Arginase‐II promotes melanoma migration and adhesion through enhancing hydrogen peroxide production and STAT3 signaling

Elevated arginase type II (Arg‐II) associates with higher grade tumors. Its function and underlying molecular mechanisms in melanoma remain elusive. In the present study, we observed a significantly higher frequency of Arg‐II expression in melanoma of patients with metastasis than those without meta...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 235; no. 12; pp. 9997 - 10011
Main Authors Yu, Yi, Ladeiras, Diogo, Xiong, Yuyan, Boligan, Kayluz Frias, Liang, Xiujie, Gunten, Stephan, Hunger, Robert E., Ming, Xiu‐Fen, Yang, Zhihong
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Elevated arginase type II (Arg‐II) associates with higher grade tumors. Its function and underlying molecular mechanisms in melanoma remain elusive. In the present study, we observed a significantly higher frequency of Arg‐II expression in melanoma of patients with metastasis than those without metastasis. Silencing Arg‐II in two human melanoma cell lines slowed down the cell growth, while overexpression of native but not a catalytically inactive Arg‐II promoted cell proliferation without affecting cell death. Treatment of cells with arginase inhibitor also reduced melanoma cell number, demonstrating that Arg‐II promotes melanoma cell proliferation dependently of its enzymatic activity. However, results from silencing Arg‐II or overexpressing native or the inactive Arg‐II as well as treatment with arginase inhibitor showed that Arg‐II promotes melanoma metastasis‐related processes, such as melanoma cell migration and adhesion on endothelial cells, independently of its enzymatic activity. Moreover, the treatment of the cells with STAT3 inhibitor suppressed Arg‐II‐promoted melanoma cell migration and adhesion. Furthermore, catalase, but not superoxide dismutase, prevented STAT3 activation as well as increased melanoma cell migration and adhesion induced by overexpressing native or the inactive Arg‐II. Taken together, our study uncovers both activity‐dependent and independent mechanisms of Arg‐II in promoting melanoma progression. While Arg‐II enhances melanoma cell proliferation through polyamine dependently of its enzymatic activity, it promotes metastasis‐related processes, that is, migration and adhesion onto endothelial cell, through mitochondrial H2O2‐STAT3 pathway independently of the enzymatic activity. Suppressing Arg‐II expression rather than inhibiting its enzymatic activity may, therefore, represent a novel strategy for the treatment of melanoma. Arginase type II (Arg‐II) promotes melanoma cell proliferation dependently of its enzymatic activity, while promotes metastasis‐related migration and adhesion to endothelial cells through H2O2‐STAT3 pathway independently of the enzymatic activity. Suppressing Arg‐II expression rather than inhibiting its enzymatic activity may represent a novel strategy for the treatment of melanoma.
AbstractList Elevated arginase type II (Arg‐II) associates with higher grade tumors. Its function and underlying molecular mechanisms in melanoma remain elusive. In the present study, we observed a significantly higher frequency of Arg‐II expression in melanoma of patients with metastasis than those without metastasis. Silencing Arg‐II in two human melanoma cell lines slowed down the cell growth, while overexpression of native but not a catalytically inactive Arg‐II promoted cell proliferation without affecting cell death. Treatment of cells with arginase inhibitor also reduced melanoma cell number, demonstrating that Arg‐II promotes melanoma cell proliferation dependently of its enzymatic activity. However, results from silencing Arg‐II or overexpressing native or the inactive Arg‐II as well as treatment with arginase inhibitor showed that Arg‐II promotes melanoma metastasis‐related processes, such as melanoma cell migration and adhesion on endothelial cells, independently of its enzymatic activity. Moreover, the treatment of the cells with STAT3 inhibitor suppressed Arg‐II‐promoted melanoma cell migration and adhesion. Furthermore, catalase, but not superoxide dismutase, prevented STAT3 activation as well as increased melanoma cell migration and adhesion induced by overexpressing native or the inactive Arg‐II. Taken together, our study uncovers both activity‐dependent and independent mechanisms of Arg‐II in promoting melanoma progression. While Arg‐II enhances melanoma cell proliferation through polyamine dependently of its enzymatic activity, it promotes metastasis‐related processes, that is, migration and adhesion onto endothelial cell, through mitochondrial H2O2‐STAT3 pathway independently of the enzymatic activity. Suppressing Arg‐II expression rather than inhibiting its enzymatic activity may, therefore, represent a novel strategy for the treatment of melanoma.
Abstract Elevated arginase type II (Arg‐II) associates with higher grade tumors. Its function and underlying molecular mechanisms in melanoma remain elusive. In the present study, we observed a significantly higher frequency of Arg‐II expression in melanoma of patients with metastasis than those without metastasis. Silencing Arg‐II in two human melanoma cell lines slowed down the cell growth, while overexpression of native but not a catalytically inactive Arg‐II promoted cell proliferation without affecting cell death. Treatment of cells with arginase inhibitor also reduced melanoma cell number, demonstrating that Arg‐II promotes melanoma cell proliferation dependently of its enzymatic activity. However, results from silencing Arg‐II or overexpressing native or the inactive Arg‐II as well as treatment with arginase inhibitor showed that Arg‐II promotes melanoma metastasis‐related processes, such as melanoma cell migration and adhesion on endothelial cells, independently of its enzymatic activity. Moreover, the treatment of the cells with STAT3 inhibitor suppressed Arg‐II‐promoted melanoma cell migration and adhesion. Furthermore, catalase, but not superoxide dismutase, prevented STAT3 activation as well as increased melanoma cell migration and adhesion induced by overexpressing native or the inactive Arg‐II. Taken together, our study uncovers both activity‐dependent and independent mechanisms of Arg‐II in promoting melanoma progression. While Arg‐II enhances melanoma cell proliferation through polyamine dependently of its enzymatic activity, it promotes metastasis‐related processes, that is, migration and adhesion onto endothelial cell, through mitochondrial H 2 O 2 ‐STAT3 pathway independently of the enzymatic activity. Suppressing Arg‐II expression rather than inhibiting its enzymatic activity may, therefore, represent a novel strategy for the treatment of melanoma.
Elevated arginase type II (Arg-II) associates with higher grade tumors. Its function and underlying molecular mechanisms in melanoma remain elusive. In the present study, we observed a significantly higher frequency of Arg-II expression in melanoma of patients with metastasis than those without metastasis. Silencing Arg-II in two human melanoma cell lines slowed down the cell growth, while overexpression of native but not a catalytically inactive Arg-II promoted cell proliferation without affecting cell death. Treatment of cells with arginase inhibitor also reduced melanoma cell number, demonstrating that Arg-II promotes melanoma cell proliferation dependently of its enzymatic activity. However, results from silencing Arg-II or overexpressing native or the inactive Arg-II as well as treatment with arginase inhibitor showed that Arg-II promotes melanoma metastasis-related processes, such as melanoma cell migration and adhesion on endothelial cells, independently of its enzymatic activity. Moreover, the treatment of the cells with STAT3 inhibitor suppressed Arg-II-promoted melanoma cell migration and adhesion. Furthermore, catalase, but not superoxide dismutase, prevented STAT3 activation as well as increased melanoma cell migration and adhesion induced by overexpressing native or the inactive Arg-II. Taken together, our study uncovers both activity-dependent and independent mechanisms of Arg-II in promoting melanoma progression. While Arg-II enhances melanoma cell proliferation through polyamine dependently of its enzymatic activity, it promotes metastasis-related processes, that is, migration and adhesion onto endothelial cell, through mitochondrial H O -STAT3 pathway independently of the enzymatic activity. Suppressing Arg-II expression rather than inhibiting its enzymatic activity may, therefore, represent a novel strategy for the treatment of melanoma.
Elevated arginase type II (Arg‐II) associates with higher grade tumors. Its function and underlying molecular mechanisms in melanoma remain elusive. In the present study, we observed a significantly higher frequency of Arg‐II expression in melanoma of patients with metastasis than those without metastasis. Silencing Arg‐II in two human melanoma cell lines slowed down the cell growth, while overexpression of native but not a catalytically inactive Arg‐II promoted cell proliferation without affecting cell death. Treatment of cells with arginase inhibitor also reduced melanoma cell number, demonstrating that Arg‐II promotes melanoma cell proliferation dependently of its enzymatic activity. However, results from silencing Arg‐II or overexpressing native or the inactive Arg‐II as well as treatment with arginase inhibitor showed that Arg‐II promotes melanoma metastasis‐related processes, such as melanoma cell migration and adhesion on endothelial cells, independently of its enzymatic activity. Moreover, the treatment of the cells with STAT3 inhibitor suppressed Arg‐II‐promoted melanoma cell migration and adhesion. Furthermore, catalase, but not superoxide dismutase, prevented STAT3 activation as well as increased melanoma cell migration and adhesion induced by overexpressing native or the inactive Arg‐II. Taken together, our study uncovers both activity‐dependent and independent mechanisms of Arg‐II in promoting melanoma progression. While Arg‐II enhances melanoma cell proliferation through polyamine dependently of its enzymatic activity, it promotes metastasis‐related processes, that is, migration and adhesion onto endothelial cell, through mitochondrial H2O2‐STAT3 pathway independently of the enzymatic activity. Suppressing Arg‐II expression rather than inhibiting its enzymatic activity may, therefore, represent a novel strategy for the treatment of melanoma. Arginase type II (Arg‐II) promotes melanoma cell proliferation dependently of its enzymatic activity, while promotes metastasis‐related migration and adhesion to endothelial cells through H2O2‐STAT3 pathway independently of the enzymatic activity. Suppressing Arg‐II expression rather than inhibiting its enzymatic activity may represent a novel strategy for the treatment of melanoma.
Author Boligan, Kayluz Frias
Yu, Yi
Hunger, Robert E.
Liang, Xiujie
Ladeiras, Diogo
Gunten, Stephan
Xiong, Yuyan
Yang, Zhihong
Ming, Xiu‐Fen
Author_xml – sequence: 1
  givenname: Yi
  orcidid: 0000-0001-8231-6516
  surname: Yu
  fullname: Yu, Yi
  organization: Northwest University
– sequence: 2
  givenname: Diogo
  surname: Ladeiras
  fullname: Ladeiras, Diogo
  organization: University of Fribourg
– sequence: 3
  givenname: Yuyan
  orcidid: 0000-0003-4210-7992
  surname: Xiong
  fullname: Xiong, Yuyan
  organization: Northwest University
– sequence: 4
  givenname: Kayluz Frias
  surname: Boligan
  fullname: Boligan, Kayluz Frias
  organization: University of Bern
– sequence: 5
  givenname: Xiujie
  surname: Liang
  fullname: Liang, Xiujie
  organization: University of Fribourg
– sequence: 6
  givenname: Stephan
  surname: Gunten
  fullname: Gunten, Stephan
  organization: University of Bern
– sequence: 7
  givenname: Robert E.
  surname: Hunger
  fullname: Hunger, Robert E.
  organization: Bern University Hospital Inselspital, University of Bern
– sequence: 8
  givenname: Xiu‐Fen
  orcidid: 0000-0002-5848-4496
  surname: Ming
  fullname: Ming, Xiu‐Fen
  email: xiu-fen.ming@unifr.ch
  organization: University of Fribourg
– sequence: 9
  givenname: Zhihong
  orcidid: 0000-0002-4133-5099
  surname: Yang
  fullname: Yang, Zhihong
  email: zhihong.yang@unifr.ch
  organization: University of Fribourg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32468644$$D View this record in MEDLINE/PubMed
BookMark eNp1kMtOAyEUQInRaKsu_AFD4srFKK9hYNk0PmpMNLGuJxSYR9OBCp1od36C3-iXSK26c0WAc09uzhDsOu8sACcYXWCEyOVcLy-IFJjtgAFGssgYz8kuGKQ_nMmc4QMwjHGOEJKS0n1wQAnjgjM2AOtRqFunov18_5hM4DL4zq9shJ1dKOc7Bbu2DmrVegeVM1CZxsbNZdUE39cNtK5RTreuhs3aBF9bB5c2-LfW2I3M9Ppv9mk6mlIY29qpRRo4AnuVWkR7_HMegufrq-n4Nrt_uJmMR_eZpkKwjOICzbiWTCpCckwQo0WlOSuE4bMKE8KMRrhIr4JybfNCC8IrYqTMlVBM00NwtvWmdV56G1fl3Pch7RBLwlIGRAXmiTrfUjr4GIOtymVoOxXWJUblJnKZIpffkRN7-mPsZ501f-Rv1QRcboHXdmHX_5vKu_HjVvkFESOJJg
CitedBy_id crossref_primary_10_1136_jitc_2022_005326
crossref_primary_10_1016_j_esmoop_2022_100636
crossref_primary_10_1134_S0022093023050137
crossref_primary_10_1016_j_ijbiomac_2022_10_152
crossref_primary_10_1016_j_imbio_2022_152189
crossref_primary_10_1016_j_jcmgh_2024_01_016
crossref_primary_10_1039_D2NJ04384J
crossref_primary_10_3389_fimmu_2022_909580
crossref_primary_10_31857_S086981392309011X
crossref_primary_10_1002_mef2_12
crossref_primary_10_3724_abbs_2022166
crossref_primary_10_1016_j_biopha_2022_112840
crossref_primary_10_3390_biom11081213
crossref_primary_10_3390_cimb45040231
crossref_primary_10_1158_1535_7163_MCT_22_0721
crossref_primary_10_1016_j_ejmech_2023_116033
crossref_primary_10_3390_cancers14163967
crossref_primary_10_3390_ijms21155291
crossref_primary_10_1038_s41392_023_01569_3
crossref_primary_10_1002_jcla_24119
crossref_primary_10_1159_000510515
Cites_doi 10.1159/000447790
10.1186/s40425-019-0504-5
10.1038/s41467-017-00331-y
10.1371/journal.pone.0079242
10.1016/j.bbcan.2013.12.005
10.1016/j.cell.2005.05.011
10.1038/sj.onc.1207383
10.1128/MCB.22.24.8467-8477.2002
10.1111/acel.12001
10.1007/s00425-008-0772-7
10.1155/2018/8696923
10.3389/fonc.2019.00546
10.1038/nm.2544
10.1371/journal.pone.0055146
10.1161/JAHA.112.000992
10.2217/imt-2016-0118
10.1016/S0531-5565(99)00060-1
10.1128/MCB.25.17.7432-7440.2005
10.1172/JCI82925
10.1038/nrd2243
10.1016/S0009-8981(02)00391-1
10.1074/jbc.M413187200
10.1073/pnas.0404100101
10.1155/2013/421821
10.1002/ijc.23437
10.1084/jem.20042028
10.1016/S0009-8981(00)00432-0
10.1186/s40425-017-0308-4
10.4161/cc.10.15.16870
10.1186/1756-9966-30-95
10.1038/nrc3080
10.1067/mlc.2001.114543
10.1080/2162402X.2017.1316437
10.1186/1756-8722-1-14
10.1371/journal.pone.0012773
10.1182/blood-2006-11-010389
10.1038/sj.onc.1205263
10.1161/JAHA.113.000096
10.1161/01.CIR.0000142867.26182.32
ContentType Journal Article
Copyright 2020 Wiley Periodicals LLC
2020 Wiley Periodicals LLC.
Copyright_xml – notice: 2020 Wiley Periodicals LLC
– notice: 2020 Wiley Periodicals LLC.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
DOI 10.1002/jcp.29814
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Genetics Abstracts
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 10011
ExternalDocumentID 10_1002_jcp_29814
32468644
JCP29814
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Swiss Cancer League/Swiss Cancer Research
  funderid: KFS‐3941‐08‐2016
– fundername: Swiss Heart Foundation (SHF)
– fundername: Swiss National Science Foundation (SNF)
  funderid: 31001A_179261/1; 310030_162552; 310030_184757; 31003A_159582/1
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
G8K
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
ID FETCH-LOGICAL-c3884-3170b6c949a225120437fc6478d6bf1224dc017437836ce57c826f2d995a8a4c3
IEDL.DBID DR2
ISSN 0021-9541
IngestDate Thu Oct 10 20:53:34 EDT 2024
Thu Sep 26 20:36:33 EDT 2024
Sat Sep 28 08:33:59 EDT 2024
Sat Aug 24 01:05:15 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords melanoma
arginase-II
metastasis
ROS
STAT3
Language English
License 2020 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3884-3170b6c949a225120437fc6478d6bf1224dc017437836ce57c826f2d995a8a4c3
ORCID 0000-0002-4133-5099
0000-0003-4210-7992
0000-0002-5848-4496
0000-0001-8231-6516
OpenAccessLink http://doc.rero.ch/record/328630/files/yan_apm.pdf
PMID 32468644
PQID 2446803816
PQPubID 1006363
PageCount 15
ParticipantIDs proquest_journals_2446803816
crossref_primary_10_1002_jcp_29814
pubmed_primary_32468644
wiley_primary_10_1002_jcp_29814_JCP29814
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J Cell Physiol
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 101
2017; 5
2019; 7
2017; 6
2019; 9
2017; 8
2013; 2
2004; 23
1991; 51
2011; 30
2008; 228
2011; 11
2011; 10
2016; 126
2011; 17
2008; 123
2008; 1
2013; 8
2001; 305
2016; 39
2012; 11
2014; 1845
2017; 9
2005; 25
2005; 280
2004; 110
2018; 2018
2003; 328
2006; 108
2012; 1
1997; 77
2005; 122
2013; 2013
2005; 201
2002; 21
2002; 22
1999; 34
1983; 43
2007; 6
1994; 14
2010; 5
2001; 137
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Szatrowski T. P. (e_1_2_9_36_1) 1991; 51
Tang D. G. (e_1_2_9_37_1) 1994; 14
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
Kingsnorth A. N. (e_1_2_9_16_1) 1983; 43
e_1_2_9_3_1
e_1_2_9_2_1
Luk G. D. (e_1_2_9_19_1) 1983; 43
Belkhiri A. (e_1_2_9_4_1) 1997; 77
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 2
  year: 2013
  article-title: Arginase‐II induces vascular smooth muscle cell senescence and apoptosis through p66Shc and p53 independently of its l‐arginine ureahydrolase activity: Implications for atherosclerotic plaque vulnerability
  publication-title: Journal of the American Heart Association
– volume: 77
  start-page: 533
  year: 1997
  end-page: 539
  article-title: Increased expression of activated matrix metalloproteinase‐2 by human endothelial cells after sublethal H2O2 exposure
  publication-title: Laboratory Investigation
– volume: 6
  year: 2017
  article-title: Arginase inhibition suppresses lung metastasis in the 4T1 breast cancer model independently of the immunomodulatory and anti‐metastatic effects of VEGFR‐2 blockade
  publication-title: Oncoimmunology
– volume: 17
  start-page: 1619
  year: 2011
  end-page: 1626
  article-title: Requirement of argininosuccinate lyase for systemic nitric oxide production
  publication-title: Nature Medicine
– volume: 1
  year: 2008
  article-title: Effect of arginase II on L‐arginine depletion and cell growth in murine cell lines of renal cell carcinoma
  publication-title: Journal of Hematology & Oncology
– volume: 1
  year: 2012
  article-title: Arginase II promotes macrophage inflammatory responses through mitochondrial reactive oxygen species, contributing to insulin resistance and atherogenesis
  publication-title: Journal of the American Heart Association
– volume: 137
  start-page: 340
  year: 2001
  end-page: 344
  article-title: Significance of arginase and ornithine in malignant tumors of the human skin
  publication-title: Journal of Laboratory and Clinical Medicine
– volume: 110
  start-page: 3708
  year: 2004
  end-page: 3714
  article-title: Thrombin stimulates human endothelial arginase enzymatic activity via RhoA/ROCK pathway: Implications for atherosclerotic endothelial dysfunction
  publication-title: Circulation
– volume: 22
  start-page: 8467
  year: 2002
  end-page: 8477
  article-title: Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells
  publication-title: Molecular and Cellular Biology
– volume: 25
  start-page: 7432
  year: 2005
  end-page: 7440
  article-title: Role of Stat3 in regulating p53 expression and function
  publication-title: Molecular and Cellular Biology
– volume: 7
  start-page: 32
  year: 2019
  article-title: Suppression of Myeloid Cell Arginase Activity leads to Therapeutic Response in a NSCLC Mouse Model by Activating Anti‐Tumor Immunity
  publication-title: Journal for Immunotherapy of Cancer
– volume: 11
  start-page: 512
  year: 2011
  end-page: 522
  article-title: The physics of cancer: The role of physical interactions and mechanical forces in metastasis
  publication-title: Nature Reviews Cancer
– volume: 305
  start-page: 157
  year: 2001
  end-page: 165
  article-title: Arginase isoforms in human colorectal cancer
  publication-title: Clinica Chimica Acta
– volume: 51
  start-page: 794
  year: 1991
  end-page: 798
  article-title: Production of large amounts of hydrogen peroxide by human tumor cells
  publication-title: Cancer Research
– volume: 108
  start-page: 1627
  year: 2006
  end-page: 1634
  article-title: Suppression of T‐cell functions by human granulocyte arginase
  publication-title: Blood
– volume: 201
  start-page: 1257
  year: 2005
  end-page: 1268
  article-title: Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers
  publication-title: Journal of Experimental Medicine
– volume: 43
  start-page: 4031
  year: 1983
  end-page: 4034
  article-title: Effects of alpha‐difluoromethylornithine on the growth of experimental Wilms' tumor and renal adenocarcinoma
  publication-title: Cancer Research
– volume: 21
  start-page: 2058
  year: 2002
  end-page: 2065
  article-title: Constitutive activation of Stat3alpha in brain tumors: Localization to tumor endothelial cells and activation by the endothelial tyrosine kinase receptor (VEGFR‐2)
  publication-title: Oncogene
– volume: 122
  start-page: 221
  year: 2005
  end-page: 233
  article-title: Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis
  publication-title: Cell
– volume: 8
  year: 2013
  article-title: Proteomic identification of mitochondrial targets of arginase in human breast cancer
  publication-title: PLoS One
– volume: 30
  year: 2011
  article-title: The mechanisms by which polyamines accelerate tumor spread
  publication-title: Journal of Experimental & Clinical Cancer Research
– volume: 123
  start-page: 1108
  year: 2008
  end-page: 1116
  article-title: Arginase 2 is expressed by human lung cancer, but it neither induces immune suppression, nor affects disease progression
  publication-title: International Journal of Cancer
– volume: 8
  year: 2013
  article-title: Arginase II expressed in cancer‐associated fibroblasts indicates tissue hypoxia and predicts poor outcome in patients with pancreatic cancer
  publication-title: PLoS One
– volume: 11
  start-page: 1005
  year: 2012
  end-page: 1016
  article-title: Positive crosstalk between arginase‐II and S6K1 in vascular endothelial inflammation and aging
  publication-title: Aging cell
– volume: 10
  start-page: 2440
  year: 2011
  end-page: 2449
  article-title: Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: The seed and soil also needs "fertilizer"
  publication-title: Cell Cycle
– volume: 9
  start-page: 83
  year: 2017
  end-page: 97
  article-title: Modulation of cancer‐specific immune responses by amino acid degrading enzymes
  publication-title: Immunotherapy
– volume: 43
  start-page: 4239
  year: 1983
  end-page: 4243
  article-title: Successful treatment with DL‐alpha‐difluoromethylornithine in established human small cell variant lung carcinoma implants in athymic mice
  publication-title: Cancer Research
– volume: 126
  start-page: 2465
  year: 2016
  end-page: 2481
  article-title: Increased mitochondrial arginine metabolism supports bioenergetics in asthma
  publication-title: Journal of Clinical Investigation
– volume: 34
  start-page: 875
  year: 1999
  end-page: 884
  article-title: Ischemic threshold and myocardial stunning in the aging heart
  publication-title: Experimental Gerontology
– volume: 5
  year: 2017
  article-title: Inhibition of arginase by CB‐1158 blocks myeloid cell‐mediated immune suppression in the tumor microenvironment
  publication-title: Journal for ImmunoTherapy of Cancer
– volume: 328
  start-page: 105
  year: 2003
  end-page: 111
  article-title: Arginase in patients with breast cancer
  publication-title: Clinica Chimica Acta
– volume: 9
  year: 2019
  article-title: Interleukin‐17 promotes migration and invasion of human cancer cells through upregulation of MTA1 expression
  publication-title: Frontiers in Oncology
– volume: 228
  start-page: 367
  year: 2008
  end-page: 381
  article-title: Polyamines: Essential factors for growth and survival
  publication-title: Planta
– volume: 8
  year: 2017
  article-title: Critical role for arginase 2 in obesity‐associated pancreatic cancer
  publication-title: Nature Communications
– volume: 39
  start-page: 802
  year: 2016
  end-page: 813
  article-title: Hypoxic proliferation of osteosarcoma cells depends on arginase II
  publication-title: Cellular Physiology and Biochemistry
– volume: 2018
  year: 2018
  article-title: The involvement of arginase and nitric oxide synthase in breast cancer development: Arginase and NO synthase as therapeutic targets in cancer
  publication-title: BioMed Research International
– volume: 101
  start-page: 10602
  year: 2004
  end-page: 10607
  article-title: Requirement of matrix metalloproteinase‐9 for the transformation of human mammary epithelial cells by Stat3‐C
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 14
  start-page: 109
  year: 1994
  end-page: 122
  article-title: Adhesion molecules and tumor metastasis: An update
  publication-title: Invasion and Metastasis
– volume: 23
  start-page: 3550
  year: 2004
  end-page: 3560
  article-title: Stat3 activation regulates the expression of matrix metalloproteinase‐2 and tumor invasion and metastasis
  publication-title: Oncogene
– volume: 2013
  year: 2013
  article-title: Role of STAT3 in cancer metastasis and translational advances
  publication-title: BioMed Research International
– volume: 1845
  start-page: 136
  year: 2014
  end-page: 154
  article-title: Targeting the STAT3 signaling pathway in cancer: Role of synthetic and natural inhibitors
  publication-title: Biochimica et Biophysica Acta
– volume: 5
  year: 2010
  article-title: Frequent MAGE mutations in human melanoma
  publication-title: PLoS One
– volume: 280
  start-page: 17275
  year: 2005
  end-page: 17285
  article-title: A role of STAT3 in Rho GTPase‐regulated cell migration and proliferation
  publication-title: Journal of Biological Chemistry
– volume: 6
  start-page: 373
  year: 2007
  end-page: 390
  article-title: Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases
  publication-title: Nature Reviews Drug Discovery
– ident: e_1_2_9_31_1
  doi: 10.1159/000447790
– ident: e_1_2_9_23_1
  doi: 10.1186/s40425-019-0504-5
– ident: e_1_2_9_45_1
  doi: 10.1038/s41467-017-00331-y
– ident: e_1_2_9_32_1
  doi: 10.1371/journal.pone.0079242
– volume: 43
  start-page: 4031
  year: 1983
  ident: e_1_2_9_16_1
  article-title: Effects of alpha‐difluoromethylornithine on the growth of experimental Wilms' tumor and renal adenocarcinoma
  publication-title: Cancer Research
  contributor:
    fullname: Kingsnorth A. N.
– ident: e_1_2_9_33_1
  doi: 10.1016/j.bbcan.2013.12.005
– ident: e_1_2_9_11_1
  doi: 10.1016/j.cell.2005.05.011
– volume: 43
  start-page: 4239
  year: 1983
  ident: e_1_2_9_19_1
  article-title: Successful treatment with DL‐alpha‐difluoromethylornithine in established human small cell variant lung carcinoma implants in athymic mice
  publication-title: Cancer Research
  contributor:
    fullname: Luk G. D.
– ident: e_1_2_9_41_1
  doi: 10.1038/sj.onc.1207383
– ident: e_1_2_9_22_1
  doi: 10.1128/MCB.22.24.8467-8477.2002
– ident: e_1_2_9_44_1
  doi: 10.1111/acel.12001
– ident: e_1_2_9_17_1
  doi: 10.1007/s00425-008-0772-7
– ident: e_1_2_9_3_1
  doi: 10.1155/2018/8696923
– ident: e_1_2_9_13_1
  doi: 10.3389/fonc.2019.00546
– volume: 14
  start-page: 109
  year: 1994
  ident: e_1_2_9_37_1
  article-title: Adhesion molecules and tumor metastasis: An update
  publication-title: Invasion and Metastasis
  contributor:
    fullname: Tang D. G.
– volume: 77
  start-page: 533
  year: 1997
  ident: e_1_2_9_4_1
  article-title: Increased expression of activated matrix metalloproteinase‐2 by human endothelial cells after sublethal H2O2 exposure
  publication-title: Laboratory Investigation
  contributor:
    fullname: Belkhiri A.
– ident: e_1_2_9_10_1
  doi: 10.1038/nm.2544
– ident: e_1_2_9_14_1
  doi: 10.1371/journal.pone.0055146
– ident: e_1_2_9_21_1
  doi: 10.1161/JAHA.112.000992
– ident: e_1_2_9_39_1
  doi: 10.2217/imt-2016-0118
– ident: e_1_2_9_2_1
  doi: 10.1016/S0531-5565(99)00060-1
– ident: e_1_2_9_25_1
  doi: 10.1128/MCB.25.17.7432-7440.2005
– ident: e_1_2_9_43_1
  doi: 10.1172/JCI82925
– ident: e_1_2_9_7_1
  doi: 10.1038/nrd2243
– ident: e_1_2_9_26_1
  doi: 10.1016/S0009-8981(02)00391-1
– ident: e_1_2_9_8_1
  doi: 10.1074/jbc.M413187200
– ident: e_1_2_9_9_1
  doi: 10.1073/pnas.0404100101
– ident: e_1_2_9_15_1
  doi: 10.1155/2013/421821
– volume: 51
  start-page: 794
  year: 1991
  ident: e_1_2_9_36_1
  article-title: Production of large amounts of hydrogen peroxide by human tumor cells
  publication-title: Cancer Research
  contributor:
    fullname: Szatrowski T. P.
– ident: e_1_2_9_28_1
  doi: 10.1002/ijc.23437
– ident: e_1_2_9_5_1
  doi: 10.1084/jem.20042028
– ident: e_1_2_9_27_1
  doi: 10.1016/S0009-8981(00)00432-0
– ident: e_1_2_9_35_1
  doi: 10.1186/s40425-017-0308-4
– ident: e_1_2_9_18_1
  doi: 10.4161/cc.10.15.16870
– ident: e_1_2_9_34_1
  doi: 10.1186/1756-9966-30-95
– ident: e_1_2_9_40_1
  doi: 10.1038/nrc3080
– ident: e_1_2_9_12_1
  doi: 10.1067/mlc.2001.114543
– ident: e_1_2_9_30_1
  doi: 10.1080/2162402X.2017.1316437
– ident: e_1_2_9_38_1
  doi: 10.1186/1756-8722-1-14
– ident: e_1_2_9_6_1
  doi: 10.1371/journal.pone.0012773
– ident: e_1_2_9_24_1
  doi: 10.1182/blood-2006-11-010389
– ident: e_1_2_9_29_1
  doi: 10.1038/sj.onc.1205263
– ident: e_1_2_9_42_1
  doi: 10.1161/JAHA.113.000096
– ident: e_1_2_9_20_1
  doi: 10.1161/01.CIR.0000142867.26182.32
SSID ssj0009933
Score 2.487919
Snippet Elevated arginase type II (Arg‐II) associates with higher grade tumors. Its function and underlying molecular mechanisms in melanoma remain elusive. In the...
Elevated arginase type II (Arg-II) associates with higher grade tumors. Its function and underlying molecular mechanisms in melanoma remain elusive. In the...
Abstract Elevated arginase type II (Arg‐II) associates with higher grade tumors. Its function and underlying molecular mechanisms in melanoma remain elusive....
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 9997
SubjectTerms Adhesion
Animals
Arginase
Arginase - antagonists & inhibitors
Arginase - genetics
arginase‐II
Catalase
Cell adhesion & migration
Cell Adhesion - drug effects
Cell death
Cell growth
Cell Line, Tumor
Cell lines
Cell migration
Cell Movement - drug effects
Cell number
Cell proliferation
Cell Proliferation - drug effects
Endothelial cells
Endothelial Cells - drug effects
Enzymatic activity
Enzyme Inhibitors - pharmacology
Gene Expression Regulation, Neoplastic - drug effects
Humans
Hydrogen peroxide
Hydrogen Peroxide - metabolism
Inhibitors
Melanoma
Melanoma - drug therapy
Melanoma - genetics
Metastases
Metastasis
Mitochondria
Molecular modelling
Polyamines
ROS
Signal Transduction - drug effects
STAT3
Stat3 protein
STAT3 Transcription Factor - genetics
Superoxide dismutase
Tumors
Title Arginase‐II promotes melanoma migration and adhesion through enhancing hydrogen peroxide production and STAT3 signaling
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.29814
https://www.ncbi.nlm.nih.gov/pubmed/32468644
https://www.proquest.com/docview/2446803816
Volume 235
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NahsxEB5CINBLmyZt48QpopTSy9obrfZH5GRMQ2JoKa0NPhQW_dlOG6-N7UA3pzxCnjFPEo2065CEQuhtDyuxqxlpvhnNfAPwMYuYtDieBkdxxgPrf8WBtGY0iEU2sohZhEphvOPrt-R0wHrDeLgBx3UtjOeHWAfccGe48xo3uJDL9j1p6G81b1GeuSbWSKSHgOjHPXUUr9rIuxSEmB3VrEIhba9HPrRFTwDmQ7zqDM7JK_hVf6rPM_nTulzJlrp6xOL4n_-yDS8rIEo6XnNew4YpdmC3U1gnfFqST8SlhrqY-w5s-Y6V5S6UnQU2clia2-ubszMyd8l8Zkmm5kIUs6kg0_Ox1ykiCk2EnhgMx5GqHRAxxQQJPooxmZR6MbPaS5Cp_O-5NjiZ9ly2buzPfqcfEcwvEVgy_wYGJ1_63dOg6t4QqCjLmD3c01AmijMuKIIoJFEaKSxt1Ykc4YWeViH6Q1hHokycKuvpjKjm3OqJYCp6C5vFrDB7WFfOrUlJQqZpZN1XJjWPJBUsZYbHaUQb8KGWYz73JB25p2OmuV3a3C1tA5q1hPNqny5zC26SzF2eNuCdl_p6Bgs1k8zCxQZ8drL799R5r_vdPew__9UDeEHRdXeZMU3YXC0uzaHFNyv53inyHSM19Q0
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9swED8h0MReBuPfOthmTdPES0pwnDSWeKnYUMsAIVYkXlDk2C5lW9OqLRLd0z4Cn5FPsjs7KYJp0rS3PMRW4ruzf3e--x3AhzQSOeJ4HuzGqQzQ_4qDHI_RIFZpFxGzCrWmeMfxSdI6F4cX8cUc7FW1MJ4fYhZwI8tw-zUZOAWkdx5YQ7_pYZ3LlLpYL6C5x2SWn84eyKNk2UjeJSHEYrfiFQr5zmzo49PoD4j5GLG6I-dgCS6rj_WZJt_rN5O8rn8-4XH8379ZhhclFmVNrzwvYc4WK7DaLNAP70_ZR-ayQ13YfQWe-aaV01WYNkfUy2Fs73_dtdts6PL57Jj17Q9VDPqK9a-vvFoxVRimTM9SRI6VHYGYLXrE8VFcsd7UjAaowIzIym-vjaXJjKezdWO_dpqdiFGKiaKq-TU4P_jc2W8FZQOHQEdpKnB_b4R5oqWQihOOIh6lrqbqVpPkXbrTMzokl4hKSbSNGxqdnS43UqKqKKGjdZgvBoV9RaXlEk-VJBSGR-jBitzIKOdKNISVcSPiNXhfCTIbep6OzDMy8wyXNnNLW4OtSsRZaarjDPFNkrr70xpseLHPZkC0maSIGGuw7YT396mzw_1T9_D63199B4utzvFRdtQ--bIJzzl58i5RZgvmJ6Mb-wbhziR_67T6N339-S0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB4hEFUvvAvhVQtVFZdNFq93sxanCIgIL6E2SBwqrby2l_DIJkqCRHrqT-A38kvw2LtBtKpU9baHtbXrGXu-Gc98A_AlDlhqcDz19sKYe8b_Cr3UmFEvFHFmELPwpcR4x_lFdHzFTq7D6ynYL2thHD_EJOCGO8Oe17jB-yqrvZGG3sl-lfIYm1jPsCig6HkdfnvjjuJFH3mbgxCyvZJWyKe1ydD3xugPhPkesFqL05yHH-W3ukST--rjKK3Kn7_ROP7nzyzAXIFEScOpziJM6XwJlhu58cK7Y_KV2NxQG3RfglnXsnK8DOPGADs5DPXLr-dWi_RtNp8ekq5-EHmvK0j39sYpFRG5IkJ1NMbjSNEPiOi8gwwf-Q3pjNWgZ9SXIFX5063SOJlyZLZ27Pd2ox0QTDARWDO_AlfNo_bBsVe0b_BkEMfMnO51P40kZ1xQRFHIopRJrG1VUZrhjZ6SPjpEWEgidViXxtXJqOLcKIpgMvgE03kv12tYWM6NTYl8pmhg_FeWKh6kVLA60zysB7QCO6Uck75j6UgcHzNNzNImdmkrsFlKOCk26jAx6CaK7e1pBVad1CczGKwZxQYvVmDXyu7vUycnB5f2Yf3fX_0MHy4Pm8lZ6-J0Az5SdONtlswmTI8Gj3rLYJ1Rum11-hWcs_fc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arginase%E2%80%90II+promotes+melanoma+migration+and+adhesion+through+enhancing+hydrogen+peroxide+production+and+STAT3+signaling&rft.jtitle=Journal+of+cellular+physiology&rft.au=Yu%2C+Yi&rft.au=Ladeiras%2C+Diogo&rft.au=Xiong%2C+Yuyan&rft.au=Boligan%2C+Kayluz+Frias&rft.date=2020-12-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=235&rft.issue=12&rft.spage=9997&rft.epage=10011&rft_id=info:doi/10.1002%2Fjcp.29814&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jcp_29814
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon