chemical vapor deposition was investigated by nanoindentation in a scanning electron microscope. Circular graphene membranes were subject to central point loads using a nanomanipulator combined with an atomic force microscope cantilever as a force sensor. The grain boundaries of the polycrystalline graphene were visualized by Raman spectroscopy coupled with a carbon isotope labeling technique. Graphene membranes without any grain boundary had a failure strength of 45.4 ± 10.4 GPa, compared to 16.4 ± 5.1 GPa for those with grain boundaries when a Young's modulus was assumed to be 1 TPa. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim) The failure strength of polycrystalline monolayer graphene grown by chemical vapor deposition is investigated by in situ nanoindentation in a scanning electron microscope. By visualizing the grain boundaries with carbon isotope labeling and Raman mapping techniques, the mechanical property of monolayer graphene is correlated with the grain boundary density.
AbstractList Failure of polycrystalline graphene grown by chemical vapor deposition was investigated by nanoindentation in a scanning electron microscope. Circular graphene membranes were subject to central point loads using a nanomanipulator combined with an atomic force microscope cantilever as a force sensor. The grain boundaries of the polycrystalline graphene were visualized by Raman spectroscopy coupled with a carbon isotope labeling technique. Graphene membranes without any grain boundary had a failure strength of 45.4 ± 10.4 GPa, compared to 16.4 ± 5.1 GPa for those with grain boundaries when a Young's modulus was assumed to be 1 TPa. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)
Failure of polycrystalline graphene grown by chemical vapor deposition was investigated by nanoindentation in a scanning electron microscope. Circular graphene membranes were subject to central point loads using a nanomanipulator combined with an atomic force microscope cantilever as a force sensor. The grain boundaries of the polycrystalline graphene were visualized by Raman spectroscopy coupled with a carbon isotope labeling technique. Graphene membranes without any grain boundary had a failure strength of 45.4 ± 10.4 GPa, compared to 16.4 ± 5.1 GPa for those with grain boundaries when a Young's modulus was assumed to be 1 TPa. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim) The failure strength of polycrystalline monolayer graphene grown by chemical vapor deposition is investigated by in situ nanoindentation in a scanning electron microscope. By visualizing the grain boundaries with carbon isotope labeling and Raman mapping techniques, the mechanical property of monolayer graphene is correlated with the grain boundary density.
Failure of polycrystalline graphene grown by chemical vapor deposition was investigated by nanoindentation in a scanning electron microscope. Circular graphene membranes were subject to central point loads using a nanomanipulator combined with an atomic force microscope cantilever as a force sensor. The grain boundaries of the polycrystalline graphene were visualized by Raman spectroscopy coupled with a carbon isotope labeling technique. Graphene membranes without any grain boundary had a failure strength of 45.4 plus or minus 10.4 GPa, compared to 16.4 plus or minus 5.1 GPa for those with grain boundaries when a Young's modulus was assumed to be 1 TPa. ( copyright 2015 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim) The failure strength of polycrystalline monolayer graphene grown by chemical vapor deposition is investigated by in situ nanoindentation in a scanning electron microscope. By visualizing the grain boundaries with carbon isotope labeling and Raman mapping techniques, the mechanical property of monolayer graphene is correlated with the grain boundary density.
Author Suk, Ji Won
Hao, Yufeng
Mancevski, Vladimir
Liechti, Kenneth M.
Ruoff, Rodney S.
Author_xml – sequence: 1
  givenname: Ji Won
  surname: Suk
  fullname: Suk, Ji Won
  email: jwsuk@skku.edu
  organization: School of Mechanical Engineering, Sungkyunkwan University, 440-746, Suwon, Republic of Korea
– sequence: 2
  givenname: Vladimir
  surname: Mancevski
  fullname: Mancevski, Vladimir
  organization: Xidex Corporation, 78754, Austin, Texas, USA
– sequence: 3
  givenname: Yufeng
  surname: Hao
  fullname: Hao, Yufeng
  organization: Department of Mechanical Engineering and the Materials Science and Engineering Program, The University of Texas at Austin, 78712, Austin, Texas, USA
– sequence: 4
  givenname: Kenneth M.
  surname: Liechti
  fullname: Liechti, Kenneth M.
  organization: Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, 78712, Austin, Texas, USA
– sequence: 5
  givenname: Rodney S.
  surname: Ruoff
  fullname: Ruoff, Rodney S.
  organization: Institute of Basic Sciences Center for Multidimensional Carbon Materials &Department of Chemistry and School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, 689-798, Ulsan, Republic of Korea
BookMark eNqFkU1rFTEUhoO0YD_cug64cTPXZJLMx1KqvRVKra2l7kImc6amzSRjkkHn35vLyEUK4iqHw_Mc8vIeowPnHSD0mpINJaR8N8UYNiWhgpKS8xfoiDZVWVRlTQ72s-Av0XGMj4SItubsCD2dB6XTHAD7AU_eLjosMSlrjQP8ENT0HfIwwtgF5SDibsHG4WjSjJ1y3rgeXFLJeLfbKxy1cs64BwwWdAp5PRodfNR-glN0OCgb4dWf9wTdnX_8enZRXH7efjp7f1lo1jS80HRgNWNdL0CQjnWg2oGoVnDR9wqAgOpLCqRqO90q3Xac8mYQAjrgrCa9Zifo7Xp3Cv7HDDHJ0UQN1uYEfo6S1i0rOcteRt88Qx_9HFz-XaZK1tSMkipTfKV2SWKAQWqzhk5BGSspkbsG5K4BuW8ga5tn2hTMqMLyb6FdhZ_GwvIfWl7f3t787Rara2KCX3tXhSdZ1awW8v5qK6--iO3Ft-sP8ob9BusDrfs
CitedBy_id crossref_primary_10_1016_j_mtcomm_2022_103623
crossref_primary_10_1093_nsr_nwy067
crossref_primary_10_1016_j_compositesb_2019_107499
crossref_primary_10_1016_j_compositesb_2024_111515
crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_107
crossref_primary_10_1021_acs_chemmater_0c01660
crossref_primary_10_1142_S2047684116500214
crossref_primary_10_1007_s42649_019_0005_5
crossref_primary_10_1016_j_jmps_2024_105828
crossref_primary_10_1016_j_carbon_2020_01_107
crossref_primary_10_1016_j_jmst_2025_02_014
crossref_primary_10_1080_19475411_2020_1791276
crossref_primary_10_3367_UFNe_2017_11_038233
crossref_primary_10_3390_nano10102063
crossref_primary_10_1016_j_bios_2018_11_049
crossref_primary_10_1088_1361_6528_ace44e
crossref_primary_10_1021_acsnano_8b04460
crossref_primary_10_1016_j_eml_2020_100771
crossref_primary_10_1016_j_commatsci_2022_111924
crossref_primary_10_1007_s10854_016_4982_7
crossref_primary_10_1016_j_mattod_2021_10_009
crossref_primary_10_1007_s10999_017_9389_y
crossref_primary_10_1088_1361_6463_ab27ad
crossref_primary_10_1039_D0NR07606F
crossref_primary_10_1080_10408436_2019_1582003
crossref_primary_10_1088_2053_1583_aa5147
crossref_primary_10_3390_mi13010027
Cites_doi 10.1021/nl200429f
10.1021/nl400542n
10.1038/srep04439
10.1021/nl902515k
10.1126/science.1157996
10.1021/nl304420b
10.1063/1.4776667
10.1021/nn103102a
10.1038/srep07437
10.1016/j.carbon.2014.02.003
10.1126/science.1235126
10.1002/adma.201201782
10.1038/nmat3370
10.1088/0957-4484/25/21/215704
10.1038/nmat3010
10.1038/srep05991
10.1038/nature09718
10.1021/nn5033888
10.1088/0957-4484/24/50/505703
10.1021/ja109793s
10.1039/c3nr06388g
10.1126/science.1196893
10.1021/nn201207c
10.1063/1.1935133
10.1126/science.1171245
10.1063/1.3643444
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1002/pssr.201510244
DatabaseName Istex
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList CrossRef

Technology Research Database
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1862-6270
EndPage 569
ExternalDocumentID 3841353391
10_1002_pssr_201510244
PSSR201510244
ark_67375_WNG_NQ5GHXPD_R
Genre article
GrantInformation_xml – fundername: Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT &Future Planning (NRF‐2014R1A1A1004818)
GroupedDBID 05W
0R~
123
1OC
31~
33P
3SF
4.4
52U
8-1
8UM
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AGQPQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2W
PQQKQ
ROL
SUPJJ
WBKPD
WGJPS
WIH
WIK
WOHZO
WXSBR
WYISQ
XV2
ZZTAW
~S-
AFPWT
AAYXX
AEYWJ
AGYGG
CITATION
7U5
8FD
L7M
ID FETCH-LOGICAL-c3884-c1f3733bd5e50b3bea9f0a9545ddaee0ead21e069bc9ac9b4148f55ebe4370dc3
ISSN 1862-6254
IngestDate Fri Jul 11 16:55:39 EDT 2025
Fri Jul 25 07:16:45 EDT 2025
Tue Jul 01 02:15:08 EDT 2025
Thu Apr 24 22:51:22 EDT 2025
Wed Jan 22 16:54:19 EST 2025
Mon Apr 07 06:04:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3884-c1f3733bd5e50b3bea9f0a9545ddaee0ead21e069bc9ac9b4148f55ebe4370dc3
Notes Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT &Future Planning (NRF-2014R1A1A1004818)
istex:35E2B0BDF34964F1B87A07E4DDB36D0E7A5B12C8
ark:/67375/WNG-NQ5GHXPD-R
ArticleID:PSSR201510244
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1723873106
PQPubID 1036348
PageCount 6
ParticipantIDs proquest_miscellaneous_1793243414
proquest_journals_1723873106
crossref_citationtrail_10_1002_pssr_201510244
crossref_primary_10_1002_pssr_201510244
wiley_primary_10_1002_pssr_201510244_PSSR201510244
istex_primary_ark_67375_WNG_NQ5GHXPD_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10
October 2015
2015-10-00
20151001
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
– name: Weinheim
PublicationTitle Physica status solidi. PSS-RRL. Rapid research letters
PublicationTitleAlternate Phys. Status Solidi RRL
PublicationYear 2015
Publisher WILEY-VCH Verlag Berlin GmbH
WILEY‐VCH Verlag Berlin GmbH
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag Berlin GmbH
– name: WILEY‐VCH Verlag Berlin GmbH
– name: Wiley Subscription Services, Inc
References J. W. Suk, A. Kitt, C. W. Magnuson, Y. F. Hao, S. Ahmed, J. H. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, ACS Nano 5, 6916-6924 (2011).
J. W. Suk, W. H. Lee, J. Lee, H. Chou, R. D. Piner, Y. F. Hao, D. Akinwande, and R. S. Ruoff, Nano Lett. 13, 1462-1467 (2013).
X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312-1314 (2009).
Y. Hwangbo, C. K. Lee, S. M. Kim, J. H. Kim, K. S. Kim, B. Jang, H. J. Lee, S. K. Lee, S. S. Kim, J. H. Ahn, and S. M. Lee, Sci. Rep. 4, 4439 (2014).
J. H. An, E. Voelkl, J. W. Suk, X. S. Li, C. W. Magnuson, L. F. Fu, P. Tiemeijer, M. Bischoff, B. Freitag, E. Popova, and R. S. Ruoff, ACS Nano 5, 2433-2439 (2011).
Y. J. Wei, J. T. Wu, H. Q. Yin, X. H. Shi, R. G. Yang, and M. Dresselhaus, Nature Mater. 11, 759-763 (2012).
C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Science 321, 385-388 (2008).
C. S. Ruiz-Vargas, H. L. L. Zhuang, P. Y. Huang, A. M. van der Zande, S. Garg, P. L. McEuen, D. A. Muller, R. G. Hennig, and J. Park, Nano Lett. 11, 2259-2263 (2011).
J. E. Sader, J. Pacifico, C. P. Green, and P. Mulvaney, J. Appl. Phys. 97, 124903 (2005).
Q. K. Yu, L. A. Jauregui, W. Wu, R. Colby, J. F. Tian, Z. H. Su, H. L. Cao, Z. H. Liu, D. Pandey, D. G. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. M. Bao, S. S. Pei, and Y. P. Chen, Nature Mater. 10, 443-449 (2011).
Z. G. Song, V. I. Artyukhov, B. I. Yakobson, and Z. P. Xu, Nano Lett. 13, 1829-1833 (2013).
L. Q. Xu, N. Wei, and Y. P. Zheng, Nanotechnology 24, 505703 (2013).
J. W. Suk, K. Kirk, Y. F. Hao, N. A. Hall, and R. S. Ruoff, Adv. Mater. 24, 6342-6347 (2012).
Z. D. Sha, S. S. Quek, Q. X. Pei, Z. S. Liu, T. J. Wang, V. B. Shenoy, and Y. W. Zhang, Sci. Rep. 4, 7437 (2014).
G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerherg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, Science 340, 1073-1076 (2013).
X. S. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo, and R. S. Ruoff, J. Am. Chem. Soc. 133, 2816-2819 (2011).
A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, Appl. Phys. Lett. 99, 122108 (2011).
Z. D. Sha, Q. Wan, Q. X. Pei, S. S. Quek, Z. S. Liu, Y. W. Zhang, and V. B. Shenoy, Sci. Rep. 4, 5991 (2014).
P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, and D. A. Muller, Nature 469, 389-393 (2011).
Z. D. Sha, Q. X. Pei, Z. S. Liu, V. B. Shenoy, and Y. W. Zhang, Carbon 72, 200-206 (2014).
B. Mortazavi, M. Potschke, and G. Cuniberti, Nanoscale 6, 3344-3352 (2014).
R. Grantab, V. B. Shenoy, and R. S. Ruoff, Science 330, 946-948 (2010).
Q. Y. Lin, Y. H. Zeng, D. M. Liu, G. Y. Jing, Z. M. Liao, and D. P. Yu, ACS Nano 8, 10246-10251 (2014).
X. S. Li, W. W. Cai, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4268-4272 (2009).
A. Y. Serov, Z.Y. Ong, and E. Pop, Appl. Phys. Lett. 102, 033104 (2013).
B. Mortazavi and G. Cuniberti, Nanotechnology 25, 215704 (2014).
2014; 4
2011; 469
2013; 13
2013; 24
2010; 330
2009; 9
2011; 11
2014; 25
2005; 97
2011; 99
2011; 10
2013; 102
2013; 340
2008; 321
2014; 8
2012; 24
2014; 72
2011; 5
2014; 6
2012; 11
2009; 324
2011; 133
e_1_2_6_10_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312-1314 (2009).
– reference: J. H. An, E. Voelkl, J. W. Suk, X. S. Li, C. W. Magnuson, L. F. Fu, P. Tiemeijer, M. Bischoff, B. Freitag, E. Popova, and R. S. Ruoff, ACS Nano 5, 2433-2439 (2011).
– reference: J. W. Suk, A. Kitt, C. W. Magnuson, Y. F. Hao, S. Ahmed, J. H. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, ACS Nano 5, 6916-6924 (2011).
– reference: Z. D. Sha, S. S. Quek, Q. X. Pei, Z. S. Liu, T. J. Wang, V. B. Shenoy, and Y. W. Zhang, Sci. Rep. 4, 7437 (2014).
– reference: B. Mortazavi and G. Cuniberti, Nanotechnology 25, 215704 (2014).
– reference: A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, Appl. Phys. Lett. 99, 122108 (2011).
– reference: A. Y. Serov, Z.Y. Ong, and E. Pop, Appl. Phys. Lett. 102, 033104 (2013).
– reference: Q. Y. Lin, Y. H. Zeng, D. M. Liu, G. Y. Jing, Z. M. Liao, and D. P. Yu, ACS Nano 8, 10246-10251 (2014).
– reference: X. S. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo, and R. S. Ruoff, J. Am. Chem. Soc. 133, 2816-2819 (2011).
– reference: P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, and D. A. Muller, Nature 469, 389-393 (2011).
– reference: C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Science 321, 385-388 (2008).
– reference: Z. G. Song, V. I. Artyukhov, B. I. Yakobson, and Z. P. Xu, Nano Lett. 13, 1829-1833 (2013).
– reference: Q. K. Yu, L. A. Jauregui, W. Wu, R. Colby, J. F. Tian, Z. H. Su, H. L. Cao, Z. H. Liu, D. Pandey, D. G. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. M. Bao, S. S. Pei, and Y. P. Chen, Nature Mater. 10, 443-449 (2011).
– reference: B. Mortazavi, M. Potschke, and G. Cuniberti, Nanoscale 6, 3344-3352 (2014).
– reference: J. E. Sader, J. Pacifico, C. P. Green, and P. Mulvaney, J. Appl. Phys. 97, 124903 (2005).
– reference: R. Grantab, V. B. Shenoy, and R. S. Ruoff, Science 330, 946-948 (2010).
– reference: J. W. Suk, K. Kirk, Y. F. Hao, N. A. Hall, and R. S. Ruoff, Adv. Mater. 24, 6342-6347 (2012).
– reference: G. H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerherg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, Science 340, 1073-1076 (2013).
– reference: C. S. Ruiz-Vargas, H. L. L. Zhuang, P. Y. Huang, A. M. van der Zande, S. Garg, P. L. McEuen, D. A. Muller, R. G. Hennig, and J. Park, Nano Lett. 11, 2259-2263 (2011).
– reference: J. W. Suk, W. H. Lee, J. Lee, H. Chou, R. D. Piner, Y. F. Hao, D. Akinwande, and R. S. Ruoff, Nano Lett. 13, 1462-1467 (2013).
– reference: Z. D. Sha, Q. Wan, Q. X. Pei, S. S. Quek, Z. S. Liu, Y. W. Zhang, and V. B. Shenoy, Sci. Rep. 4, 5991 (2014).
– reference: Z. D. Sha, Q. X. Pei, Z. S. Liu, V. B. Shenoy, and Y. W. Zhang, Carbon 72, 200-206 (2014).
– reference: Y. Hwangbo, C. K. Lee, S. M. Kim, J. H. Kim, K. S. Kim, B. Jang, H. J. Lee, S. K. Lee, S. S. Kim, J. H. Ahn, and S. M. Lee, Sci. Rep. 4, 4439 (2014).
– reference: X. S. Li, W. W. Cai, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4268-4272 (2009).
– reference: Y. J. Wei, J. T. Wu, H. Q. Yin, X. H. Shi, R. G. Yang, and M. Dresselhaus, Nature Mater. 11, 759-763 (2012).
– reference: L. Q. Xu, N. Wei, and Y. P. Zheng, Nanotechnology 24, 505703 (2013).
– volume: 469
  start-page: 389
  year: 2011
  end-page: 393
  publication-title: Nature
– volume: 4
  start-page: 7437
  year: 2014
  publication-title: Sci. Rep
– volume: 324
  start-page: 1312
  year: 2009
  end-page: 1314
  publication-title: Science
– volume: 5
  start-page: 6916
  year: 2011
  end-page: 6924
  publication-title: ACS Nano
– volume: 10
  start-page: 443
  year: 2011
  end-page: 449
  publication-title: Nature Mater
– volume: 102
  start-page: 033104
  year: 2013
  publication-title: Appl. Phys. Lett
– volume: 97
  start-page: 124903
  year: 2005
  publication-title: J. Appl. Phys
– volume: 8
  start-page: 10246
  year: 2014
  end-page: 10251
  publication-title: ACS Nano
– volume: 133
  start-page: 2816
  year: 2011
  end-page: 2819
  publication-title: J. Am. Chem. Soc
– volume: 4
  start-page: 4439
  year: 2014
  publication-title: Sci. Rep
– volume: 6
  start-page: 3344
  year: 2014
  end-page: 3352
  publication-title: Nanoscale
– volume: 330
  start-page: 946
  year: 2010
  end-page: 948
  publication-title: Science
– volume: 72
  start-page: 200
  year: 2014
  end-page: 206
  publication-title: Carbon
– volume: 13
  start-page: 1829
  year: 2013
  end-page: 1833
  publication-title: Nano Lett
– volume: 25
  start-page: 215704
  year: 2014
  publication-title: Nanotechnology
– volume: 11
  start-page: 2259
  year: 2011
  end-page: 2263
  publication-title: Nano Lett
– volume: 99
  start-page: 122108
  year: 2011
  publication-title: Appl. Phys. Lett
– volume: 321
  start-page: 385
  year: 2008
  end-page: 388
  publication-title: Science
– volume: 24
  start-page: 6342
  year: 2012
  end-page: 6347
  publication-title: Adv. Mater
– volume: 13
  start-page: 1462
  year: 2013
  end-page: 1467
  publication-title: Nano Lett
– volume: 11
  start-page: 759
  year: 2012
  end-page: 763
  publication-title: Nature Mater
– volume: 24
  start-page: 505703
  year: 2013
  publication-title: Nanotechnology
– volume: 5
  start-page: 2433
  year: 2011
  end-page: 2439
  publication-title: ACS Nano
– volume: 9
  start-page: 4268
  year: 2009
  end-page: 4272
  publication-title: Nano Lett
– volume: 340
  start-page: 1073
  year: 2013
  end-page: 1076
  publication-title: Science
– volume: 4
  start-page: 5991
  year: 2014
  publication-title: Sci. Rep
– ident: e_1_2_6_10_1
  doi: 10.1021/nl200429f
– ident: e_1_2_6_14_1
  doi: 10.1021/nl400542n
– ident: e_1_2_6_21_1
  doi: 10.1038/srep04439
– ident: e_1_2_6_3_1
  doi: 10.1021/nl902515k
– ident: e_1_2_6_9_1
  doi: 10.1126/science.1157996
– ident: e_1_2_6_22_1
  doi: 10.1021/nl304420b
– ident: e_1_2_6_7_1
  doi: 10.1063/1.4776667
– ident: e_1_2_6_5_1
  doi: 10.1021/nn103102a
– ident: e_1_2_6_26_1
  doi: 10.1038/srep07437
– ident: e_1_2_6_25_1
  doi: 10.1016/j.carbon.2014.02.003
– ident: e_1_2_6_15_1
  doi: 10.1126/science.1235126
– ident: e_1_2_6_19_1
  doi: 10.1002/adma.201201782
– ident: e_1_2_6_11_1
  doi: 10.1038/nmat3370
– ident: e_1_2_6_13_1
  doi: 10.1088/0957-4484/25/21/215704
– ident: e_1_2_6_6_1
  doi: 10.1038/nmat3010
– ident: e_1_2_6_27_1
  doi: 10.1038/srep05991
– ident: e_1_2_6_4_1
  doi: 10.1038/nature09718
– ident: e_1_2_6_16_1
  doi: 10.1021/nn5033888
– ident: e_1_2_6_24_1
  doi: 10.1088/0957-4484/24/50/505703
– ident: e_1_2_6_17_1
  doi: 10.1021/ja109793s
– ident: e_1_2_6_8_1
  doi: 10.1039/c3nr06388g
– ident: e_1_2_6_12_1
  doi: 10.1126/science.1196893
– ident: e_1_2_6_18_1
  doi: 10.1021/nn201207c
– ident: e_1_2_6_20_1
  doi: 10.1063/1.1935133
– ident: e_1_2_6_2_1
  doi: 10.1126/science.1171245
– ident: e_1_2_6_23_1
  doi: 10.1063/1.3643444
SSID ssj0059743
Score 2.22757
Snippet Failure of polycrystalline graphene grown by chemical vapor deposition was investigated by nanoindentation in a scanning electron microscope. Circular graphene...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 564
SubjectTerms Chemical vapor deposition
Crystallization
Failure
Grain boundaries
Graphene
Marking
Membranes
Nanoindentation
Scanning electron microscopy
Title Fracture of polycrystalline graphene membranes by in situ nanoindentation in a scanning electron microscope
URI https://api.istex.fr/ark:/67375/WNG-NQ5GHXPD-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssr.201510244
https://www.proquest.com/docview/1723873106
https://www.proquest.com/docview/1793243414
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bj5pAFJ7YNU360vSa2m6badK0DxMswgzI42a3q9msxure-kQGGFKyikalqf3b_QM9hwHE7X19IGY4isz5_Oac4VwIeQN_fxGYtmWYsR0bHF4GGPWuISRWewpcyTkmCg-GTv-cn1yJq0bjey1qKVsH7fDbL_NKbqNVGAO9Ypbsf2i2-lIYgPegXziChuH4Tzo-xhQnfAKAYcvz6SZcbsDYm-aWY16JGoiMzdQMPGJgNLQ0k5StknXGUpnOsVBiWgQbwrhkq1A3MGJlbxw2w3C9PHGlbsSOtG5xG2KdrRjcYxIlbTaaTIzx-LTNxnKRYFJMsaMyzTOGKtt9kuUEfJKwy20IwADB96XooX0xlVEyS5Zbdsz3cz9lsSrWWYwgSlT4uYhF0LlFbNCu72F0RBUNVzAllg-vgjsuDvtMb2ayouRXbxb0axwNTpgBbpveh1D1Md2DpCR2r45fs8bSwuG1BV_oXjE_rSW6Nu0CTBWMAATusjjfrpplpEAlKf4sm5sMoIhxdf4OaVrg2wA5Nw-OBqeT0oBAFy_PCynvs6w1alrvd6-wY0s1kRa-7jhKdXcrt5fOHpD7haNDDzRqH5KGSh-Ruxo6q8fkusQuncf0BnZpiV1aYZcGG5qkFLFLb2AXxyUtsUtL7NItdp-Q8-MPZ4d9o2j8YYR2t8uNsBPbrm0HkVDCDOxASS82pQfGfhRJpUxgP6ujTMcLQk-GXsDBp4-FAD7itmtGof2U7KXzVD0jVLldL-4qBV694iq2pKPiyOlaHpCUbUvZIkY5hX5YVMXH5ixTX9fztnyccr-a8hZ5V8kvdD2Y30q-zTVSicnlNUZRusK_HPb84UfR61-Njvxxi-yXKvMLcln5HWwG6ILv5bTI6-o0UD8-z4N5n2coA84XBzMUrmXlqv7LT_J38Pf8Nh96Qe5t_8D7ZG-9zNRLMMvXwasCxj8AE27hrw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fracture+of+polycrystalline+graphene+membranes+by+in+situ+nanoindentation+in+a+scanning+electron+microscope&rft.jtitle=Physica+status+solidi.+PSS-RRL.+Rapid+research+letters&rft.au=Suk%2C+Ji+Won&rft.au=Mancevski%2C+Vladimir&rft.au=Hao%2C+Yufeng&rft.au=Liechti%2C+Kenneth+M.&rft.date=2015-10-01&rft.pub=WILEY%E2%80%90VCH+Verlag+Berlin+GmbH&rft.issn=1862-6254&rft.eissn=1862-6270&rft.volume=9&rft.issue=10&rft.spage=564&rft.epage=569&rft_id=info:doi/10.1002%2Fpssr.201510244&rft.externalDBID=10.1002%252Fpssr.201510244&rft.externalDocID=PSSR201510244
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6254&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6254&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6254&client=summon