Effect of hydrogen sulfide on glycolysis‐based energy production in mouse erythrocytes

Hydrogen sulfide (H2S) is a gasotransmitter that regulates both physiological and pathophysiological processes in mammalian cells. Recent studies have demonstrated that H2S promotes aerobic energy production in the mitochondria in response to hypoxia, but its effect on anaerobic energy production ha...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 237; no. 1; pp. 763 - 773
Main Authors Wondimu, Eden T., Zhang, Quanxi, Jin, Zhuping, Fu, Ming, Torregrossa, Roberta, Whiteman, Matthew, Yang, Guangdong, Wu, Lingyun, Wang, Rui
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen sulfide (H2S) is a gasotransmitter that regulates both physiological and pathophysiological processes in mammalian cells. Recent studies have demonstrated that H2S promotes aerobic energy production in the mitochondria in response to hypoxia, but its effect on anaerobic energy production has yet to be established. Glycolysis is the anaerobic process by which ATP is produced through the metabolism of glucose. Mammalian red blood cells (RBCs) extrude mitochondria and nucleus during erythropoiesis. These cells would serve as a unique model to observe the effect of H2S on glycolysis‐mediated energy production. The purpose of this study was to determine the effect of H2S on glycolysis‐mediated energy production in mitochondria‐free mouse RBCs. Western blot analysis showed that the only H2S‐generating enzyme expressed in mouse RBCs is 3‐mercaptopyruvate sulfurtransferase (MST). Supplement of the substrate for MST stimulated, but the inhibition of the same suppressed, the endogenous production of H2S. Both exogenously administered H2S salt and MST‐derived endogenous H2S stimulated glycolysis‐mediated ATP production. The effect of NaHS on ATP levels was not affected by oxygenation status. On the contrary, hypoxia increased intracellular H2S levels and MST activity in mouse RBCs. The mitochondria‐targeted H2S donor, AP39, did not affect ATP levels of mouse RBCs. NaHS at low concentrations (3–100 μM) increased ATP levels and decreased cell viability after 3 days of incubation in vitro. Higher NaHS concentrations (300–1000 μM) lowered ATP levels, but prolonged cell viability. H2S may offer a cytoprotective effect in mammalian RBCs to maintain oxygen‐independent energy production. The effect of H2S on glycolysis‐mediated energy production has not been studied in depth. Here, we report that mouse red blood cells (RBCs), which rely solely on glycolysis for energy production, have the capacity to endogenously produce H2S and that H2S stimulates glycolysis. Moreover, exposure of RBCs to H2S salt significantly prolonged the lifespan of mouse RBCs ex vivo, indicating that H2S may have a functional impact on RBC survival.
AbstractList Hydrogen sulfide (H2S) is a gasotransmitter that regulates both physiological and pathophysiological processes in mammalian cells. Recent studies have demonstrated that H2S promotes aerobic energy production in the mitochondria in response to hypoxia, but its effect on anaerobic energy production has yet to be established. Glycolysis is the anaerobic process by which ATP is produced through the metabolism of glucose. Mammalian red blood cells (RBCs) extrude mitochondria and nucleus during erythropoiesis. These cells would serve as a unique model to observe the effect of H2S on glycolysis‐mediated energy production. The purpose of this study was to determine the effect of H2S on glycolysis‐mediated energy production in mitochondria‐free mouse RBCs. Western blot analysis showed that the only H2S‐generating enzyme expressed in mouse RBCs is 3‐mercaptopyruvate sulfurtransferase (MST). Supplement of the substrate for MST stimulated, but the inhibition of the same suppressed, the endogenous production of H2S. Both exogenously administered H2S salt and MST‐derived endogenous H2S stimulated glycolysis‐mediated ATP production. The effect of NaHS on ATP levels was not affected by oxygenation status. On the contrary, hypoxia increased intracellular H2S levels and MST activity in mouse RBCs. The mitochondria‐targeted H2S donor, AP39, did not affect ATP levels of mouse RBCs. NaHS at low concentrations (3–100 μM) increased ATP levels and decreased cell viability after 3 days of incubation in vitro. Higher NaHS concentrations (300–1000 μM) lowered ATP levels, but prolonged cell viability. H2S may offer a cytoprotective effect in mammalian RBCs to maintain oxygen‐independent energy production. The effect of H2S on glycolysis‐mediated energy production has not been studied in depth. Here, we report that mouse red blood cells (RBCs), which rely solely on glycolysis for energy production, have the capacity to endogenously produce H2S and that H2S stimulates glycolysis. Moreover, exposure of RBCs to H2S salt significantly prolonged the lifespan of mouse RBCs ex vivo, indicating that H2S may have a functional impact on RBC survival.
Hydrogen sulfide (H S) is a gasotransmitter that regulates both physiological and pathophysiological processes in mammalian cells. Recent studies have demonstrated that H S promotes aerobic energy production in the mitochondria in response to hypoxia, but its effect on anaerobic energy production has yet to be established. Glycolysis is the anaerobic process by which ATP is produced through the metabolism of glucose. Mammalian red blood cells (RBCs) extrude mitochondria and nucleus during erythropoiesis. These cells would serve as a unique model to observe the effect of H S on glycolysis-mediated energy production. The purpose of this study was to determine the effect of H S on glycolysis-mediated energy production in mitochondria-free mouse RBCs. Western blot analysis showed that the only H S-generating enzyme expressed in mouse RBCs is 3-mercaptopyruvate sulfurtransferase (MST). Supplement of the substrate for MST stimulated, but the inhibition of the same suppressed, the endogenous production of H S. Both exogenously administered H S salt and MST-derived endogenous H S stimulated glycolysis-mediated ATP production. The effect of NaHS on ATP levels was not affected by oxygenation status. On the contrary, hypoxia increased intracellular H S levels and MST activity in mouse RBCs. The mitochondria-targeted H S donor, AP39, did not affect ATP levels of mouse RBCs. NaHS at low concentrations (3-100 μM) increased ATP levels and decreased cell viability after 3 days of incubation in vitro. Higher NaHS concentrations (300-1000 μM) lowered ATP levels, but prolonged cell viability. H S may offer a cytoprotective effect in mammalian RBCs to maintain oxygen-independent energy production.
Hydrogen sulfide (H2S) is a gasotransmitter that regulates both physiological and pathophysiological processes in mammalian cells. Recent studies have demonstrated that H2S promotes aerobic energy production in the mitochondria in response to hypoxia, but its effect on anaerobic energy production has yet to be established. Glycolysis is the anaerobic process by which ATP is produced through the metabolism of glucose. Mammalian red blood cells (RBCs) extrude mitochondria and nucleus during erythropoiesis. These cells would serve as a unique model to observe the effect of H2S on glycolysis‐mediated energy production. The purpose of this study was to determine the effect of H2S on glycolysis‐mediated energy production in mitochondria‐free mouse RBCs. Western blot analysis showed that the only H2S‐generating enzyme expressed in mouse RBCs is 3‐mercaptopyruvate sulfurtransferase (MST). Supplement of the substrate for MST stimulated, but the inhibition of the same suppressed, the endogenous production of H2S. Both exogenously administered H2S salt and MST‐derived endogenous H2S stimulated glycolysis‐mediated ATP production. The effect of NaHS on ATP levels was not affected by oxygenation status. On the contrary, hypoxia increased intracellular H2S levels and MST activity in mouse RBCs. The mitochondria‐targeted H2S donor, AP39, did not affect ATP levels of mouse RBCs. NaHS at low concentrations (3–100 μM) increased ATP levels and decreased cell viability after 3 days of incubation in vitro. Higher NaHS concentrations (300–1000 μM) lowered ATP levels, but prolonged cell viability. H2S may offer a cytoprotective effect in mammalian RBCs to maintain oxygen‐independent energy production.
Abstract Hydrogen sulfide (H 2 S) is a gasotransmitter that regulates both physiological and pathophysiological processes in mammalian cells. Recent studies have demonstrated that H 2 S promotes aerobic energy production in the mitochondria in response to hypoxia, but its effect on anaerobic energy production has yet to be established. Glycolysis is the anaerobic process by which ATP is produced through the metabolism of glucose. Mammalian red blood cells (RBCs) extrude mitochondria and nucleus during erythropoiesis. These cells would serve as a unique model to observe the effect of H 2 S on glycolysis‐mediated energy production. The purpose of this study was to determine the effect of H 2 S on glycolysis‐mediated energy production in mitochondria‐free mouse RBCs. Western blot analysis showed that the only H 2 S‐generating enzyme expressed in mouse RBCs is 3‐mercaptopyruvate sulfurtransferase (MST). Supplement of the substrate for MST stimulated, but the inhibition of the same suppressed, the endogenous production of H 2 S. Both exogenously administered H 2 S salt and MST‐derived endogenous H 2 S stimulated glycolysis‐mediated ATP production. The effect of NaHS on ATP levels was not affected by oxygenation status. On the contrary, hypoxia increased intracellular H 2 S levels and MST activity in mouse RBCs. The mitochondria‐targeted H 2 S donor, AP39, did not affect ATP levels of mouse RBCs. NaHS at low concentrations (3–100 μM) increased ATP levels and decreased cell viability after 3 days of incubation in vitro. Higher NaHS concentrations (300–1000 μM) lowered ATP levels, but prolonged cell viability. H 2 S may offer a cytoprotective effect in mammalian RBCs to maintain oxygen‐independent energy production.
Author Wondimu, Eden T.
Fu, Ming
Torregrossa, Roberta
Jin, Zhuping
Whiteman, Matthew
Wu, Lingyun
Zhang, Quanxi
Yang, Guangdong
Wang, Rui
Author_xml – sequence: 1
  givenname: Eden T.
  orcidid: 0000-0002-1841-3482
  surname: Wondimu
  fullname: Wondimu, Eden T.
  organization: Laurentian University
– sequence: 2
  givenname: Quanxi
  surname: Zhang
  fullname: Zhang, Quanxi
  organization: Shanxi University
– sequence: 3
  givenname: Zhuping
  surname: Jin
  fullname: Jin, Zhuping
  organization: Shanxi University
– sequence: 4
  givenname: Ming
  surname: Fu
  fullname: Fu, Ming
  organization: Laurentian University
– sequence: 5
  givenname: Roberta
  surname: Torregrossa
  fullname: Torregrossa, Roberta
  organization: MitoRx Therapeutics
– sequence: 6
  givenname: Matthew
  surname: Whiteman
  fullname: Whiteman, Matthew
  organization: MitoRx Therapeutics
– sequence: 7
  givenname: Guangdong
  orcidid: 0000-0003-3575-7786
  surname: Yang
  fullname: Yang, Guangdong
  organization: Laurentian University
– sequence: 8
  givenname: Lingyun
  surname: Wu
  fullname: Wu, Lingyun
  email: lwu2@laurentian.ca
  organization: Health Sciences North Research Institute
– sequence: 9
  givenname: Rui
  orcidid: 0000-0003-3825-3620
  surname: Wang
  fullname: Wang, Rui
  email: ruiwang@yorku.ca
  organization: York University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34346059$$D View this record in MEDLINE/PubMed
BookMark eNp1kM1O3DAURi00qPPTLngBZKkbWASuY8eOl2gEhQoJFq3UnZVxroeMMvFgJ0LZ9RF4xj5JTQdYIHV1F_fo6NOZk0nnOyTkiMEZA8jPN3Z3xqEQ4oDMGGiVCVnkEzJLP5bpQrApmce4AQCtOf9EplxwIaHQM_Lr0jm0PfWOPox18GvsaBxa19RIfUfX7Wh9O8Ym_vn9vKoi1hQ7DOuR7oKvB9s3CWo6uvVDRIph7B-Ct2OP8TM5dFUb8cvrXZCfV5c_ltfZ7d23m-XFbWZ5WYpMVmXttFSVq1XFRMFLpViuoKy1Rc6Z04CCcYZWrRwqyKVkWmoQSkBROcEX5GTvTYMeB4y92TbRYttWHaZRJi-KEjSXuUzo1w_oxg-hS-tMLnOetKWERJ3uKRt8jAGd2YVmW4XRMDAvuU3Kbf7lTuzxq3FYbbF-J9_6JuB8Dzw1LY7_N5nvy_u98i-Er4tO
CitedBy_id crossref_primary_10_3390_cells13050371
crossref_primary_10_1089_ars_2022_0067
crossref_primary_10_1021_acsbiomedchemau_3c00028
crossref_primary_10_1016_j_phymed_2024_155785
crossref_primary_10_1016_j_redox_2022_102331
Cites_doi 10.1096/fj.12-216507
10.1182/blood.v99.9.3439
10.1016/j.niox.2014.04.008
10.1182/blood-2008-05-159269
10.1080/15384101.2019.1618125
10.1016/j.tibs.2014.03.003
10.1073/pnas.1115634109
10.1096/fj.06-7407com
10.1073/pnas.1101315108
10.2337/db07-1820
10.1021/acs.jproteome.6b00733
10.1016/B978-0-12-416618-9.00005-4
10.1074/jbc.M115.639831
10.1371/journal.pone.0067322
10.1016/j.cell.2018.03.001
10.1016/j.bcmd.2004.01.015
10.1186/s13550-017-0266-3
10.1177/2041731411432365
10.1111/bph.12773
10.1186/1742-9994-10-33
10.1089/ars.2016.6954
10.1038/scientificamerican0310-66
10.3389/fphys.2017.01110
10.1152/ajpregu.00348.2019
10.1126/science.1162667
10.1053/tmrv.2002.35212
10.1016/j.ejphar.2005.12.037
10.2119/molmed.2015.00035
10.1182/blood-2005-04-1622
10.1016/j.bcp.2017.03.025
10.1111/trf.12804
10.1039/C3MD00323J
10.1096/fj.02-0211hyp
10.4274/tjh.2016.0251
10.1089/ars.2014.5930
10.1073/pnas.1308487110
10.1016/j.bbamem.2018.07.009
10.1080/10715762.2018.1431626
10.1016/j.bcp.2018.01.045
10.1152/ajprenal.00174.2010
10.1111/j.1537-2995.2008.01734.x
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC
2021 Wiley Periodicals LLC.
2022 Wiley Periodicals LLC
Copyright_xml – notice: 2021 Wiley Periodicals LLC
– notice: 2021 Wiley Periodicals LLC.
– notice: 2022 Wiley Periodicals LLC
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
DOI 10.1002/jcp.30544
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Genetics Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 773
ExternalDocumentID 10_1002_jcp_30544
34346059
JCP30544
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Heart and Stroke Foundation of Ontario
  funderid: Mid‐career Investigator Award
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: Discovery Grant ‐ RGPIN‐2017‐04392
– fundername: Medical Research Council
  grantid: MR/S002626/1
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
G8K
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
ACSMX
ACXME
AFDAS
AFMIJ
AGHSJ
CGR
CUY
CVF
ECM
EIF
NPM
XFK
ZA5
AAYXX
CITATION
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c3884-6a8df967afd7a145387712708d9ce331f90e4131ec7bfe702661969047405af43
IEDL.DBID DR2
ISSN 0021-9541
IngestDate Sat Aug 17 03:53:30 EDT 2024
Fri Sep 13 08:12:18 EDT 2024
Fri Aug 23 00:26:50 EDT 2024
Thu May 23 23:34:25 EDT 2024
Sat Aug 24 00:57:55 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords hypoxia
ATP production
3-mercaptopyruvate sulfur transferase
glycolysis
red blood cell
Language English
License 2021 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3884-6a8df967afd7a145387712708d9ce331f90e4131ec7bfe702661969047405af43
Notes Eden T. Wondimu and Quanxi Zhang contributed equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3575-7786
0000-0002-1841-3482
0000-0003-3825-3620
OpenAccessLink https://ore.exeter.ac.uk/repository/bitstream/10871/126691/1/for%20symplectic.pdf
PMID 34346059
PQID 2623969860
PQPubID 1006363
PageCount 11
ParticipantIDs proquest_miscellaneous_2558093626
proquest_journals_2623969860
crossref_primary_10_1002_jcp_30544
pubmed_primary_34346059
wiley_primary_10_1002_jcp_30544_JCP30544
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J Cell Physiol
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 16
2017; 7
2014; 116
2017; 8
2011; 2
2013; 27
2017; 26
2018; 149
2010; 302
2015; 55
2002; 99
2019; 18
2008; 57
2014; 171
2008; 322
2014; 41
2013; 8
2016; 15
2017; 136
2019; 1861
2006; 532
2012; 109
2004; 32
2014; 5
2011; 108
2015; 290
2018; 173
2013; 10
2020
2010; 299
2015; 22
2015; 21
2017; 34
2005; 106
2008; 48
2018; 52
2014
2013; 110
2014; 39
2008; 112
2007; 21
2020; 319
2014; 542
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Baynes J. W. (e_1_2_9_3_1) 2014
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_9_1
Vrhovac I. (e_1_2_9_38_1) 2014; 116
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 8
  year: 2017
  article-title: Effects of hypoxia on erythrocyte membrane properties—Implications for intravascular hemolysis and purinergic control of blood flow
  publication-title: Frontiers in Physiology
– volume: 99
  start-page: 3439
  issue: 9
  year: 2002
  end-page: 3448
  article-title: Erythrocyte survival is promoted by plasma and suppressed by a Bak‐derived BH3 peptide that interacts with membrane‐associated Bcl‐X(L)
  publication-title: Blood
– volume: 10
  issue: 1
  year: 2013
  article-title: Avian erythrocytes have functional mitochondria, opening novel perspectives for birds as animal models in the study of ageing
  publication-title: Frontiers in Zoology
– volume: 18
  start-page: 1316
  issue: 12
  year: 2019
  end-page: 1334
  article-title: Proliferating tumor cells mimick glucose metabolism of mature human erythrocytes
  publication-title: Cell Cycle
– volume: 55
  start-page: 205
  issue: 1
  year: 2015
  end-page: 219
  article-title: An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies
  publication-title: Transfusion
– volume: 109
  start-page: 2943
  issue: 8
  year: 2012
  end-page: 2948
  article-title: Hydrogen sulfide (H S) metabolism in mitochondria and its regulatory role in energy production
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 302
  start-page: 66
  issue: 3
  year: 2010
  end-page: 71
  article-title: Toxic gas, lifesaver
  publication-title: Scientific American
– volume: 149
  start-page: 163
  year: 2018
  end-page: 173
  article-title: Investigations on the role of hemoglobin in sulfide metabolism by intact human red blood cells
  publication-title: Biochemical Pharmacology
– volume: 532
  start-page: 11
  issue: 1–2
  year: 2006
  end-page: 17
  article-title: Stimulation of erythrocyte phosphatidylserine exposure by chlorpromazine
  publication-title: European Journal of Pharmacology
– volume: 108
  start-page: 10986
  issue: 27
  year: 2011
  end-page: 10991
  article-title: Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 542
  start-page: 91
  year: 2014
  end-page: 114
  article-title: Techniques to monitor glycolysis
  publication-title: Methods in Enzymology
– volume: 171
  start-page: 4322
  issue: 18
  year: 2014
  end-page: 4336
  article-title: Utilizing hydrogen sulfide as a novel anti‐cancer agent by targeting cancer glycolysis and pH imbalance
  publication-title: British Journal of Pharmacology
– volume: 26
  start-page: 718
  issue: 13
  year: 2017
  end-page: 742
  article-title: Red blood cell function and dysfunction: Redox regulation, nitric oxide metabolism, anemia
  publication-title: Antioxidants & Redox Signaling
– volume: 52
  start-page: 288
  issue: 2
  year: 2018
  end-page: 303
  article-title: Hydrogen sulfide increases glutathione biosynthesis, and glucose uptake and utilisation in C C mouse myotubes
  publication-title: Free Radical Research
– volume: 319
  start-page: R69
  issue: 1
  year: 2020
  end-page: R78
  article-title: H S‐stimulated bioenergetics in chicken erythrocytes and the underlying mechanism
  publication-title: American Journal of Physiology: Regulatory, Integrative and Comparative Physiology
– volume: 8
  issue: 6
  year: 2013
  article-title: Brain 3‐mercaptopyruvate sulfurtransferase (3MST): Cellular localization and downregulation after acute stroke
  publication-title: PLOS One
– year: 2014
– volume: 15
  start-page: 3883
  issue: 10
  year: 2016
  end-page: 3895
  article-title: AltitudeOmics: Red blood cell metabolic adaptation to high altitude hypoxia
  publication-title: Journal of Proteome Research
– volume: 16
  start-page: 283
  issue: 4
  year: 2002
  end-page: 295
  article-title: Storage of red blood cells: New approaches
  publication-title: Transfusion Medicine Reviews
– volume: 27
  start-page: 601
  issue: 2
  year: 2013
  end-page: 611
  article-title: Intramitochondrial hydrogen sulfide production by 3‐mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics
  publication-title: FASEB Journal
– volume: 112
  start-page: 4729
  issue: 12
  year: 2008
  end-page: 4738
  article-title: The Glut1 and Glut4 glucose transporters are differentially expressed during perinatal and postnatal erythropoiesis
  publication-title: Blood
– volume: 2
  start-page: 204173141143 2365
  issue: 1
  year: 2011
  article-title: Evolution of oxygen utilization in multicellular organisms and implications for cell signalling in tissue engineering
  publication-title: Journal of Tissue Engineering
– volume: 57
  start-page: 2445
  issue: 9
  year: 2008
  end-page: 2452
  article-title: Evidence for interindividual heterogeneity in the glucose gradient across the human red blood cell membrane and its relationship to hemoglobin glycation
  publication-title: Diabetes
– volume: 21
  start-page: 1
  issue: 1
  year: 2015
  end-page: 14
  article-title: Regulation of vascular tone, angiogenesis and cellular bioenergetics by the 3‐mercaptopyruvate sulfurtransferase/H S pathway: Functional impairment by hyperglycemia and restoration by DL‐α‐lipoic acid
  publication-title: Molecular Medicine
– volume: 7
  start-page: 19
  issue: 1
  year: 2017
  article-title: F‐FDG‐labeled red blood cell PET for blood‐pool imaging: Preclinical evaluation in rats
  publication-title: EJNMMI Research
– volume: 16
  start-page: 1792
  issue: 13
  year: 2002
  end-page: 1798
  article-title: Two's company, three's a crowd: Can H S be the third endogenous gaseous transmitter?
  publication-title: FASEB Journal
– volume: 21
  start-page: 1699
  issue: 8
  year: 2007
  end-page: 1706
  article-title: Sulfide, the first inorganic substrate for human cells
  publication-title: FASEB Journal
– volume: 110
  start-page: 12679
  issue: 31
  year: 2013
  end-page: 12684
  article-title: Oxygen‐sensitive mitochondrial accumulation of cystathionine β‐synthase mediated by Lon protease
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 32
  start-page: 401
  issue: 3
  year: 2004
  end-page: 407
  article-title: Conventional transport assays underestimate sugar transport rates in human red cells
  publication-title: Blood Cells, Molecules, & Diseases
– volume: 5
  start-page: 728
  year: 2014
  end-page: 736
  article-title: The synthesis and functional evaluation of a mitochondria‐targeted hydrogen sulfide donor, (10‐oxo‐10‐(4‐(3‐thioxo‐3H‐1,2‐dithiol‐5‐yl)phenoxy)decyl)triphenylphosphonium bromide (AP39)
  publication-title: MedChemComm
– volume: 173
  start-page: 117
  issue: 1
  year: 2018
  end-page: 129
  article-title: Amino acid restriction triggers angiogenesis via GCN2/ATF4 regulation of VEGF and H S production
  publication-title: Cell
– volume: 290
  start-page: 8310
  issue: 13
  year: 2015
  end-page: 8320
  article-title: Sulfide oxidation by a noncanonical pathway in red blood cells generates thiosulfate and polysulfides
  publication-title: The Journal of Biological Chemistry
– year: 2020
– volume: 136
  start-page: 86
  year: 2017
  end-page: 98
  article-title: H S‐induced S‐sulfhydration of lactate dehydrogenase a (LDHA) stimulates cellular bioenergetics in HCT116 colon cancer cells
  publication-title: Biochemical Pharmacology
– volume: 299
  start-page: F1
  issue: 1
  year: 2010
  end-page: F13
  article-title: Hypoxic regulation of erythropoiesis and iron metabolism
  publication-title: American Journal of Physiology–Renal Physiology
– volume: 106
  start-page: 4034
  issue: 13
  year: 2005
  end-page: 4042
  article-title: The energy‐less red blood cell is lost: Erythrocyte enzyme abnormalities of glycolysis
  publication-title: Blood
– volume: 1861
  start-page: 236
  issue: 1
  year: 2019
  end-page: 244
  article-title: Morphological changes induced in erythrocyte by amyloid beta peptide and glucose depletion: A combined atomic force microscopy and biochemical study
  publication-title: Biochimica et Biophysica Acta, Biomembranes
– volume: 322
  start-page: 587
  issue: 5901
  year: 2008
  end-page: 590
  article-title: H S as a physiologic vasorelaxant: Hypertension in mice with deletion of cystathionine gamma‐lyase
  publication-title: Science
– volume: 48
  start-page: 1478
  issue: 7
  year: 2008
  end-page: 1485
  article-title: Survival of red blood cells after transfusion: A comparison between red cells concentrates of different storage periods
  publication-title: Transfusion
– volume: 41
  start-page: 120
  year: 2014
  end-page: 130
  article-title: AP39, a novel mitochondria‐targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro
  publication-title: Nitric Oxide: Biology and Chemistry
– volume: 22
  start-page: 377
  issue: 5
  year: 2015
  end-page: 397
  article-title: Hydrogen sulfide as an oxygen sensor
  publication-title: Antioxidants & Redox Signaling
– volume: 34
  start-page: 111
  issue: 1
  year: 2017
  end-page: 113
  article-title: Posttranslational modifications of red blood cell ghost proteins as “signatures” for distinguishing between low‐ and high‐risk myelodysplastic syndrome patients
  publication-title: Turkish Journal of Haematology
– volume: 39
  start-page: 227
  issue: 5
  year: 2014
  end-page: 232
  article-title: Gasotransmitters: Growing pains and joys
  publication-title: Trends in Biochemical Sciences
– volume: 116
  start-page: 131
  issue: 2
  year: 2014
  end-page: 138
  article-title: Glucose transporter in the mammalian blood cells
  publication-title: Periodicum Biologorum
– ident: e_1_2_9_26_1
  doi: 10.1096/fj.12-216507
– volume-title: Medical biochemistry
  year: 2014
  ident: e_1_2_9_3_1
  contributor:
    fullname: Baynes J. W.
– ident: e_1_2_9_39_1
  doi: 10.1182/blood.v99.9.3439
– ident: e_1_2_9_33_1
  doi: 10.1016/j.niox.2014.04.008
– ident: e_1_2_9_27_1
  doi: 10.1182/blood-2008-05-159269
– ident: e_1_2_9_13_1
  doi: 10.1080/15384101.2019.1618125
– ident: e_1_2_9_42_1
  doi: 10.1016/j.tibs.2014.03.003
– ident: e_1_2_9_12_1
  doi: 10.1073/pnas.1115634109
– ident: e_1_2_9_7_1
– ident: e_1_2_9_14_1
  doi: 10.1096/fj.06-7407com
– ident: e_1_2_9_11_1
  doi: 10.1073/pnas.1101315108
– ident: e_1_2_9_19_1
  doi: 10.2337/db07-1820
– ident: e_1_2_9_10_1
  doi: 10.1021/acs.jproteome.6b00733
– ident: e_1_2_9_35_1
  doi: 10.1016/B978-0-12-416618-9.00005-4
– ident: e_1_2_9_37_1
  doi: 10.1074/jbc.M115.639831
– ident: e_1_2_9_45_1
  doi: 10.1371/journal.pone.0067322
– ident: e_1_2_9_23_1
  doi: 10.1016/j.cell.2018.03.001
– ident: e_1_2_9_5_1
  doi: 10.1016/j.bcmd.2004.01.015
– ident: e_1_2_9_25_1
  doi: 10.1186/s13550-017-0266-3
– ident: e_1_2_9_31_1
  doi: 10.1177/2041731411432365
– ident: e_1_2_9_22_1
  doi: 10.1111/bph.12773
– ident: e_1_2_9_32_1
  doi: 10.1186/1742-9994-10-33
– ident: e_1_2_9_20_1
  doi: 10.1089/ars.2016.6954
– ident: e_1_2_9_41_1
  doi: 10.1038/scientificamerican0310-66
– ident: e_1_2_9_15_1
  doi: 10.3389/fphys.2017.01110
– ident: e_1_2_9_18_1
  doi: 10.1152/ajpregu.00348.2019
– ident: e_1_2_9_44_1
  doi: 10.1126/science.1162667
– ident: e_1_2_9_17_1
  doi: 10.1053/tmrv.2002.35212
– volume: 116
  start-page: 131
  issue: 2
  year: 2014
  ident: e_1_2_9_38_1
  article-title: Glucose transporter in the mammalian blood cells
  publication-title: Periodicum Biologorum
  contributor:
    fullname: Vrhovac I.
– ident: e_1_2_9_2_1
  doi: 10.1016/j.ejphar.2005.12.037
– ident: e_1_2_9_8_1
  doi: 10.2119/molmed.2015.00035
– ident: e_1_2_9_43_1
  doi: 10.1182/blood-2005-04-1622
– ident: e_1_2_9_36_1
  doi: 10.1016/j.bcp.2017.03.025
– ident: e_1_2_9_9_1
  doi: 10.1111/trf.12804
– ident: e_1_2_9_21_1
  doi: 10.1039/C3MD00323J
– ident: e_1_2_9_40_1
  doi: 10.1096/fj.02-0211hyp
– ident: e_1_2_9_30_1
  doi: 10.4274/tjh.2016.0251
– ident: e_1_2_9_28_1
  doi: 10.1089/ars.2014.5930
– ident: e_1_2_9_34_1
  doi: 10.1073/pnas.1308487110
– ident: e_1_2_9_6_1
  doi: 10.1016/j.bbamem.2018.07.009
– ident: e_1_2_9_29_1
  doi: 10.1080/10715762.2018.1431626
– ident: e_1_2_9_4_1
  doi: 10.1016/j.bcp.2018.01.045
– ident: e_1_2_9_16_1
  doi: 10.1152/ajprenal.00174.2010
– ident: e_1_2_9_24_1
  doi: 10.1111/j.1537-2995.2008.01734.x
SSID ssj0009933
Score 2.4427843
Snippet Hydrogen sulfide (H2S) is a gasotransmitter that regulates both physiological and pathophysiological processes in mammalian cells. Recent studies have...
Hydrogen sulfide (H S) is a gasotransmitter that regulates both physiological and pathophysiological processes in mammalian cells. Recent studies have...
Abstract Hydrogen sulfide (H 2 S) is a gasotransmitter that regulates both physiological and pathophysiological processes in mammalian cells. Recent studies...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 763
SubjectTerms 3‐mercaptopyruvate sulfur transferase
Adenosine Triphosphate - metabolism
Anaerobic processes
Animals
ATP
ATP production
Cell viability
Energy
Erythrocytes
Erythrocytes - metabolism
Erythropoiesis
Glucose metabolism
Glycolysis
Hydrogen sulfide
Hydrogen Sulfide - metabolism
Hydrogen Sulfide - pharmacology
Hypoxia
Incubation
Low concentrations
Mammalian cells
Mammals
Mammals - metabolism
Mice
Mitochondria
Oxygenation
red blood cell
Substrate inhibition
Sulfurtransferase
Title Effect of hydrogen sulfide on glycolysis‐based energy production in mouse erythrocytes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.30544
https://www.ncbi.nlm.nih.gov/pubmed/34346059
https://www.proquest.com/docview/2623969860/abstract/
https://search.proquest.com/docview/2558093626
Volume 237
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB8OQehLtae28aNsRcSXaLJZkw0-HUcPESoiCvcghE2y29pec8d9PMSn_gn-jf1LOrN7uUNFKL4F8rHZ3Zmd38zu_AbgIJJcUcFtPzG5ppSc1Fccr9D0F2GujYpjyh3-dhmf34qL_mm_BWdNLozjh1gE3Egz7HpNCq7yycmSNPRngQ47Ag7iAiUiPQJE10vqqHReRt4eQTgVYcMqFPCTxZtPbdELgPkUr1qD01uDu-ZX3TmTX8ezaX5cPDxjcXxjX9bh_RyIso6TnA_Q0lUbNjoVOuG_a3bI7NFQG3Nvw6qrWFlvQN-xHbOhYT_qcjxE8WOT2cDcl5oNK_Z9UKNgEcnJ3z-PZCBLpm1yIRs5ZlmUAnZfMYo3aKbHNVVpKGqEu5tw2_t60z3358UZ_CKSUvixkqVJ40SZMlGhwHUzSWgXW5ZpoaMoNGmg0UCGukhyo5OAgECKrrhIECIqI6ItWKmGlf4ETEhBK42kLUHBea6KUHGj49woTt_yYL-ZpmzkODgyx7bMMxy5zI6cB7vNBGZzNZxkHMEdNirjwIMvi9uoQLQroiqNnc3Qp5JBSqw8Hnx0E79oJRIR7RunHhzZ6Xu9-eyie2Uvtv__0R14xymZwgZ0dmFlOp7pPYQ40_yzleV_NLT2sA
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fTxQxEJ8ghsiLCgisIlRjjC977HZ7u93EF0IkJwIhBpJ7MU13t1Xg2Lscdw_rkx_Bz-gncaa9PQLGxPi2yf7ptp3p_Gba-Q3Am0RyTQW3w8wWhlJy8lBzvELTX8aFsTpNKXf4-CTtnYvDfre_AO_bXBjPDzEPuJFmuPWaFJwC0ru3rKGXJXrsiDjEA3iI6t51DtXnW_KofFZI3h1C6Iq45RWK-O781bvW6A-IeRexOpNz8AS-tD_rT5pcdaaTolN-v8fj-L-9eQqPZ1iU7XnhWYEFU6_C2l6Nfvh1w94ydzrUhd1XYckXrWzWoO8Jj9nQsm9NNR6iBLKb6cBeVIYNa_Z10KBsEc_Jrx8_yUZWzLj8Qjby5LIoCOyiZhRyMMyMGyrUUDaIeJ_B-cGHs_1eOKvPEJaJlCJMtaxsnmbaVpmOBS6dWUYb2bLKS5Mksc0jgzYyNmVWWJNFhAVy9MZFhihRW5Gsw2I9rM0mMCEFLTaSdgUF54UuY82tSQurOX0rgNftPKmRp-FQnnCZKxw55UYugK12BtVME28UR3yHjco0CuDV_DbqEG2M6NpgZxW6VTLKiZgngA0_8_NWEpHQ1nEewDs3f39vXh3un7qL5__-6A486p0dH6mjjyefXsAyp9wKF9_ZgsXJeGpeIuKZFNtOsH8Dr4L60g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VRSAuQF8QKK1bIdRL2sTxJo44VS2rUkpVVVTaA5LlJDb0QXa13T2EEz-B38gvYcbebFUqpKq3SHk4tmc834w93wC8TSTXVHA7zGxhKCUnDzXHKzT9ZVwYq9OUcoc_H6X7p-Kg3-3Pwfs2F8bzQ8wCbqQZbr0mBR9WdvuaNPS8RIcdAYd4AA9FmnAS6b2Ta-6ofFpH3p1B6Iq4pRWK-Pbs1ZvG6BbCvAlYncXpPYOv7b_6gyYXW5NxsVX-_IfG8Z6deQ5Pp0iU7XjRmYc5Uy_A4k6NXviPhr1j7myoC7ovwCNfsrJZhL6nO2YDy7431WiA8seuJpf2rDJsULNvlw1KFrGc_Pn1myxkxYzLLmRDTy2LYsDOakYBB8PMqKEyDWWDeHcJTnsfvuzuh9PqDGGZSCnCVMvK5mmmbZXpWODCmWW0jS2rvDRJEts8MmghY1NmhTVZREggR19cZIgRtRXJMnTqQW1eAhNS0FIjaU9QcF7oMtbcmrSwmtO3Athop0kNPQmH8nTLXOHIKTdyAay0E6imenilOKI7bFSmUQDrs9uoQbQtomuDnVXoVMkoJ1qeAF74iZ-1koiENo7zADbd9P2_eXWwe-wuXt390TV4fLzXU4cfjz69hiecEitccGcFOuPRxLxBuDMuVp1Y_wXHsvmB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+hydrogen+sulfide+on+glycolysis%E2%80%90based+energy+production+in+mouse+erythrocytes&rft.jtitle=Journal+of+cellular+physiology&rft.au=Wondimu%2C+Eden+T.&rft.au=Zhang%2C+Quanxi&rft.au=Jin%2C+Zhuping&rft.au=Fu%2C+Ming&rft.date=2022-01-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=237&rft.issue=1&rft.spage=763&rft.epage=773&rft_id=info:doi/10.1002%2Fjcp.30544&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jcp_30544
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon