Genetic variants causing G6PD deficiency: Clinical and biochemical data support new WHO classification
Summary Glucose‐6‐phosphate dehydrogenase (G6PD) deficiency in erythrocytes causes acute haemolytic anaemia upon exposure to fava beans, drugs, or infection; and it predisposes to neonatal jaundice. The polymorphism of the X‐linked G6PD gene has been studied extensively: allele frequencies of up to...
Saved in:
Published in | British journal of haematology Vol. 202; no. 5; pp. 1024 - 1032 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Glucose‐6‐phosphate dehydrogenase (G6PD) deficiency in erythrocytes causes acute haemolytic anaemia upon exposure to fava beans, drugs, or infection; and it predisposes to neonatal jaundice. The polymorphism of the X‐linked G6PD gene has been studied extensively: allele frequencies of up to 25% of different G6PD deficient variants are known in many populations; variants that cause chronic non‐spherocytic haemolytic anaemia (CNSHA) are instead all rare. WHO recommends G6PD testing to guide 8‐aminoquinolines administration to prevent relapse of Plasmodium vivax infection. From a literature review focused on polymorphic G6PD variants we have retrieved G6PD activity values of 2291 males, and for the mean residual red cell G6PD activity of 16 common variants we have obtained reliable estimates, that range from 1.9% to 33%. There is variation in different datasets: for most variants most G6PD deficient males have a G6PD activity below 30% of normal. There is a direct relationship between residual G6PD activity and substrate affinity (KmG6P), suggesting a mechanism whereby polymorphic G6PD deficient variants do not entail CNSHA. Extensive overlap in G6PD activity values of individuals with different variants, and no clustering of mean values above or below 10% support the merger of class II and class III variants.
Genetic variants of G6PD causing G6PD deficiency make red cells vulnerable to oxidative damage. From a literature review we have compiled data on 2291 G6PD deficient male subjects and determined the residual G6PD activity associated with 17 common variants of G6PD: the values range from 2 to 33% of normal. With respect to the WHO classification of G6PD variants, our data support the merger of class II and class III. |
---|---|
AbstractList | Glucose‐6‐phosphate dehydrogenase (G6PD) deficiency in erythrocytes causes acute haemolytic anaemia upon exposure to fava beans, drugs, or infection; and it predisposes to neonatal jaundice. The polymorphism of the X‐linked
G6PD
gene has been studied extensively: allele frequencies of up to 25% of different G6PD deficient variants are known in many populations; variants that cause chronic non‐spherocytic haemolytic anaemia (CNSHA) are instead all rare. WHO recommends G6PD testing to guide 8‐aminoquinolines administration to prevent relapse of
Plasmodium vivax
infection. From a literature review focused on polymorphic G6PD variants we have retrieved G6PD activity values of 2291 males, and for the mean residual red cell G6PD activity of 16 common variants we have obtained reliable estimates, that range from 1.9% to 33%. There is variation in different datasets: for most variants most G6PD deficient males have a G6PD activity below 30% of normal. There is a direct relationship between residual G6PD activity and substrate affinity (
K
m
G6P
), suggesting a mechanism whereby polymorphic G6PD deficient variants do not entail CNSHA. Extensive overlap in G6PD activity values of individuals with different variants, and no clustering of mean values above or below 10% support the merger of class II and class III variants. Summary Glucose‐6‐phosphate dehydrogenase (G6PD) deficiency in erythrocytes causes acute haemolytic anaemia upon exposure to fava beans, drugs, or infection; and it predisposes to neonatal jaundice. The polymorphism of the X‐linked G6PD gene has been studied extensively: allele frequencies of up to 25% of different G6PD deficient variants are known in many populations; variants that cause chronic non‐spherocytic haemolytic anaemia (CNSHA) are instead all rare. WHO recommends G6PD testing to guide 8‐aminoquinolines administration to prevent relapse of Plasmodium vivax infection. From a literature review focused on polymorphic G6PD variants we have retrieved G6PD activity values of 2291 males, and for the mean residual red cell G6PD activity of 16 common variants we have obtained reliable estimates, that range from 1.9% to 33%. There is variation in different datasets: for most variants most G6PD deficient males have a G6PD activity below 30% of normal. There is a direct relationship between residual G6PD activity and substrate affinity (KmG6P), suggesting a mechanism whereby polymorphic G6PD deficient variants do not entail CNSHA. Extensive overlap in G6PD activity values of individuals with different variants, and no clustering of mean values above or below 10% support the merger of class II and class III variants. Genetic variants of G6PD causing G6PD deficiency make red cells vulnerable to oxidative damage. From a literature review we have compiled data on 2291 G6PD deficient male subjects and determined the residual G6PD activity associated with 17 common variants of G6PD: the values range from 2 to 33% of normal. With respect to the WHO classification of G6PD variants, our data support the merger of class II and class III. Glucose‐6‐phosphate dehydrogenase (G6PD) deficiency in erythrocytes causes acute haemolytic anaemia upon exposure to fava beans, drugs, or infection; and it predisposes to neonatal jaundice. The polymorphism of the X‐linked G6PD gene has been studied extensively: allele frequencies of up to 25% of different G6PD deficient variants are known in many populations; variants that cause chronic non‐spherocytic haemolytic anaemia (CNSHA) are instead all rare. WHO recommends G6PD testing to guide 8‐aminoquinolines administration to prevent relapse of Plasmodium vivax infection. From a literature review focused on polymorphic G6PD variants we have retrieved G6PD activity values of 2291 males, and for the mean residual red cell G6PD activity of 16 common variants we have obtained reliable estimates, that range from 1.9% to 33%. There is variation in different datasets: for most variants most G6PD deficient males have a G6PD activity below 30% of normal. There is a direct relationship between residual G6PD activity and substrate affinity (KmG6P), suggesting a mechanism whereby polymorphic G6PD deficient variants do not entail CNSHA. Extensive overlap in G6PD activity values of individuals with different variants, and no clustering of mean values above or below 10% support the merger of class II and class III variants. Glucose-6-phosphate dehydrogenase (G6PD) deficiency in erythrocytes causes acute haemolytic anaemia upon exposure to fava beans, drugs, or infection; and it predisposes to neonatal jaundice. The polymorphism of the X-linked G6PD gene has been studied extensively: allele frequencies of up to 25% of different G6PD deficient variants are known in many populations; variants that cause chronic non-spherocytic haemolytic anaemia (CNSHA) are instead all rare. WHO recommends G6PD testing to guide 8-aminoquinolines administration to prevent relapse of Plasmodium vivax infection. From a literature review focused on polymorphic G6PD variants we have retrieved G6PD activity values of 2291 males, and for the mean residual red cell G6PD activity of 16 common variants we have obtained reliable estimates, that range from 1.9% to 33%. There is variation in different datasets: for most variants most G6PD deficient males have a G6PD activity below 30% of normal. There is a direct relationship between residual G6PD activity and substrate affinity (K ), suggesting a mechanism whereby polymorphic G6PD deficient variants do not entail CNSHA. Extensive overlap in G6PD activity values of individuals with different variants, and no clustering of mean values above or below 10% support the merger of class II and class III variants. Glucose-6-phosphate dehydrogenase (G6PD) deficiency in erythrocytes causes acute haemolytic anaemia upon exposure to fava beans, drugs, or infection; and it predisposes to neonatal jaundice. The polymorphism of the X-linked G6PD gene has been studied extensively: allele frequencies of up to 25% of different G6PD deficient variants are known in many populations; variants that cause chronic non-spherocytic haemolytic anaemia (CNSHA) are instead all rare. WHO recommends G6PD testing to guide 8-aminoquinolines administration to prevent relapse of Plasmodium vivax infection. From a literature review focused on polymorphic G6PD variants we have retrieved G6PD activity values of 2291 males, and for the mean residual red cell G6PD activity of 16 common variants we have obtained reliable estimates, that range from 1.9% to 33%. There is variation in different datasets: for most variants most G6PD deficient males have a G6PD activity below 30% of normal. There is a direct relationship between residual G6PD activity and substrate affinity (Km G6P ), suggesting a mechanism whereby polymorphic G6PD deficient variants do not entail CNSHA. Extensive overlap in G6PD activity values of individuals with different variants, and no clustering of mean values above or below 10% support the merger of class II and class III variants.Glucose-6-phosphate dehydrogenase (G6PD) deficiency in erythrocytes causes acute haemolytic anaemia upon exposure to fava beans, drugs, or infection; and it predisposes to neonatal jaundice. The polymorphism of the X-linked G6PD gene has been studied extensively: allele frequencies of up to 25% of different G6PD deficient variants are known in many populations; variants that cause chronic non-spherocytic haemolytic anaemia (CNSHA) are instead all rare. WHO recommends G6PD testing to guide 8-aminoquinolines administration to prevent relapse of Plasmodium vivax infection. From a literature review focused on polymorphic G6PD variants we have retrieved G6PD activity values of 2291 males, and for the mean residual red cell G6PD activity of 16 common variants we have obtained reliable estimates, that range from 1.9% to 33%. There is variation in different datasets: for most variants most G6PD deficient males have a G6PD activity below 30% of normal. There is a direct relationship between residual G6PD activity and substrate affinity (Km G6P ), suggesting a mechanism whereby polymorphic G6PD deficient variants do not entail CNSHA. Extensive overlap in G6PD activity values of individuals with different variants, and no clustering of mean values above or below 10% support the merger of class II and class III variants. |
Author | Cunningham, Jane Luzzatto, Lucio Bosman, Andrea Dugué, Pierre‐Antoine Nannelli, Caterina |
Author_xml | – sequence: 1 givenname: Caterina surname: Nannelli fullname: Nannelli, Caterina organization: Istituto per lo Studio, la Prevenzione e la Rete Oncologica, Core Research Laboratory – sequence: 2 givenname: Andrea surname: Bosman fullname: Bosman, Andrea organization: World Health Organisation, Global Malaria Programme – sequence: 3 givenname: Jane surname: Cunningham fullname: Cunningham, Jane organization: World Health Organisation, Global Malaria Programme – sequence: 4 givenname: Pierre‐Antoine surname: Dugué fullname: Dugué, Pierre‐Antoine organization: The University of Melbourne – sequence: 5 givenname: Lucio orcidid: 0000-0003-4663-8790 surname: Luzzatto fullname: Luzzatto, Lucio email: lucio.luzzatto@unifi.it organization: Muhimbili University of Health and Allied Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37415281$$D View this record in MEDLINE/PubMed |
BookMark | eNp90c9P2zAUB3BrAo3Cdtg_MFnaZRwC_pHEzm6sQAtCYodNO0bO88twlTrFTqj632Na4IA0fLEtfd6z9b6HZM_3Hgn5wtkJT-u0WdydcF3l8gOZcFkWmeA53yMTxpjKOMv1ATmMccEYl6zgH8mBVDkvhOYT0s7Q4-CAPpjgjB8iBTNG5__RWfnrnFpsHTj0sPlBp53zDkxHjbe0cT3c4XJ7t2YwNI6rVR8G6nFN_85vKXQmRpeqzeB6_4nst6aL-Pl5PyJ_Li9-T-fZze3sanp2k4HUWmaoRAkIlQFuq6oVyqYTSOSqsrZAaK0oDTagQCujRStZk1e5UgBaSM1RHpHvu76r0N-PGId66SJg1xmP_RhroWUh0iOlTvTbG7rox-DT75IqtOZSsyf19VmNzRJtvQpuacKmfplgAsc7AKGPMWD7Sjirn9KpUzr1Np1kT99YcMN2PkMwrnuvYu063Py_df3zer6reATGK6AG |
CitedBy_id | crossref_primary_10_1002_pbc_31609 crossref_primary_10_1007_s15004_024_0495_3 crossref_primary_10_1371_journal_pntd_0012864 crossref_primary_10_3390_pathogens12121445 crossref_primary_10_5409_wjcp_v13_i4_98462 crossref_primary_10_1111_bjh_19775 crossref_primary_10_1016_j_ajhg_2023_10_003 crossref_primary_10_1002_jha2_853 crossref_primary_10_3390_genes15101298 crossref_primary_10_1007_s15014_023_5031_7 crossref_primary_10_3390_genes15091116 crossref_primary_10_1111_tmi_14105 crossref_primary_10_1016_j_siny_2025_101619 crossref_primary_10_1002_cpt_3333 |
Cites_doi | 10.1371/journal.pone.0116063 10.1038/jp.2008.216 10.1371/journal.pmed.1003576 10.1186/s12936-018-2248-y 10.1186/s12887-022-03740-1 10.1186/1471-2288-14-135 10.1002/humu.9010 10.1016/j.jpeds.2012.02.045 10.1136/bmj.300.6719.236 10.1056/NEJMra1708111 10.1136/bmjopen-2022-066529 10.1006/bcmd.2002.0490 10.1016/j.ajhg.2023.01.003 10.1126/science.124.3220.484.b 10.1093/nar/14.6.2511 10.1073/pnas.71.9.3584 10.1016/S2352-3026(15)00191-X 10.1182/blood-2012-03-416032 10.1016/j.hoc.2015.11.006 10.1542/peds.2011-1580 10.1182/blood.2019000944 10.1002/cpt.2735 10.1186/1475-2875-12-391 10.1371/journal.pmed.1001339 10.1097/MPH.0000000000002381 10.4314/eamj.v79i1.8924 10.1016/j.bcmd.2016.07.001 10.1001/archinte.1962.03620140081013 10.1097/MJT.0000000000000828 10.1016/S0140-6736(04)16350-2 10.1182/blood.V25.1.92.92 10.3390/pathogens11091045 10.1016/j.bcmd.2004.06.003 10.1016/j.bcmd.2012.01.001 10.1186/1479-5876-10-199 10.1016/S2352-3026(15)00152-0 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by British Society for Haematology and John Wiley & Sons Ltd. 2023 The Authors. British Journal of Haematology published by British Society for Haematology and John Wiley & Sons Ltd. 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by British Society for Haematology and John Wiley & Sons Ltd. – notice: 2023 The Authors. British Journal of Haematology published by British Society for Haematology and John Wiley & Sons Ltd. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 H94 K9. 7X8 |
DOI | 10.1111/bjh.18943 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef AIDS and Cancer Research Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1365-2141 |
EndPage | 1032 |
ExternalDocumentID | 37415281 10_1111_bjh_18943 BJH18943 |
Genre | researchArticle Journal Article Review |
GrantInformation_xml | – fundername: World Health Organization grantid: 001 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1KJ 1OB 1OC 23N 24P 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8F7 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAKAS AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYEP AAZKR ABCQN ABCUV ABEML ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EGARE EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IH2 IHE IX1 J0M J5H K48 KBYEO L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 V8K V9Y VH1 W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 YFH YOC YUY ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7T5 H94 K9. 7X8 |
ID | FETCH-LOGICAL-c3883-e726cec9ac1d99f27dac1c3e179dd5ecfd26aebc7c87a82f30b49477cc82381e3 |
IEDL.DBID | DR2 |
ISSN | 0007-1048 1365-2141 |
IngestDate | Fri Jul 11 01:00:03 EDT 2025 Fri Jul 25 09:53:06 EDT 2025 Mon Jul 21 06:07:09 EDT 2025 Thu Apr 24 22:56:15 EDT 2025 Tue Jul 01 00:54:06 EDT 2025 Wed Jan 22 16:20:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | haemolytic anaemia glucose-6-phosphate dehydrogenase WHO classification G6PD deficiency |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2023 The Authors. British Journal of Haematology published by British Society for Haematology and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3883-e726cec9ac1d99f27dac1c3e179dd5ecfd26aebc7c87a82f30b49477cc82381e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0003-4663-8790 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbjh.18943 |
PMID | 37415281 |
PQID | 2858813808 |
PQPubID | 36395 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2835272668 proquest_journals_2858813808 pubmed_primary_37415281 crossref_primary_10_1111_bjh_18943 crossref_citationtrail_10_1111_bjh_18943 wiley_primary_10_1111_bjh_18943_BJH18943 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2023 2023-09-00 20230901 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | British journal of haematology |
PublicationTitleAlternate | Br J Haematol |
PublicationYear | 2023 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2015; 2 2012; 161 2015; 1 2004; 363 2012; 120 1989; 67 2002; 19 1971; 45 2002; 79 1986; 14 2016; 30 2022; 22 2002 2022; 44 1975; 71 1990; 300 1976; 28 2012; 10 1962; 109 2022; 113 2009; 29 2004; 33 2002; 28 2018; 17 1965; 25 2022 2013; 12 2021; 18 2019; 26 2018; 378 2023; 110 2022; 12 1975; 67 2018 2014; 14 1967; 366 2016; 60 2011; 48 2020; 136 2022; 11 2013; 131 2012; 48 2014; 9 1972; 55 2012; 9 1956; 124 1985; 14 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 WHO (e_1_2_7_20_1) 2022 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_49_1 e_1_2_7_28_1 Berg JM (e_1_2_7_26_1) 2002 Panich V (e_1_2_7_45_1) 1972; 55 Betke K (e_1_2_7_10_1) 1967; 366 Effiong CE (e_1_2_7_15_1) 1975; 67 Luzzatto L (e_1_2_7_4_1) 2015 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_39_1 e_1_2_7_6_1 Lu HR (e_1_2_7_47_1) 2011; 48 e_1_2_7_8_1 Yoshida A (e_1_2_7_11_1) 1971; 45 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_44_1 Luzzatto L (e_1_2_7_35_1) 1985; 14 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Rinaldi A (e_1_2_7_37_1) 1976; 28 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_36_1 e_1_2_7_38_1 WHO Working Group (e_1_2_7_12_1) 1989; 67 |
References_xml | – volume: 124 start-page: 484 year: 1956 end-page: 5 article-title: Enzymatic deficiency in primaquine‐sensitive erythrocytes publication-title: Science – volume: 11 year: 2022 article-title: Genetic variants of Glucose‐6‐phosphate dehydrogenase and their associated enzyme Activity: a systematic review and meta‐analysis publication-title: Pathogens – volume: 12 start-page: 391 year: 2013 article-title: G6PD testing in support of treatment and elimination of malaria: recommendations for evaluation of G6PD tests publication-title: Malar J – volume: 131 start-page: e309 year: 2013 end-page: 12 article-title: Lethal effect of a single dose of rasburicase in a preterm newborn infant publication-title: Pediatrics – volume: 30 start-page: 373 year: 2016 end-page: 93 article-title: Glucose‐6‐phosphate dehydrogenase deficiency publication-title: Hematol Oncol Clin North Am – volume: 14 start-page: 217 year: 1985 end-page: 329 article-title: Glucose 6‐phosphate dehydrogenase publication-title: Adv Hum Genet – volume: 378 start-page: 60 year: 2018 end-page: 71 article-title: Favism and glucose‐6‐phosphate dehydrogenase deficiency publication-title: N Engl J Med – volume: 67 start-page: 208 year: 1975 end-page: 13 article-title: Neonatal jaundice in Ibadan. Incidence and etiologic factors in babies born in hospital publication-title: J Natl Med Assoc – volume: 113 start-page: 973 year: 2022 end-page: 85 article-title: Expanded clinical Pharmacogenetics implementation consortium guideline for medication use in the context of G6PD genotype publication-title: Clin Pharmacol Ther – volume: 363 start-page: 1843 year: 2004 end-page: 8 article-title: Comparison of chlorproguanil‐dapsone with sulfadoxine‐pyrimethamine for the treatment of uncomplicated falciparum malaria in young African children: double‐blind randomised controlled trial publication-title: Lancet – volume: 79 start-page: 42 year: 2002 end-page: 4 article-title: Molecular epidemiology and activity of erythrocyte G6PD variants in a homogeneous Nigerian population publication-title: East Afr Med J – volume: 22 start-page: 678 year: 2022 article-title: Effect of neonatal reticulocytosis on glucose 6‐phosphate dehydrogenase (G6PD) activity and G6PD deficiency detection: a cross‐sectional study publication-title: BMC Pediatr – volume: 48 start-page: 154 year: 2012 end-page: 65 article-title: Glucose‐6‐phosphate dehydrogenase (G6PD) mutations database: review of the "old" and update of the new mutations publication-title: Blood Cells Mol Dis – volume: 33 start-page: 141 year: 2004 end-page: 5 article-title: Molecular basis of G6PD deficiency in India publication-title: Blood Cells Mol Dis – volume: 19 start-page: 185 year: 2002 article-title: Glucose‐6‐phosphate dehydrogenase (G6PD) mutations in Thailand: G6PD Viangchan (871G>a) is the most common deficiency variant in the Thai population publication-title: Hum Mutat – volume: 9 year: 2012 article-title: G6PD deficiency prevalence and estimates of affected populations in malaria endemic countries: a geostatistical model‐based map publication-title: PLoS Med – year: 2018 – volume: 1 start-page: 609 year: 2015 end-page: 29 – volume: 71 start-page: 3584 year: 1975 end-page: 7 article-title: Intracellular restraint: a new basis for the limitation in response to oxidation stress in human erythrocytes containing low activity variants of glucose 6‐phosphate dehydrogenase publication-title: Proc Natl Acad Sci U S A – volume: 67 start-page: 601 year: 1989 end-page: 11 article-title: Glucose‐6‐phosphate dehydrogenase deficiency publication-title: Bull World Health Organ – volume: 10 start-page: 199 year: 2012 article-title: Five novel glucose‐6‐phosphate dehydrogenase deficiency haplotypes correlating with disease severity publication-title: J Transl Med – volume: 55 start-page: 576 year: 1972 end-page: 85 article-title: G‐6‐PD Mahidol. The most common glucose‐6‐phosphate dehydrogenase variant in Thailand publication-title: J Med Assoc Thail – volume: 9 year: 2014 article-title: Characterization of G6PD genotypes and phenotypes on the northwestern Thailand‐Myanmar border publication-title: PLoS One – volume: 12 year: 2022 article-title: Technical evaluation and usability of a quantitative G6PD POC test in cord blood: a mixed‐methods study in a low‐resource setting publication-title: BMJ Open – volume: 161 start-page: 197 year: 2012 end-page: 200 article-title: Quantitative neonatal glucose‐6‐phosphate dehydrogenase screening: distribution, reference values, and classification by phenotype publication-title: J Pediatr – volume: 18 year: 2021 article-title: Glucose‐6‐phosphate dehydrogenase activity in individuals with and without malaria: analysis of clinical trial, cross‐sectional and case‐control data from Bangladesh publication-title: PLoS Med – volume: 2 start-page: e437 year: 2015 end-page: 44 article-title: Glucose‐6‐phosphate dehydrogenase deficiency and the risk of malaria and other diseases in children in Kenya: a case‐control and a cohort study publication-title: Lancet Haematol – volume: 28 start-page: 93 year: 2002 end-page: 103 article-title: Hematologically important mutations: glucose‐6‐phosphate dehydrogenase publication-title: Blood Cells Mol Dis – volume: 48 start-page: 316 year: 2011 end-page: 24 article-title: Enzyme kinetics and molecular modeling studies of G6PD(Mahidol) associated with acute hemolytic anemia publication-title: Indian J Biochem Biophys – volume: 45 start-page: 243 year: 1971 end-page: 35 article-title: Human glucose‐6‐phosphate dehydrogenase variants publication-title: Bull World Health Organ – volume: 60 start-page: 58 year: 2016 end-page: 64 article-title: Favism, the commonest form of severe hemolytic anemia in Palestinian children, varies in severity with three different variants of G6PD deficiency within the same community publication-title: Blood Cells Mol Dis – year: 2002 – volume: 2 start-page: e400 year: 2015 end-page: 1 article-title: G6PD deficiency: a polymorphism balanced by heterozygote advantage against malaria publication-title: Lancet Haematol – volume: 136 start-page: 1225 year: 2020 end-page: 40 article-title: Glucose‐6‐phosphate dehydrogenase deficiency publication-title: Blood – year: 2022 – volume: 29 start-page: S46 issue: Suppl 1 year: 2009 end-page: 52 article-title: The need for neonatal glucose‐6‐phosphate dehydrogenase screening: a global perspective publication-title: J Perinatol – volume: 14 start-page: 135 year: 2014 article-title: Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range publication-title: BMC Med Res Methodol – volume: 25 start-page: 92 year: 1965 end-page: 5 article-title: The course of experimentally‐induced hemolytic anemia in a primaquine‐sensitive Caucasian publication-title: Blood – volume: 17 start-page: 101 year: 2018 article-title: Primaquine‐induced haemolysis in females heterozygous for G6PD deficiency publication-title: Malar J – volume: 26 start-page: e622 issue: 5 year: 2019 end-page: 4 article-title: Pegloticase‐associated hemolysis publication-title: Am J Ther – volume: 110 start-page: 228 year: 2023 end-page: 39 article-title: Functional interpretation, cataloging, and analysis of 1,341 glucose‐6‐phosphate dehydrogenase variants publication-title: Am J Hum Genet – volume: 44 start-page: 363 year: 2022 end-page: 8 article-title: Acute hemolytic anemia caused by G6PD deficiency in children in Mayotte: a frequent and severe complication publication-title: J Pediatr Hematol Oncol – volume: 120 start-page: 4123 year: 2012 end-page: 33 article-title: Clinical spectrum and severity of hemolytic anemia in glucose 6‐phosphate dehydrogenase‐deficient children receiving dapsone publication-title: Blood – volume: 366 start-page: 53 year: 1967 article-title: Standardization of procedures for the study of glucose‐6‐phosphate dehydrogenase publication-title: WHO Tech Rep Ser – volume: 300 start-page: 236 year: 1990 article-title: Favism in the African type of glucose‐6‐phosphate dehydrogenase deficiency (A−) publication-title: Br Med J – volume: 14 start-page: 2511 issue: 6 year: 1986 end-page: 22 article-title: Isolation of human glucose‐6‐pbosphate debydrogenase (G6PD) cDNA clones: primary structure of the protein and unusual 5' non‐coding region publication-title: Nucleic Acids Res – volume: 28 start-page: 496 year: 1976 end-page: 505 article-title: Variability of red cell phenotypes between and within individuals in an unbiased sample of 77 certain heterozygotes for G6PD deficiency in Sardinians publication-title: Am J Hum Genet – volume: 109 start-page: 209 year: 1962 end-page: 34 article-title: Primaquine sensitivity: glucose‐6‐phosphate dehydrogenase deficiency: an inborn error of metabolism of medical and biological significance publication-title: Arch Intern Med – ident: e_1_2_7_48_1 doi: 10.1371/journal.pone.0116063 – volume: 67 start-page: 208 year: 1975 ident: e_1_2_7_15_1 article-title: Neonatal jaundice in Ibadan. Incidence and etiologic factors in babies born in hospital publication-title: J Natl Med Assoc – ident: e_1_2_7_16_1 doi: 10.1038/jp.2008.216 – ident: e_1_2_7_25_1 doi: 10.1371/journal.pmed.1003576 – ident: e_1_2_7_36_1 doi: 10.1186/s12936-018-2248-y – ident: e_1_2_7_24_1 doi: 10.1186/s12887-022-03740-1 – ident: e_1_2_7_49_1 doi: 10.1186/1471-2288-14-135 – ident: e_1_2_7_46_1 doi: 10.1002/humu.9010 – ident: e_1_2_7_22_1 doi: 10.1016/j.jpeds.2012.02.045 – ident: e_1_2_7_13_1 doi: 10.1136/bmj.300.6719.236 – ident: e_1_2_7_5_1 doi: 10.1056/NEJMra1708111 – ident: e_1_2_7_21_1 – volume: 366 start-page: 53 year: 1967 ident: e_1_2_7_10_1 article-title: Standardization of procedures for the study of glucose‐6‐phosphate dehydrogenase publication-title: WHO Tech Rep Ser – volume: 48 start-page: 316 year: 2011 ident: e_1_2_7_47_1 article-title: Enzyme kinetics and molecular modeling studies of G6PD(Mahidol) associated with acute hemolytic anemia publication-title: Indian J Biochem Biophys – ident: e_1_2_7_23_1 doi: 10.1136/bmjopen-2022-066529 – ident: e_1_2_7_43_1 – ident: e_1_2_7_50_1 doi: 10.1006/bcmd.2002.0490 – ident: e_1_2_7_28_1 doi: 10.1016/j.ajhg.2023.01.003 – volume: 45 start-page: 243 year: 1971 ident: e_1_2_7_11_1 article-title: Human glucose‐6‐phosphate dehydrogenase variants publication-title: Bull World Health Organ – ident: e_1_2_7_9_1 doi: 10.1126/science.124.3220.484.b – volume-title: Biochemistry year: 2002 ident: e_1_2_7_26_1 – ident: e_1_2_7_19_1 doi: 10.1093/nar/14.6.2511 – ident: e_1_2_7_34_1 doi: 10.1073/pnas.71.9.3584 – volume: 67 start-page: 601 year: 1989 ident: e_1_2_7_12_1 article-title: Glucose‐6‐phosphate dehydrogenase deficiency publication-title: Bull World Health Organ – ident: e_1_2_7_7_1 doi: 10.1016/S2352-3026(15)00191-X – ident: e_1_2_7_18_1 doi: 10.1182/blood-2012-03-416032 – ident: e_1_2_7_29_1 doi: 10.1016/j.hoc.2015.11.006 – ident: e_1_2_7_39_1 doi: 10.1542/peds.2011-1580 – ident: e_1_2_7_3_1 doi: 10.1182/blood.2019000944 – ident: e_1_2_7_6_1 doi: 10.1002/cpt.2735 – volume: 28 start-page: 496 year: 1976 ident: e_1_2_7_37_1 article-title: Variability of red cell phenotypes between and within individuals in an unbiased sample of 77 certain heterozygotes for G6PD deficiency in Sardinians publication-title: Am J Hum Genet – ident: e_1_2_7_44_1 – ident: e_1_2_7_33_1 doi: 10.1186/1475-2875-12-391 – volume: 55 start-page: 576 year: 1972 ident: e_1_2_7_45_1 article-title: G‐6‐PD Mahidol. The most common glucose‐6‐phosphate dehydrogenase variant in Thailand publication-title: J Med Assoc Thail – volume: 14 start-page: 217 year: 1985 ident: e_1_2_7_35_1 article-title: Glucose 6‐phosphate dehydrogenase publication-title: Adv Hum Genet – ident: e_1_2_7_2_1 doi: 10.1371/journal.pmed.1001339 – ident: e_1_2_7_40_1 doi: 10.1097/MPH.0000000000002381 – ident: e_1_2_7_30_1 doi: 10.4314/eamj.v79i1.8924 – ident: e_1_2_7_14_1 doi: 10.1016/j.bcmd.2016.07.001 – start-page: 609 volume-title: Nathan and Oski's hematology and oncology of infancy and childhood year: 2015 ident: e_1_2_7_4_1 – ident: e_1_2_7_41_1 doi: 10.1001/archinte.1962.03620140081013 – ident: e_1_2_7_38_1 doi: 10.1097/MJT.0000000000000828 – ident: e_1_2_7_17_1 doi: 10.1016/S0140-6736(04)16350-2 – ident: e_1_2_7_42_1 doi: 10.1182/blood.V25.1.92.92 – ident: e_1_2_7_27_1 doi: 10.3390/pathogens11091045 – ident: e_1_2_7_32_1 doi: 10.1016/j.bcmd.2004.06.003 – ident: e_1_2_7_51_1 doi: 10.1016/j.bcmd.2012.01.001 – ident: e_1_2_7_31_1 doi: 10.1186/1479-5876-10-199 – ident: e_1_2_7_8_1 doi: 10.1016/S2352-3026(15)00152-0 – volume-title: Guidlines for malaria year: 2022 ident: e_1_2_7_20_1 |
SSID | ssj0013051 |
Score | 2.5011759 |
SecondaryResourceType | review_article |
Snippet | Summary
Glucose‐6‐phosphate dehydrogenase (G6PD) deficiency in erythrocytes causes acute haemolytic anaemia upon exposure to fava beans, drugs, or infection;... Glucose‐6‐phosphate dehydrogenase (G6PD) deficiency in erythrocytes causes acute haemolytic anaemia upon exposure to fava beans, drugs, or infection; and it... Glucose-6-phosphate dehydrogenase (G6PD) deficiency in erythrocytes causes acute haemolytic anaemia upon exposure to fava beans, drugs, or infection; and it... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1024 |
SubjectTerms | Anemia Erythrocytes G6PD deficiency Gene frequency Genetic diversity Glucosephosphate dehydrogenase Glucosephosphate Dehydrogenase - genetics Glucosephosphate Dehydrogenase Deficiency - genetics glucose‐6‐phosphate dehydrogenase haemolytic anaemia Hematology Hemolysis Hemolytic anemia Humans Infant, Newborn Jaundice Literature reviews Male Neonates Polymorphism, Genetic Substrate preferences WHO classification World Health Organization |
Title | Genetic variants causing G6PD deficiency: Clinical and biochemical data support new WHO classification |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbjh.18943 https://www.ncbi.nlm.nih.gov/pubmed/37415281 https://www.proquest.com/docview/2858813808 https://www.proquest.com/docview/2835272668 |
Volume | 202 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH4qPSAulL1TSmUQBy4ZJbYTO-XEVkaVChVq1R6QIvvZZmmVVp2ZHvj1-DkLlEVC3Cz5RV6f_Tn-_D2Ap-hqURols7i7YSat8lkdcptJWefC5sZWSV1_7101O5S7x-XxCjwf3sJ0-hDjDzfyjLRek4MbO__Jye3Xz9OC1MPj-ktcLQJEH_iPG4S87KPlqbjUSN2rChGLZ_zy6l70G8C8ilfThrOzBh-HqnY8k5PpcmGn-O0XFcf_bMstuNkDUfaimzm3YcW3d-D6Xn_VfhcCCVLHPHYZT9NElmFoiCT_ib2t9l8z50l6gt5tbrNeW_SUmdYx-4VicCURAkb0UzZfnhPGZxG_s6PZe4aE14mglObEPTjceXPwapb1QRkyFFqLzCteocfaYOHqOnDlYgqFj47tXOkxOF4Zb1GhVkbzIHIra6kUoiZ04MV9WG3PWr8OzGDttHMBSaNGBGcjeuM2QpxglCiCnMCzYXga7BXLKXDGaTOcXGK_NanfJvBkND3vZDr-ZLQ5jHHTe-q84brUuhA61xN4PGZHH6OLE9P6syXZRJga211Fmwfd3BhLEQTJuC5iZdMI_7345uXuLCU2_t30Idyg-PYdqW0TVhcXS_8ooqCF3YJrXO5vpUn_HRNvA6E |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwEB6VIkEv7MsrBQziwCVPSezEDuLCVkLpKwi1ohcU2WO7tFRp1b7HgV-Px1mgLBLiZsljeZuxP9vjbwAeoa14oaVIwu6GiTDSJZVPTSJElXKTalNGdv3ZVlnviI3dYncJng5_YTp-iPHCjSwjrtdk4HQh_ZOVm4PP04zow8_BeYroHQ9UH_Ifbwhp0cfLk2GxEarnFSI_nrHo2d3oN4h5FrHGLWf9MnwaGtt5mnyZLuZmit9-4XH8395cgUs9FmXPOuW5CkuuvQYXZv1r-3XwxEkd8tjXcKAmfxmGmvzk99jr8v1LZh2xT9DXzSespxc9ZLq1zOxTGK7IQ8DIA5WdLo4J5rMA4dnH-h1DguzkoxTV4gbsrL_aflEnfVyGBLlSPHEyL9FhpTGzVeVzaUMKuQu2bW3h0Nu81M6gRCW1yj1PjaiElIiKAILjN2G5PWrdbWAaK6us9Ug0NdxbEwBcbgLK8VryzIsJPB7mp8GetJxiZxw2w-EljFsTx20CD0fR446p409Ca8MkN72xnja5KpTKuErVBB6M2cHM6O1Et-5oQTIBqYZ-l0HmVqccYy2cUFmustDYOMV_r755vlHHxOq_i96Hi_X2bLPZfLP19g6sULj7zsdtDZbnJwt3N4CiubkXdf87IJ0G5Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlVceD-2LWAQBy5ZJbETO-UELMtSaKkQFT0gRfbYbqFVuqK7HPj1eJwHlIeEuFnyRH7N2J8z428AHqGteKGlSMLphokw0iWVT00iRJVyk2pTRnb9nd1yti-2D4qDFXjSv4Vp-SGGH25kGXG_JgOfW_-TkZvPR-OM2MMvwEVRpopUevIu_-FCSIsuXZ4Me41QHa0QhfEMn54_jH5DmOcBazxxplfgY9_XNtDkeLxcmDF--4XG8T8HcxUud0iUPW1V5xqsuOY6rO10vvYb4ImROtSxr-E6TdEyDDVFyR-yl-XehFlH3BP0cHOLdeSiJ0w3lplPlIQrshAwij9lZ8s5gXwWADz7MHvLkAA7RShFpbgJ-9MX75_Pki4rQ4JcKZ44mZfosNKY2aryubShhNwFy7a2cOhtXmpnUKKSWuWep0ZUQkpERfDA8Vuw2pw27g4wjZVV1nokkhrurQnwLTcB43gteebFCB73y1NjR1lOmTNO6v7qEuatjvM2goeD6Lzl6fiT0Ga_xnVnqmd1rgqlMq5SNYIHQ3UwMvKc6MadLkkm4NQw7jLI3G51Y2iFEybLVRY6G1f4783Xz7ZnsbD-76L3YW1vMq3fvNp9vQGXKNd9G-C2CauLL0t3NyCihbkXNf87JxQFnQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+variants+causing+G6PD+deficiency%3A+Clinical+and+biochemical+data+support+new+WHO+classification&rft.jtitle=British+journal+of+haematology&rft.au=Nannelli%2C+Caterina&rft.au=Bosman%2C+Andrea&rft.au=Cunningham%2C+Jane&rft.au=Pierre%E2%80%90Antoine+Dugu%C3%A9&rft.date=2023-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0007-1048&rft.eissn=1365-2141&rft.volume=202&rft.issue=5&rft.spage=1024&rft.epage=1032&rft_id=info:doi/10.1111%2Fbjh.18943&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1048&client=summon |