Integrated inductors on porous silicon
We examine porous Si as a thick RF‐isolation layer for on‐chip inductors and separate the loss sources that downgrade the Q factors into their material components, namely Si substrate loss and metal types common to standard CMOS technologies. First we validate theoretical designs with measurements i...
Saved in:
Published in | Physica status solidi. A, Applications and materials science Vol. 204; no. 5; pp. 1454 - 1458 |
---|---|
Main Authors | , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Berlin
WILEY-VCH Verlag
01.05.2007
WILEY‐VCH Verlag Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We examine porous Si as a thick RF‐isolation layer for on‐chip inductors and separate the loss sources that downgrade the Q factors into their material components, namely Si substrate loss and metal types common to standard CMOS technologies. First we validate theoretical designs with measurements in standard 0.18 μm CMOS technology. Then we examine the effect of a porous Si substrate on a fixed metal layout of a 2‐metal optimized inductor design compatible either with 0.18 μm CMOS technology using Aluminum or with 0.13 μm CMOS technology using Copper metallization. For typical on‐chip inductor layouts of (200–300 μm)2, we show that a 50 μm thick porous Si layer produces negligible current distributions inside the underlying lossy Si substrate, compared to the ones without it, which maintain high values throughout a large lateral extent of the die. In Al technology, a fixed inductor layout produces Q ‐factor enhancements of the order of 50%, compared to the case where no porous Si layer is used. In a 0.13 μm‐compatible CMOS technology using Cu on porous Si, the resulting Q ‐factors increase by a factor of 2 and reach values of 30 or more in the 3 GHz frequency range. For porous‐Si‐isolated inductors we compare the effect of metal losses and show that the resulting Q ‐factors scale with the metal conductivity. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
---|---|
AbstractList | Abstract
We examine porous Si as a thick RF‐isolation layer for on‐chip inductors and separate the loss sources that downgrade the
Q
factors into their material components, namely Si substrate loss and metal types common to standard CMOS technologies. First we validate theoretical designs with measurements in standard 0.18 μm CMOS technology. Then we examine the effect of a porous Si substrate on a fixed metal layout of a 2‐metal optimized inductor design compatible either with 0.18 μm CMOS technology using Aluminum or with 0.13 μm CMOS technology using Copper metallization. For typical on‐chip inductor layouts of (200–300 μm)
2
, we show that a 50 μm thick porous Si layer produces negligible current distributions inside the underlying lossy Si substrate, compared to the ones without it, which maintain high values throughout a large lateral extent of the die. In Al technology, a fixed inductor layout produces
Q
‐factor enhancements of the order of 50%, compared to the case where no porous Si layer is used. In a 0.13 μm‐compatible CMOS technology using Cu on porous Si, the resulting
Q
‐factors increase by a factor of 2 and reach values of 30 or more in the 3 GHz frequency range. For porous‐Si‐isolated inductors we compare the effect of metal losses and show that the resulting
Q
‐factors scale with the metal conductivity. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) We examine porous Si as a thick RF‐isolation layer for on‐chip inductors and separate the loss sources that downgrade the Q factors into their material components, namely Si substrate loss and metal types common to standard CMOS technologies. First we validate theoretical designs with measurements in standard 0.18 μm CMOS technology. Then we examine the effect of a porous Si substrate on a fixed metal layout of a 2‐metal optimized inductor design compatible either with 0.18 μm CMOS technology using Aluminum or with 0.13 μm CMOS technology using Copper metallization. For typical on‐chip inductor layouts of (200–300 μm)2, we show that a 50 μm thick porous Si layer produces negligible current distributions inside the underlying lossy Si substrate, compared to the ones without it, which maintain high values throughout a large lateral extent of the die. In Al technology, a fixed inductor layout produces Q ‐factor enhancements of the order of 50%, compared to the case where no porous Si layer is used. In a 0.13 μm‐compatible CMOS technology using Cu on porous Si, the resulting Q ‐factors increase by a factor of 2 and reach values of 30 or more in the 3 GHz frequency range. For porous‐Si‐isolated inductors we compare the effect of metal losses and show that the resulting Q ‐factors scale with the metal conductivity. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
Author | Contopanagos, H. Nassiopoulou, A. G. |
Author_xml | – sequence: 1 givenname: H. surname: Contopanagos fullname: Contopanagos, H. email: contopan@imel.demokritos.gr organization: IMEL, NCSR "Demokritos", P.O. Box 60228, 153 10 Aghia Paraskevi, Athens, Greece – sequence: 2 givenname: A. G. surname: Nassiopoulou fullname: Nassiopoulou, A. G. organization: IMEL, NCSR "Demokritos", P.O. Box 60228, 153 10 Aghia Paraskevi, Athens, Greece |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18791927$$DView record in Pascal Francis |
BookMark | eNqFj0tLw0AURgepYFvdus5Gd6nzfixr1SoUFarU3TAzmchoTMJMivbf2xKp7lzdy-U73-WMwKBuag_AKYITBCG-aFMyEwwhF5RIegCGSHKcc4LUYL9DeARGKb1BSBkVaAjO7-rOv0bT-SILdbF2XRNT1tRZ28RmnbIUquCa-hgclqZK_uRnjsHzzfXT7DZfPMzvZtNF7oiUNLcFoQ6VkjGLbFlibBgl24MhBiKJibLeYEOEd4WwkjJpBXecEesUVYp4MgaTvtfFJqXoS93G8GHiRiOod5Z6Z6n3llvgrAdak5ypymhqF9IvJYVCCottTvW5z1D5zT-t-nG5nP79kfdsSJ3_2rMmvmsuiGB6dT_XyxW9fCFXc83JNyVWdFA |
CitedBy_id | crossref_primary_10_1016_j_msea_2011_08_051 crossref_primary_10_1016_j_sse_2013_04_026 crossref_primary_10_1049_iet_map_2009_0442 crossref_primary_10_1063_1_4998965 crossref_primary_10_1109_TED_2011_2165719 crossref_primary_10_1002_pssa_200790009 crossref_primary_10_1109_TED_2009_2030952 crossref_primary_10_1002_pssa_200881111 |
Cites_doi | 10.1002/pssa.200306481 10.1109/4.720393 10.1002/pssa.200306514 10.1109/4.557634 10.1016/S0924-4247(98)00370-7 10.1109/4.913740 |
ContentType | Journal Article Conference Proceeding |
Copyright | Copyright © 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2007 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2007 INIST-CNRS |
DBID | BSCLL IQODW AAYXX CITATION |
DOI | 10.1002/pssa.200674384 |
DatabaseName | Istex Pascal-Francis CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Applied Sciences |
EISSN | 1862-6319 |
EndPage | 1458 |
ExternalDocumentID | 10_1002_pssa_200674384 18791927 PSSA200674384 ark_67375_WNG_SW4BX3DG_6 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 33P 3SF 3WU 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BNHUX BROTX BRXPI BSCLL BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ V2E W8V W99 WBKPD WGJPS WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ~IA ~WT ACXME IQODW AAYXX CITATION |
ID | FETCH-LOGICAL-c3884-bd34c1f855b1bff22a543c1fa3a018239bea2a37ecd7b8458b76c653bc94993e3 |
IEDL.DBID | DR2 |
ISSN | 1862-6300 |
IngestDate | Fri Aug 23 03:08:22 EDT 2024 Tue Jul 02 07:15:47 EDT 2024 Sat Aug 24 00:52:18 EDT 2024 Wed Oct 30 09:57:06 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Design Q factor Complementary MOS technology Silicon Inductor Insulating layers Porous material Optimization |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3884-bd34c1f855b1bff22a543c1fa3a018239bea2a37ecd7b8458b76c653bc94993e3 |
Notes | istex:393A54F740EEB5474DB6EAC923C10819F1D4A585 ArticleID:PSSA200674384 ark:/67375/WNG-SW4BX3DG-6 |
PageCount | 5 |
ParticipantIDs | crossref_primary_10_1002_pssa_200674384 pascalfrancis_primary_18791927 wiley_primary_10_1002_pssa_200674384_PSSA200674384 istex_primary_ark_67375_WNG_SW4BX3DG_6 |
PublicationCentury | 2000 |
PublicationDate | May 2007 |
PublicationDateYYYYMMDD | 2007-05-01 |
PublicationDate_xml | – month: 05 year: 2007 text: May 2007 |
PublicationDecade | 2000 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Physica status solidi. A, Applications and materials science |
PublicationTitleAlternate | phys. stat. sol. (a) |
PublicationYear | 2007 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley-VCH |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley-VCH |
References | M. Theodoropoulou et al., phys. stat. sol. (a) 197, 279 (2003). H. S. Kim, K. Chong, and Y. H. Xie, phys. stat. sol. (a) 197, 269 (2003). A. Zolfaghari, A. Chan, and B. Razavi, IEEE J. Solid-State Circuits 36, 620 (2001). G. Kaltsas and A. G. Nassiopoulou, Sens. Actuators A 76, 133 (1999). J. R. Long and M. A. Copeland, IEEE J. Solid-State Circuits 32, 357 (1997). A. M. Niknejad and R. G. Meyer, IEEE J. Solid-State Circuits 33, 1470 (1998). 1997; 32 1999; 76 2001; 36 1998; 33 2003; 197 e_1_2_1_6_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_3_2 e_1_2_1_8_2 e_1_2_1_9_2 |
References_xml | – volume: 197 start-page: 279 year: 2003 publication-title: phys. stat. sol. (a) – volume: 33 start-page: 1470 year: 1998 publication-title: IEEE J. Solid‐State Circuits – volume: 36 start-page: 620 year: 2001 publication-title: IEEE J. Solid‐State Circuits – volume: 197 start-page: 269 year: 2003 publication-title: phys. stat. sol. (a) – volume: 32 start-page: 357 year: 1997 publication-title: IEEE J. Solid‐State Circuits – volume: 76 start-page: 133 year: 1999 publication-title: Sens. Actuators A – ident: e_1_2_1_6_2 doi: 10.1002/pssa.200306481 – ident: e_1_2_1_3_2 doi: 10.1109/4.720393 – ident: e_1_2_1_9_2 – ident: e_1_2_1_7_2 doi: 10.1002/pssa.200306514 – ident: e_1_2_1_2_2 doi: 10.1109/4.557634 – ident: e_1_2_1_5_2 doi: 10.1016/S0924-4247(98)00370-7 – ident: e_1_2_1_4_2 doi: 10.1109/4.913740 – ident: e_1_2_1_8_2 |
SSID | ssj0045471 |
Score | 1.9005262 |
Snippet | We examine porous Si as a thick RF‐isolation layer for on‐chip inductors and separate the loss sources that downgrade the Q factors into their material... Abstract We examine porous Si as a thick RF‐isolation layer for on‐chip inductors and separate the loss sources that downgrade the Q factors into their... |
SourceID | crossref pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1454 |
SubjectTerms | 81.05.Rm 84.32.Hh 84.40.Lj 85.30.De 85.40.Bh Applied sciences Electronics Exact sciences and technology Microwave and submillimeter wave devices, electron transfer devices Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices |
Title | Integrated inductors on porous silicon |
URI | https://api.istex.fr/ark:/67375/WNG-SW4BX3DG-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssa.200674384 |
Volume | 204 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bT4MwFMYbM2Pii3cjXhYezHxiF1po9zgv2_RhMc5leyM9BRIzw5axJca_3p4ymPhioo8QCvS00O-Uj18JuaZSguLAndCTscN4GDvCl8rx8ZtQK2rjoI9ui4HfH7GniTf59hd_xocoJtzwyTDva3zAJaSNDTR0nqaGG4QueoFA0Bbl6Om6fyn4UQirMhmXlu0OsqVyamPTbZSLl0albQzwB7okZaoDFWcrXJTVqxl-uvtE5jeeuU6m9dUS6urzB9PxPzU7IHtrbWp3ss50SLai5IjsGI-oSo9J7TFHS4S2zuRXZqEee5bYWsLPVqmdvr3rbpWckFH34fWu76yXWXAUFYI5EFKmWrHwPGhBHLuu9BjVOySVTZ190DZE0pWURyrkIJgngPvK9ygoBNvQiJ6SSjJLojNiCwkcNY-IgTOANoSMqRAoxDorAsoscpOHOZhnNI0g4ya7AdY6KGptkZppheIwuZiiB417wXjQC4Zjdjuh973At0i11Eyb8wre1vKVW8Q1wf7lgsHzcNgpts7_UuiC7GYzv2iHvCSV5WIVXWnJsoSq6ZZfp4njCQ |
link.rule.ids | 310,311,315,783,787,792,793,1378,23942,23943,25152,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0BFYILO6KsOaByCtDYid0ja8tWIQqCm-VxEgmBUkRaCfH1eBySqlyQ4JgoTuLxTPzGfnkDsMu0RiNQ-HGoU5-LOPVlpI0f0Z5QM2nRpE9si27UeeCXT2HJJqR_YQp9iGrBjSLDfa8pwGlB-mCkGvqW5044iGj0kk9CzcY8o-oNp3eVghTJVbmcywJ3n9SlSt3Gw-BgvP3YvFQjE38QT1Ln1lRpUeNiHL-6Ceh8HrB89YJ38rI_HOC--fyh6vivvi3A3Dc89Y4Kf1qEiSRbgmlHEzX5MjQuSnWJ2LPJ_NDV6vH6mWdRfH-Ye_nzq_WsbAUezs_uTzr-d6UF3zApuY8x46aZyjDEJqZpEOiQM3tCM31oExDWwkQHmonExAIlDyWKyEQhQ0PaNixhqzCV9bNkDTypURDskSkKjtjCmHMTI8PUJkbIeB32Sjurt0JQQxXSyYGiXquq13VouGGoLtPvL0RDE6F67LZV75EfP7HTtorqsD02TqP7StGyCFbUIXDW_uWB6rbXO6qO1v_SaAdmOvc31-r6onu1AbPFQjCxIzdhavA-TLYsghngtvPRL9635yE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH5RicaLv434A3cweJrK2q3lqCKIGkJEIremr1sToxnEQWL86207meLFRI9b1m3v9XXve-23rwBHREpUDJkfh1L7lMXa55FUfmTXhGpJ3SZ9y7boRNd9ejMIB9_-4s_1IYoJNzsy3PfaDvBRrE-_RENHWeZ0gyyLntN5KNHIwF8Li-4LASmrVuVKLoPbfSsuNZVtPAtOZ9vPpKWS9fCbpUnKzHhK51tczMJXl3-aqyCnb57TTp5PJmM8Ue8_RB3_Y9oarHyCU-88j6Z1mEvSDVh0JFGVbUK1PdWWiD1Tyk_cTj3eMPUMhh9OMi97ejFxlW5Bv3n1cHntf-6z4CvCOfUxJlTVNA9DrKHWQSBDSswJSeSZKT9IHRMZSMISFTPkNOTIIhWFBJVVtiEJ2YaFdJgmO-BxicyCHq6RUcQ6xpSqGAlqUxYhoWU4nrpZjHI5DZELJwfCWi0Kq8tQdb1QXCZfny0JjYXisdMSvUd6MSCNlojKUJnppq_7clY3-JWVIXDO_uWBotvrnRdHu39pdAhL3UZT3LU7t3uwnM8CW2rkPiyMXyfJgYEvY6y4CP0AOuzl0A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Physica+status+solidi.+A%2C+Applications+and+materials+science+%28Print%29&rft.atitle=Integrated+inductors+on+porous+silicon&rft.au=CONTOPANAGOS%2C+H&rft.au=NASSIOPOULOU%2C+A.+G&rft.date=2007-05-01&rft.pub=Wiley-VCH&rft.issn=1862-6300&rft.eissn=1862-6319&rft.volume=204&rft.issue=5&rft.spage=1454&rft.epage=1458&rft_id=info:doi/10.1002%2Fpssa.200674384&rft.externalDBID=n%2Fa&rft.externalDocID=18791927 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6300&client=summon |