Deferasirox induces cyclin D1 degradation and apoptosis in mantle cell lymphoma in a reactive oxygen species‐ and GSK3β‐dependent mechanism
Summary Mantle cell lymphoma (MCL) is a difficult‐to‐treat B‐cell malignancy characterized by cyclin D1 (CD1) overexpression. Targeting CD1 in MCL has been shown to be of therapeutic significance. However, treatment of MCL remains challenging since patients are still subject to early and frequent re...
Saved in:
Published in | British journal of haematology Vol. 192; no. 4; pp. 747 - 760 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Mantle cell lymphoma (MCL) is a difficult‐to‐treat B‐cell malignancy characterized by cyclin D1 (CD1) overexpression. Targeting CD1 in MCL has been shown to be of therapeutic significance. However, treatment of MCL remains challenging since patients are still subject to early and frequent relapse of the disease. To ensure their high proliferation rate, tumour cells have increased iron needs, making them more susceptible to iron deprivation. Indeed, several iron chelators proved to be effective anti‐cancer agents. In this study, we demonstrate that the clinically approved iron chelator deferasirox (DFX) exerts an anti‐tumoural effect in MCL cell lines and patient cells. The exposure of MCL cells to clinically feasible concentrations of DFX resulted in growth inhibition, cell cycle arrest and induction of apoptosis. We show that DFX unfolds its cytotoxic effect by a rapid induction of reactive oxygen species (ROS) that leads to oxidative stress and severe DNA damage and by triggering CD1 proteolysis in a mechanism that requires its phosphorylation on T286 by glycogen synthase kinase‐3β (GSK3β). Moreover, we demonstrate that DFX mediates CD1 proteolysis by repressing the phosphatidylinositol 3‐kinase (PI3K)/AKT/GSK3β pathway via ROS generation. Our data suggest DFX as a potential therapeutic option for MCL and paves the way for more treatment options for these patients. |
---|---|
AbstractList | Mantle cell lymphoma (MCL) is a difficult-to-treat B-cell malignancy characterized by cyclin D1 (CD1) overexpression. Targeting CD1 in MCL has been shown to be of therapeutic significance. However, treatment of MCL remains challenging since patients are still subject to early and frequent relapse of the disease. To ensure their high proliferation rate, tumour cells have increased iron needs, making them more susceptible to iron deprivation. Indeed, several iron chelators proved to be effective anti-cancer agents. In this study, we demonstrate that the clinically approved iron chelator deferasirox (DFX) exerts an anti-tumoural effect in MCL cell lines and patient cells. The exposure of MCL cells to clinically feasible concentrations of DFX resulted in growth inhibition, cell cycle arrest and induction of apoptosis. We show that DFX unfolds its cytotoxic effect by a rapid induction of reactive oxygen species (ROS) that leads to oxidative stress and severe DNA damage and by triggering CD1 proteolysis in a mechanism that requires its phosphorylation on T286 by glycogen synthase kinase-3β (GSK3β). Moreover, we demonstrate that DFX mediates CD1 proteolysis by repressing the phosphatidylinositol 3-kinase (PI3K)/AKT/GSK3β pathway via ROS generation. Our data suggest DFX as a potential therapeutic option for MCL and paves the way for more treatment options for these patients. Summary Mantle cell lymphoma (MCL) is a difficult‐to‐treat B‐cell malignancy characterized by cyclin D1 (CD1) overexpression. Targeting CD1 in MCL has been shown to be of therapeutic significance. However, treatment of MCL remains challenging since patients are still subject to early and frequent relapse of the disease. To ensure their high proliferation rate, tumour cells have increased iron needs, making them more susceptible to iron deprivation. Indeed, several iron chelators proved to be effective anti‐cancer agents. In this study, we demonstrate that the clinically approved iron chelator deferasirox (DFX) exerts an anti‐tumoural effect in MCL cell lines and patient cells. The exposure of MCL cells to clinically feasible concentrations of DFX resulted in growth inhibition, cell cycle arrest and induction of apoptosis. We show that DFX unfolds its cytotoxic effect by a rapid induction of reactive oxygen species (ROS) that leads to oxidative stress and severe DNA damage and by triggering CD1 proteolysis in a mechanism that requires its phosphorylation on T286 by glycogen synthase kinase‐3β (GSK3β). Moreover, we demonstrate that DFX mediates CD1 proteolysis by repressing the phosphatidylinositol 3‐kinase (PI3K)/AKT/GSK3β pathway via ROS generation. Our data suggest DFX as a potential therapeutic option for MCL and paves the way for more treatment options for these patients. Mantle cell lymphoma (MCL) is a difficult-to-treat B-cell malignancy characterized by cyclin D1 (CD1) overexpression. Targeting CD1 in MCL has been shown to be of therapeutic significance. However, treatment of MCL remains challenging since patients are still subject to early and frequent relapse of the disease. To ensure their high proliferation rate, tumour cells have increased iron needs, making them more susceptible to iron deprivation. Indeed, several iron chelators proved to be effective anti-cancer agents. In this study, we demonstrate that the clinically approved iron chelator deferasirox (DFX) exerts an anti-tumoural effect in MCL cell lines and patient cells. The exposure of MCL cells to clinically feasible concentrations of DFX resulted in growth inhibition, cell cycle arrest and induction of apoptosis. We show that DFX unfolds its cytotoxic effect by a rapid induction of reactive oxygen species (ROS) that leads to oxidative stress and severe DNA damage and by triggering CD1 proteolysis in a mechanism that requires its phosphorylation on T286 by glycogen synthase kinase-3β (GSK3β). Moreover, we demonstrate that DFX mediates CD1 proteolysis by repressing the phosphatidylinositol 3-kinase (PI3K)/AKT/GSK3β pathway via ROS generation. Our data suggest DFX as a potential therapeutic option for MCL and paves the way for more treatment options for these patients.Mantle cell lymphoma (MCL) is a difficult-to-treat B-cell malignancy characterized by cyclin D1 (CD1) overexpression. Targeting CD1 in MCL has been shown to be of therapeutic significance. However, treatment of MCL remains challenging since patients are still subject to early and frequent relapse of the disease. To ensure their high proliferation rate, tumour cells have increased iron needs, making them more susceptible to iron deprivation. Indeed, several iron chelators proved to be effective anti-cancer agents. In this study, we demonstrate that the clinically approved iron chelator deferasirox (DFX) exerts an anti-tumoural effect in MCL cell lines and patient cells. The exposure of MCL cells to clinically feasible concentrations of DFX resulted in growth inhibition, cell cycle arrest and induction of apoptosis. We show that DFX unfolds its cytotoxic effect by a rapid induction of reactive oxygen species (ROS) that leads to oxidative stress and severe DNA damage and by triggering CD1 proteolysis in a mechanism that requires its phosphorylation on T286 by glycogen synthase kinase-3β (GSK3β). Moreover, we demonstrate that DFX mediates CD1 proteolysis by repressing the phosphatidylinositol 3-kinase (PI3K)/AKT/GSK3β pathway via ROS generation. Our data suggest DFX as a potential therapeutic option for MCL and paves the way for more treatment options for these patients. |
Author | Lubin, Ido Shpilberg, Ofer Shapira, Saar Raanani, Pia Avigad, Smadar Samara, Aladin Granot, Galit |
Author_xml | – sequence: 1 givenname: Aladin surname: Samara fullname: Samara, Aladin organization: Rabin Medical Center – sequence: 2 givenname: Saar surname: Shapira fullname: Shapira, Saar organization: Rabin Medical Center – sequence: 3 givenname: Ido surname: Lubin fullname: Lubin, Ido organization: Rabin Medical Center – sequence: 4 givenname: Ofer surname: Shpilberg fullname: Shpilberg, Ofer organization: Ariel University – sequence: 5 givenname: Smadar surname: Avigad fullname: Avigad, Smadar organization: Tel Aviv University – sequence: 6 givenname: Galit orcidid: 0000-0002-3377-6521 surname: Granot fullname: Granot, Galit email: galitg@clalit.org.il organization: Rabin Medical Center – sequence: 7 givenname: Pia surname: Raanani fullname: Raanani, Pia organization: Rabin Medical Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33521925$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFu1DAUhi1URKcDCy6ALLGBRVo7thNnSVtooZVYAOvIsV86HiV2sBNodhyhZ-EgPURPgmemZVEJvHmy3_d-Pf__Adpz3gFCLyk5pOkcNevVIS1zyZ-gBWWFyHLK6R5aEELKjBIu99FBjGtCKCOCPkP7jImcVrlYoJtTaCGoaIO_xtaZSUPEetaddfiUYgNXQRk1Wu-wcgarwQ-jjzYmFvfKjR1gDV2Hu7kfVr5Xm3eFAyg92h-A_fV8BQ7HAbSFePfrZqty9uWC3f5ONwMDOANuxD3olXI29s_R01Z1EV7c1yX69uH915Pz7PLz2ceTd5eZZlLyTLZtqzTLCUhdSsVYU2mAgpUtTR0hctFIzVUFjZEVq0CAEXkpQJXaFLIAtkRvdrpD8N8niGPd27j5inLgp1jnXHIqhEyeLdHrR-jaT8Gl7TaU5AUXRZWoV_fU1PRg6iHYXoW5fvA6AW93gA4-xgDtX4SSepNjnXKstzkm9ugRq-24jWEMynb_m_hpO5j_LV0ffzrfTfwBQI-yhw |
CitedBy_id | crossref_primary_10_1039_D3FO03733A crossref_primary_10_1038_s41419_023_06295_w crossref_primary_10_1016_j_ygyno_2022_05_006 crossref_primary_10_1515_med_2024_1090 crossref_primary_10_3390_molecules28010319 crossref_primary_10_1093_nutrit_nuac071 crossref_primary_10_3389_fonc_2022_949688 crossref_primary_10_3390_biomedicines12102272 crossref_primary_10_3904_kjim_2023_437 crossref_primary_10_3390_antiox12020377 |
Cites_doi | 10.1101/gad.854900 10.1038/nrc2230 10.1111/j.1365-2141.2005.05630.x 10.1182/blood-2006-02-002394 10.1089/ars.2006.8.243 10.1182/blood-2015-11-681460 10.1038/nm.3435 10.1101/gad.12.22.3499 10.1111/bph.12045 10.1002/cam4.1928 10.1016/j.leukres.2010.11.027 10.3390/ijms17091435 10.1111/bjh.13381 10.1182/blood.V97.4.1115 10.14694/EdBook_AM.2014.34.191 10.1182/blood-2007-03-076737 10.1186/s40164-019-0126-0 10.1089/ars.2008.2302 10.1089/ars.2012.4540 10.1158/1078-0432.CCR-10-3367 10.1038/emm.1999.9 10.2174/0929867324666170705120809 10.1080/10428194.2016.1198958 10.1158/0008-5472.CAN-11-2745 10.1158/1078-0432.CCR-04-0865 10.1182/asheducation-2007.1.270 10.1158/0008-5472.CAN-06-1962 10.18632/oncotarget.11830 10.1016/S0140-6736(03)13309-0 10.1016/j.bbcan.2014.01.005 10.3109/10428194.2012.734614 10.1186/s13046-019-1397-3 10.1016/S1040-8428(01)00213-X 10.1089/ars.2006.8.1765 10.1016/j.bbagen.2013.07.030 10.1007/s00204-012-0906-3 10.1182/blood-2006-10-047753 10.1111/ejh.12507 10.1111/bjh.15108 10.1074/jbc.M407349200 10.1016/j.bmcl.2015.11.094 10.18632/oncotarget.4349 10.1182/blood-2006-04-015586 10.1038/nrc3495 10.1371/journal.pone.0043343 10.1038/leu.2008.213 10.1016/j.exphem.2018.10.010 10.1186/s13287-019-1293-y 10.1111/j.1349-7006.2009.01131.x 10.1124/mol.112.081893 10.3390/ijms20020273 10.1242/jcs.214726 |
ContentType | Journal Article |
Copyright | 2020 British Society for Haematology and John Wiley & Sons Ltd 2020 British Society for Haematology and John Wiley & Sons Ltd. Copyright © 2021 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2020 British Society for Haematology and John Wiley & Sons Ltd – notice: 2020 British Society for Haematology and John Wiley & Sons Ltd. – notice: Copyright © 2021 John Wiley & Sons Ltd |
DBID | AAYXX CITATION NPM 7T5 H94 K9. 7X8 |
DOI | 10.1111/bjh.17284 |
DatabaseName | CrossRef PubMed Immunology Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef AIDS and Cancer Research Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1365-2141 |
EndPage | 760 |
ExternalDocumentID | 33521925 10_1111_bjh_17284 BJH17284 |
Genre | article Journal Article |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1KJ 1OB 1OC 23N 24P 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8F7 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAKAS AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYEP AAZKR ABCQN ABCUV ABEML ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EGARE EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IH2 IHE IX1 J0M J5H K48 KBYEO L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 V8K V9Y VH1 W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 YFH YOC YUY ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7T5 AAMMB AEFGJ AGXDD AIDQK AIDYY H94 K9. 7X8 |
ID | FETCH-LOGICAL-c3884-8fffac320e8c78a33b9cee637f1fff5525b8c4a9ebd8939e5ed5275ea7cd686e3 |
IEDL.DBID | DR2 |
ISSN | 0007-1048 1365-2141 |
IngestDate | Thu Jul 10 18:55:14 EDT 2025 Fri Jul 25 09:54:51 EDT 2025 Thu Apr 03 07:03:57 EDT 2025 Tue Jul 01 00:53:52 EDT 2025 Thu Apr 24 22:58:46 EDT 2025 Wed Jan 22 16:30:27 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | GSK3β mantle cell lymphoma cyclin D1 deferasirox ROS |
Language | English |
License | 2020 British Society for Haematology and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3884-8fffac320e8c78a33b9cee637f1fff5525b8c4a9ebd8939e5ed5275ea7cd686e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3377-6521 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bjh.17284 |
PMID | 33521925 |
PQID | 2488464569 |
PQPubID | 36395 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2484155801 proquest_journals_2488464569 pubmed_primary_33521925 crossref_primary_10_1111_bjh_17284 crossref_citationtrail_10_1111_bjh_17284 wiley_primary_10_1111_bjh_17284_BJH17284 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 2021-Feb 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | British journal of haematology |
PublicationTitleAlternate | Br J Haematol |
PublicationYear | 2021 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2005; 130 2019; 10 2013; 168 2011; 17 2007; 109 2014; 20 2018; 131 2013; 18 2009; 11 2015; 170 2019; 20 2000; 14 2002; 42 2013; 54 2013; 13 2011; 71 2015; 88 2019; 26 2007; 7 2008; 22 2007; 67 1998; 12 2001; 97 2003; 361 2019; 8 2015; 6 2019; 70 2018; 181 2013; 1830 2015; 95 2013; 83 2019; 38 2006; 8 2016; 128 2011; 35 2016; 17 2014; 1845 2004; 10 2016; 7 2006; 108 2004; 279 2017; 58 2007; 2007 2007; 110 2009; 100 1999; 31 2012; 7 2006; 107 2016; 26 2014; 34 2012; 86 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Fischer‐Fodor E (e_1_2_7_6_1) 2015; 88 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 97 start-page: 1115 year: 2001 end-page: 22 article-title: ICL670A: a new synthetic oral chelator: evaluation in hypertransfused rats with selective radioiron probes of hepatocellular and reticuloendothelial iron stores and in iron‐loaded rat heart cells in culture publication-title: Blood – volume: 26 start-page: 302 year: 2019 end-page: 22 article-title: Exploiting cancer metal metabolism using anti‐cancer metal‐ binding agents publication-title: Curr Med Chem – volume: 168 start-page: 1316 year: 2013 end-page: 28 article-title: Deferasirox (ICL670A) effectively inhibits oesophageal cancer growth and publication-title: Br J Pharmacol – volume: 279 start-page: 41504 year: 2004 end-page: 11 article-title: Antizyme targets cyclin D1 for degradation. A novel mechanism for cell growth repression publication-title: J Biol Chem – volume: 11 start-page: 1123 year: 2009 end-page: 37 article-title: Oxidative stress by targeted agents promotes cytotoxicity in hematologic malignancies publication-title: Antioxid Redox Signal – volume: 108 start-page: 1668 year: 2006 end-page: 76 article-title: Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma publication-title: Blood – volume: 95 start-page: 411 year: 2015 end-page: 20 article-title: Efficacy and safety of a novel combination of two oral chelators deferasirox/deferiprone over deferoxamine/deferiprone in severely iron overloaded young beta thalassemia major patients publication-title: Eur. J. Haematol – volume: 109 start-page: 4045 issue: 9 year: 2007 end-page: 54 article-title: Iron chelation regulates cyclin D1 expression via the proteasome: a link to iron deficiency‐mediated growth suppression publication-title: Blood – volume: 361 start-page: 1597 year: 2003 end-page: 602 article-title: Effectiveness and safety of ICL670 in iron‐loaded patients with thalassaemia: a randomised, double‐blind, placebo‐controlled, dose‐escalation trial publication-title: Lancet – volume: 7 start-page: 64330 year: 2016 end-page: 41 article-title: The iron chelator deferasirox induces apoptosis by targeting oncogenic Pyk2/β‐catenin signaling in human multiple myeloma publication-title: Oncotarget – volume: 8 start-page: 501 year: 2019 end-page: 14 article-title: Improved survival outcomes and restoration of graft‐vs‐leukemia effect by deferasirox after allogeneic stem cell transplantation in acute myeloid leukemia publication-title: Cancer Med – volume: 17 start-page: 1435 year: 2016 article-title: The iron chelator, Dp44mT, effectively inhibits human oral squamous cell carcinoma cell growth in vitro and in vivo publication-title: Int J Mol Sci – volume: 86 start-page: 1649 year: 2012 end-page: 65 article-title: Oxidative stress in apoptosis and cancer: an update publication-title: Arch. Toxicol – volume: 54 start-page: 851 year: 2013 end-page: 9 article-title: Mechanism of the antitumoral activity of Deferasirox, an iron chelation agent, on mantle cell lymphoma publication-title: Leuk Lymphoma – volume: 1845 start-page: 166 year: 2014 end-page: 81 article-title: Expanding horizons in iron chelation and the treatment of cancer: role of iron in the regulation of ER stress and the epithelial–mesenchymal transition publication-title: Biochim Biophys Acta ‐ Rev Cancer – volume: 42 start-page: 65 issue: 1 year: 2002 end-page: 78 article-title: The iron metabolism of neoplastic cells: alterations that facilitate proliferation? publication-title: Crit Rev Oncol Hematol – volume: 83 start-page: 179 year: 2013 end-page: 90 article-title: The iron chelator, deferasirox, as a novel strategy for cancer treatment: oral activity against human lung tumor xenografts and molecular mechanism of action publication-title: Mol Pharmacol – volume: 7 start-page: 750 year: 2007 end-page: 62 article-title: Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics publication-title: Nat Rev Cancer – volume: 6 start-page: 18748 year: 2015 end-page: 79 article-title: Targeting cancer by binding iron: dissecting cellular signaling pathways publication-title: Oncotarget – volume: 26 start-page: 251 year: 2016 end-page: 6 article-title: Recent advances in cancer treatment by iron chelators publication-title: Bioorg Med Chem Lett – volume: 10 start-page: 171 year: 2019 article-title: Deferasirox drives ROS‐mediated differentiation and induces interferon‐stimulated gene expression in human healthy haematopoietic stem/progenitor cells and in leukemia cells publication-title: Stem Cell Res Ther – volume: 170 start-page: 236 year: 2015 end-page: 46 article-title: The iron chelator deferasirox affects redox signalling in haematopoietic stem/progenitor cells publication-title: Br J Haematol – volume: 2007 start-page: 270 year: 2007 end-page: 6 article-title: Mantle cell lymphoma: identifying novel molecular targets in growth and survival pathways publication-title: Hematology – volume: 107 start-page: 3436 year: 2006 end-page: 41 article-title: Oral chelators deferasirox and deferiprone for transfusional iron overload in thalassemia major: new data, new questions publication-title: Blood – volume: 14 start-page: 3102 year: 2000 end-page: 14 article-title: Phosphorylation‐dependent regulation of cyclin D1 nuclear export and cyclin D1‐dependent cellular transformation publication-title: Genes Dev – volume: 71 start-page: 7628 year: 2011 end-page: 39 article-title: Wnt inhibitor screen reveals iron dependence of ‐catenin signaling in cancers publication-title: Cancer Res – volume: 20 start-page: 273 year: 2019 article-title: Iron as a central player and promising target in cancer progression publication-title: Int J Mol Sci – volume: 38 start-page: 406 year: 2019 article-title: Iron and leukemia: new insights for future treatments publication-title: J Exp Clin Cancer Res – volume: 12 start-page: 3499 year: 1998 end-page: 511 article-title: Glycogen synthase kinase‐3β regulates cyclin D1 proteolysis and subcellular localization publication-title: Genes Dev – volume: 100 start-page: 970 year: 2009 end-page: 7 article-title: The oral iron chelator deferasirox represses signaling through the mTOR in myeloid leukemia cells by enhancing expression of REDD1 publication-title: Cancer Sci – volume: 18 start-page: 973 year: 2013 end-page: 1006 article-title: Novel chelators for cancer treatment: where are we now? publication-title: Antioxid Redox Signal – volume: 34 start-page: 191 year: 2014 end-page: 8 article-title: Mantle cell lymphoma: biology, clinical presentation, and therapeutic approaches publication-title: Am Soc Clin Oncol Educ Book – volume: 181 start-page: 306 year: 2018 end-page: 19 article-title: Ibrutinib resistance in mantle cell lymphoma: clinical, molecular and treatment aspects publication-title: Br J Haematol – volume: 17 start-page: 5101 year: 2011 end-page: 12 article-title: Cancer Therapy: Clinical Treatment‐Induced Oxidative Stress and Cellular Antioxidant Capacity Determine Response to Bortezomib in Mantle Cell Lymphoma publication-title: Clin Cancer Res – volume: 110 start-page: 752 year: 2007 end-page: 61 article-title: Iron chelation and regulation of the cell cycle: 2 mechanisms of posttranscriptional regulation of the universal cyclin‐dependent kinase inhibitor p21CIP1/WAF1 by iron depletion publication-title: Blood – volume: 110 start-page: 752 issue: 2 year: 2007 end-page: 61 article-title: Iron chelation and regulation of the cell cycle: 2 mechanisms of posttranscriptional regulation of the universal cyclin‐dependent kinase inhibitor p21CIP1/WAF1 by iron depletion publication-title: Blood – volume: 35 start-page: 566 year: 2011 end-page: 70 article-title: Positive effects on hematopoiesis in patients with myelodysplastic syndrome receiving deferasirox as oral iron chelation therapy: a brief review publication-title: Leuk Res – volume: 70 start-page: 55 year: 2019 end-page: 69 article-title: Deferasirox selectively induces cell death in the clinically relevant population of leukemic CD34+CD38– cells through iron chelation, induction of ROS, and inhibition of HIF1α expression publication-title: Exp Hematol – volume: 22 start-page: 2097 year: 2008 end-page: 105 article-title: Specific lentiviral shRNA‐mediated knockdown of cyclin D1 in mantle cell lymphoma has minimal effects on cell survival and reveals a regulatory circuit with cyclin D2 publication-title: Leukemia – volume: 67 start-page: 1145 year: 2007 end-page: 54 article-title: Prevention of mantle lymphoma tumor establishment by routing transferrin receptor toward lysosomal compartments publication-title: Cancer Res – volume: 20 start-page: 87 year: 2014 end-page: 92 article-title: Pharmacological and genomic profiling identifies NF‐κB–targeted treatment strategies for mantle cell lymphoma publication-title: Nat Med – volume: 31 start-page: 53 year: 1999 end-page: 9 article-title: Redox signaling: hydrogen peroxide as intracellular messenger publication-title: Exp Mol Med – volume: 128 start-page: 82 issue: 1 year: 2016 end-page: 92 article-title: Pathogenic role of B‐cell receptor signaling and canonical NF‐κB activation in mantle cell lymphoma publication-title: Blood – volume: 8 start-page: 2 year: 2019 article-title: Mantle cell lymphoma and its management: where are we now? publication-title: Exp Hematol Oncol – volume: 7 year: 2012 article-title: RNA inhibition highlights Cyclin D1 as a potential therapeutic target for mantle cell lymphoma publication-title: PLoS One – volume: 8 start-page: 1765 year: 2006 end-page: 74 article-title: The redox regulation of PI 3‐Kinase–Dependent Signaling publication-title: Antioxid Redox Signal – volume: 131 issue: 12 year: 2018 article-title: Cyclin D1 depletion interferes with oxidative balance and promotes cancer cell senescence publication-title: J Cell Sci – volume: 13 start-page: 342 year: 2013 end-page: 55 article-title: Iron and cancer: more ore to be mined publication-title: Nat Rev Cancer – volume: 58 start-page: 676 year: 2017 end-page: 88 article-title: Cyclin D1 depletion induces DNA damage in mantle cell lymphoma lines publication-title: Leuk Lymphoma – volume: 10 start-page: 7365 year: 2004 end-page: 74 article-title: Potent antitumor activity of novel iron chelators derived from Di‐2‐Pyridylketone Isonicotinoyl Hydrazone Involves Fenton‐Derived Free Radical Generation publication-title: Clin Cancer Res – volume: 130 start-page: 516 year: 2005 end-page: 26 article-title: Gene expression profiling of mantle cell lymphoma cells reveals aberrant expression of genes from the PI3K‐AKT, WNT and TGFbeta signalling pathways publication-title: Br J Haematol – volume: 88 start-page: 272 year: 2015 end-page: 7 article-title: Iron, inflammation and invasion of cancer cells publication-title: Med Pharm Rep – volume: 1830 start-page: 5316 year: 2013 end-page: 25 article-title: Oxidative stress‐induced cyclin D1 depletion and its role in cell cycle processing publication-title: Biochim Biophys Acta ‐ Gen Subj – volume: 8 start-page: 243 year: 2006 end-page: 70 article-title: Hydrogen peroxide: a signaling messenger publication-title: Antioxid Redox Signal – ident: e_1_2_7_39_1 doi: 10.1101/gad.854900 – ident: e_1_2_7_23_1 doi: 10.1038/nrc2230 – ident: e_1_2_7_26_1 doi: 10.1111/j.1365-2141.2005.05630.x – ident: e_1_2_7_13_1 doi: 10.1182/blood-2006-02-002394 – ident: e_1_2_7_55_1 doi: 10.1089/ars.2006.8.243 – ident: e_1_2_7_25_1 doi: 10.1182/blood-2015-11-681460 – ident: e_1_2_7_27_1 doi: 10.1038/nm.3435 – ident: e_1_2_7_40_1 doi: 10.1101/gad.12.22.3499 – ident: e_1_2_7_20_1 doi: 10.1111/bph.12045 – ident: e_1_2_7_44_1 doi: 10.1002/cam4.1928 – ident: e_1_2_7_43_1 doi: 10.1016/j.leukres.2010.11.027 – ident: e_1_2_7_49_1 doi: 10.3390/ijms17091435 – ident: e_1_2_7_18_1 doi: 10.1111/bjh.13381 – ident: e_1_2_7_15_1 doi: 10.1182/blood.V97.4.1115 – ident: e_1_2_7_29_1 doi: 10.14694/EdBook_AM.2014.34.191 – ident: e_1_2_7_48_1 doi: 10.1182/blood-2007-03-076737 – ident: e_1_2_7_30_1 doi: 10.1186/s40164-019-0126-0 – ident: e_1_2_7_36_1 doi: 10.1089/ars.2008.2302 – ident: e_1_2_7_9_1 doi: 10.1089/ars.2012.4540 – volume: 88 start-page: 272 year: 2015 ident: e_1_2_7_6_1 article-title: Iron, inflammation and invasion of cancer cells publication-title: Med Pharm Rep – ident: e_1_2_7_35_1 doi: 10.1158/1078-0432.CCR-10-3367 – ident: e_1_2_7_54_1 doi: 10.1038/emm.1999.9 – ident: e_1_2_7_7_1 doi: 10.2174/0929867324666170705120809 – ident: e_1_2_7_46_1 doi: 10.1080/10428194.2016.1198958 – ident: e_1_2_7_50_1 doi: 10.1158/0008-5472.CAN-11-2745 – ident: e_1_2_7_52_1 doi: 10.1158/1078-0432.CCR-04-0865 – ident: e_1_2_7_28_1 doi: 10.1182/asheducation-2007.1.270 – ident: e_1_2_7_32_1 doi: 10.1158/0008-5472.CAN-06-1962 – ident: e_1_2_7_22_1 doi: 10.18632/oncotarget.11830 – ident: e_1_2_7_12_1 doi: 10.1016/S0140-6736(03)13309-0 – ident: e_1_2_7_2_1 doi: 10.1016/j.bbcan.2014.01.005 – ident: e_1_2_7_33_1 doi: 10.3109/10428194.2012.734614 – ident: e_1_2_7_4_1 doi: 10.1186/s13046-019-1397-3 – ident: e_1_2_7_5_1 doi: 10.1016/S1040-8428(01)00213-X – ident: e_1_2_7_42_1 doi: 10.1089/ars.2006.8.1765 – ident: e_1_2_7_53_1 doi: 10.1016/j.bbagen.2013.07.030 – ident: e_1_2_7_51_1 doi: 10.1007/s00204-012-0906-3 – ident: e_1_2_7_37_1 doi: 10.1182/blood-2006-10-047753 – ident: e_1_2_7_14_1 doi: 10.1111/ejh.12507 – ident: e_1_2_7_31_1 doi: 10.1111/bjh.15108 – ident: e_1_2_7_38_1 doi: 10.1182/blood-2007-03-076737 – ident: e_1_2_7_34_1 doi: 10.1074/jbc.M407349200 – ident: e_1_2_7_10_1 doi: 10.1016/j.bmcl.2015.11.094 – ident: e_1_2_7_11_1 doi: 10.18632/oncotarget.4349 – ident: e_1_2_7_41_1 doi: 10.1182/blood-2006-04-015586 – ident: e_1_2_7_3_1 doi: 10.1038/nrc3495 – ident: e_1_2_7_24_1 doi: 10.1371/journal.pone.0043343 – ident: e_1_2_7_45_1 doi: 10.1038/leu.2008.213 – ident: e_1_2_7_16_1 doi: 10.1016/j.exphem.2018.10.010 – ident: e_1_2_7_17_1 doi: 10.1186/s13287-019-1293-y – ident: e_1_2_7_19_1 doi: 10.1111/j.1349-7006.2009.01131.x – ident: e_1_2_7_21_1 doi: 10.1124/mol.112.081893 – ident: e_1_2_7_8_1 doi: 10.3390/ijms20020273 – ident: e_1_2_7_47_1 doi: 10.1242/jcs.214726 |
SSID | ssj0013051 |
Score | 2.411846 |
Snippet | Summary
Mantle cell lymphoma (MCL) is a difficult‐to‐treat B‐cell malignancy characterized by cyclin D1 (CD1) overexpression. Targeting CD1 in MCL has been... Mantle cell lymphoma (MCL) is a difficult‐to‐treat B‐cell malignancy characterized by cyclin D1 (CD1) overexpression. Targeting CD1 in MCL has been shown to be... Mantle cell lymphoma (MCL) is a difficult-to-treat B-cell malignancy characterized by cyclin D1 (CD1) overexpression. Targeting CD1 in MCL has been shown to be... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 747 |
SubjectTerms | 1-Phosphatidylinositol 3-kinase AKT protein Apoptosis Cell cycle Cell proliferation Chelating agents Cyclin D1 Cytotoxicity deferasirox DNA damage Glycogen Glycogen synthase kinase 3 GSK3β Hematology Iron Kinases Lymphoma Malignancy Mantle cell lymphoma Oxidative stress Phosphorylation Proteolysis Reactive oxygen species ROS Tumors |
Title | Deferasirox induces cyclin D1 degradation and apoptosis in mantle cell lymphoma in a reactive oxygen species‐ and GSK3β‐dependent mechanism |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbjh.17284 https://www.ncbi.nlm.nih.gov/pubmed/33521925 https://www.proquest.com/docview/2488464569 https://www.proquest.com/docview/2484155801 |
Volume | 192 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWqLhAbaIGWKQW5iAWbjGbiOHHUVaGUUVFZQCt1gRT5cSOGziSjJrMoKz6h39IP4SP4Eu51HrQ8pIpdHjdxbN_HcXwfjL1IVQ4wzsltMHVBlIINjFMiGAmjBSJ8tCkU4Hz0Pp6cRIen8nSF7XaxME1-iP6HG0mG19ck4NpU14TcfPk8pOJKlAuUfLUIEH0If-0gjGRbLS9BVROpNqsQefH0T960RX8AzJt41Rucg_vsU_epjZ_J2XBZm6H9-lsWx__syxq71wJRvtdwzjpbgeIBu3PUbrU_ZJf7lIJWV1Nsn-PCHVmg4vaCIin5_pg7SjLR1GPiunBcL8pFXVbTCmn5HKdrBpw2BfjsAvmlnGu6rjlCVK9gOXYKWZdToCeu1X98u_Rvefvxnfh-hWddbd6az4Fik6fV_BE7OXhz_HoStOUbAiuUigKV57m2IhyBsonSQpgULXIsknyMd6QMpVE20ikgc6QiBQlOhokEnVgXqxjEBlstygIeMx7BKNKojOjxyAmnZO600YhNQofrIxiwl91EZrbNbU4lNmZZt8bBEc78CA_Y85500ST0-BvRdscNWSvTVRairqN94DgdsJ3-NkojjaYuoFx6GkJoaPYHbLPhor4Vim5DPC3xYz0v_Lv57NXhxB9s3Z70CbsbkruNdyjfZqv1-RKeIl6qzTMvGD8BtrsVLg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VIgEX3o9AgQWBxMVR4vXa6wMHIJS0aXqAVurNXXvXwpDYEXaEwomf0B_Cif8BP4Jfwsz6AeUhcemBWxyP7fXsPL71zgPgQShTY4YphQ2G2vFCkzixltwZ8FhxRPjoUyjBebrrj_e97QNxsAaf2lyYuj5E98GNNMPaa1Jw-iD9k5bHb173qbuS14RUTszqPS7YysdbI5zdh667-Xzv2dhpego4CZfSc2Sapirh7sDIJJCK8zhEN-HzIB3iGSFcEcvEU6HBEYc8NMJo4QbCqCDRvvQNx_uegtPUQZwq9Y9euj_2LAai6c8XoHHzZFPHiOKGuqEe936_QdrjCNm6uM0L8KVlTh3Z8ra_rOJ-8uGXupH_C_cuwvkGa7MntXJcgjWTX4Yz0yaa4AocjajKriozfGGW5RqlvGTJipJF2WjINNXRqFtOMZVrphbFoirKrERaNkeJnBlG-x5stkKVKOaK_lcMUbj1IQy5iNrJKJc1M-W3j0f2Li9eTfjXz3jUth-u2NxQ-nVWzq_C_onw4xqs50VubgDzzMBTaG_pck9zLUWqVawQfrkal4CmB49ayYmSpnw7dRGZRe0yDmc0sjPag_sd6aKuWfInoo1W_KLGbJWRi-actrr9sAf3utNocIibKjfF0tIQCEVk04Prtdh2T6EEPlwyCBysFb6_Pz56uj22P27-O-ldODvem-5EO1u7k1twzqXoIhs_vwHr1buluY3wsIrvWK1kcHjSgvwd5gB2ZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFLWGQRqx4f0oDGAQSGxSpbGdOAsWQCidKTNCwEizC07saDK0SUVSobLiE-Y_2PEdiI_gS7jXecDwkNjMgl3b3MbO9X0cx_dByL1QZsaMMgwbDLXDQ5M6iZbMcVmiGCB88CmY4Lyz60_2-Pa-2F8jn7pcmKY-RP_CDTXD2mtU8IXOflLy5PBgiM2VeBtROTWr97Bfqx5uRbC49z1v_PT1k4nTthRwUiYld2SWZSplnmtkGkjFWBKCl_BZkI3gihCeSGTKVWhgwiELjTBaeIEwKki1L33D4L6nyGnuuyH2iYheej-OLFzRtucLwLZx2ZYxwrChfqrHnd9viPY4QLYebnyOfOl40wS2vB0u62SYfvilbOR_wrzz5GyLtOmjRjUukDVTXCQbO20swSVyFGGNXVXl8Lw0LzTIeEXTFaaK0mhENVbRaBpOUVVoqhbloi6rvAJaOgd5nBmKpx50tgKFKOcKf1cUMLj1IBSYCLpJMZM1N9W3j0f2Ls9eTdnXz_Ctaz5c07nB5Ou8ml8meyfCjytkvSgLc41QblyuwNri37lmWopMq0QB-PI0bADNgDzoBCdO2-Lt2ENkFnebOFjR2K7ogNztSRdNxZI_EW120he3RquKPTDmeNDthwNyp78M5ga5qQpTLi0NQlDANQNytZHafhRM34MNg4DJWtn7-_Dx4-2J_XD930lvk40X0Th-vrU7vUHOeBhaZIPnN8l6_W5pbgI2rJNbVicpeXPScvwdD0x1Ew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deferasirox+induces+cyclin+D1+degradation+and+apoptosis+in+mantle+cell+lymphoma+in+a+reactive+oxygen+species%E2%80%90+and+GSK3%CE%B2%E2%80%90dependent+mechanism&rft.jtitle=British+journal+of+haematology&rft.au=Samara%2C+Aladin&rft.au=Shapira%2C+Saar&rft.au=Lubin%2C+Ido&rft.au=Shpilberg%2C+Ofer&rft.date=2021-02-01&rft.issn=0007-1048&rft.eissn=1365-2141&rft.volume=192&rft.issue=4&rft.spage=747&rft.epage=760&rft_id=info:doi/10.1111%2Fbjh.17284&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_bjh_17284 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1048&client=summon |